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Goal-directed behaviour is a defining characteristic of intelligent behaviour.
In CogX we are committed to using planning (coupled with suitable reactive
mechanisms) to determine how goals are achieved (see WP4), but how can
an intelligent system create and manage its own goals? This document
presents our work on the problem of motive management, where “motive” is
an umbrella term for representations that dispose a system towards achieving
future states. Our work is presented in the context of both the state-of-the-
art and previous work by the consortium, and relates the problem of motive
management to both our scenario-driven integration work, and the aims of
the project as a whole.
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Executive Summary

This report presents research carried out in WP1 on architectural designs
for intelligent robots in general, and on mechanisms and representations for
generating and managing a robot’s goals in particular. The architectural
work has distilled previously developed principles into a high-level system
design called PECAS. This name refers to the architecture’s foundations
in the CoSy Architecture Schema (CAS), and its initial application in the
PlayMate and Explorer scenarios of that recently completed project. Whilst
PECAS provides coarse guidelines for system design, it currently provides
limited guidance about how goals for a system should be generated, and how
multiple, possibly conflicting goals should be managed. This problem area
is the subject of Task 1.2 (Architectures for desire generation and manage-
ment), with PECAS providing the architectural context within which the
work has been performed. To date, the work done for Task 1.2 has been
to analyse the requirements on motive management systems for intelligent
robots, survey how these requirements are addressed by existing work in
various sub-fields of AI and robotics, and use the knowledge gained from
these exercises to synthesize an outline design for a novel architecture for
motive management. In this context we use the term “motive” as an um-
brella term encompassing goals, drives and other dispositional states which
might cause an intelligent system to act (states we address separately in the
annex described in §2.3). Managing motives means choosing what to do next
in a way that is informed both by the possibility of action and by the de-
sirability of the outcome. In a CogX robot, the motive management system
will ultimately be responsible for choosing whether to self-extend (based on
self-understanding), and which particular route of extension to follow (from
possibilities suggested by other systems)1. It will also manage the non-
reflective tasks the robot will tackle, and the trade-offs inherent in choosing
between different tasks and different opportunities for self-extension.

Role of motive management in CogX

In CogX we are interested in designing, building and understanding ar-
tifacts which are capable of a wide range of intelligent behaviours, rather
than a single type of narrow intelligence. In general, when we refer to intelli-
gent behaviour we are, either implicitly or explicitly, referring to behaviour
that is goal-directed, i.e. behaviour that serves to achieve a pre-identified
(whether at run-time or design-time) state [5]. Even a cursory analysis of
our integration scenarios demonstrate that it is possible for a system to have
multiple goals at the same time. Moreover it is possible for a system to have

1This does not rule out the possibility of our systems having forms of non-planned, i.e.
reactive, self-extension.
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multiple conflicting goals, i.e. goals which cannot be achieved through a
single course of action (in the immediate future at least). A hypothetical
CogX artifact can have two distinct classes of goals: task goals (fetching and
finding things, answering questions, generally being useful to humans etc.)
and self-extension goals (learning new things, filling gaps in knowledge etc.).
Not only can goals conflict within these classes (should the robot perform
the new task requested by the last person it talked to, or finish the task it
is half-way through; should the robot learn what a particular object looks
like or what names humans typically use for it), but they can also conflict
across these classes. Mechanisms able to resolve this latter type of conflict,
the conflict between a goal to perform a task and a goal to self-extend, will
be central to the unified theory developed by the consortium. In order to
investigate instances of these conflicts we must first build an architectural
framework within which goals, and conflicts, can be represented and pro-
cessed. This report contributes towards the design of this framework, and
thus the broader aims of the project.

We can place the work in a more concrete context by considering an
example from the “Dora” integration scenario. This scenario features a mo-
bile robot (called Dora) which is able to learn about the spatial properties
of its environment, where this learning can be partly triggered by an under-
standing of what it knows it doesn’t know (a limited form of self-extension
through introspection). The learning is done to provide knowledge to help
Dora perform tasks for its human controllers (a precursor of the hypotheti-
cal gopher robot described in the project technical annex). At the start of
the scenario Dora is given a tour of an office environment. The human tour-
guide labels particular rooms of interest (e.g. “we are now in the kitchen”,
“over there is the robot lab”) and indicates objects that might be relevant
to future tasks (e.g. “that is the cooker”, “the cornflakes are in the top
cupboard”). Given that the human’s indications are only approximate, and
Dora’s sensors are noisy, at the end of the tour Dora has a number of gaps
in its understanding of its environment. These will all give rise to self-
extension goals; goals which can be achieved through knowledge gathering
and information-processing activities. How these goals arise in an architec-
ture, and how particular goals are selected for further expansion (planning
and execution) are questions which we must address in this WP and in this
report. If Dora is asked to perform a task such as bringing the human some
cornflakes, how does it choose whether it should achieve this goal (the goal
of the human having the cornflakes) rather than filling the gaps in its own
knowledge? What if the gaps in its knowledge are directly related to the
location of the cornflakes box or its ability to manipulate it? This indicates
not only the need for a study of motive management in CogX, but also
the need for close integration between WP1 and the workpackage on the
planning of action, sensing and learning (WP4).
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Contribution to the CogX scenarios and prototypes

As the above scenario sketch demonstrates, the work on motive manage-
ment will be central to the integration of different capabilities in a single
system. In this first year our demonstrator systems will only have a small
range of different capabilities, thus reducing the need for management mech-
anisms. However, we will employ the same prototype motive management
architecture in both the Dora and George scenarios to arbitrate between
the various goals they will have. The exact requirements on the software
systems developed and deployed will depend on the progress made in the
other WPs and during the integration process. Our current aim is for at
least Dora to feature both task and self-extension goals, and for the motive
management architecture to control the selection and achievement of these.
Although the need for motive management may be limited in this first year,
it is essential that it is included (at least in prototype form) in our inte-
grated systems at this early stage; other, dependent, behaviours should be
developed within the managed framework (i.e. the goals and behaviours of
the system should be deliberatively selected and planned) so that they can
be more easily integrated with other behaviours when the capabilities of our
systems are extended.
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1 Tasks, objectives, results

1.1 Planned work

Work reported in this deliverable concerns Task 1.2:

Task 1.2: Develop representations for motives, and an architec-
ture to generate them and contain processes that can manage
them.2

The plan to address this task was to review both the requirements on
such a system in CogX and the current state-of-the-art techniques related
to these requirements. The results of these studies were to be synthesised
into a design for an extension to the PECAS architectural schema, which
would then be implemented and tested in an integrated system.

1.2 Actual work performed

To date we have completed the survey elements of the planned work, and
proposed an initial design for a motive management framework which goes
beyond the state-of-the-art in a number of ways. The results of this pro-
cess are presented in the article attached as an annex and described in §2.3.
In summary, we started the requirements analysis by looking at a scenario
involving a hypothetical robot helper in a near-future family home. By
inspecting this, along with the in-depth analysis of motivation systems pro-
vided previously by Beaudoin et al. [1, 13], we identified the problems of
encoding drives (how the needs of the system are represented), goal gen-
eration (how particular goals are generated from the drives with reference
to the current state), and goal selection (how the system determines which
goals to act on) as important aspects of any motive management framework.
We then reviewed the existing literature on intelligent systems which man-
age their own goals to explore previous approaches to these aspects of the
problem. The review encompassed belief-desire-intention (BDI) approaches
(e.g. [2, 6]), reactive and behaviour-based systems (e.g. [9, 3]), reactive plan-
ners with goal management extensions (which represents perhaps the largest
body of work on this subject) (e.g. [7, 11, 12]), and also reactive-deliberative
hybrid systems and related planning literature (e.g. [4, 10]). The review ar-
ticle groups the previous work into categories based on the approaches they
take to the three problems listed above. From an analysis of strengths
and weaknesses of these categories we synthesised an early design sketch
for a motive management framework. This includes reactive goal genera-
tors and alarms, homeostatic drives modelled as resource constraints in a
planning domain (as this overcomes weaknesses in reactive goal generation

2In the technical annex we used the term “desire instance” not “motive”. Our work
since writing the annex has driven us to change terminology.

EU FP7 CogX 6



DR 1.1: Motive Management Hawes et al.

G

G

attention filter

G

G
G

G

G

G

G

active goals

managed goals

unsurfaced goals

G

}ac
tiv

at
io

n

suspension

activation & suspension 
managed by planning

uses importance & 
urgency

} variable threshold 
attention filter restricts 
access to management 

processes

uses importance & 
urgency

} goals are generated/
updated independently

annotated with 
importance & urgency

goal generators

m
et

a-
m

an
ag

em
en

t

goal expansion 
(planning, scheduling, execution)

Figure 1: A visualisation of the proposed design for a motive management
framework.

for some problems) and a goal management process which includes active
and suspended goals plus an attention filter which restricts the management
process’s inputs based on resource constraints. Central to this management
process will be a continual planning architecture able to process resources
(as is being developed in WP4), and deal with oversubscribed goal states.
Oversubscription planning allows the deliberative system to reason about
which goals it can achieve given costs (which can be derived from resource
usage, or from importance and urgency values provided by goal generators),
rather than have goal selection as an external process to planning. The
proposed design is pictured in Figure 1.

We are just beginning the development of early prototypes based on this
design sketch. These prototypes will be integrated into the PECAS archi-
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tecture (presented in the annex described in §2.1), which currently has only
limited, ad-hoc goal generation and management facilities. We will evaluate
the resulting systems in the Dora and George integration scenarios, and also
in a simulated domain (allowing for greater variety of test conditions).

1.3 Relation to the state-of-the-art

Motive management has only been tackled explicitly by handful of researchers,
although many systems have been designed and built which solve small parts
of the range of problems involved. Part of the reason for this lack of research
is due to difficulties of producing an intelligent system capable of demon-
strating even a narrow range of goal-directed behaviours: there has just been
no need for researchers to worry about how to arbitrate between different
behaviours as their systems can typically only do one of a small, closely-
related, range of things. However the recent advances in both component
intelligence (i.e. single behaviours) and integrated intelligent systems (partly
as a result of the EU Cognitive Systems programme) has brought AI and
robotics to the point where these issues must now be considered. As such,
the work planned and performed in this WP is timely and important, par-
ticularly given the dearth of related literature on motive management in
robotics.

It is too soon to relate our design and implementation work to the state
of the art (as it is still at the early prototype stage). However, based on our
survey, our design is for a system that will go beyond current systems in
both the range of drives and goals it can handle, and the power of the mech-
anisms it uses to manage them. When the motive management framework is
fully developed we shall relate it to some of the approaches identified in the
attached annex: the MADbot motivated planning system [4]; the Goal and
Resource Using architecturE (GRUE) [7]; and systems from BDI commu-
nity (e.g. [6]) including goal-management extensions to existing architectures
(e.g. the BDI abstraction layer recently added to Soar [8]);

2 Annexes

2.1 Hawes et al. Planning as an Architectural Control Mech-
anism (HRI’09)

Bibliography Nick Hawes, Michael Brenner and Kristoffer Sjöö. Plan-
ning as an Architectural Control Mechanism. In Proceedings of the 4th
ACM/IEEE international conference on Human robot interaction (HRI ’09),
pp. 229-230. La Jolla, California, USA. 2009.
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Abstract We describe recent work on PECAS, an architecture for intelli-
gent robotics that supports multi-modal interaction.3

Relation to WP This short paper describes the architectural foundations
upon which some of the theoretical and practical contributions of CogX will
initially build (particularly those in the context of the integrated systems).
Whilst not related directly to motive management, this paper can be con-
sidered a very brief primer on the shared history of the consortium’s ar-
chitectural work. In the context of WP1, the work on PECAS defines the
context within which we will place the representations and mechanisms un-
der investigation (i.e. representations of beliefs, and architectures for motive
management). This paper was significantly expanded to produce the paper
described in §2.2. For readers with limited time we suggest reading the
short version and skipping the expanded version. For readers with a greater
interest in architectural issues, we suggest skipping the shorter version and
only reading the expanded version.

2.2 Hawes et al. Planning and Acting with an Integrated
Sense of Space (HYACS@IJCAI’09)

Bibliography Nick Hawes, Hendrik Zender, Kristoffer Sjöö, Michael Bren-
ner, Geert-Jan M. Kruijff and Patric Jensfelt. Planning as an Architectural
Control Mechanism. In International Workshop on Hybrid Control of Au-
tonomous Systems (HYCAS) at IJCAI ’09. Pasadena, California, USA.
2009.

Abstract The paper describes PECAS, an architecture for intelligent sys-
tems, and its application in the Explorer, an interactive mobile robot. PECAS
is a new architectural combination of information fusion and continual plan-
ning. PECAS plans, integrates and monitors the asynchronous flow of infor-
mation between multiple concurrent systems. Information fusion provides
a suitable intermediary to robustly couple the various reactive and deliber-
ative forms of processing used concurrently in the Explorer. The Explorer
instantiates PECAS around a hybrid spatial model combining SLAM, visual
search, and conceptual inference. This paper describes the elements of this
model, and demonstrates on an implemented scenario how PECAS provides
means for flexible control.

Relation to WP As the expanded version of the paper presented in §2.2,
this paper has much the same relation to the WP. This paper contains a
more detailed exposition of the design of the PECAS architecture and the

3This was a short paper accepted as late-breaking abstract. The 2-page paper limit
resulted in this reduced abstract.
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consequences of this design. The paper includes an example from a mobile
robot system which is able to find an object for a human instructor.

2.3 Hawes. A Survey of Motivation Systems for Intelligent
Robots (report)

Bibliography Draft article. Intended for submission the Elsevier’s jour-
nal Artificial Intelligence.

Abstract The ability to achieve one’s goals is a defining characteristic of
intelligent behaviour. A great many existing theories, systems and research
programmes address the problems associated with generating behaviour to
achieve a goal; much fewer address the related problems of how and why
goals should be generated in an intelligent artifact, and how a subset of all
possible goals are selected as the focus of behaviour. It is research into these
problems of motivation, which this article aims to stimulate. Building from
the analysis of scenario involving a futuristic household robot, we extend
an existing account of motivation in intelligent systems to provide a frame-
work for surveying relevant literature in AI and robotics. This framework
guides us to look at the problems of encoding drives (how the needs of the
system are represented), goal generation (how particular instances of goals
are generated from the drives with reference to the current state), and goal
selection (how the system determines which goal instances to act on). Af-
ter surveying a variety of existing approaches in these terms, we build on
the results of the survey to sketch a design for a new motive management
framework which goes beyond the current state of the art.

Relation to WP This article presents the results of the requirements
analysis, literature survey and early design work described in §1.2. If short
of time, Section 5 “Summary of Approaches” can be read on its own to
provide an overview of the results of the survey, and Section 6 “A Design
for a Motive Management Framework” can be read for more information on
the proposed framework.

References

[1] Luc P. Beaudoin. Goal Processing In Autonomous Agents. PhD thesis,
School of Computer Science, The University of Birmingham, 1994.

[2] M. E. Bratman. Intention, Plans, and Practical Reason. Harvard Uni-
versity Press, Cambridge, MA, 1987.

[3] Joanna J. Bryson. The Behavior-Oriented Design of modular agent
intelligence. In R. Kowalszyk, Jörg P. Müller, H. Tianfield, and R. Un-

EU FP7 CogX 10



DR 1.1: Motive Management Hawes et al.

land, editors, Agent Technologies, Infrastructures, Tools, and Applica-
tions for e-Services, pages 61–76. Springer, Berlin, 2003.

[4] A. M. Coddington. Integrating motivations with planning. In Proceed-
ings of the 6th International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS07), pages 850–852, 2007.

[5] Stan Franklin and Art Graesser. Is it an agent, or just a program?:
A taxonomy for autonomous agents. In ECAI ’96: Proceedings of the
Workshop on Intelligent Agents III, Agent Theories, Architectures, and
Languages, pages 21–35, London, UK, 1997. Springer-Verlag.

[6] Michael P. Georgeff and François Felix Ingrand. Decision-making in an
embedded reasoning system. In Proceedings of the 11th International
Joint Conference on Artificial Intelligence, pages 972–978, 1989.

[7] Elizabeth Gordon and Brian Logan. Managing goals and resources in
dynamic environments. In Darryl N. Davis, editor, Visions of Mind:
Architectures for Cognition and Affect, chapter 11, pages 225–253. Idea
Group, 2005.

[8] Sean A. Lisse, Robert E. Wray, and Marcus J. Huber. Beyond the
ad-hoc and the impractically formal: Lessons from the implementa-
tion of formalisms of intention. In Working Notes of the AAAI Spring
Symposium on Intentions in Intelligent Agents, March 2007.

[9] Pattie Maes. The agent network architecture (ana). SIGART Bull.,
2(4):115–120, 1991.

