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This deliverable reports work related to object manipulation. While work
reported in previous periods to a large degree relied on pre-trained models,
the work reported here relaxes these dependencies on known models in two
ways. First, our work on learning forward models to predict the movements
of pushed objects using a combination of multiple experts is now able to
generalise beyond known shapes and manipulative actions and was shown
to work on real object manipulations. Moreover these learned predictors
are used as motion model within a visual object tracker, showing increased
robustness in visually challenging situations. Second, our work on assessing
grasp stability based on tactile feedback is able to generalise learned grasp
stability predictors to novel objects. This allows execution of stable grasps
for previously unseen objects and was also shown to improve simulation
based grasp planning for known objects.
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Executive Summary

This report combines two pieces of work on (a) self extending modular motor
learning and (b) grasping of previously unseen objects:

Regarding (a) this report presents work on motor learning, in which a
combination of multiple experts is able to learn forward models to predict
the movements of objects subjected to manipulative actions. The report also
shows how the system can make useful predictions about previously unseen
objects, by making use of knowledge acquired by observing the motions of
other objects. This report further presents the use of learned predictors as
motion model of a particle filter based tracker, showing improved robustness
in visually challenging situations.

Regarding (b) this report presents work related to predicting and moni-
toring grasp stability. Grasping of previously unseen objects is a very useful
ability for learning new objects, which is one major means of extending a
robot’s knowledge in CogX. Lacking detailed object models to plan a stable
grasp haptic feedback becomes a valuable source of information.

Self extending modular motor learning

The motor learning work extends previous work [21, 20] in which a system
learned probability distributions of how a rigid body would move when sub-
jected to manipulative pushing actions by a robot arm. The report explains
how additional predictive experts can be trained which encode information
about the relative motions of surface patches of the object with respect
to parts of the environment, such as a supporting ground plane. These
additional experts enable a greater degree of generalisation, i.e. making pre-
dictions about the motions of previously unseen objects with novel shapes,
and predicting the motion of objects in response to previously unexplored
manipulative actions. We have now shown that we can learn forward models
capable of such generalisation for real object manipulations.

Building on the work on model based tracking reported in DR.2.1 and
DR.2.2 [36, 43, 35] we extended our particle filter based tracking with a
motion model, which uses the learned predictors of object motion. This
is especially useful in visually challenging situations like toppling objects,
where fast motion and sudden velocity changes would overwhelm simpler
(e.g. first order) motion models.

The work presented here led to two conference publications [23, 34] and
one recent journal submission [22].

Role of self extending modular motor learning in CogX

This work relates to Task 2.5 - Modular motor learning theory because it
addresses the problem of learning about contact relations, and predicting
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object trajectories of manipulated objects.
In order to fill the knowledge gap that results from the discovery of

a novel object, the agent should be able to learn about how that object
will behave when subjected to manipulative actions. Furthermore, it is
advantageous if the agent can make use of its previous experience with known
objects, to make useful predictions about how a novel object will behave.

Contribution to the CogX scenarios and prototypes

This work contributes to the Dexter scenario, which deals with learning
about physical object properties via active experimentation.

Grasping of previously unseen objects

This report presents means of monitoring the stability of a grasp applied onto
a novel object, using the tactile signals captured by sensors placed on the
robot’s fingers. As a secondary contribution, this report presents means of
learning object-specific tactile characterisations from interactions with novel
objects, in order to facilitate further use of these objects. This work was
evaluated on the KTH manipulation platform (industrial arm and dexterous
hand). It has led to one journal [4] and two conference publications [2, 1].
The work presented here builds on the contributions presented in DR 2.3
[3].

Role of grasping of previously unseen objects in CogX

The ability to grasp novel objects is paramount in learning about them. The
tasks defined in CogX often confront the agent with an object which it does
not know about. In order to fill the knowledge gap that results from the
discovery of a novel object, the agent must learn the object’s appearance, its
physical properties, and its usefulness and purpose. To this end, the agent
must be able to interact with the object, and, for instance, grasp the object
and move it in front of a camera to capture the object’s 3D appearance.