[10] Romeo Sanchez Nigenda Menkes van den Briel and Subbarao Kamb-
hampati. Over-subscription in planning: A partial satisfaction prob-
lem. In ICAPS 2004 Workshop on Integrating Planning into Scheduling,
2004.
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ABSTRACT
We describe recent work on PECAS, an architecture for in-
telligent robotics that supports multi-modal interaction.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: artificial intelligence:
Problem Solving, Control Methods, and Search

General Terms: Design, Theory

Keywords: architecture, planning, robotics, integration

1. INTRODUCTION
An information-processing (IP) architecture designed to

enable autonomous robots to interact intelligently with hu-
mans in multiple contexts must solve a number of prob-
lems. One of these is to unify the processing of multiple,
concurrently active, heterogeneous subsystems into a single
stream of intelligent behaviour. To do this the architec-
ture must mediate between both the different representa-
tions used throughout the system and the processes in its
multiple subsystems. Over the last couple of years we have
been exploring designs for IP architectures for intelligent
robots. In this work we have already addressed mediation
between representations [1, 3]. In this paper we present re-
cent work on the problem of mediating between processes.

2. BACKGROUND AND MOTIVATION
The following summarises some of the assumptions that

underlie our work. We have been developing the PECAS
architecture to fulfill the requirements of scenarios featur-
ing situated dialogue coupled with table-top manipulation
(our PlayMate scenario) or semantic mapping (our Explorer
scenario). Our architecture is based on the CoSy Architec-
ture Schema (CAS), which structures systems into subarchi-
tectures (SAs) which cluster processing components around
working memories [2]. From this schema we have created a
number of SAs (vision, communication, navigation, manipu-
lation etc.) which can be selectively grouped into a single ar-
chitecture for a particular scenario. All these SAs are active
in parallel, and all operate on SA-specific representations (as
is necessary for robust and efficient task-specific processing).
These disparate representations are unified by a binding SA,
which performs abstraction and cross-modal information fu-
sion on the information from the other SAs [3]. This gives

Copyright is held by the author/owner(s).
HRI’09, March 11–13, 2009, La Jolla, California, USA.
ACM 978-1-60558-404-1/09/03.

us a way of mediating between heterogeneous content in our
systems, but it does not say anything about how we can use
this content in the generation of behaviour.

We have built a number of systems using PECAS, includ-
ing interactive robots for table-top manipulation and for se-
mantic mapping of indoor environments. These robots have
multiple capabilities that can be used to perform many dif-
ferent user-specified tasks. In order to provide the robots
with a generic and extensible way to deal with such tasks,
we treat the computation and coordination of overall sys-
tem behaviour as a planning problem. The use of planning
gives the robot a high degree of autonomy: complex goal-
driven behaviours need not be hard-coded into the system,
but are planned by the robot itself. Likewise, the robot
can autonomously adapt its plans to changing situations us-
ing continual planning and is therefore well suited to dy-
namic environments. However, relying on automated plan-
ning means that all tasks for the robot need to be posed as
goals for a planner, and all behaviour to achieve these goals
must be encoded as actions that the planner can process.

3. BEHAVIOUR AS PLANNING
Planning systems are given goals as logical formulae. In

our architecture, such goals are typically generated when
intentional content is processed by the communication SA
(i. e. given by a human in natural language), then made
available to the motivation SA via binding. For example, if
the user wants the robot to bring them a certain book, this
might lead the robot to form a goal such as (holds human1

book1). Note that while goals are most commonly provided
by a human, they can also arise from internal processes.

While the traditional use of planning is achieving goals in
the physical world using physical actions, such direct inter-
pretations of behaviour are the exception rather than the
rule in human-robot interaction. Here, where information
is incomplete, uncertain, and distributed over several agents
and throughout subsystems, much of the actions to be per-
formed by the system are to do with processing information.
Whilst some IP may be performed continuously by the sys-
tem (e. g. listening for sounds to recognise, SLAM) much IP
is too costly to be performed routinely and should instead
be performed only when relevant to the task at hand, i. e. it
should be planned based on context.

4. PLANNING FOR IP
Underlying our approach to IP is the functionally decom-

posed, concurrently active, structure of PECAS. As each
SA is effectively a self-contained processing unit, our design



leads naturally to an integration strategy: each SA is treated
as a separate agent in a multi-agent planning problem. Al-
though this separation has many features which we do not
have space to discuss, a crucial one is that each SA’s knowl-
edge is separate within the planning state, and can only
be reasoned about using epistemic operators (e. g. (K vi-

sion.sa colour(obj1)), meaning that the vision SA knows
the colour of an object). Likewise, goals are often epistemic
in nature, e. g. when a human or a SA wants to query the
vision SA for the colour of an object.

To realise internal and external information exchange each
SA can use two special actions: tell-value and ask-value.
These provide and request information, respectively, and
have epistemic effects. Interaction with humans or other
external agents can also use (but is not limited to) these
actions. As a result, planning of IP becomes a matter of
planning for epistemic goals in a multiagent system. For
example, if a human teacher tells our robot that “the ball
is blue”, this gives rise to the motivation that all SAs deal-
ing with colours (e. g. vision) should know the colour of the
ball in question. This may lead to a plan in which the com-
munication SA uses a tell-value action to give the vision
SA this information. Note that the factual information pro-
vided by the teacher is not directly entered into the robot’s
knowledge base. Instead it gives rise to a more complex mo-
tivation which enables the planner to initate more complex
IP as necessary, e.g. triggering a colour learning process.

This design gives the robot more autonomy in deciding
on the task-specific information flow through its subsystems.
But there is also another assumption underlying this design:
whilst the binding SA is used to share information through-
out the architecture, not all information in the system can
or should be shared this way. Some information is unavail-
able because it is modality specific, and even cross-modal
knowledge is often irrelevant to the task at hand. If all in-
formation was shared this would overwhelm the system with
(currently) irrelevant information (e.g. lists of all the people,
rooms, objects, object categories etc. that parts of the sys-
tem know about). Thus, in order to restrict the knowledge
the planner gives “attention” to without losing important in-
formation, it needs to be able to extend its planning state
on-the-fly, i. e. during the continual planning process. We
call this process task-driven state generation.

To support this the planner makes use of meta-level infor-
mation, so-called produce and consume facts. They describe
which SAs can produce which predicates (i. e. where certain
types of information can come from) and which SAs can
consume which predicates (i. e. where certain types of infor-
mation should go). This enables more general formalisations
for, e. g., teaching goals (all SAs which consume a particular
predicate should be told the value of any new instances of
that predicate), and requesting information (if a SA needs
the value of a state variable, then it should ask a SA that can
produce it). Produce and consume facts provide the planner
with enough information to use tell-value and ask-value in
its IP planning. We assume that the SA-specific details for
asking and telling can be left opaque to the planner and will
be filled in at execution time by the executing SA. It is not
obvious whether this assumption will be valid in all cases,
but it provides a useful starting point.

5. EXAMPLES
In this section we will provide examples of our approach

in action. In our mobile robotic scenario, where a robot in-
teractively explores an office environment and runs simple
errands for human users, task-driven state generation is used
in several ways to help the robot deal with its necessarily in-
complete knowledge. When the robot is given a command
such as “Bring me the Borland book” the planner realises
that in order to achieve this task it first needs to satisfy the
epistemic subgoal of knowing where the book is. Thus, in the
initial phases of the continual planning process, it will query
SAs who (as specified by appropriate produce facts) can pro-
vide information about the location of the book. In this case,
it is the conceptual mapping SA which can provide default
knowledge about the locations of objects, e. g. the library
in the case of books. Having updated the state with the in-
formation from conceptual mapping, more detailed planning
becomes possible, allowing the robot to plan to move to the
library to search for the book.

Essentially the same process is used for planning human-
robot interaction. If the agent who is believed to be able to
“produce” facts about the book location is not an internal
SA but a human, the robot plans to ask-value the human.
However, the preconditions for ask-value may vary for differ-
ent addressees. In particular, external agents must first be
approached and engaged in a conversation. Since the same
planning approach is used for both physical actions as well
as internal IP, the planner can directly initiate a situated
dialogue including the physical movement of the robot.

In our table-top scenario the robot is capable of learning
and recognising visual features such as colour and shape.
If the confidence of a recognition result falls within a par-
ticular window of uncertainty (e.g likely but not certain),
the robot can generate clarification behaviour. Clarification
is represented as a goal in which the requesting SA should
know the value of a particular predicate (e.g. the colour of
an object). The plan created for this goal consists of the
requesting SA (e.g vision) asking SAs which produce this
predicate for its value (e.g. communication). If the com-
munication SA is asked, this may result in the robot asking
a nearby human for the information, and if an answer is
provided to the robot, the information is made available via
the binder. This highlights how our design allows the plan-
ner to operate without knowing the details of how each SA
implements its responses to ask-value and tell-value actions.

6. CONCLUSION
We have presented work on using planning to allow a robot

to coordinate multiple processes in PECAS, an architecture
for intelligent robots. Our approach has been applied to dif-
ferent HRI scenarios, demonstrating its generality.
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Abstract
The paper describes PECAS, an architecture for
intelligent systems, and its application in the Ex-
plorer, an interactive mobile robot. PECAS is a
new architectural combination of information fu-
sion and continual planning. PECAS plans, inte-
grates and monitors the asynchronous flow of infor-
mation between multiple concurrent systems. In-
formation fusion provides a suitable intermediary
to robustly couple the various reactive and delib-
erative forms of processing used concurrently in
the Explorer. The Explorer instantiates PECAS
around a hybrid spatial model combining SLAM,
visual search, and conceptual inference. This paper
describes the elements of this model, and demon-
strates on an implemented scenario how PECAS
provides means for flexible control.

1 Introduction
Recently there has been an enormous increase in R&D for
domestic robot assistants. Moving beyond the Roomba, more
complex robot “gophers” are envisioned, to assist in per-
forming more demanding tasks in human environments. To
achieve this vision, the study of integrated robotic systems
that fulfill many different requirements is necessary.

Research on individual aspects of such systems has yielded
impressive robots, e.g. the museum guides Rhino [Burgard et
al., 2000] and Robox [Siegwart and et al., 2003], or the in-
store assistant ShopBot [Gross et al., 2008]. Other robots,
like RoboVie [Ishiguro et al., 2001], Mel [Sidner et al.,
2004], BIRON [Peltason et al., 2009], or our CoSy systems
[Hawes et al., 2007; Kruijff et al., 2007] provide capabilities
for the robot to interact with a human using spoken dialogue.
As impressive as they are, all these systems lack the wide
range of capabilities needed by a versatile robotic assistant.
Producing such a system by integrating the results of spe-
cialized subfields such as control, perception, reasoning, and
dialogue remains a major challenge to AI and robotics.

If we wish to build a mobile robotic system that is able
to act in a real environment and interact with human users
we must overcome several challenges. From a system per-
spective, one of the major challenges lies in producing a sin-
gle intelligent system from a combination of heterogeneous

specialized modules, e.g. vision, natural language process-
ing, hardware control etc. Ideally this must be done in a
general-purpose, extensible and flexible way, with the ab-
solute minimum of hardwired behaviors. This both allows
solutions to be reused in different systems (allowing an un-
derstanding of the design trade-offs to be obtained), and for
the same system to be altered over time as requirements
change. Additionally, taking account of the “human in the
loop” poses the challenge of relating robot-centric represen-
tations to human-centric conceptualizations, such as the un-
derstanding of large-scale space [Kuipers, 1977].

In this paper we present PECAS (see Section 2), our novel
approach to integrating multiple competences into a single
robotic system. PECAS allows us to address many of the pre-
viously described problems in an architectural way, providing
an approach that is ultimately resuable in other robots and
domains. For a general-purpose architecture to be deployed
it must be instantiated with task-specific content. Section 3
presents the Explorer system, our instantiation of PECAS in
an interactive mobile robot. Following this we use the Ex-
plorer instantiation to present examples of PECAS as a con-
trol system (in a general sense). Section 4 presents a complete
system run from our implementation, demonstrating how the
flow of information and control passes between low and high
levels in our system. Section 5 discusses control in PECAS in
general, and the strengths and weaknesses of our approach.

2 The PECAS Architecture
Our recent work on intelligent robotics has led to the de-
velopment of the PlayMate/Explorer CoSy Architecture Sub-
Schema (PECAS). PECAS is an information-processing ar-
chitecture suitable for situated intelligent behavior [Hawes
et al., 2009]. The architecture is designed to meet the re-
quirements of scenarios featuring situated dialogue coupled
with table-top manipulation (the PlayMate focus [Hawes et
al., 2007]) or mobility in large-scale space (the Explorer fo-
cus [Zender et al., 2008]). It is based on the CoSy Architec-
ture Schema (CAS), which structures systems into subarchi-
tectures (SAs) which cluster processing components around
shared working memories [Hawes et al., 2007]. In PECAS,
SAs group components by function (e.g., vision, communi-
cation, or navigation). All these SAs are active in parallel,
typically combining reactive and deliberative forms of pro-
cessing, and all operating on SA-specific representations (as



is necessary for robust and efficient task-specific processing).
These disparate representations are unified, or bound, by a
subarchitecture for binding (binding SA), which performs ab-
straction and cross-modal information fusion on the informa-
tion from the other SAs [Jacobsson et al., 2008]. PECAS
makes it possible to use the multiple capabilities provided
by a system’s SAs to perform many different user-specified
tasks. In order to give the robots a generic and extensible way
to deal with such tasks, we treat the computation and coordi-
nation of overall (intentional) system behavior as a planning
problem. The use of planning gives the robot a high degree of
autonomy: complex goal-driven behaviors need not be hard-
coded, but can be flexibly planned and executed by the robot
at run-time. The robot can autonomously adapt its plans to
changing situations using continual planning and is therefore
well suited to dynamic environments. Relying on automated
planning means that tasks for the robot need to be posed as
goals for a planner, and behavior to achieve these goals must
be encoded as actions that the planner can process. The fol-
lowing sections expand upon these ideas.

2.1 Cross-Modal Binding
Cross-modal binding is an essential process in information-
processing architectures which allow multiple task-
specialized (i.e., modal) representations to exist in parallel.
Although many behaviors can be supported within individual
modalities, two cases require representations to be shared
across the system via binding. First, the system requires
a single, unified view of its knowledge in order to plan a
behavior that involves more than one modality (e.g., fol-
lowing a command to do something relative to the object
or area). Second, binding is required when a subsystem
needs information from another one to help it solve a
problem (e.g., using visual scene information to guide speech
recognition [Lison and Kruijff, 2008]).

Our approach to binding underlies much of the design and
implementation of our systems, and so we will reiterate it here
(for more details see [Jacobsson et al., 2008]). Each PECAS
SA that wishes to contribute information to the shared knowl-
edge of the system must implement a binding monitor. This
is a specialized processing component which is able to trans-
late from an arbitrary modal representation (e.g., one used for
spatial modeling or language processing) into a fixed amodal
(i.e., behavior neutral) representation. Across a PECAS sys-
tem the binding monitors provide a parallel abstraction pro-
cess mapping from multiple, different representations to a
single, predicate logic-like representation. Binding monitors
deliver their abstracted representations into the binding SA as
binding proxies and features. Features describe the actual ab-
stract content (e.g., color, category, or location) in our amodal
language, whilst proxies group multiple features into a single
description for a piece of content (such as an object, room, or
person), or for relationships between two or more pieces of
content. The binding SA collects proxies and then attempts
to fuse them into binding unions, structures which group mul-
tiples proxies into a single, cross-system representation of the
same thing. Groupings are determined by feature matching.
Figure 1 illustrates this: the SA for navigation (nav SA) and
the SA for conceptual mapping and reasoning (coma SA),

Concept: {"robot"}

 SubarchID: nav.sa  

 Concept: {"robot"} 

AreaID: {#1}

 Concept: {"library"} 

 SubarchID: coma.sa 

 AreaID: {#1} 

 Concept: {"library"} 

 SubarchID: nav.sa 

 AreaID: {#1} 

 RelationLabel: {"position"} 

 TemporalFrame: {PERCEIVED} 
from to

 SubarchID: nav.sa 

 RelationLabel: {"position"} 

 TemporalFrame: {PERCEIVED} 

Figure 1: Binding localization and conceptual information:
“the robot is in the library.” Proxies have dashed borders,
unions solid borders. Relation proxies, -unions are colored.

provide their information to the binding SA. Throughout this
process links are maintained between all levels of this hierar-
chy: from modal content, to features and proxies, and then on
to unions. These links act like pointers in a programming lan-
guage, facilitating access to information content regardless of
location. Binding thus supports the two identified cases for
cross-modal binding: the collection of unions provide a sin-
gle unified view of system knowledge, and cross-subsystem
information exchange is facilitated by linking similarly refer-
ring proxies into single union.