To the end of allowing the agent to grasp previously unseen objects,
we addressed the problem of monitoring the stability of a grasp applied
onto a novel object, using the tactile signals captured by sensors placed
on the robot’s fingers. Grasps planned onto novel objects will often be
uncertain, as the information available to the planner before the grasp is
limited. Monitoring the stability of a grasp from tactile feedback allows the
agent to abort a grasp that is unlikely to succeed, and it potentially prevents
damaging the object or the robot.
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Contribution to the CogX scenarios and prototypes

This work mainly contributes to the Dexter scenario, and in particular to
DR 7.2, which is concerned with manipulation under partial information.
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1 Tasks, objectives, results

1.1 Self extending modular motor learning

1.1.1 Planned work

This deliverable reports work related to Task 2.6:

Task 2.6: Self-extending modular motor learning. Create a mod-
ular motor learner that adds new contexts to its model, based on
assessing the quality of its predictions. We will use a probabilis-
tic model to identify whether to refine existing modules, or add
a new module, and to control exploration while doing so. (M22
- M32)

In period 2 we developed a basic theory of modular prediction, involving
products of experts, and also an extension using a mixture of experts for
context identification. In period 3 we planned to deliver several pieces of
work. The first was to show how the products theory applies in real robot
cases, and in particular to show how we can perform extrapolative rather
than interpolative generalisation, i.e. generalisation of predictions to previ-
ously unseen shapes and actions. This kind of self-extension is extremely
challenging. The second was how our mixture model learner should explore
an object most effectively so as to identify a context. Initial work on ex-
tracting qualitative states has also been undertaken, and will be reported in
the correct deliverable at month 50.

1.1.2 Actual work performed

Annexes 2.1 and 2.2 present our new work on the product of experts model.
In this work a variety of expert predictors are trained on different kinds
of information about the behaviour of pushed objects. In this period we
showed how the learned predictors can be combined to generalise extrap-
olatively rather than interpolatively as is normal in machine learning. This
extrapolative generalisation is an exceptionally hard problem. In these pa-
pers we show that extrapolative generalisation works well when the learner
has good information about the object trajectory when it is learning. Given
good trajectory information the products model can successfully generalise
predictions to new actions outside of the hull of previously tried actions. The
same model can also extrapolatively generalise with respect to shape, learn-
ing on a cylinder and a box and generalising to a pair of linked cylinders, or
learning on a polyflap and generalising to a box.

One problem in learning the above predictors from observed visual tracks
is that visual trackers can lose track of the object in unexpected situations
such as an object suddenly toppling over. Unfortunately it is precisely these
situations that provide valuable training input. We solved this problem by
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running a particle filter based tracker [36, 35] with a very high number of
particles, thus increasing its robustness while sacrificing real time perfor-
mance.

While this is acceptable for an offline learning system, it is not suitable
for a robot autonomously extending its knowledge in real time. To this end
we investigated methods to improve tracking robustness especially in such
visually challenging situations by using the learned predictors themselves
as the motion model within the tracker. Simple (e.g. first order) motion
models for recursive filters have been used in the past, but these can not
capture the sudden changes of motion resulting from pushing or toppling
an object. The learned predictors allow the tracker to overcome situations
such as toppling objects with a combination of fast motion and image blur
or complete occlusions during motion. Most importantly this paves the
way for a bootstrapping system, where a partially learned predictor starts
to improve visual tracking, which in turn allows improved observation of
learning situations and so on, which is the intended next step in this line of
work. This work led to a publication at ICRA 2011 (see Annex 2.3).

1.1.3 Relation to the state-of-the-art

Push manipulation is particularly interesting in that pushes can give rise
to a large number of unstable poses in 3D rigid bodies. However, most
previous work on push manipulation in robots is restricted to planar sliding
motions of what are effectively 2D objects [28, 27, 39, 9]. There is little
literature addressing the more complex problem of push manipulations on
real 3D bodies, which are free to tip or roll. It is possible to use physics
simulators to predict the motion of interacting rigid bodies. However, this
approach is reliant on explicit knowledge of the objects, the environment,
and key physical parameters which can be difficult to tune. Even then, such
predictions may not be possible due to inherent limitations of the physical
model employed, for example when modeling friction.

Machine learning approaches have been developed to learn to classify
or provide predictions for objects or object classes, e.g. rolling versus non-
rolling objects[14, 44], or liftable versus non-liftable objects [38]. These kinds
of approach are limited, in that predictions learned may not be generalis-
able to a new object, pose or push direction, and explicit 6-DOF rigid body
motions are not predicted. In contrast, our approach learns to make pre-
dictions of explicit 3D rigid body transformations. The probabilistic nature
of the learning enables generalisation to novel push directions, object poses,
and objects with novel shapes.

Recent approaches to visual tracking aim at improving robustness in
tough real-world scenarios by using robust filtering techniques [18, 19], com-
bining different types of features (such as edges and interest points) [29, 48],
taking advantage of fast parallel GPU architectures [10, 30, 37, 26, 45, 36,
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12, 8] or combinations of these. The work presented in this report falls into
the above categories, but replaces the simple motion model (static or first
order) often used in these trackers with a complex nonlinear motion model
provided by learned predictions of object motion under manipulation.

1.2 Grasping of previously unseen objects

1.2.1 Planned work

This deliverable reports work related to Task 2.8:

Task 2.8: Grasping novel objects. Based on our object models,
we will investigate the scalability of the system with respect to
grasping novel, previously unseen objects. We will demonstrate
how the system can execute tasks that involve grasping based on
the extracted sensory input (both about the scene and individual
objects) and taking into account its embodiment. (M27 - M50)

Task 2.8 spans the second half of the project. Grasping novel objects re-
quires (1) the ability to plan grasps for novel objects, and (2) the ability
to execute the planned grasps robustly. This report addresses the second
point: robustly executing grasps planned onto novel objects.

1.2.2 Actual work performed

The first contribution in this section is an agent that learns and memorises
what it “feels” like to grasp objects. As a result of this learning process, the
agent is able to predict, from tactile feedback obtained early during grasp
executions, whether a grasp is going to be stable or unstable. The agent
initially trains itself by performing several grasps on various objects. After
each grasp, the agent lifts up the object and turns it upside-down. If the
object stays rigidly bound to the hand during this movement, the grasp is
marked as successful. During training, the agent encounters both successful
and unsuccessful grasps, which provide it with input-output pairs, in the
form of tactile imprint streams (input) and success/failure labels (output).
These data are used to train a classifier that predicts success probabilities
from the continuous stream of tactile signals that are received while the
agent closes the robot’s hand around an object. We demonstrated that
the acquired experience allows the agent to robustly predict grasp success
when manipulating the objects used for training, and also when attempting
to grasp previously-unseen objects. This work led to a publication in the
high-impact journal IEEE Transactions on Robotics (See Annex 2.4).

The second contribution in this section (Annex 2.5) is a robot grasp-
ing system that combines a simulation-based grasp planner with the tactile-
based stability predictor discussed in the paragraph above. Simulation-based
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grasp planners allow agents to plan grasps onto objects for which no manip-
ulation experience exists, by exploiting planning algorithms that rely only
on models of object shape. However, these planners usually overlook many
important object properties, such as friction or mass distribution. Moreover,
plans can never be executed perfectly due to uncertainty in perceptual input
(e.g., noise in a vision-based computation of an object’s pose). The grasps
suggested by simulation-based planners are thus often of uncertain practical
usability. By combining a simulation-based planner with the tactile-based
stability model, the agent is able to estimate, before lifting up an object,
whether the object-gripper contacts that were actually achieved are likely
to lead to a stable grasp. If the tactile information does not predict a stable
grasp, the agent can adjust its grasping configuration or retract its manip-
ulator and try a new grasping plan.

The third contribution in this section (Annex 2.6) is a grasp stability
predictor that exploits both tactile and visual information. We integrated
our tactile models with the pose tracker developed at TUW, to create an
agent that is able to learn what objects should feel like when grasped from a
specific side. Stability estimates are based on both tactile imprints and the
object-relative gripper pose read before and until the robot’s manipulator
is fully closed around an object. By comparing these models to the models
defined on tactile perceptions or pose information alone, we demonstrated
that joint tactile and pose-based perceptions carry valuable grasp-related
information, as models trained on both hand poses and tactile parameters
perform better than the models trained exclusively on one modality. We note
that, because our models rely on the pose of an object, each model that the
agent learns is only usable with that particular object. To overcome this
limitation, we propose to learn models that characterise only a part of an
object, and which would thus be applicable to novel objects that share the
same part.