2.2 Planning for Action and Processing
For PECAS we assume that we can treat the computation and
coordination of overall system behavior as a planning prob-
lem. This places the following requirements on PECAS: it
must be able to generate a state description to plan with;
system-global tasks for the robot need to be posed as goals
for a planner; and behavior to achieve these goals must be
encoded as actions which can be processed by the planner.
In our implementation we use the MAPSIM continual plan-
ner and its Multi-Agent Planning Language (MAPL) [Bren-
ner and Nebel, 2009]. In MAPL, we can model beliefs and
mutual beliefs of agents as well as operators affecting these,
i.e., perceptual and communicative actions. The continual
planner actively switches between planning, execution, and
monitoring in order to gather missing goal-relevant informa-
tion as early as possible.

To provide a planning state, the planning SA automatically
translates from the unions in the binding SA into MAPL. The
planner thus automatically receives a unified view of the sys-
tem’s current knowledge. As we maintain links from unions
back to modal content, our planning state, and therefore our
plans, remain grounded in representations close to sensors
and effectors. In PECAS, planning goals arise as modal inten-
tional content which is then abstracted via binding monitors
and placed in the planning SA’s working memory. From here
we use the same translation method as is used on the planning
state to produce MAPL goals for the planner.

While the traditional use of planning is achieving goals in
the world using physical actions, such direct interpretations
of behavior are the exception rather than the rule in cog-
nitive robotics (cf. [Shanahan, 2002]). Here, where infor-



mation is incomplete, uncertain, and distributed throughout
subsystems, much of the actions to be performed by the sys-
tem are to do with processing or moving information. Whilst
some information processing may be performed continually
(e.g., SLAM), much of it is too costly to be performed rou-
tinely and should instead be performed only when relevant to
the task at hand, i.e., it should be planned based on context.

Underlying our approach to information-processing is the
functionally decomposed, concurrently active, structure of
PECAS. As each SA is effectively a self-contained process-
ing unit, our design leads naturally to an integration strategy:
each SA is treated as a separate agent in a multi-agent plan-
ning problem. A crucial feature of this strategy is that each
SA’s knowledge is separate within the planning state, and can
only be reasoned about using epistemic operators (i.e., oper-
ators concerned with knowledge). Likewise, goals are often
epistemic in nature, e.g., when a human or a SA wants to
query the navigation SA for the location of an object.

To realize internal and external information exchange each
SA can use two epistemic actions, tell-value and ask-value,
coupled with two facts about SAs, produce and consume. The
actions provide and request information respectively. The
facts describe which SAs can produce and consume which
predicates (i.e., where certain types of information can come
from and should go). For example, if a human teacher
tells our robot that “this is the kitchen,” this gives rise to
the motivation that all SAs which consume room knowledge
(e.g., coma SA described in the next section) should know
the type of the room in question. This may lead to a plan in
which the SA for situated dialogue (comsys SA) uses a tell-
value action to give the coma SA this information.

Using this design, planning of information-processing be-
comes a matter of planning for epistemic goals in a multi-
agent system. This gives the robot more autonomy in decid-
ing on the task-specific information flow through its subsys-
tems. But there is another assumption underlying this design:
whilst the binding SA is used to share information through-
out the architecture, not all information in the system can or
should be shared this way. Some of it is unavailable because
it is modality specific, and even cross-modal knowledge is of-
ten irrelevant to the task at hand. If all information was shared
this would overwhelm the system with (currently) irrelevant
information (e.g., lists of all the people, rooms, objects, object
categories etc. that parts of the system know about). Thus, in
order to restrict the knowledge the planner gives “attention”
to without losing important information, it needs to be able to
extend its planning state on-the-fly, i.e., during the continual
planning process. In PECAS state extension can be done us-
ing ask-value and tell-value actions, and results in a process
we call task-driven state generation.

3 The Explorer Instantiation
The binding and planning SAs described above are system
and scenario independent. We now discuss the Explorer-
specific SAs to describe concrete functionality and how this
relates to system control. All SAs have been implemented
in CAST (an open-source toolkit implementing the CAS
schema) and tested on an ActivMedia PeopleBot. Figure 2

Figure 2: The Explorer Architecture
shows all SAs used in the Explorer PECAS instantiation.
Most components used in the different SAs have been dis-
cussed in detail in earlier work (references provided below).

For a mobile robotic system that is supposed to act and
interact in large-scale space, an appropriate spatial model is
key. The Explorer maintains a multi-layered conceptual spa-
tial map of its environment [Zender et al., 2008]. It serves
as a long-term spatial memory of large-scale space. Its in-
dividual layers represent large-scale space at different levels
of abstraction, including low-level metric maps for robot mo-
tion control, a navigation graph and a topological abstraction
used for high-level path planning, and a conceptual represen-
tation suitable for symbolic reasoning and situated dialogue
with a human. In the Explorer, different SAs represent the
individual map layers. For the details on human-augmented
map acquisition see [Kruijff et al., 2007].
nav SA The SA for navigation and spatial mapping hosts
the three lowest levels of the spatial model (metric map, nav-
igation map, and topological layer). For low-level, metric
mapping and localization the nav SA contains a module for
laser-based SLAM. The nodes and edges of the navigation
map represent the connectivity of visited places, anchored in
the metric map through x-y-coordinates. Topological areas,
corresponding roughly to rooms in human terms, are sets of
navigation nodes. This level of abstraction in turn feeds into
the conceptual map layer that is part of the coma SA.

The nav SA contains a module for laser-based people de-
tection and tracking [Zender et al., 2007]. The nav SA bind-
ing monitor maintains the robot’s current spatial position and
all detected people, as proxies and relations on the binding
SA. The smallest spatial units thus represented are areas. This
provides the planner with a sufficiently stable and continuous
description of the robot’s state. The planning SA can pose
move commands to the nav SA. The target location is de-
fined based on the current task which might be to follow a
person, move to a specific point in space, etc. Move com-
mands are executed by a navigation control module, which



performs path planning on the level of the navigation graph,
but automatically handles low-level obstacle avoidance and
local motion control.
obj SA The SA for vision-based object search contains the
components for finding objects using vision. It consists of
a module for view planning and one for visual search. The
view planning component creates a plan for which navigation
nodes to visit, in what order and in what directions to look.
Details of the process can be found in [Gálvez López et al.,
2008]. The visual search consists of SIFT feature matching
directly on acquired images. Objects that are found are pub-
lished on the obj SA working memory. The nav SA detects
this and in turn extends the spatial model with the new ob-
jects. This then propagates the information to the coma SA
and, if and when necessary, to the binding SA.
coma SA The SA for conceptual mapping and reasoning
maintains an abstract symbolic representation of space suit-
able for situated action and interaction. It represents spatial
areas (nav SA), objects in the environment (obj SA), and ab-
stract properties of persons (e.g., ownership relations) in a
combined A-Box and T-Box reasoning framework based on
an OWL-DL reasoner, which can infer more specific concepts
for the area instances [Zender et al., 2008]. The coma SA
makes its information available to the binding SA on demand,
i.e., whenever planning SA sends an ask-val command to the
coma SA, it will add its knowledge about spatial entities, es-
pecially their most specific concepts. In our system the ex-
plicit definitions of area concepts through occurrences of cer-
tain objects are also used to raise expectations about typical
occurrences of certain objects. If the planning SA needs to
know the location of an object that has not been encountered
before, it can query the coma SA, which will then provide a
typical location of the object in question. This is done via
special T-Box queries involving the OWL-DL definitions of
concepts. An example of this will be discussed in Section 4.
comsys SA The subarchitecture for situated dialogue pro-
cessing has a number of components concerned with under-
standing and generation of natural language utterances [Krui-
jff et al., 2009]. Speech recognition converts audio to possi-
ble text strings, which are subsequently parsed. Parsing pro-
duces a packed representation of logical forms (LFs) that cor-
respond to possible semantic interpretations of an utterance.
Finally, the semantics are interpreted against a model of the
dialogue context. Content is connected to discourse referents,
being objects and events talked about over the course of an in-
teraction. In the dialogue context model, both the content of
the utterance and its intent are modeled. All of this infor-
mation is communicated to the planning SA and the binding
SA through proxies representing the indexical and intentional
content of the utterances. In rough terms the indexical content
(information about entities in the world) is used by the bind-
ing SA to link with information from other modalities. Mean-
while the intentional content (information about the purpose
of the utterance) is used by the planning SA to raise goals for
activity elsewhere in the system [Kruijff et al., 2009].

4 Example: Finding a book
This section presents a scenario in which a human asks the
Explorer to perform a task. It shows how PECAS controls

(a) Screenshot of the visualization tool
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(b) Contents of binding working memory

Figure 3: Initial situation: the user approaches the robot

system behavior and information-processing. The example is
taken directly from our implemented system, showing system
visualizations (with minor post-processing).

The system starts in the spatial context and binding state
visualized in Figure 3: the robot and person are occupying
the same area, and the person is close to the robot. The robot
proxy is provided by the nav SA which it abstracts from its
representation of the robot pose. The person proxy is pro-
vided by the nav SA because a person is being tracked. In
addition to these, the nav SA makes available a proxy for the
area in which one of these proxies occurs, linking them with a
position relation proxy. Finally, the close relation proxy con-
nects the robot proxy to the proxy of the person because the
person is geometrically close to the robot. Note that no ob-
jects are present, nor are other areas except the current area.

Next, the human approaches the robot and says “find me
the Borland book”. The comsys SA interprets this utterance,
presenting the elements of its interpretation to the rest of the
system as proxies. Figure 4a shows the results. The Explorer
itself (the recipient of the order) is represented by a proxy
with Concept addressee, which binds to the robot proxy
already present. The word “me” refers to the speaker, and
generates a “person” proxy identified by the Name feature
I. The expression referring to the book is given by a “Bor-
land book” proxy, not yet bound to any other proxies.

The comsys SA can determine the intention of this utter-
ance, and separates the intentional elements of the interpreta-
tion from the aforementioned descriptive proxies. This inten-
tional content is written to planning SA as a proxy structure
with links back to the binder. The structure of this motive
can be seen in Figure 4b. Planning SA, detecting a new mo-
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(a) State of binding SA

RelationLabel: {"Actor"}

SubarchID: {comsys.sa}

TemporalFrame: {ASSERTED}

Concept: {"addressee"}

SubarchID: {comsys.sa}

to

Concept: {"find"}

SubarchID: {comsys.sa}

from

RelationLabel: {"Recipient"}

SubarchID: {comsys.sa}

TemporalFrame: {ASSERTED}

from

Concept: {"person"}

Name: {"I"}

SubarchID: {comsys.sa}

to

RelationLabel: {"Patient"}

SubarchID: {comsys.sa}

TemporalFrame: {ASSERTED}from

Concept: {"Borland_book"}

SubarchID: {comsys.sa}

to

(b) Representation of intentional content (as a motive)

Objects:

(area id 0 - area-id)

(gensym0 - robot)

(gensym1 - area-name)

(gensym4 - person)

(gensym6 - movable)

Facts:

(area-id gensym1 : area id 0)

(area-name area id 0 : gensym1)

(perceived-pos gensym0 : area id 0)

(perceived-pos gensym4 : area id 0)

(close gensym4 gensym0 : true)

(c) Planning state after processing the intentional content

Figure 4: State after the user has uttered the command “Find me the Borland Book.”

tive, begins the process of creating a plan to fulfill it. First,
it converts the information on the binder (Figure 4a) to the
MAPL representation in Figure 4c. In this process unions
become objects and predicates in the planning state. E.g.,
as the person union is related by a position relation union
to an area union, this will be expressed to the planner as
(perceived-pos gensym4 : area 0), where gensym4
is an auto-generated planning symbol referring to the person,
and area 0 refers to the area. The planner similarly converts
the motive from Figure 4b into a MAPL goal (K gensym4
(perceived-pos gensym6)). This can be read as the Ex-
plorer having the goal of the the person knowing the position
of the book. We use this interpretation of the command “Find
me...”, as the robot does not have the ability to grasp objects.

Given this state and goal, the planner creates a plan:
L1: (negotiate_plan gensym0 coma_sa)
L2: (tell_val_asserted-pos

coma_sa gensym0 gensym6)
L3: (find_a gensym0 gensym6 gensym0)
L4: (tell_val_perceived-pos

gensym0 gensym4 gensym6)

This plan states that the Explorer must find the location of the
book (L3), then report this location to the person (L4). Be-
fore it does this it must negotiate with the coma SA (as each
subarchitecture is treated as a separate agent) to provide a lo-
cation where it might be able to find the book (L1,L2). The
reasoning behind this plan is that Explorer must provide the
person with a perceived location for the book (as is specified
in the goal), and, having not seen it recently, the only way to
obtain a perceived location is via its object search functional-
ity. To perform an object search the system must have both
an object to search for (the book in this case) and an area
to search. Typical positions of objects (as opposed to their
perceived positions) are stored in the ontology in coma SA.
Rather than make all of this knowledge available via binding
by default (a choice which would add many extra and redun-
dant facts to the planning state), typical positions are offered
by coma SA using a produce fact (see Section 2.2). This al-
lows the planner to query coma SA for typical positions when
it requires them. One advantage of this on-demand state gen-
eration is that the comsys SA could also be used to provide
the same knowledge (and would be if the book was not found
initially). In the above plan, the planner makes use of this by
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Figure 5: Hypothetical position of the Borland book.
getting the coma SA to tell-val the typical position of the
Borland book to the binding SA. This yields the information
that, as it is a book, it would typically be found in a library.
Along with this, the coma SA also volunteers the specific in-
formation it has on libraries: an area exists in its map that is
a library. This is illustrated in Figure 5.

Given this hypothesis for the book’s location, MAPSIM
uses a replanning step to expand the initial plan to include
steps to move the robot to the library, search there for the
book, then move back and report to the user. The updated
plan and planning state are now as follows:
Objects:
(area_id_0 - area-id) (area_id_1 - area-id)
(gensym0 - robot) (gensym1 - area-name)
(gensym4 - person) (gensym6 - borland_book)
(gensym6 - movable) (gensym7 - area-name)

Facts:
(area-id gensym1 : area_id_0)
(area-id gensym6 : area_id_1)
(area-name area_id_0 : gensym1)
(area-name area_id_1 : gensym7)
(asserted-pos gensym6 : gensym7)
(perceived-pos gensym0 : area_id_0)
(remembered-pos gensym4 : gensym1)

Plan:
L1: (move gensym0 area_id_1 area_id_0)
L2: (object-search-in-room

gensym0 gensym6 area_id_1)
L3: (approach-person

gensym0 gensym4 area_id_0)
L4: (tell_val_perceived-pos gensym0

gensym4 gensym6)
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Figure 6: Perceived location of the book

In the above, gensym7 is the binding union of the library.
Using the AreaID feature from the this union, the planner is-
sues a command to the nav SA which moves the robot to the
library (fulfilling step L1). As with all other steps in the plan
(including the information-processing ones), the results of
this action are checked by MAPSIM to determine whether it
has completed successfully or whether replanning is required.
This check is performed by inspecting the planning state and
comparing it to the expected state. This means that all ac-
tions must have effects that are visible on the binding SA (for
subsequent translation). Once the check has passed for L1
(confirming the robot has arrived in the library), the planner
issues an object search command to the object SA. The Ex-
plorer searches the room as described previously. Once the
object is found, the nav SA adds it to the navigation graph.
Since it is part of the current spatial context, it is also ex-
ported to the binder in the form of an object proxy, which is
connected to the room’s proxy by a new position proxy. This
position proxy has a PERCEIVED temporal frame.

The new proxies generated by object search bind to the ex-
isting complex (pictured in Figure 5), resulting in the struc-
ture in Figure 6. This binding provides the original comsys
SA book proxy with a perceived position (in addition to its
typical one). With this knowledge in the planning state (i.e.,
the effect of L2 is verified, which satisfies one precondition
of L4), the planner is able to trigger the remaining steps in
the plan: moving to the user and reporting the perceived posi-
tion. A move command is send to the nav SA referencing the
Location feature from the person proxy. Once close to this
location, a tell-val is sent to the comsys SA to communi-
cate the book’s location to the person. A content generation
component in the comsys SA uses the contents of the binder
(see Figure 6) to generate the utterance “the Borland book
is in the library”, thus completing the plan and satisfying the
original goal (that the person knows the position of the book).

5 Discussion
The preceding sections illustrate how our architectural ideas
come together to create a control system for intelligent be-
havior. Although the surface form of the scenario does not
present much in the way of novel interactions, the PECAS
architecture and the multi-level spatial representation provide
a novel system-level approach with a number of important
features. Including the binding SA in the architecture allows

multiple modalities to collaborate on problems that a single
modality in isolation would not be able to solve. E.g., in the
Explorer the comsys SA initially provides a description of an
object based on natural language input, conceptual mapping
then extends this description, and vision finally completes it.
Whilst other systems may include elements of cross-modal
fusion, we have taken the additional, novel step of using the
results of fusion to provide input to a continual planner. This
allows the behavior of multiple modalities to be marshalled
in pursuit of system goals in a general, extensible manner.
Using continual planning PECAS achieves this in a way that
is responsive to external change and certain types of failure.
In PECAS all this is true both of actions that have physical
effects, and of internal, information-processing actions.

Both the theory and implementation of the Explorer sys-
tem and PECAS are works in progress, so we can identify
many areas that need further study, or currently limit our ap-
proach. E.g., while the the use of MAPSIM provides many of
the strengths of our work, planning occurs at quite a high level
of abstraction. This consequently also applies to interactions
between subarchitectures, and between the Explorer and the
world. Whilst this has some advantages (e.g., subsystems are
free to interpret commands in modality specific ways, some-
thing discussed in more detail below), it may be a hindrance
to more closely coupled interactions between behaviors, such
as positioning the robot to see an object that it is trying to pick
up. Also, actions used in the PECAS architecture must have
effects that are visible at the level of binding proxies, which
may not hold for actions that have effects in a single SA. Our
system also relies on many translations between formalisms.
Whilst our structured support for this (via binding) is a clear
strength, in practice the translations can become somewhat
arbitrary and hard to maintain.

5.1 Approaches to Control
The HYCAS workshop aims to investigate issues of hybrid
control in autonomous systems, so what lessons can we learn
from the work presented here? In all PECAS systems we
have a number of control patterns working in parallel. At the
lowest level we can reasonably discuss in terms of architec-
ture, components typically run in one of two modes. Either
they perform continuous processing which provides a stream
of data to working memory, or they wait for a particular event
which triggers some processing (which may or may not result
in a change to working memory). In this case events may ei-
ther be external to the system (e.g., a sensor, such as a micro-
phone, being triggered), or internal (where an event describes
a change to working memory contents). Within a SA these
types of processing behaviors happen concurrently (with SAs
also working in parallel to each other). Control of SA-level
processing is typically constrained at design-time, when com-
ponents are set to listen to particular types of events. At
run-time these events, and mediated access to the informa-
tion they describe, provide implicit synchronization during
processing. Thus PECAS does not provide explicit control
strategies within SAs (although a few common control strate-
gies tend to be reused).

As described in the preceding sections, the path to high-
level control in PECAS comes via SAs exposing modal con-



tent to the rest of the system via the binding system. The pro-
cess by which this occurs plays a major role in system con-
trol. Binding monitors provide abstracted representations of
SA-local content. They typically do this based on three dif-
ferent triggers: SA-internal events, SA-external events, and
on-demand. The first of these is the most basic case: the
generation of a new local representation triggers the SA’s
binding monitor to generate a proxy. This happens in the
Explorer for discourse referents in the comsys SA. The sec-
ond case, SA-external events, typically provides a way for
the existing binding state to influence the generation of fur-
ther proxies (one of the limited, distributed, forms of atten-
tion in PECAS): the monitor listens for both SA-internal and
-external events, then, when some particular events co-occur,
it generates a proxy from some local content. This happens in
the Explorer when the conceptual mapping SA provides prox-
ies in response to proxies generated by other SAs (e.g., when
the comsys SA generates a proxy for an object, the coma SA
provides additional proxies to bind with it). The final case,
on-demand monitor operation, occurs when a binding moni-
tor is explicitly asked (rather than implicitly triggered) to pro-
vide information about a particular entity already represented
in the binding SA. This approach is used by the system to
deliberatively add information to the binding system. This is
typically done during the planning process (as an element of
on-demand state generation).

The first two of these binding monitor triggers represent
additional design-time control decisions within PECAS sys-
tems. The designer explicitly chooses which SA and system
events should cause information to be shared via binding (and
thus added to the planning state for system control). The un-
derlying assumption is that the system will need high-level
access to this information regardless of context, and there-
fore this hard-wired approach is acceptable. The latter case,
on-demand triggering, provides a system with explicit con-
trol over the information shared between all SAs and used for
planning. We expect this approach, whether driven by plan-
ning or other mechanisms, to become the dominant approach
in future PECAS systems. The alternative (implicit control
over the contents of the binding SA) would place the system
entirely at the mercy of reactive control, potentially flooding
the binding SA with irrelevant or redundant information.

Binding monitors typically provide two types of abstrac-
tion: level-of-detail abstraction and temporal abstraction. The
former has been taken for the implicit meaning of “abstrac-
tion” in the preceding sections: translation of a complex
modal representation into a less complex amodal representa-
tion. Temporal abstraction is often implicit in level-of-detail
abstraction, but it is important to make its presence explicit as
it influences our control approach. Changes within SAs typ-
ically occur at a rate linked to the rate of change of sensors
used for that SA’s modality or the processing schemes used
to interpret the results of those sensors. E.g., in the nav SA
the pose of the robot is updated by SLAM at 5Hz, in the com-
sys SA elements of the discourse references are incrementally
updated during an utterance interpretation (and across multi-
ple utterances if they are reused), and in the obj SA object
positions are updated as close to framerate as the system can
manage. If the planner, or any other deliberative system, had

to take control decisions using information at this level of de-
scription from multiple SAs, its decisions would only be valid
for that length of time all of these representations remained
unchanged (a number limited by the most volatile item of
information). This would make system-wide control rather
difficult. Binding monitors ameliorate this problem by only
propagating relevant changes from the SA level to the bind-
ing SA. What constitutes a relevant change is both SA- and
task-specific, but often relevance is coupled to the potential
of the change to significantly alter the global state of the sys-
tem. Temporal abstraction occurs because significant changes
typically do not occur at the same rate as all changes; they
often happen much less frequently. This highlights the close
coupling between temporal abstraction and level-of-detail ab-
straction, as the latter defines our global state. This fact is
often relied upon in systems which operate on multiple levels
of abstraction. In this sense the role binding plays in PECAS
can be meaningfully compared with the definition of an in-
terface layer in the work of Wood (e.g., [Wood, 1994]). In-
terface layers are where a designer identifies critical points
in the representations used by a system. These are points at
which the representations become suitable for particular types
of reasoning tasks. The identification of these layers is crucial
for system control; they provide a way to match up represen-
tations with decision making approaches, e.g., detailed, dy-
namic representations for reactive control, and more abstract,
stable representations for deliberative control. So, to reiterate
an important point, unions and proxies (and to some extent
the actions used by the planner) represent a stable point in
the space of representation used by PECAS systems. Without
them we would not be able to use planning (which requires
such stability) to control system behavior.

From a control perspective there are two interesting aspects
to our use of planning. First, as mentioned previously, we use
continual planning: we integrate execution monitoring and
replanning into our high-level control system. This provides a
form of closed-loop high-level control for our system, where
the effects of actions are monitored relative to expectations
established by their definitions, and replanning is triggered
if these expectations are violated. Second, the planner only
has an opaque interface to the actions themselves. Rather
than being concerned with how each action is implemented,
PECAS only requires that the implementing SA abides by the
contract provided by the action definition; otherwise planning
and monitoring will fail. This is in contrast to other systems
(e.g., 3T [Bonasso et al., 1997]) where high-level control is
used to schedule behaviors all the way down to the lowest-
level (e.g., skills) too. By adopting a less exacting approach
to action execution we allow each SA to interpret the action
in a contextually appropriate way. SAs may choose to use
one or many components to execute an action and may go
through as many intermediate steps as required. This allows
a single high-level control action to become a multiple step
lower-level action, e.g., when an action results in a dialogue,
or a visual search behavior. Of course, this means the planner
is unable to directly influence the creation or scheduling of
these lower level tasks. This is not a problem in our current
domains where actions do not compete for resources across
SAs, but in future this could become a problem. Possible



solutions include making the actions available to the planner
less coarse but still not providing a one-to-one mapping to
SA-internal actions (i.e., giving it tighter control over SA be-
havior), or annotating actions with resource constraints.

In summary, the overall behavior of a PECAS system,
including the Explorer instantiation described in this paper,
emerges from the interaction of reactive and deliberative con-
trol systems at multiple levels of abstraction. Multiple con-
current components within SAs are controlled implicitly by
design-time event-subscription rules, and use CAST’s event
mechanisms and working memories to synchronism their pro-
cessing at run-time. Across the system a collection of bind-
ing monitors provide an interface at which representations
become abstract and stable. This allows a single delibera-
tive control process to interact with the multiple concurrent
SAs. It is this interface level which allows a PECAS instanti-
ation to solve some problems with deliberative approaches
(e.g., cross-SA coordination) and others with reactive ap-
proaches (e.g., within-SA coordination and sensor and effec-
tor control) whilst remaining contextually appropriate and re-
sponsive to its environment (i.e., no single control strategy
ever exclusively takes charge of the entire system). How-
ever, this approach currently relies on an external designer
fixing the representations either side of the interface level.
Whilst this is not necessarily a problem in the short-term, in
the future we would like to investigate what properties define
a good interface level so that new system designers will not
have to make uninformed design decisions.

6 Conclusion
We described PECAS, an architecture for intelligent systems.
PECAS is a new architectural combination of information
fusion and continual planning. Its purpose is to plan, inte-
grate and monitor the asynchronous flow of information be-
tween multiple concurrent systems to achieve a task-specific
system-wide goal. We used the Explorer instantiation to show
how this works out in practice. The Explorer instantiates
PECAS around a hybrid spatial model combining SLAM, vi-
sual search, and conceptual inference, with the possibility to
use spoken dialogue to interact with a human user. We de-
scribed the elements of this model, and demonstrated using a
realistic (and implemented) scenario how PECAS provides a
novel approach to control for autonomous systems.
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Abstract

The ability to achieve one’s goals is a defining characteristic of intelligent behaviour. A great many existing theories, systems and
research programmes address the problems associated with generating behaviour to achieve a goal; much fewer address the related
problems of how and why goals should be generated in an intelligent artifact, and how a subset of all possible goals are selected
as the focus of behaviour. It is research into these problems of motivation, which this article aims to stimulate. Building from
the analysis of scenario involving a futuristic household robot, we extend an existing account of motivation in intelligent systems
to provide a framework for surveying relevant literature in AI and robotics. This framework guides us to look at the problems of
encoding drives (how the needs of the system are represented), goal generation (how particular instances of goals are generated
from the drives with reference to the current state), and goal selection (how the system determines which goal instances to act on).
After surveying a variety of existing approaches in these terms, we build on the results of the survey to sketch a design for a new
motive management framework which goes beyond the current state of the art.

Key words: motivation, planning, goal-directed behaviour, agent architecture

1. Introduction

It is generally acknowledged that goal-directed behaviour
is one defining feature of intelligent autonomous behaviour
(Franklin and Graesser, 1997). This is usually taken to mean
that an intelligent system should be able to perform actions
to alter the current state of the world (where the world also
includes the system itself) to satisfy some need. To date, re-
searchers have succeeded in producing many systems that dis-
play this kind of goal-directed behaviour within a single task or
domain, but have made little progress on more general systems
able to satisfy their needs across many different domains. This
is a function of the fragmented nature of AI as a field of study:
sub-disciplines of AI study domains to which their technolo-
gies are directly applicable, with limited concern for their role
in more general-purpose systems. One effect of this narrow fo-
cus is that surprisingly little attention has been given to the issue
of where goals for an intelligent system come from; it is often
assumed that they are produced in some other subsystem, exter-
nal to the one being actively researched (Jennings et al., 2006).
However, as we start to study designs for integrated intelligent
systems which are able to use multiple interacting competences
to solve a wider variety of problems than those addressed by a
single sub-domain of AI, we can no longer ignore the problem
of goal generation and a host of associated, cross-cutting, prob-
lems1. We ultimately require architectural solutions to many

1We use the term “cross-cutting” to refer to those problems which cut across
the concerns of other subsystems in a typical intelligent system. Such issues
may include problems such as goal generation and management as discussed in
this article; attention and resource allocation; cross-modal inference; execution
monitoring; and the generation and use of amodal representations.

such interrelated problems if we want to make progress towards
the kinds of general-purpose intelligent systems that have long
been promised (but not delivered) by AI.

More specifically we are interested in studying mechanisms
for goal generation which allow a system to generate its own
goals to satisfy pre-determined needs, and goal management
which select which of these goals are subsequently allowed to
influence the system’s behaviour. As these mechanisms encom-
pass different states and process which motivate a system to be-
have in a particular way, we refer to then collectively as a motive
management framework. This article supports our interest in
such a framework with an example scenario (see Section 1.1),
before building on previous work to identify requirements for
goal generation and management. Armed with these require-
ments we then survey the existing literature (Sections 4.1 to 5)
before sketching a design for a motive management framework
(Section 6).

1.1. A Motivating Scenario

We can illustrate the problem of motive management with
an example scenario from an application domain which is cur-
rently a firm favourite in integrated systems projects: the home
help robot. Let us imagine a futuristic world in which the fields
of vision, manipulation, dialogue, navigation etc. have yielded
technology which is powerful and robust enough to be deployed
on robot which is sold as “Alfred”, a butler for a modern age.
When Alfred is first unpacked by its new owners it is given a
tour of their family home. This tour (as is becoming traditional
in HRI, e.g. (Peltason et al., 2009; Zender et al., 2007)) is an
opportunity for Alfred’s owners to indicate and label important
rooms and features of the house (“this is the kitchen”, “through
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there is the bathroom”); point out objects (“the dishwasher is
under the sink”, “that’s my priceless Ming vase”); and perhaps
provide Alfred with some knowledge about the day-to-day run-
ning of the home (“we like to have breakfast at 7 am”, “try
not to leave tyre marks on the wooden floor”). Given what we
know about typical human behaviour, state-of-the-art AI tech-
niques and the tasks such a robot might be required to do in
the home, we can add further detail to this scenario. First, we
can assume the tour given to Alfred only covered a subset of
all the information about the home that it will need in order to
carry out tasks. For example, different members of the family
may use different names for rooms and objects; Alfred may not
have been taken into or shown all the rooms in the house; and
the tour will certainly have not included indications of the loca-
tions of all the objects (both stationary and dynamic) that Alfred
might have to know about for all future tasks. Second, given
the difficulty of operating in natural, previously unseen, envi-
ronments, we have to assume that Alfred cannot be completely
certain about all the information provided to it during the tour.
Perhaps it didn’t manage to reliably segment all the things in-
dicated to it from the background, or successfully segment the
large-scale space of the building into chunks against which it
can resolve the room names provided during the tour. Finally,
we will assume that Alfred should not just wait for instructions
to perform a particular chore: it should seek out opportunities
to assist the family whenever it can. For example, it might clear
dirty mugs from a side-table, pick up toys from the floor, or
empty the washing basket into the washing machine when the
basket is full, all without being asked.

With this scenario in place, we can then consider what Al-
fred should do when the initial tour concludes and it is left to
its own devices (literally). It will have a number of gaps in
its knowledge about its environment, and it should assume that
the humans which will interact with Alfred will take all these
limitations for granted when giving it tasks. It will also have a
list of tasks it could perform immediately (such as clearing up
the packaging it arrived in) and tasks that it might need to per-
form as acts of routine (self) maintenance (such as connecting
to its manufacturer’s website to check for software updates, or
recharging its batteries). Alfred must also be aware that a hu-
man might give it a task at any time (such as fetching something
or passing on a message). So, how should Alfred proceed? First
it must be able to construct a list of the things it thinks it should
do, and from this reason (in whatever way) both about which
of these things it can do, and which things it might prefer to
do. In this process Alfred must take into account at least its
limited hardware resources (it can only be in one place at any
time and has only one set of sensors and effectors). In addi-
tion to basic physical constraints, Alfred would ideally be able
to consider the utility (in a general, not-necessarily-numeric,
sense) of doing particular things over others, and also consider
attempting to do some subset of all the possible things at once,
rather than each thing in sequence. There are many different
rationales that Alfred could use when making a selection. For
example, after the tour Alfred could first choose to visit every
room in the house in order to build up a map of the building
(the rationale being that such knowledge is required to support

many other things it may be required to do). Alternatively Al-
fred could assume that the rooms it has been shown are all the
important areas of the house, and instead spend its immediate
future locating objects which it might commonly need to know
about to perform future tasks (vacuum cleaner, PC, TV, oven,
fridge etc.). Or it could interleave these two types of behaviour.
Or Alfred could instead attempt to meet other members of the
household (to fill the gaps in its local vocabulary). Or perhaps,
following a different approach entirely, Alfred should position
itself in a prominent position in the house in order to solicit
chores. Or immediately start doing the chores it determines
need doing. As you can see from this brief and incomplete
treatment of a simple scenario, the possibilities for future be-
haviours are numerous, and a variety of information is needed
to help choose between them.

Given that Alfred is not stymied by choice and starts follow-
ing a selected course of action, we are faced with another set
of related problems. What should Alfred do if it encounters a
member of the household who then provides it with something
else to do? Should Alfred stop what its doing, or continue until
its free? Also, what if Alfred’s behaviour uncovers new possi-
bilities for action (e.g. if a new room is discovered), should it
now take this into account immediately or later? Also, what if
new information discovered through action changes the infor-
mation used during the previously discussed selection process
or renders some of the proposed future behaviours pointless (or
at least less desirable?),

These problems start to outline the requirements for a moti-
vation management framework capable of managing the goals
of an intelligent system. Although we have illustrated the need
for such a system with a far-fetched scenario, current integrated
systems, including the ones we are actively developing, are
starting to present similar requirements. To address this need
we are ultimately interested in developing a motivation system
for a future general-purpose architecture suitable for intelligent
robots operating in the real world. To move towards this point
we must first make the requirements and possible designs for
such a system more explicit and explore existing solutions to
previous problems. This is the purpose of this article.