1.2.3 Relation to the state-of-the-art

Most of the work on grasp stability assessment relies on analytical meth-
ods [13, 31, 7, 50]. Compared with our approach, the analytical methods
used by many grasp planners to estimate the stability of a grasp require
exact knowledge of the contacts between the hand and the object, but that
knowledge is usually uncertain in unstructured environments.

Tactile sensing has been used for various purposes in prior studies. The
focus of the studies has been on the use of tactile data for object manipula-
tion control [33, 40, 25, 42], exploration of object properties such as pose [41],
surface type [17], shape [6] and deformation properties [11] or object recog-
nition [47]. In our study, the main difference is that the tactile sensors are
used to assess the stability of a grasp before further manipulating the object.

Vision-driven grasping and manipulation have been extensively stud-
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ied [49, 24, 46, 32]. Vision has typically been used to plan grasping ac-
tions, and to update action parameters as objects move. Touch-based grasp
controllers have also been studied, with emphasis on designing programs
for controlling finger forces to avoid slippage and to prevent crushing ob-
jects [5, 16, 15]. To our knowledge, assessing grasp success by learning
to differentiate between successful and unsuccessful grasping configurations
jointly from live visual and tactile feedback has not been attempted before.
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2 Annexes

2.1 Kopicki et al. “Learning to predict how rigid objects
behave under simple manipulation”

Bibliography Kopicki, Marek; Zurek, Sebastian; Stolkin, Rustam; Mor-
wald, Thomas; Wyatt, Jeremy : “Learning to predict how rigid objects
behave under simple manipulation”, Proc. Int. Conf. Robotics and Au-
tomation (ICRA), pages 5722–5729, 2011

Abstract An important problem in robotic manipulation is the ability
to predict how objects behave under manipulative actions. This ability is
necessary to allow planning of object manipulations. Physics simulators
can be used to do this, but they model many kinds of object interaction
poorly. An alternative is to learn a motion model for objects by interacting
with them. In this paper we address the problem of learning to predict the
interactions of rigid bodies in a probabilistic framework, and demonstrate
the results in the domain of robotic push manipulation. A robot arm ap-
plies random pushes to various objects and observes the resulting motion
with a vision system. The relationship between push actions and object
motions is learned, and enables the robot to predict the motions that will
result from new pushes. The learning does not make explicit use of physics
knowledge, or any pre-coded physical constraints, nor is it even restricted
to domains which obey any particular rules of physics. We use regression
to learn efficiently how to predict the gross motion of a particular object.
We further show how different density functions can encode different kinds
of information about the behaviour of interacting objects. By combining
these as a product of densities, we show how learned predictors can cope
with a degree of generalisation to previously unencountered object shapes,
subjected to previously unencountered push directions. Performance is eval-
uated through a combination of virtual experiments in a physics simulator,
and real experiments.

Relation to WP This work relates to Task 2.5 because it addresses the
problem of learning about contact relations, and predicting object trajecto-
ries of manipulated objects. The learned models not only apply to objects
encountered during training but also show generalisation to novel shapes
and actions.
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2.2 Kopicki et al. “Learning forward models for the motion
of manipulated objects”

Bibliography Kopicki, Marek; Zurek, Sebastian; Stolkin, Rustam; Mor-
wald, Thomas; Wyatt, Jeremy : “Learning forward models for the motion
of manipulated objects”, Submitted to IEEE Trans. Robotics, 2011.