2. Background

We wish to provide an architectural account of mechanisms
that can cause a system to act to address one or more of its
needs. A need is defined in Sloman et al. (2005) as the rela-
tionship between a system and that which is necessary to bring
about or maintain a possible state of affairs. This work also de-
fines desire-like states which are states whose function is to get
a system to maintain or achieve a possible state-of-affairs, and
belief-like states which provide information to allow the sys-
tem to achieve its desire-like states. Goals are an example of
a desire-like state. Information derived from sensors, and the
information derived from this and other (stored) information,
provides belief-like states.

Our approach to architectural work in informed by Sloman’s
CogAff Schema (Sloman, 2003). The schema is a method for
characterising (i.e. describing, not prescribing) the different
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forms of processing which can occur within an intelligent sys-
tem. It distinguishes three types of processes: reactive, de-
liberative and meta-management. In brief, reactive processes
can be considered as collections of responsive condition-action
rules which maintain no explicit representations of alternative
choices of action. Deliberative processes can be considered as
processes which explicitly represent and choose between al-
ternative processing and action opportunities. Finally, meta-
management processes are those processes which manage the
processing of other management processes within the system
(processes of all other types, including meta-management pro-
cesses). A system can be composed of processes from just one
of these three types, all of them, or some selection.

By considering system composition using the CogAff
schema, we can start to investigate what it means for differently-
composed systems to demonstrate goal-directed behaviour. To
do this we will first informally define this type of goal-directed
behaviour as a sequence of actions which alter the world to
bring about a state which satisfies one or more needs of the
system performing the actions. This broad definition will cover
not only the examples given in our far-fetched scenario, but also
much simpler artifacts performing the tasks they been designed
to do (e.g. computer game characters playing their roles, robots
following humans, chatbots answering questions). It is also ap-
plicable to biological systems from humans to bacteria. Given
that this behaviour exists, we want to (invoking Dennett’s de-
sign stance (Dennett, 1978; Sloman, 2002)) consider what pos-
sible designs can give rise to it. Or, more precisely, what pos-
sible design can give rise to just a small part of this behaviour:
the systems which produce, select and otherwise manage the
purposes to which the behaviours are put.

Given the CogAff schema’s definition of reactive processes
(as not making use of explicit representations of alternative
courses of action), we can consider that they mostly make
use of implicit knowledge to generate goal-directed behaviour.
That is, the prior knowledge of the effects of the goal-directed
behaviour generated by reactive systems must be specified at
design-time. In the case of artifacts this will be done by a hu-
man designer. In the case of natural systems this job is done by
evolution. Given our knowledge of behaviour-based systems
(e.g. (Brooks, 1986; Agre and Chapman, 1987)) we know that
a collection of behaviour-producing modules, where each mod-
ule is intended to serve some pre-defined purpose, can give rise
to goal-directed behaviour. Goal management in reactive sys-
tems is often performed by allowing particular behaviours to
control the system (e.g. via winner-takes-all selection or action
fusion(Arkin, 1998)). Whilst these mechanisms prove useful
for situations where a close coupling between sensors and effec-
tors can solve all problems a system is presented with, we have
seen that they are not adequate in more complex situations, and
not easily extended or maintained over long periods. In partic-
ular, where the trade-offs between two courses of action are not
immediately apparent (e.g. between Alfred exploring the house
further or cleaning the floor of the room it’s in), a ballistic se-
lection mechanism is just not capable of the (possibly counter-
factual) reasoning necessary to come to an informed decision.
Taking a step back, it is clear that the systems we are interested

in designing in both the short- and long-term must make use
of many deliberative mechanisms to determine how they will
achieve the things they are designed to. Purely reactive mecha-
nisms – mechanisms which, by definition, cannot determine the
results of a deliberative process – will be inadequate to success-
fully judge choices between different deliberatively-determined
behaviours. However, we must not completely ignore the bene-
fits of a reactive approach to managing goal-directed behaviour;
reactive processes are quick to change behaviours in the face of
new stimuli, and deal well with the asynchrony and parallelism
inherent in the real world.

Although it is possible to consider a system composed purely
of deliberative processes, there are very few examples of such
systems produced as autonomous intelligent agents in their own
right2. Agents require mechanisms for sensing and acting on
their world, and these mechanisms are usually best designed
as reactive processes (to reduce latencies). A purely delibera-
tive agent would generate goal-directed behaviour by reasoning
both about which behaviour to engage in, but also about which
stimuli and world states should give rise to which behaviours. It
is this latter process which restricts the usefulness of purely de-
liberative agents; the combinatorics of the problem (explicitly
comparing all combinations of stimuli to all possible goals and
behaviours) in any non-trivial domain will result in undesirable
latencies when applying deliberative reasoning3.

In practice, most autonomous, intelligent systems with delib-
erative processes are designed as reactive-deliberative hybrid
systems (which we will refer to as “hybrid systems” or “hy-
brid architectures” for the remainder of this article4). Such hy-
brid systems typically couple the low-latency operation and pre-
defined search spaces of reactive systems with the flexible, ex-
ploratory reasoning of deliberative, or proto-deliberative (Slo-
man, 2006), systems. This often results in the use of reactive
processes to suggest various possibilities for action, delibera-
tive processes to work out how a particular action should be
performed, and then reactive processes to execute the action.
There are many possible variations on this scheme, but, as we
shall see, this has become a standard approach for building au-
tonomous systems. Therefore it is within the space of reactive-
deliberative hybrid systems that we shall sketch our require-
ments and framework for a motivation system. We will occa-
sionally return to the distinctions made in this section when we
review the existing work on motivation systems.

3. Requirements for a Motivation Management Frame-
work

Previous work by the Cognition and Affect group at the Uni-
versity of Birmingham (e.g. (Beaudoin, 1994; Wright et al.,

2Of course there are a great many examples of purely deliberative systems
in AI. But they are almost always used as stand-alone problem solvers, rather
than autonomous systems capable of pursuing their own goals.

3That is not to say that such an approach is impossible, just that in many do-
mains where interaction with the world is required, a purely deliberative design
is not one which adequately meets its requirements.

4There are many other uses of the term “hybrid system” in AI and the engi-
neering sciences. Our usage of the term in this article should not be confused
with the usage of the term in dynamic systems or neural networks.
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1996; Wright, 1997) has examined both the requirements for
motivation management systems and a design to satisfy the re-
quirements they identified (MINDER1, as described in Sec-
tion 4.2.3). In particular, Chapters 3 to 6 of Luc Beaudoin’s
thesis (1994) present a detailed investigation of motive process-
ing. Whilst this work largely subsumes the requirements we
discuss here (and thus we encourage interested readers to con-
sult this too), we repeat a small part of the exercise here for a
number of reasons. First, Beaudoin’s work was performed from
a theoretical perspective. Whilst this allowed him to address a
wide range of issues, it meant that his work was only partially
informed by experiences of implementing intelligent systems.
Second, the implementation that was done assumed a largely
homogeneous system using a unified representation and inter-
acting with a simulated environment. Finally, the work was
done at least fifteen years ago. We have recent experience of
building a number of complex intelligent systems (robots and
virtual characters) from heterogeneous, distributed components
(a necessity for most embodied systems) to solve tasks which
approximate some of those from our motivating scenario. This
experience gives us a slightly different, if not totally unique,
perspective on requirements for a motivation system5.

We will start by assuming that a system can engage in two
types of goal-directed behaviour: reactive goal-directed be-
haviour and deliberative goal-directed behaviour. Reactive be-
haviour may just happen without the system making an explicit
choice to trigger it (e.g. obstacle avoidance), although it may
be able to make choices to suppress or enhance such behaviour
(but we will ignore that for now). In contrast to this, deliber-
ative goal-directed behaviour requires that the system takes a
number of explicit steps: a goal representation must be created,
this goal must be selected as one of the goals the system in-
tends to pursue, then the system must generate the necessary
behaviour to achieve the goal. This first pass allows us to iden-
tify a number of initial requirements which we can explore in
more detail.

1. A system requires explicit goal representations which it
can reason about.

2. A system requires at least one process capable of creating
goals.

3. A system requires a process capable of collecting goals
and then selecting which ones should be acted upon.

4. A system requires a process which can generate goal di-
rected behaviour from a collection goal and the available
resources.

To reduce the space of possible mechanisms under discus-
sion, we will now make a further assumption: the required pro-
cess (item 4) that allows a system to take goals and turn them

5The main differences in perspective are down to the roles of different rep-
resentations within a system, the influence of parallelism and asynchrony in
robotics domains, and a more informed (due to developments in the fields of
planning etc.) view on the possibilities for deliberative systems. None of these
things lead to major deviations from the work of Beaudoin, but they do lead to
us both make additions to the work and choose to emphasise some things he
gave less weight to.

into behaviour will be some kind of planner coupled with an
execution system. This planner will take a conjunction of goals
and produce a series of actions (i.e. a plan) which the system
can execute to achieve the goals. The execution system will take
this plan and drive the rest of the system to perform the actions
it specifies. We make this assumption because these parts of
the problem are relatively well-studied, and elements of exist-
ing systems (e.g. (Brenner and Nebel, To appear; Knight et al.,
2001; Bonasso et al., 1997; Nilsson, 1994; Firby, 1987)) can be
assumed without losing much generality in our work.

3.1. Goals

Given this assumption, we can now require that the goals
used in our system should be at least expressible in a format
that is usable by a planning system. This is typically a logical
form describing a possible state of the world. The nature of this
description is limited only by the power of the planning mech-
anisms used to generate system behaviour. For example, if the
planner can handle numerical data (e.g. (Eyerich et al., 2009))
then (a logical representation of) “increase battery charge above
90%” is a valid goal, whereas a system incapable of handling
numeric input may only be able to use “charge battery”. Like-
wise the use of planners capable of reasoning about time, re-
source constraints and uncertainty would produce a system ca-
pable of being given more detailed goals than a system with
using a STRIPS-like representation.

In addition to a state description, Beaudoin also identifies at-
tributes which should be associated with a goal. These include
descriptions of the goal’s importance and urgency; information
which will allow informed management decisions to be taken
by the system. Beaudoin also identifies other attributes required
in a goal structure. These will be introduced in Section 3.3.

3.2. Goal Generation

Once we require our system to have explicit goals, we re-
quire processes which can generate them. Following Beaudoin,
we shall refer to these processes as goal generators6. Where
goals come from is an issue that is often overlooked in work
on intelligent systems, so it is something we shall expand upon
here (and in the following literature survey).

Our basic assumption is that a goal generator is a specialised
process which can explicitly predict and describe future states
which will satisfy a need of the system. These states are com-
municated to the rest of the system as goals. Goal generators are
therefore the processes which turn a system’s drives into goals,
where a drive is a disposition to satisfy a need (i.e. a desire-like
state). For example, Alfred may have a drive to maintain a min-
imum level of battery charge (where the need is not to have a
flat battery), and a drive to perform tasks specified by its owners
(where the need is to be a useful domestic assistant).

To go from a drive to a goal, a goal generator must inspect the
belief-like state it has access to (e.g. information from sensors,

6Beaudoin (1994) actually uses the term goal generactivator because the
processes can generate new goals or activate existing, but suppressed, ones. We
use the shorter term goal generator for conciseness.
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and information derived from this) and determine both whether
it is appropriate to instantiate a new goal derived from its drive,
and what the form of this goal should be. The exact nature of
this process in an implemented system will depend greatly on
the drives, and on the representations and algorithms used in
the system. Regardless of this, it is useful to make the elements
of the goal generation process explicit as it helps us to avoid
mixing up similarly-purposed processes.

When an intelligent system is acting in the world, any state
change which occurs internally or externally (regardless of
whether this was a change enacted by the system or not) may
provide the information necessary for a goal to be generated.
State changes might be as simple as a scheduled time being
reached, or a resource falling below a particular level, or they
might involve more complex chains of processing based on the
results of processing belief-like representations built up both
from sensing and reasoning. As changes in the world (and
thus a system’s internal state) can be unpredictable, such state
changes may occur at times which are unpredictable by the sys-
tem. As these changes may provide opportunities for a system
to satisfy one or more of its needs, it is important that the sys-
tem is able to respond immediately (if appropriate). This gives
rise to one of the important requirements for both goal gen-
erators and the motive management framework in general: it
must be able to operate concurrently with other systems (partic-
ularly action-producing ones), and allow asynchronous changes
in state to produce goal-directed behaviour. Without this re-
quirement a a system with multiple drives operating in the real
world may not be able to produce goal-directed behaviour in a
timely fashion, and may thus miss opportunities for satisfying
its needs.

To examine the requirements for goal generation further, we
can briefly explore possible ways in which goal generators may
operate. Perhaps the simplest goal generator we can imagine is
one which encodes a desire to keep a given variable at a partic-
ular value. As the system runs, this goal generator monitors the
given variable, comparing it to the desired value. When it deter-
mines that the value of the variable does not match the current
state, it generates a goal which, if adopted and acted upon, will
return the variable to the desired value. Although this exam-
ple is simplistic, we can use it to highlight aspects of the pro-
cess which are either desirable, or may cause problems during
system design and implementation. First, the simple genera-
tor only monitors the information it needs to determine whether
a goal should be generated. It does not monitor what the the
system is currently doing, what other goals may have been gen-
erated, or could potentially be generated to satisfy other drives.
In this sense it is specialised to generate a goal regardless of
the rest of the behaviour of the system. Second, the generator
must be able to express the future state which will satisfy its
drive. In the simple example this is described as a goal which
will cause the system to return the variable to its desired value.
However, this assumes that the deliberative systems later in the
processing chain use a representation which is able to express
this future state in a direct manner. This will often not be the
case in hybrid architectures, or architectures composed of het-
erogeneous modules. It is possible to foresee two reasons for

this. First, it could be possible that the representations used by
the goal generator to monitor the variable are not expressible in
the goal language used by the subsequent systems. Many plan-
ning systems cannot handle numerical values, and so would not
be able to process a direct expression of the desired variable
state provided as a goal. A second point is that, as a system
may not possess actions which can directly influence particular
states (notably those which are mediated by interactions with
the external world), the goal generator must translate its desired
state into a state which is achievable by the system, and where
the achievement of this state has the effect of also achieving the
state the goal generator’s drive is related to. For example, if our
simple goal generator was monitoring battery charge, it would
create goals when the charge fell beneath a particular thresh-
old. If the system’s deliberative processes cannot reason about
battery charge directly, and instead must use abstractions such
as batteryCharge(full) or batteryCharge(half), the goal gener-
ator must be able to generate the appropriate abstraction (bat-
teryCharge(full) in this case) from the state it has access to. In
general, given the assumption that intelligent systems must em-
ploy a heterogeneous collection of processing modules to func-
tion effectively, we can deduce that any goal generator not op-
erating directly on the representations of the planning or goal-
management systems will need to perform some kind of trans-
lation between the precise state which will satisfy its need and
the goal which will drive the system to satisfy it.

3.3. Goal Management

As the Alfred example demonstrates, an intelligent system
can have multiple goals. Following on from our previous de-
construction of goal generation, we can highlight two forms
of multiplicity: a system can have multiple drives, where each
drive is encoded in one or more goal generator; and each goal
generator could produce multiple goals, representing multiple
possible routes to satisfying a need. Because goal generators
should not monitor other states beyond those related to their
needs, it would be unsafe and inefficient to let any generated
goal become the current goal of the system. Instead we re-
quire some form of management system. This system must ac-
cept the goals produced by the goal generators; select which
goal or goals should be pursued (with reference to any ongoing
goal-directed behaviour); and then trigger the appropriate be-
haviour generation mechanisms (e.g. planning and execution)
to achieve the selected goals.

The requirements on the input functionality of the manage-
ment system are quite simple. As goal generators produce goals
asynchronously and in parallel, the management system must
be able to accept new goals in this manner too. The manage-
ment system should not block the operation of goal generators
when it accepts new goals, as this would interfere with their
ability to respond to new situations. Additionally, the manage-
ment system must be able to respond to new goals in this man-
ner; if new goals can be generated in such a dynamic fashion,
the management system must also be able to engage its decision
procedures in similarly (rather than delaying later processing
stages until a fixed point is reached).
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The selection of which goal or goals a system should peruse
is perhaps the largest problem in this field. Before exploring
requirements on the selection process and its dependencies, we
will outline the basic elements of the selection process. As with
previous descriptions, these descriptions can be read as sum-
maries of the parts of (Beaudoin, 1994) which are relevant to
this process (e.g. Chapter 4). The management process has a
set of goals to choose from. We will refer to these (following
Beaudoin) as the managed goals (i.e. those which the manage-
ment processes have accepted from the goal generators). It’s
role is to select which goals from this set should be activated as
the goals which will dictate the future (goal-directed) behaviour
of the system. In an extension to the CogAff work we assume
that multiple goals can be combined into single goal for the
system to pursue, as a goal for a planning system is typically a
conjunction of subgoals7. The aim of the selection process is
to ensure the system engages in behaviour which best satisfies
its needs given the available resources and various contextual
restrictions. This implies that the system is attempting to max-
imise some general, not necessarily single-valued or numeric,
measure of utility. For the time being we will ignore formal,
decision theoretic, views of utility maximization (e.g. due to
the lack of reliable information available to a robot for this kind
of decision making Scheutz and Schermerhorn (2009)), and in-
stead adopt the requirement that, given the knowledge and re-
sources available to it, the selection process should aim to take
the management decision which results in behaviour leading to
as many of its needs being met as possible.

Given some currently active goal-directed behaviour, the
possible actions a goal management process can take are to ei-
ther interrupt the current behaviour with a new goal (or con-
junction of goals, possibly including the current goal) or to al-
low the current behaviour to continue. This ignores many other,
more complex, possibilities such as scheduling goals for later
adoption. We ignore these possibilities here to allow a simpler
treatment of the subject.

The decision of which goal to select is an involved and com-
plex one. There are many metrics which could be used in this
decision, and many different types of decision-making proce-
dures. At a high-level we can consider two types of (comple-
mentary) approaches: those based on achievability and those
based based on cost/benefit analyses. Achievability-based de-
cisions will determine whether the system can actually achieve
the goal from the current state, rejecting goals which cannot be
achieved. This process will require planning-like reasoning, the
results of which could be re-used if the corresponding goal is
adopted. Decisions made on the basis of a cost/benefit analysis
will compare goals based how much they benefit (see previous
discussion) the system at what cost. Cost will be a feature of
the plan generated to achieve the goal, so achievability-based
decisions should be taken before cost/benefit analyses are per-
formed. By combining these approaches, the selection proce-

7In this framework we will consider disjunctive goals as separate proposals
from goal generators, making the disjunction implicit in the selection process.
A completely general framework would allow explicit disjunctions to be con-
sidered by the management process.

dure should aim to select the goal which is both achievable and
the most beneficial.

To aid the decision making process, Beaudoin identifies addi-
tional information which goal generators should attach to their
goals. These are importance, rationale and urgency. Impor-
tance is intended as a (heuristic) representation of the benefit
to the system of adopting the goal. It is added by the goal
generator, rather than determined at a later stage, because the
goal generator represents the need that the goal ultimately satis-
fies, and benefit should be tied to the need, not to the individual
goal. It is possible that the same desired future state may sat-
isfy many different drives. In this case it is arguable that such a
goal should have a higher importance than a goal that only satis-
fies a single need (although this is conditional upon the relative
importance of the desires involved). The rationale information
attached to a goal is intended to make the connection between
goal state and need more explicit. This field should describe the
reason why the goal was generated. In our single-variable ex-
ample the rationale would be the difference between the current
value of the variable and its desired value. In the Alfred sce-
nario rationales may include formalisations of statements such
as “because my owner told be to do X” and “because I saw
dirty dishes on the table”. The rationale is important as it sup-
ports both the maintenance of goals (i.e. determining whether
they are still applicable or important), and provides a first step
in reasoning from a goal state back to the need which required
it. However, it remains to be seen whether there are clear prac-
tical benefits of including rationale information; it is neither a
complete description of the reasoning behind the generation of
the goal (much of which could be implicit in the design of the
goal generator) nor a concise but imperfect heuristic summary,
thus it may not be truly useful for either deliberative or reactive
decision making.

The final type of information that Beaudoin attaches to a
goal, urgency, describes its temporal qualities. Its purpose is to
tie importance to the passage of time, and possibly changes in
state, in the system’s world. The simplest notion to consider is
that of the deadline beyond which the goal becomes unachiev-
able or invalid (such as when the robot’s battery runs out). This
would provide one type of (binary) urgency information. This
could be augmented with information that the importance of
the goal increases monotonically as the deadline approaches.
Richer representations of urgency may take into account time
windows when the goal may be less costly to achieve or pro-
vide a greater benefit to the system. Urgency could also be
specified in qualitative, rather than purely qualitative ways. For
example, a goal’s urgency may be dependent on state changes
that may occur, or other behaviours the system may engage in.
The ultimate purpose of urgency information is to support the
goal management system in deciding upon and scheduling the
future behaviour of the system. Goals that are more urgent (i.e.
goals that should be achieved sooner rather than later) should
take precedence over less urgent goals of similar (and perhaps
greater) importance.
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3.4. Summary

Before we leave this discussion of motive management, some
final points should be made clear. Whilst the discussion has
highlighted the requirements for a goal generation and manage-
ment framework, it can only really motivate requirements on
the types of information and decision-making procedures that
such a framework should include. It cannot strongly motivate
designs which group and structure representations and func-
tions in particular ways. For this we must also be constrained
by the domains in which we are deploying our hypothesised
system, and, perhaps more importantly, the remainder of the
architecture in which the motive management framework is de-
ployed. This brings us to a related point. When considering
possible designs and implementations for motive management
frameworks, we must be aware of the co-dependence, or cou-
pling, between many different aspects of possible systems. For
example, if all the needs a system can have are pre-judged by a
designer to have equal importance then its goal generators will
not need to annotate goals with importance information and
therefore its goal selection mechanisms will not need to take
importance into account. A similar argument could be made
for urgency. Additionally, given a potential scenario there can
be much room for debate around the granularity and content of
mechanisms involved, particularly the needs, drives and associ-
ated goal generators (i.e. what becomes a “top-level” goal for
a system). This in turn influences the role of the subsequent
behaviour-generating and -managing mechanisms: “smaller”
goals may require less planning effort per goal, but a provide
a planner with less opportunity to make optimisations across all
future actions (as behaviour is generated in shorter chunks).

Even with many issues remaining open, we will find that the
preceding discussion allows us to investigate different extant
system designs in a more coherent way than would have been
otherwise possible. In particular, we can use it to review the
different approaches that have been taken, or can be taken, to:

• encoding drives: how an approach represents the needs of
the system in its design.

• goal generation: how an approach combines the results of
sensing and processing with its drives to produce goals to
act on.

• goal selection: what mechanisms and information are
used to select between conflicting goals.

4. Previous Work Related to Motive Management

In the following sections we will explore existing litera-
ture on architectures which feature motive management mech-
anisms. Most of the works surveyed explicitly address either
goal generation or goal selection. The works that don’t were
included because they address it implicitly (i.e. they solve re-
lated problems as part of a larger system) and are representative
of a collection of similar approaches. Some fields may appear
to have been over-looked, but this is due to a desire to tackle
the chosen literature in detail without expanding the survey to

an off-putting length. We have not surveyed a great deal of
work on action selection (e.g. (Tyrrell, 1993)), although there
are many overlaps between work on action selection and on the
various approaches to reactive planning and behaviour in the
work we do cover. We have also not explicitly addressed work
on rational decision making or meta-reasoning (e.g. (Zilber-
stein, 2008)). Although both of these fields are relevant to mo-
tive management (particularly to the issue of goal selection), we
have chosen to focus on work which has resulted in complete
intelligent systems, rather than individual algorithms. Once we
have a motive management framework, this will provide a con-
text in which we can look to apply results from these fields.

We present the literature in an order that roughly corresponds
to the addition of the layers from the CogAff schema. We will
start with reactive systems with minimal or no declarative rep-
resentation of goals (i.e. behaviour-based systems, Section 4.1),
proceed to proto-deliberative systems (i.e. behaviour-based
systems with additional structure, Section 4.2), and conclude
with hybrid systems (i.e. combinations of reactive and delib-
erative planning systems, Section 4.3). The categorisation of
mechanisms this narrative structure provides is not particularly
important (as the division between categories is often difficult
to precisely position), but it allows us to discuss similar systems
in subsequent (sub-)sections.

4.1. Reactive
Purely reactive systems typically encode their functionality

as modules which compete in various ways to generate system
behaviour. Such systems do not have explicit goal instances
as described above, but instead implicitly encode drives into
modules which perform the behaviour necessary satisfy their
need: goal generation, selection and execution are merged into
a single, ballistic, activation process. Such reactive systems are
usually described as behaviour-based, as the behaviour which
is generated is the key feature of such a system (rather than, for
example, internal representations). Examples include the Sub-
sumption Architecture (Brooks, 1986), the Agent Network Ar-
chitecture (Maes, 1991) and Pengi Agre and Chapman (1987).
If a reactive system is capable of merging the outputs of mul-
tiple active modules the we can describe the system as having
multiple active goals. However, the lack of any explicit goal
representation means that any such system is incapable of rea-
soning about the selection of one goal (or behaviour) rather than
another. This is one of the reasons that behaviour-based sys-
tems have failed to scale to tasks beyond those requiring close
coupling with the environment.

Bryson (2001, 2003) tackled the problem of a reactive sys-
tem having multiple (possible conflicting) goals by embedding
a reactive planning system into a structure called a drive collec-
tion in a Behaviour-Oriented Design (BOD) architecture. Each
entry in the drive collection is a distinct reactive plan for sat-
isfying a particular drive. Rather than allowing all drives to
compete to control the system they are evaluated in a fixed pri-
ority order (i.e. the most important drive is checked first), with
the first applicable plan assuming control of the system. This
approach allows a designer more explicit control over the way
the system chooses which behaviour to pursue. The ordering of
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reactive plans in the drive collection represents a fixed impor-
tance evaluation across all of the needs a system has.

4.2. Proto-Deliberative

The limited applicability of purely reactive systems to a wide
range of problems caused researchers to extend them in various
ways. Typically these extensions add an additional layer to the
system containing explicit representations of goals and the cur-
rent state (i.e. desire-like and belief-like states), allowing be-
haviour to be directly managed at runtime (Gat, 1998; Bryson,
2003). In this section we will survey a selection of systems that
demonstrate this approach.

4.2.1. Belief-Desire-Intention Systems
The issues of explicit goal representations and the ability to

choose between goals are commonly associated with study of
Belief-Desire-Intention (BDI) systems. Such is the prominence
of this work that the term BDI has become short-hand for a
general way of dividing up types of representations. In contrast
to its general use, the term BDI also describes a rather specific
class of system designs. We will treat these two uses separately.

The common usage of BDI assigns the kinds of things a sys-
tem can represent into three classes: beliefs represent the in-
formation the system stores about itself and its world; desires
represent things the system would like to do; and intentions rep-
resent desires which the system has committed to achieve. To
position this usage relative to the terms we have already intro-
duced (Sections 2 and 3) beliefs refer to the results of sensing
and processing which are stored in the system somehow, i.e.
belief-like states; the term desire encompasses both the drives
which are encoded into goal generators and, depending on your
view, goals which have been generated but not activated; and
intentions are the goals which have been activated by the man-
agement mechanisms. Desires and intentions are both instances
of desire-like control states. These folk-BDI definitions do not
specify a design for a system architecture (except the require-
ment that it allows the BDI distinctions), and do not make some
necessary distinctions explicit (particularly the decomposition
of desires and intentions into the intermediate steps ranging
from needs to behaviour).

The field which spawned this relaxed usage of the term BDI
is the field of BDI agents (Georgeff et al., 1999). BDI agents
are logic-based agents developed in the context of resource-
bounded, practical or rational, problem-solving. There is no
single canonical BDI architecture, rather there is a family of
similar approaches inspired by the work of Bratman (1987),
including the Procedural Reasoning System (PRS) and its
derivatives (e.g. (Georgeff and Ingrand, 1989a; Myers, 1996)),
and the Intelligent Resource-Bounded Machine Architecture
(IRMA) (Bratman et al., 1988). So, rather than review the goal
generation and management properties of the whole field, we
will choose a popular exemplar, PRS-CL, and examine that8.

8A similar approach to surveying BDI systems has been taken by other au-
thors, including Georgeff et al. (1999) and Jones and Wray (2006).

PRS-CL (the fully-featured “classic” (CL) version of the Pro-
cedural Reasoning System) is a logic-based reasoning system
which combines goal-directed reasoning and reactive process-
ing in a single framework. It uses a unified logical language to
represent beliefs, actions and goals. Its fundamental method of
problem-solving is reactive planning. Its basic plan formalism
is a Knowledge Area (KA), a fixed sequence of actions aims to
achieve a particular goal. KAs can invoke other KAs to achieve
subgoals, thus producing a plans through an hierarchical re-
finement approach. KAs are comparable to the Reactive Ac-
tion Packages of Firby (1987) and the Teleo-reactive Programs
of Nilsson (1994). Where PRS-CL differs from these systems
is through the embedding of KA processing within an intention
structure which manages which goals the system is currently
pursuing. To achieve a goal the PRS-CL interpreter finds a KA
that will satisfy it, then instantiates the KA with information
from the goal and current state (i.e. the current database of
beliefs). This instantiated KA (and subsequent refinements of
it) is referred to as an intention. A PRS-CL system can have
multiple goals, and can have multiple intentions too. In terms
of our earlier requirements, a PRS-CL intention is comparable
to a goal which has been activated by the management system
(i.e. it is being actively pursued). PRS-CL does not have a goal
management system; intentions are automatically created when
a KA can satisfy a goal. In this manner PRS-CL reactively se-
lects all goals which are achievable according to its procedural
knowledge and beliefs, thus running the risk of becoming over-
subscribed with things to do. In practice such situations are
avoided either through appropriate KA/goal design, or though
the use of meta-KAs. Meta-KAs are KAs which can operate
on the intention structure itself, performing actions such as re-
ordering the current intentions (thus determining which ones
get acted upon) or suspending selected ones (allowing a dis-
tinction between active and non-active goals). Meta operations
allow PRS-CL systems to implement some of the features we
identified previously as desirable. For example, in a PRS-CL
system for spacecraft system monitoring, a meta-KA is used
to promote intentions to check the reliability of sensors ahead
of all other intentions (Georgeff and Ingrand, 1989b). This is
a system- and task-specific implementation of managing goals
based on an implicit measure of importance.

In PRS-CL systems, drives are represented implicitly as trig-
ger conditions associated with KAs. When a trigger condition
is matched by a system belief the KA is automatically instanti-
ated as an intention. This is perhaps the mechanism in PRS-CL
which come closest to satisfying our previously stated require-
ments for goal generation (even though it generates intentions,
i.e.. goals plus plans, rather than just a plan). Explicit goals
in PRS-CL (i.e. statements which need to be matched against
KAs) are typically added by an external source (e.g. a human
operator or, as in the spacecraft monitoring example, another
instance of PRS-CL).

In summary, PRS-CL has many features that satisfy our re-
quirements for a goal generation and management system. Its
primary weakness (in relation to our needs) is its inability to
explicitly represent goals which have not been activated: all
goals are ballistically activated (turned into intentions) as soon
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as possible. This makes the process of goal management one
of post-hoc scheduling of intentions, rather than one of select-
ing which goals should become intentions (although allowing
intentions to be suspended after being first activated does allow
some selection to take place). This limitation is understandable
when one considers that practical (i.e. real-time, responsive)
reasoning is one of the aims of PRS and that this is most easily
achieved using reactive (ballistic) not deliberative (considering
the consequences of alternatives before action) methods.

4.2.2. Soar
Soar is a computational model of human problem solving

which has latterly developed into more general framework for
developing knowledge-intensive agents Laird et al. (1987). It
shares many features with PRS-CL, but is less formally con-
strained than other, logic-heavy, BDI systems9. One of the ma-
jor similarities between the two approaches is their general ap-
proach to generating behaviour: the use of reactive, hierarchi-
cal refinement of pre-specified plan-like structures (KAs in PRS
roughly map to operators in Soar). One of the major differences
is the ability for Soar to overcome impasses (situations where
no operator is directly applicable) by employing additional rea-
soning mechanisms and learning from the results (chunking).

In terms of goal generation and management, Soar has less
built-in functionality than PRS-CL. Internal goal generation is
only supported to overcome impasses, a fact which has re-
sulted in some system designers overloading this mechanism
to generate task goals (Jones and Wray, 2006), while others
find other “idioms” to use to add the necessary functionality in
implementation-specific ways (Lisse et al., 2007)). In general
we can consider that these engineering solutions draw on the
same (reactive) processing model of Soar, and thus can be di-
rectly compared to trigger conditions in PRS (i.e. goals are de-
rived directly from matching rule conditions against a database
of beliefs).