Abstract An important problem in robotic manipulation is the ability
to predict how objects behave under manipulative actions. This ability is
necessary to allow planning of object manipulations. Physics simulators
can be used to do this, but they model many kinds of object interaction
poorly. An alternative is to learn a motion model for objects by interacting
with them. In this paper we address the problem of learning to predict the
interactions of rigid bodies in a probabilistic framework, and demonstrate
the results in the domain of robotic push manipulation. A robot arm ap-
plies random pushes to various objects and observes the resulting motion
with a vision system. The relationship between push actions and object
motions is learned, and enables the robot to predict the motions that will
result from new pushes. The learning does not make explicit use of physics
knowledge, or any pre-coded physical constraints, nor is it even restricted
to domains which obey any particular rules of physics. We use regression
to learn efficiently how to predict the gross motion of a particular object.
We further show how different density functions can encode different kinds
of information about the behaviour of interacting objects. By combining
these as a product of densities, we show how learned predictors can cope
with a degree of generalisation to previously unencountered object shapes,
subjected to previously unencountered push directions. Performance is eval-
uated through a combination of virtual experiments in a physics simulator,
and real experiments.

Relation to WP This work relates to Task 2.5 because it addresses the
problem of learning about contact relations, and predicting object trajecto-
ries of manipulated objects. This work shows the utility of our frameowrk
on real data for extrapolation to other shapes and actions.
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2.3 Mörwald et al. “Predicting the Unobservable: Visual
3D Tracking with a Probabilistic Motion Model”

Bibliography Mörwald, Thomas; Kopicki, Marek; Stolkin, Rustam; Wy-
att, Jeremy; Zurek, Sebastian; Zillich, Michael; Vincze, Markus: “Predicting
the Unobservable: Visual 3D Tracking with a Probabilistic Motion Model”,
Proc. Int. Conf. Robotics and Automation (ICRA), pages 1849–1855, 2011

Abstract Visual tracking of an object can provide a powerful source of
feedback information during complex robotic manipulation operations, espe-
cially those in which there may be uncertainty about which new object pose
may result from a planned manipulative action. At the same time, robotic
manipulation can provide a challenging environment for visual tracking, with
occlusions of the object by other objects or by the robot itself, and sudden
changes in object pose that may be accompanied by motion blur. Recursive
filtering techniques use motion models for predictor-corrector tracking, but
the simple models typically used often fail to adequately predict the complex
motions of manipulated objects. We show how statistical machine learning
techniques can be used to train sophisticated motion predictors, which incor-
porate additional information by being conditioned on the planned manip-
ulative action being executed. We then show how these learned predictors
can be used to propagate the particles of a particle filter from one predictor-
corrector step to the next, enabling a visual tracking algorithm to maintain
plausible hypotheses about the location of an object, even during severe oc-
clusion and other difficult conditions. We demonstrate the approach in the
context of robotic push manipulation, where a 5-axis robot arm equipped
with a rigid finger applies a series of pushes to an object, while it is tracked
by a vision algorithm using a single camera.

Relation to WP This work is related to Task 2.6: Self-extending modular
motor learning. While the work reported in Sec. 2.1 uses a visual tracker
to provide training data for learning to predict object motion, this paper
goes a step further and closes the loop, using the learned predictor as motion
model for the visual tracker. This significantly improves tracking robustness,
especially in visually difficult occlusion or toppling situations, where simpler
(e.g. linear) motion models would fail. Although not fully exploited in the
above paper, this paves the way for more autonmous learning, where tracking
improved by better predictions, and prediction improved by better tracking
can bootstrap each other.
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2.4 Bekiroglu et al. “Assessing Grasp Stability Based on
Learning and Haptic Data”

Bibliography Bekiroglu, Yasemin; Laaksonen, Janne; Jørgensen, Jimmy
Alison; Kyrki, Ville; Kragic, Danica : “Assessing Grasp Stability Based on
Learning and Haptic Data”, IEEE Transactions on Robotics, 27(3): 616–
629, 2011