Unlike PRS-CL (which allows suspended intentions), Soar
does not support non-active goals. As such it provides no stan-
dard mechanisms to select between different goals. If required,
such mechanisms must be added on a system-specific basis us-
ing the existing functionality (i.e. via Soar operators). The lack
of more general goal generation and management functionality
in Soar is seen as a weakness by some of the researchers using
Soar10. To overcome this, these researchers have started de-
veloping a BDI-inspired abstraction layer for Soar Lisse et al.
(2007). This layer includes declarative goals (rather than goals
implicit in generation rules) and activation pools for desired,
active and terminated goals and their associated plans (where a
goal plus a plan is comparable to a PRS intention). These pools
give a Soar system the ability to have proposed but non-active
goals (the desired pool), which is a pre-requisite of goal selec-
tion and management. The BDI layer uses Soar’s built-in belief

9For a more general comparison between Soar, BDI systems and other agent
frameworks we direct the reader to the excellent comparison piece by Jones and
Wray (2006)

10This view implicitly supports the research direction promoted by this arti-
cle.

maintenance mechanisms to manage which goals should be ac-
tive. This appears to be the only (documented) mechanism for
determining which activation pool a goal should be in. No in-
formation is provided on, for example, methods to select which
active goal should be preferred by the system.

4.2.3. MINDER1
The analysis and design work of Beaudoin (which yielded the

NML1 architecture design (Beaudoin, 1994, Chapter 5)) was
subsequently explored and implemented by Wright (1997) as
the MINDER1 system. As with the previously described sys-
tems it takes a hierarchical reactive planning approach (using
Teleo-reactive Programs (Nilsson, 1994)), but augments this
with a motive management system which controls which goal
the system is currently pursuing. MINDER1 operates in a 2D
simulated world called the nursemaid domain. In this domain
there a number of independent agents, called minibots, which
the minder has to care for in a nursery. Minibots can run out of
batteries or fall into ditches. The minder should prevent these
situations from happening or rectify them if they do occur. As
the minder only has a limited sensing range it must also patrol
the nursery to detect the state of the minibots under its care.
As the minibots are all operating in parallel in real time the
minder’s goals change asynchronously. This is an ideal envi-
ronment in which to goal management approaches11.

As MINDER1 is a direct descendant of Beaudoin’s ideas,
reviewing it allows us to review the performance of a design
that was produced to satisfy the same requirements we have.
MINDER1 has distinct goal generators for each system goal.
Much like the previously reviewed systems it generate goals
by matching conditions (which implicitly encode the system’s
drives) against a database of beliefs. As is required by Beau-
doin’s theory, goals are accompanied by an insistence value,
which attempts to heuristically capture both the goal’s impor-
tance (i.e. how crucial satisfying the drive that generates it is)
and urgency (i.e. the pressure to satisfy to goal sooner rather
than later). In MINDER1 these values are calculated as a func-
tion of the current violation of the underlying need. For exam-
ple, the insistence of a goal to prevent a particular minibot from
falling into a ditch is a function of the distance of the minibot
from the ditch.

The insistence is used by components within MINDER1’s
motive management subsystem (Wright, 1997, p72). This sub-
system maintains two disjunct sets of goals: surfaced and un-
surfaced goals. The former set contains goals which are be-
ing actively managed (but not necessarily acted upon), the lat-
ter, goals which are currently entirely ignored by the manage-
ment subsystem (and thus incapable of generating goal-directed
system behaviour12). MINDER1 separates these sets using a

11This is perhaps true for systems of a mostly reactive nature, as the world
almost always require a fast response. A comparable domain that has a
slightly less frenetic pace is the artificial life domain of Tyrrell (as summarised
in (Bryson, 2001)) in which a rodent must survive dangers, and make the most
of the opportunities, of life on a simulated savannah.

12Although unable to generate goal-directed behaviour in the sense we are
generally interested in, unsurfaced goals can still produce management be-
haviour which is ultimately serving the needs of the system.
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threshold-based attention filter. If a goal’s insistence value is
greater than the value associated with the filter then it surfaces
into the managed set, otherwise is remains unsurfaced (and un-
managed). Surfaced goals go through a series of state tran-
sitions before ultimately generating behaviour: first they are
scheduled (which determines whether they are processed or
suspended), if not suspended they are expanded. Expansion is a
process of deciding whether the goal should be pursued (based
on resource usage, current state etc.), planning the behaviour to
achieve the goal (retrieving a reactive plan in this case), then
executing the behaviour. MINDER1 can only expand a single
goal at once (although Beaudoin’s theory postulates the need
for multiple concurrent active goals). Much like an intention
structure in PRS-CL, a goal is expanded in place, so that it con-
tains all of the information (plans etc.) necessary for resump-
tion after suspension. In MINDER1 a goal can be suspended
at any time by the management subsystem. Suspension means
that a goal remains surfaced, but cannot influence behaviour
(i.e. it is not the single goal currently undergoing expansion).

It is worth noting that although MINDER1’s sets of man-
aged goals are similar to those maintained by PRS-CL and the
Soar BDI abstraction layer (both support a distinction between
active and suspended intentions), MINDER1 provides both a
finer-grained distinction between goal management states and
additional support for processes which change the manage-
ment states of goals. The surfaced/unsurfaced distinction al-
lows MINDER1 to represent goals which have been generated
by the system, but which are not yet insistent enough to engage
the management processes. The other systems we have seen
ballistically select all generated goals for processing. Addition-
ally MINDER1 provides processes for deciding and schedul-
ing which goals from the surfaced set should be actually acted
upon. The other systems we have discussed assume that any
generated goal should be directly acted upon when possible (al-
though this notion of possibility – usually encoded as condi-
tions for the firing of a behaviour – implicitly captures part of
the deciding process).

The work of Wright and Beaudoin assumes that the man-
agement subsystem of an agent is resource limited. As such
it is necessary to protect it from situations where it may reach
the limit of its resources. Without being too specific about the
computational resources available to a particular instance of a
MINDER1 system, we can accept this assumption by consider-
ing that we require the management subsystem to stay respon-
sive to new inputs and able to make timely decisions (rather
than unresponsively processing for longer than any particular
goal may be valid for). In MINDER1 it is the role of the atten-
tion filter to prevent the management systems from becoming
overburdened. Wright models the resource constraints of the
management layer by adopting a (soft) design constraint that
only three goals should be in the surfaced set at any time. This
is an arbitrarily selected value, but it serves to prove a point.
Within MINDER1 it is the role of the meta-management pro-
cesses to enforce this constraint via the attention filter. In brief,
these processes perform the following operations: if the sur-
faced set contains less than three goals, the value of the thresh-
old is reduced, thus allowing lower insistence goals to surface;

if the surfaced set contains more than three goals, the value or
the threshold is increased until lowest insistence goals “dive”
out of the surfaced set. In conjunction with the ability of goal
generators to increase and decrease insistence values (e.g., as
minibot gets closer to a ditch), this gives rise to system with a
dynamic set of active goals. The contents of this set should ide-
ally reflect both the computational resources of the system and
the current state of the world13.

Although MINDER1 provides a powerful starting point for
a goal management system, it also raises a number of ques-
tions (some of which are raised in the original work). The
calculation of insistence for goals in the nursemaid domain is
trivial given the nature of the drives involved. Generating im-
portance and urgency information for less quantifiable drives
will pose new problems. The relationship between the attention
filter, management processes and meta-management processes
will also require further thought in systems with richer deliber-
ative processes and wider scope. Ideally management resource
constraints should be characterised by something more infor-
mative than a number limit on set size. Future work on this
must span two issues: the variety of goals, and the frequency
of their generation, in a particular system and domain combi-
nation; and the nature of the deliberative and management pro-
cesses available to a particular system (e.g. the constraints on
a system using a deliberative planner may be quite different to
those only using stored reactive plans). This latter considera-
tion will also influence the expansion process. In MINDER1
deciding, scheduling and planning for a goal are all separate
steps in the management subsystem. A system which integrated
all of these processes (perhaps using techniques from deliber-
ative, rather than reactive, planning) would be able to take de-
cisions which are better informed about the interactions both
between the behaviours necessary to achieve different goals,
and between these behaviours and the available resources. This
view is expanded in Section 6.

4.2.4. GRUE
Another architecture which augments a teleo-reactive plan-

ning system with a goal management system is the Goal and
Resource Using architecturE (GRUE) of Gordon and Logan
(2004, 2005). GRUE is similar to MINDER1 in that it has reac-
tive goal generators, annotates its goals with priorities, and uses
a threshold-based filter to discard low-priority goals. Whilst
GRUE appears to be a simplified version of MINDER1 in some
ways (e.g. it has a much smaller range of possible goal man-
agement states), it goes beyond MINDER1’s contributions in
others: it allows multiple goals to be acted on at once (whereas
MINDER1 only allows a single goal to be acted upon), and pro-
vides a rich language for managing resource constraints (con-
straints which are largely ignored in the MINDER1 implemen-
tation). These two contributions are combined in the GRUE
arbitrator process. GRUE attempts to achieve each active goal

13The dynamics of threshold changes and the management processes in
MINDER1 can give rise to emergent perturbances. These can be used to
provided an architecture-based, characterisation of a number of emotional
states (Wright et al., 1996; Wright, 1997; Sloman et al., 2005).
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with a separate reactive plan, each of which suggests an ac-
tion to perform in each processing cycle. The arbitrator collects
these actions and decides which ones should be allowed to ex-
ecute (thus ultimately deciding which goals are acted upon).
The decision is made by inspecting the resource requirements
of the suggested actions. If there are any conflicts (e.g. two
actions which use the same effector) then the actions associated
with the lower priority goals are dropped. Whilst this demon-
strates the power of combining importance measures (priority)
with scheduling (resources assignment), it does also highlight
the weakness of reactive approaches to goal-directed behaviour.
In the event of repeated conflicts over resources, a GRUE agent
has no mechanism for choosing alternative goals or plans, or
reasoning in more detail about the causality of combinations
of actions. If GRUE was extended with a meta-management
process which configured the goal filter to ignores contentious
goals it might work around such problems. A longer-term solu-
tion (in this instance and for the more general problem of mul-
tiple, interacting goals) is to move away from reactive planning
approaches and investigate deliberative methods.

4.3. Deliberative and Hybrid Systems

In this section we review goal generation and management
approaches taken by intelligent systems with deliberative capa-
bilities.

4.3.1. Spartacus, MBA and EMIB
An architecture featuring explicit motivations was used to

control Spartacus, a mobile robot which attended the AAAI ’05
conference (Michaud et al., 2007). The architecture was the
Motivated Behaviour Architecture (MBA) which is an instanti-
ation and generalisation of EMIB architecture (which roughly
stands for Emotion and Motivation for Intentional selection
and configuration of Behaviour-producing modules) (Michaud,
2002). MBA features reactive behaviour-producing modules
(BPMS, comparable to behaviours in the reactive systems re-
viewed previously) which are structured into reactive plans
called tasks (Beaudry et al., 2005). MBA features motivations
which are processes which can propose tasks into the dynamic
task workspace (DTW). Motivations are thus the MBA equiva-
lent of goal generators. The DTW is directly comparable to the
intention structure in PRS-CL (see 4.2.1) in that it automatically
accepts and stores all active tasks, where tasks can be consid-
ered a goal-plus-reactive-plan structure. Motivations exist in
MBA for domain- and system-specific drives (e.g. sticking to
the agenda of the conference, navigating to particular points in
space) and more “instinctual” drives such as curiosity and sur-
vival.

MBA allows multiple tasks to be active at once. Goal man-
agement is performed by deciding which tasks are allowed to
active which behaviours (similar to the approach to action ar-
bitration taken in GRUE). This decision is based both on the
activation values of motivations (which can be considered as an
importance measures related to how well each motivation can
satisfy its own need) and the system know-how (SNOW) built
into MBA. From the literature SNOW appears to be a collection

of domain- and system-specific rules for deciding which tasks
should be allowed to run in the event of a conflict. Whilst this
is not a solution we can carry forward into a new goal manage-
ment system (as it is not generally applicable), it does demon-
strate that the goal-management problem may require engineer-
ing solutions for particular cases.

The reason that MBA can be considered a reactive-
deliberative hybrid approach is that it also uses a planner as
motivation source. Given a goal, the planner creates a list of
tasks which must be sequentially proposed to the DTW in order
for the goal to be achieved. This highlights that goals will exist
at multiple levels of abstraction in an intelligent system; what
appears to be a goal at one level (i.e. a task in this case), may
be a subgoal from a more abstract level.

4.3.2. DIARC
The notions of importance and urgency (as first identi-

fied by Beaudoin (1994)) are employed in the DIARC (“dis-
tributed integrated affect cognition and reflection”) architec-
ture (Scheutz and Schermerhorn, 2009). DIARC uses explicit
goals which are generated from natural language input (Dzifcak
et al., 2009) and stored in an affective goal manager (AGM)
component14. Each goal is assigned an affective task man-
ager (ATM) which performs action selection for its goal (which
equates to reactive planning in this case). If two ATMs produce
conflicting actions (where a conflict is identified as a violation
in resource usage), then the goal with the highest priority is al-
lowed to continue. Whilst this approach bares a strong resem-
blance to previous approaches (including GRUE and MBA), it
is distinguished by a clear proposition for calculating priority
values for goals. The AGM calculates a priority value from a
goal’s importance and urgency values, and assigns the priority
to the respective ATM. In DIARC, importance is calculated by
subtracting the estimated cost of achieving the goal from the
product of the estimated benefits and an affective evaluation of
the goal (where all quantities are real numbers). The affective
evaluation attempts to capture the influence of the current state
and past successes and failures on the ability of the system to
achieve the estimated benefit. Positive experiences yield a more
favourable evaluation for a particular goal, increasing its overall
importance value. Negative experiences have the opposite ef-
fect. The goal’s priority is calculated by scaling its importance
value by urgency. Urgency is a measure of the time remaining
to achieve the goal and is derived from the ratio between the
elapsed time since the goal was created and the time the system
expects to take to achieve the goal.

This method of prioritising goals is intended to overcome
the problems inherent in taking a rational approach to deci-
sion making (which requires information that a robot typically

14Generating goals from natural language input is often a very different type
of goal generation process than those considered in this article. It is an ap-
proach which will certainly become more prevalent as interactive robots gain a
wider range of capabilities. Examples of systems that convert linguistic state-
ments into deliberative action range from SHRDLU (Winograd, 1971) to DI-
ARC and other recent interactive robot systems (Dzifcak et al., 2009; Brenner
et al., 2007).
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doesn’t have access to). The combination of designer spec-
ified, or possibly learnt, values for costs and benefits, com-
bined with the contextual and historical information captured
in the affect evaluation allows the system to make reasonably
good choices (i.e. satisficing (Zilberstein, 2008)) whilst being
responsive to changes in the current situation (see (Scheutz
and Schermerhorn, 2009) for examples of the emergent prop-
erties of this combination of values). This said, this method of
goal selection can only make relatively uniformed management
decisions; the purely numerical measures of cost and benefit
are devoid of causal structure which could allow a delibera-
tive decision-making process (not necessarily a optimal/rational
one) to select goals based on a more informed judgment of ex-
pected future states (cf. “rationale” in Beaudoin’s work, and
also Sloman (To appear) on architecture-based motivation vs.
reward-based motivation).

4.3.3. MADbot
One of the few planning approaches to treat goal generation

as part of the planning problem (rather than as precursor to it)
is the MADbot (Motivated And Goal Directed Robot) system
of Coddington et al. (2005). The architecture is comparable to
previously reviewed approaches such as MINDER1 and GRUE,
but uses deliberative, rather than reactive, planning to gener-
ate behaviour. MADbot represents the world as a collection
of state variables (much like the databases of beliefs used by
other approaches). A drive in MADbot is effectively a con-
straint on a single state variable with an associated importance
value15. For example, the drive “conserve-energy” will monitor
a system’s battery charge level, and attempt to keep it above a
particular threshold. Where the reactive systems reviewed pre-
viously would encode this drive implicitly in the trigger con-
ditions of a goal generator, MADbot explicitly records them
as part of the system description. This has allowed them to
experiment with two different approaches to goal generation:
motivated goal generation, and motivations as resources (Cod-
dington, 2007a,b).

In the motivated goal generation case, MADbot behaves
much like a deliberative version of the previously reviewed sys-
tems: when a drive’s threshold is violated, a goal to return its
state variable to below the threshold is generated. The goal is
then passed to the goal arbitrator which decides whether the
goal should be added to the current goals the system is pursuing
or not. This is the only real mention of explicit goal manage-
ment in the MADbot work: they note that it is important, but
leave it for future work. Newly accepted goals are added to a
conjunction of previous accepted goals then passed to a plan-
ner. The plans are executed and the success or failure of actions
(and their outcomes) is monitored by the system. If a plan is
successfully executed then the state variables should all be re-
turned to their below-threshold levels and the associated goals
are removed from the arbitrator.

15The MADbot literature actually uses the term “motive” to refer to a drive,
but we will use the term “drive” to maintain consistency with our earlier dis-
cussions.

This approach was evaluated in a simulated Mars rover do-
main where four different drives were combined with user spec-
ified goals to control MADbot. The drives were used to main-
tain battery charge, disk space and localisation accuracy, whilst
occasionally capturing images of the surrounding environment.
The state variables associated with these drives vary as the sys-
tem acts. For example, battery charge is reduced by driving to
the places where images should be captured, and disk space is
used up by capturing images. The initial design of the system
was validated as MADbot was able to perform autonomously
and maintain its drives in some situations, but some problems
did arise. The most fundamental problem was that, because the
planner is unaware of the system’s drives, it often generated
plans that violated resource constraints (e.g. plans were gener-
ated which could exhaust the system’s battery charge). When
constraints are violated (as the system executes one of these
plans) the drives create new goals to recover (e.g. by charg-
ing the battery), but this raises an additional problem: MADbot
cannot guarantee that these goals will be dealt with before the
resource is exhausted. As the importance of a drive is not used
when the goal is conjoined with the existing system goals, the
resource constraint goal just becomes something else MADbot
should do, rather than something it must do before it does other
things that use up that resource. Coddington (2007a) states that
this could be addressed by using the importance of the drives
that a plan satisfies as a factor in a metric for evaluating can-
didate plans. This approach is comparable to the use of im-
portance in MINDER1 and GRUE (although they additionally
vary importance as a function of the distance of the state vari-
able from the threshold). A different way to address this would
be use MADbot’s (currently under-used) goal arbitrator to sus-
pend the current task goal and replace it with the goal to satisfy
the drive. Although this would ensure that the resource con-
straint is not violated, it would not really solve the problem;
the planner would still be creating plans for satisfying resource
constraints separately to plans for its other goals.

To address these problems an alternative approach to goal
generation was tried: the aforementioned motivations as re-
sources approaches. Rather than use the drives to reactively
generate new goals when thresholds are violated, these thresh-
olds are instead modelled as resource preconditions for the ac-
tions in its planning domain for the Mars rover example. For
example, moving the rover consumes (and thus requires) a cer-
tain amount of battery charge, and the level of battery charge
can never be allowed to fall below a threshold. This approach to
goal generation changed the behaviour of MADbot in the rover
domain: the plans generated for a particular task goal took into
account the resource constraints ahead of time (e.g. recharg-
ing the robot as appropriate), rather than waiting for a reac-
tively generated correction goal. This meant that the resource
constraints were never violated. This improvement came at the
cost of two problems. First, the lack of reactive goal generators
meant that the no autonomous behaviour was possible when an
additional task goal was not specified. This meant that period-
ically relevant drives, such as capturing images, could not be
triggered unless a plan was also being generated for another
goal. The second problem was that the computational com-
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plexity of processing the resource constraints made the plan-
ning problem much, much harder than previously. Some stan-
dard resource-handling planners could not find plans, particu-
larly when more than two drives were modelled in the domain.

The author’s suggested solution to the complexity problem is
to employ a hybrid approach to goal generation. Drives relating
to hard resource constraints (i.e. those which should never be
violated) should be modelled in the planning domain, whereas
less critical drives should be encoded as reactive goal genera-
tors. This appears to be a sensible approach which will benefit
from the strengths of both approaches (autonomy and simplic-
ity; and adherence to resource limits respectively). However
there is an additional problem with the motivations as resources
approach which will have to be addressed in future work: not
all drives can be easily encoded in this manner. One reason is
that some drives cannot be captured simply as small number of
numeric quantities (e.g. the drives Alfred had in Section 1.1 to
fill gaps in its knowledge), although these may all turn out to
be safely assignable to reactive goal generators (or at least im-
plicitly modelled drives). Another reason is that in real-world
robotics resource usage cannot be modelled so simplistically,
due to many factors beyond the control of the planner. This may
mean that the planner will need to employ probabilistic models
of resource levels and usage, again increasing the complexity
of the planning problem.

Despite these potential problems with the motivations as re-
sources approach, the work on goal generation in MADbot
highlights how a key problem in intelligent system design, the
trade-off between reactive and deliberative processing, is ap-
parent in the problems of goal generation and goal-directed be-
haviour. In an ideal world, some general purpose decision mak-
ing mechanism could assess all of the possible combinations of
goals a system could have and all of the plans for all of these
possible combinations (including the consequences of resource
usage etc.) before selecting the optimal goal and plan combina-
tion and acting on it. However there are many reasons, rooted
in both the complexity of such decision making and the diffi-
culties of modeling all behaviour this way, why this approach is
just not possible in practice. The solution is to therefore carve
off parts of the problem into separate specialist systems (reac-
tive or deliberative) with less knowledge about the rest of the
process. This makes the overall approach less powerful (and
capable of less rational decision making), but more likely to
make a decision in a reasonable amount of time (i.e. while its
goals are still valid). One of the challenges in the design of a
goal generation and management framework is how to reduce
the overall problem into appropriately specialised subsystems
without reducing the decision making power of the combined
parts to such a degree that it is unable to make reasonable de-
cisions. The work on MADbot has demonstrated that a naı̈ve
approach to combining reactive goal generation and planning
(albeit an approach which does not make use of importance
or scheduling information suggested by other authors) fails to
make reasonable decisions in certain scenarios.

5. Summary of Approaches

We can now summarize the approaches we have seen to the
generation and management of goals for an intelligent system.
In this discussion we will conflate the different versions of a
goal plus a plan for achieving it (e.g. a goal plus deliberation,
an intention structure, and various other forms of reactive plans)
and just refer to “goals”, except where the difference is salient.
We shall also adopt the following terminology to describe the
different sets of goals that a system can have: managed goals
are those goals which have been accepted into a system’s goal
management process (equivalent to “surfaced” in MINDER1
described in Section 4.2.3); active goals are those goals which
are causing goal-directed behaviour to be generated (this term
is used by MINDER1 from Section 4.2.3, the Soar BDI layer
from Section 4.2.2, and implicitly by other approaches); sus-
pended goals are managed goals which are not active (again
used by MINDER1, Soar etc.); and unsurfaced goals are those
goals which have been generated, but not accepted into the
management process yet (this term is taken directly from MIN-
DER1, as no other system has this facility).

Where a system generated its own goals autonomously
(rather than having them imposed by another system) it al-
most always did do reactively, and with no reference to the
mechanisms used to subsequently expand the system’s goals.
Although this approach is generally effective where deployed
(e.g. in PRS-CL from Section 4.2.1, Soar, MINDER1, GRUE
from Section 4.2.4, MBA from Section 4.3.1 etc.), this is of-
ten because the scenario is amenable to decomposition into a
multi-stage process (i.e. goal generation, goal expansion if re-
quired, arbitration then execution). The work on MADbot (pre-
sented in Section 4.3.3) demonstrates that not all problems can
be tackled in this way. In particular problems where drives exist
to maintain interacting resources may be better modelled as part
of a planning process, although this increases the computational
complexity of the deliberation task.

All but one of the approaches we have seen allow their sys-
tems to have multiple goals active at once (we shall refer to
these as goal conjunctions). MINDER1, the approach that can
only have a single active goal at a time, was also not intended
to have this limitation. Given the ability to tackle goal conjunc-
tions, there are two problems which must be tackled: which
goals should be conjoined; and which goals can be achieved
when conjoined. The former issue is one of determining priori-
ties or preferences over all managed goals. The latter is one of
resolving conflicts between the actions required to achieve the
active (conjoined) goals.

The work we have surveyed typically takes one of four dif-
ferent approaches to selecting which goals should be conjoined.
In BOD (from Section 4.1), DIARC (from Section 4.3.2) and
MBA, all goals are activated without consideration and thus
conjoined by default. In PRS-CL and Soar goals are also acti-
vated without consideration, but can be subsequently suspended
(providing a choice of possible conjunctions). In MADbot
goals pass through an arbitration step before coming active, i.e.
they start suspended but can later become active (again provid-
ing a choice of possible conjunctions). MINDER1 and GRUE
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go one step further by using an additional filter to determine
which goals can become managed before then being activated.
MINDER1 motivates the use of a filter by claiming resource
limits in the management layer. Although the implementation
of this approach does not support this, the work on motivation
as resources in MADbot demonstrates the problems of putting
too great a load on deliberative systems.

Once a system has a conjunction of active goals it must act
to achieve them. However, actions that help to achieve one goal
may conflict with actions that help to achieve another. The ex-
isting literature mostly deals with one type of conflict, resource
usage, but other types of conflict can exist too (notably the ac-
tions for one goal undoing preconditions established by actions
for another). In almost all cases resource conflicts are dealt with
by inspecting the goals which the actions achieve, then award-
ing the resource (thus the right to execute) to the action for goal
with the greatest priority. The existing systems assign priori-
ties in various ways, from the fixed priority schemes or MIN-
DER1 and BOD, to the activation-based approach of MBA, to
the more dynamic, affect-based, approach of DIARC. Regard-
less of implementation this scheme amounts to using a single
partial ordering to decide which goal is actually active during a
conflict.

An alternative to resolving conflicts by ordering is demon-
strated by systems with deliberative capabilities. MADbot and
MBA (in some contexts), using planning, and to some extent
Soar, using its impasse mechanisms, can choose selections and
orderings of actions in advance of acting which do not have
conflicting demands (providing the important resources etc. can
be modelled in their representations). This again highlights the
benefits of deliberation in domains where it is feasible: reactive
systems will require arbitration mechanisms as their behaviours
are independently generated and thus can conflict after the fact;
deliberatively systems can reason about and avoid conflicts be-
fore the fact. Regardless of the overall approach, most of the
surveyed approaches rely on representations of resources and
priorities. Priorities are important beyond conflict resolution as
they can also be used as preferences on goals in a deliberative
system (e.g. (Brafman and Chernyavsky, 2005)), and as part
of the process for determining which goals should be managed
and active (as in MINDER1). This is because some needs may
be inherently or contextually more important to a system than
others, even if no conflict is evident.

An important issue which we only saw addressed by PRS-CL
and Soar (although there is much related work in the BDI field)
is goal maintenance or reconsideration. This is essentially the
problem of deciding when a goal should be suspended or even
dropped entirely. Both systems use variations of logical entail-
ment to determine whether goals are still necessary. Beaudoin’s
work argues that goals should represent their dependencies (via
beliefs and rational (Beaudoin, 1994, p47)) to support this kind
of reasoning, but this was not implemented in MINDER1.

Finally, the issue of the temporal and behavioural dependen-
cies of goals was only discussed with reference to scheduling in
the theoretical work of Beaudoin and in the implementation of
urgency in DIARC. Deciding when (not whether) a goal should
become active, or some action should be executed, and then

scheduling that to occur as appropriate (e.g. in two hours time,
or after this goal is achieved, or the next time I’m in a particu-
lar room) may reduce the load on a goal management system.
One, computationally undesirable, alternative to this is for all
known future goals to be managed when generated and for the
management process to keep checking them (i.e. polling) for
activation until the correct time occurs. Urgency in DIARC and
MINDER1 implicitly encodes a solution to this as the goal gen-
erators can make goals more urgent when appropriate in order
to make it more likely that they will be activated.

6. A Design for a Motive Management Framework

Given the preceding summary of the literature, and the re-
quirements we set out previously, we can start to sketch out
an early design, or at least a list of desiderata, for a future ar-
chitecture for managing goal-directed behaviour. Our intention
is to develop something along these lines that will allow us to
explore the trade-offs in design space for these sorts of mecha-
nisms.

Although most of the work we surveyed used reactive plan-
ning approaches to generate behaviour, we will follow the
work on MADbot (and many other intelligent robotic systems,
e.g. (Bonasso et al., 1997; Hawes et al., 2007)) and use a plan-
ner, coupled with reactive behaviours, to determine future ac-
tions. The advantage of this approach is that interactions be-
tween active goals and conflicts over resources can be resolved
through reasoning in advance of acting, rather than through
post-hoc arbitration. To work effectively in an architecture for
goal management for a real-world robot, any planner we use
must satisfy the following criteria. First and foremost it must
be a continual planner, capable of interleaving planning with
execution and monitoring, and replanning when the world or
its goals are vary from its expectations. Continual planning has
been used to overcome the dynamism and partial observabil-
ity which exists in robotic domains Brenner and Nebel (To ap-
pear) and in situations where an external source can change the
goals of the system Knight et al. (2001). The planner ideally
should be able to model resource constraints, which would al-
low us to model motivations as resources (where appropriate).
An additional desirable feature would be the ability to behave as
an oversubscription planner Menkes van den Briel and Kamb-
hampati (2004); Brafman and Chernyavsky (2005). An over-
subscription planner is a planner which can determine which
subset of goals in a goal conjunction can actually be achieved
together, and, by using cost measures (like importance and ur-
gency), which goals should be pursued together. In essence this
would place the onus of activating goals (i.e. selecting which
ones should be acted on) on the planner, rather than an addi-
tional mechanisms.

Although the suggested planning approach would address
many of the sub-problems we have noted in this article, there
are two caveats. First, we know of no planner which currently
meets all of the listed requirements. We expect developing one,
or altering an existing one, to be a non-trivial exercise. Further-
more, as the MADbot work demonstrates, by placing additional
responsibilities on a planner you make its task harder. Given the
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combinatorial nature of planning problems, it is possible that
the problems we wish to tackle may be too hard to solve in a
single system. An alternative approach is to develop a planning
architecture for goal management, e.g. using an oversubscrip-
tion planner to determine which goals should be active before
passing the active conjunction on to a continual planner (re-
source scheduling could also occur after plans are generated).

In addition to the hypothesised planner we require goal gen-
erators (reactive or otherwise) which are independent of the
planing process. These will ensure that autonomous behaviour
can be generated as opportunities become available (i.e asyn-
chronously with respect to planning), and encode drives that
cannot be reasoned about in a single planning system (e.g.
drives that require access to information not modelled in the
planning domain). To capture the rich variety of goals an in-
telligent system can have we may need to extend the state de-
scriptions of planning goals with temporal operators (as in in
PRS-CL (Georgeff and Ingrand, 1989a) and NML1 (Beaudoin,
1994, p45)), although this temporal information could be cap-
tured implicitly in the nature of the goal generators themselves
(understanding the trade-offs here is one of many open prob-
lems). It may be desirable to encode homeostatic drives as re-
source limits in the planning models (as in MADbot), although
we may also want to develop a reactive alarm system for the
cases where deliberation does not satisfy safety- or mission-
critical drives Sloman (1998)).

As required by many of the approaches surveyed above, goal
generators will be required to annotate their goals with impor-
tance and urgency measures. These measures will be used in
various places in the system. However, it is not clear how these
values should be generated or represented. Initially they can
be fixed or contextually generated from drives (cf. the distance
between a minibot and a ditch in Section 4.2.3), and use either
numeric values or partial orderings (e.g. the drive to recharge is
more important the drive to clean the floor). Ultimately we may
need additional, more powerful representations, particularly for
scheduling various tasks based on urgency (which appears to be
an aspect of the problem of intelligent behaviour with is over-
looked in the literature).

The design should allow for active and suspended goal sets
(as described in the previous section). The process of goal man-
agement (i.e. moving goals between these two set) can be (im-
plicitly) performed by an oversubscription planner, or, if this
proves too complex initially, by inspecting importance and ur-
gency measures (although there are potential flaws in this ap-
proach). We will also adopt the idea of a pre-management
filtering step from the NML1/MINDER1 and GRUE architec-
tures. As our proposed approach of goal management through
planning is potentially computationally demanding (cf. Sec-
tion 4.3.3), filtering may protect the management system from
become overburdened with decisions (and thus unresponsive to
potentially important changes in the system’s goals and state).
On the other hand, if goal management does not prove to be too
demanding, there may be less of a justification for an additional
filtering step.

Although this design sketch gives us a starting point for fu-
ture work which builds on the experience of others, it presents

as least as many questions as it attempts to answer. These rep-
resent issues which we will explore, using the traditional meth-
ods of AI, via a more detailed requirements analysis for par-
ticular domains, an implementation of the system, and subse-
quent evaluations (i.e. we will follow a design-based method-
ology Sloman (1992)). Open questions include the follow-
ing: what mechanisms should be used for removing goals
from the unsurfaced or managed sets?; how often should goal-
management decisions be taken? (a dynamically changing
world could render decisions incorrect without the system act-
ing); how should longer-term behaviour be modelled? (goal-
generation and planning probably cannot account for life-long
behaviour in a robot, cf. the use of a planner as motive source
in Section 4.3.1); and how can deliberation and reactivity inter-
act in way that plays to their strengths, rather than constraining
one approach with the limits of the other.

7. Conclusion

In this article we presented arguments for the development of
a motive management frame for an intelligent system. Building
on previous studies we identified the required parts of such a
framework, and particularly focused on processes which can
generate goals and select goals to become the focus of goal-
directed behaviour. Given this focus we reviewed the literature
on architectures for intelligent systems and identified a num-
ber of trends in existing work towards addressing these prob-
lems. From this we proposed an outline design for a motive
management framework. The design prefers deliberation to re-
activity where possible, but freely admits the limitations of this
approach. It also includes mechanisms from the literature (e.g.
an attention filter) in order to explore the design trade-offs they
present. In future work we will implement this architecture and
evaluate it in both robotic domains and in simulated worlds (as
both evaluation domains present different problems and oppor-
tunities to any proposed design).
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