Abstract An important ability of a robot that interacts with the envi-
ronment and manipulates objects is to deal with the uncertainty in sensory
data. Sensory information is necessary to, for example, perform online as-
sessment of grasp stability. We present methods to assess grasp stability
based on haptic data and machine-learning methods, including AdaBoost,
support vector machines (SVMs), and hidden Markov models (HMMs). In
particular, we study the effect of different sensory streams to grasp stability.
This includes object information such as shape; grasp information such as
approach vector; tactile measurements from fingertips; and joint configu-
ration of the hand. Sensory knowledge affects the success of the grasping
process both in the planning stage (before a grasp is executed) and during
the execution of the grasp (closed-loop online control). In this paper, we
study both of these aspects. We propose a probabilistic learning framework
to assess grasp stability and demonstrate that knowledge about grasp stabil-
ity can be inferred using information from tactile sensors. Experiments on
both simulated and real data are shown. The results indicate that the idea
to exploit the learning approach is applicable in realistic scenarios, which
opens a number of interesting venues for the future research.

Relation to WP This work is concerned with stability assessment in
robotic grasping. We developed a method which allows a robot to learn
what stable grasps feel like. Based on tactile input extracted during a grasp,
the robot can detect when a grasp feels unstable, and act accordingly. We
showed that these tactile models can provide useful information for grasping
previously unseen objects.
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2.5 Bekiroglu et al. “Integrating grasp planning with online
stability assessment using tactile sensing”

Bibliography Bekiroglu, Yasemin; Huebner, Kai; Kragic, Danica : “In-
tegrating grasp planning with online stability assessment using tactile sens-
ing”, IEEE International Conference on Robotics and Automation, pages
4750–4755, 2011.

Abstract This paper presents an integration of grasp planning and on-
line grasp stability assessment based on tactile data. We show how the
uncertainty in grasp execution posterior to grasp planning can be dealt with
using tactile sensing and machine learning techniques. The majority of the
state-of-the-art grasp planners demonstrate impressive results in simulation.
However, these results are mostly based on perfect scene/object knowledge
allowing for analytical measures to be employed. It is questionable how
well these measures can be used in realistic scenarios where the informa-
tion about the object and robot hand may be incomplete and/or uncertain.
Thus, tactile and force-torque sensory information is necessary for success-
ful online grasp stability assessment. We show how a grasp planner can be
integrated with a probabilistic technique for grasp stability assessment in
order to improve the hypotheses about suitable grasps on different types of
objects. Experimental evaluation with a three-fingered robot hand equipped
with tactile array sensors shows the feasibility and strength of the integrated
approach.

Relation to WP This paper exploits our previous work on tactile learning
to robustly execute grasps planned in an analytic grasp simulator. Simulator-
based grasp planners have the advantage of being applicable to any object
for which a model is available. Unfortunately, object models will often not
hold all the properties that influence how an object and the robot’s embodi-
ment interact. In this work, local object-embodiment relations are captured
by learning a tactile-based grasp stability model. Combining this model to
a grasp planner allows the robot to robustly plan and execute grasps on a
variety of objects.
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2.6 Bekiroglu et al. “Learning Tactile Characterizations of
Object- and Pose-specific Grasps”

Bibliography Bekiroglu, Yasemin; Detry, Renaud; Kragic, Danica : “Learn-
ing Tactile Characterizations of Object- and Pose-specific Grasps”, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2011

Abstract Our aim is to predict the stability of a grasp from the percep-
tions available to a robot before attempting to lift up and transport an
object. The percepts we consider consist of the tactile imprints and the
object-gripper configuration read before and until the robot’s manipulator
is fully closed around an object. Our robot is equipped with multiple tactile
sensing arrays and it is able to track the pose of an object during the ap-
plication of a grasp. We present a kernel-logistic-regression model of pose-
and touch-conditional grasp success probability which we train on grasp
data collected by letting the robot experience the effect on tactile and visual
signals of grasps suggested by a teacher, and letting the robot verify which
grasps can be used to rigidly control the object. We consider models defined
on several subspaces of our input data – e.g., using tactile perceptions or
pose information only. Our experiment demonstrates that joint tactile and
pose-based perceptions carry valuable grasp-related information, as models
trained on both hand poses and tactile parameters perform better than the
models trained exclusively on one perceptual input.

Relation to WP This paper addresses the problem of learning a grasp
model from both visual and tactile information. The agent learns grasp mod-
els for novel objects from experience, by exploring grasping configurations
around canonical hand configurations demonstrated by a human. Compared
to our previous work on tactile learning, this work makes use of vision-based
object pose data to further discriminate between stable and unstable grasps.
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Abstract— An important problem in robotic manipulation is
the ability to predict how objects behave under manipulative
actions. This ability is necessary to allow planning of object
manipulations. Physics simulators can be used to do this,
but they model many kinds of object interaction poorly. An
alternative is to learn a motion model for objects by interacting
with them. In this paper we address the problem of learning
to predict the interactions of rigid bodies in a probabilistic
framework, and demonstrate the results in the domain of
robotic push manipulation. A robot arm applies random pushes
to various objects and observes the resulting motion with a
vision system. The relationship between push actions and object
motions is learned, and enables the robot to predict the motions
that will result from new pushes. The learning does not make
explicit use of physics knowledge, or any pre-coded physical
constraints, nor is it even restricted to domains which obey
any particular rules of physics. We use regression to learn
efficiently how to predict the gross motion of a particular
object. We further show how different density functions can
encode different kinds of information about the behaviour
of interacting objects. By combining these as a product of
densities, we show how learned predictors can cope with a
degree of generalisation to previously unencountered object
shapes, subjected to previously unencountered push directions.
Performance is evaluated through a combination of virtual
experiments in a physics simulator, and real experiments with
a 5-axis arm equipped with a simple, rigid finger.

I. INTRODUCTION

This paper presents algorithms which learn to predict
the motion of a rigid object resulting from an robot push.
These algorithms do not rely on any encoding of Newtonian
mechanics, but can be trained online. Object interactions are
learned as distributions. Our system does not know a priori
about impenetrability, gravity, or kinematic relations between
objects, all being learned from data.

Although work has been done on push manipulation in
robots [1], [2], [3], [4] it is restricted to planar sliding
motions of what are effectively 2D objects. There is little
literature addressing the more complex problem of push
manipulations on real 3D bodies, which are free to tip or roll.
It is possible to use physics simulators to predict the motion
of interacting rigid bodies. However, this approach is reliant
on explicit knowledge of the objects, the environment, and
key physical parameters which can be difficult to tune. Even
then, such predictions may not be possible due to inherent
limitations of the physical model employed, for example
when modeling friction.

Machine learning approaches have been developed to learn

to classify or provide predictions for objects or object classes,
e.g. rolling versus non-rolling objects [5], [6], or liftable
versus non-liftable objects [7]. These kinds of approach are
limited, in that predictions learned may not be generalisable
to a new object, pose or push direction, and explicit 6-
DOF rigid body motions are not predicted. In contrast, our
approach learns to make predictions of explicit 3D rigid
body transformations. The probabilistic nature of the learning
enables generalisation to novel push directions, object poses,
and objects with novel shapes.

This paper extends our previous work [8] in three ways.
First, we modify the prediction scheme to make use of local
coordinate systems that move with parts of the object. This
improves learning and generalisation, since now we predict
relative rather than absolute changes in pose. Second, we
show how a two expert approach can be extended to include a
combination of many experts, which encode new information
about how objects interact. This change allows generalisation
with respect to both push direction, and object shape. Third,
we implement a version of our prediction scheme based
on regression, and show how it can efficiently learn the
gross motion characteristics of a particular object, although it
can struggle with certain kinds of generalisation. Finally we
present results from physical experiments in which various
real objects were subjected to complex 3D motions, such as
tipping and toppling, while pushed by a real robot. The real
experiments are additionally supported by an extensive set
of simulation experiments.

II. REPRESENTATIONS

Consider three reference frames A, B and O in a 3-
dimensional Cartesian space (see Figure 1). While frame O
is fixed, A and B change in time and are observed at discrete
time steps ..., t−1, t, t+1, ... every non-zero ∆t. A frame X
at time step t is denoted by Xt, a rigid body transformation
between a frame X and a frame Y is denoted by TX,Y .

From classical mechanics we know that in order to predict
a state of a body, it is sufficient to know its mass, velocity
and a net force applied to the body. We do not assume
any knowledge of the mass and applied forces, however the
transformations of a body, with attached frame B, over two
time steps TBt−1,Bt and TBt,Bt+1 encode its acceleration
- the effect of the applied net force. Therefore, if the net
force and the body mass are constant, the transformations
TBt−1,Bt and TBt,Bt+1 provide a complete description of
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Fig. 1. A system consisting of two interacting bodies with frames A and B
in some constant environment with frame O can be described by six rigid
body transformations TAt,Bt , TBt,O , TAt−1,At , TAt,At+1 , TBt−1,Bt ,
and TBt,Bt+1 .

the state of a body at time step t in absence of other bodies.
A triple of transformations TBt,O, TBt−1,Bt and TBt,Bt+1

provide a complete description of a state of a body in some
fixed frame of reference O which accounts for a constant
or stationary environment. Similarly, transformations TAt,O,
TAt−1,At and TAt,At+1 provide such a description for some
other body with frame A.

The state of a system consisting of three bodies with
frames A and B in some constant environment with frame
O can be described by the six transformations as it is shown
in Figure 1, where TAt,O has been replaced by a relative
transformation TAt,Bt .

The prediction problem can be stated as: given we
know or observe the starting states and the motion of the
pusher, TAt,At+1 , predict the resulting motion of the object,
TBt,Bt+1 . This is a problem of finding a function:

F : TAt,Bt , TBt,O, TAt−1,At , TBt−1,Bt , TAt,At+1 (1)

−→ TBt,Bt+1

Function F is capable of describing all possible effects of
interactions between rigid bodies A and B, providing their
physical properties and applied net forces are constant in
time, in the limit of infinitesimally small time steps. Fur-
thermore, it can be approximately learned from observations
for some small fixed time interval ∆t between time steps.

In this work, we will focus on robotic manipulations that
are performed relatively slowly, hence we assume quasi-
static conditions, and ignore all frames at time t − 1. This
conveniently reduces the dimensionality of the problem,
giving a simplified function, Fqs:

Fqs : TAt,Bt , TBt,O, TAt,At+1 −→ TBt,Bt+1 (2)

The behaviours of interacting bodies represented by rigid
body transformations as in Figure 1 are independent of their
poses with respect to some inertial frame I [9]. Therefore
instead of using inertial frame-dependent transformation
T

At,At+1

in , one can represent object transformations in the
object body frame (see Figure 2). The body frame trans-
formation T

At,At+1

body is obtained by moving instantaneous

At
1

T
I , At

1

I

T
I , At1

1

At1
1

T in
At
1 , At1

1

At
2

T
I , At

2

I

T
I , At1

2

At1
2

T in
At
2 , At1

2

Fig. 2. In the above two scenes a pose change between time step t and
t + 1 as observed in instantaneous object body frame A(1) and the same
object in another instantaneous body frame A(2) given inertial frame I are
both the same. However because transformations T I,A(1)

and T I,A(2)
are

different, the corresponding transformations in the inertial frame are also

different, i.e. T
A
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t ,A
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t+1

in 6= T
A

(2)
t ,A

(2)
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in .

frame A, so that at time t it overlaps with inertial frame
I . Given some instantaneous object frame At at time t, and
the transformation T

At,At+1

in , one can obtain transformation
T

At,At+1

body in the body frame (via a similarity transform):

T
At,At+1

body = (T I,At)−1T
At,At+1

in T I,At (3)

where we have made use of the identities T I,At+1 =
T

At,At+1

in T I,At = T I,AtT
At,At+1

body .
Given a transformation in the body frame, instantaneous
object frame At at t and using Equation (3), transformation
T

At,At+1

in in the inertial frame is given by:

T
At,At+1

in = T I,AtT
At,At+1

body (T I,At)−1 (4)

In further discussion we will retain subscripts in, but
suppress subscripts body, and assume that all transfor-
mations TX,Y are transformations in the body frame X
obtained using a similarity transform TX,Y ≡ TX,Y

body =

(T I,X)−1TX,Y
in T I,X .

Since the prediction problem is posed as finding a func-
tion, we can now apply our function approximator of choice.
In this paper we use LWPR [10] - a powerful method applied
widely in robotics.

III. LEARNING GLOBAL AND LOCAL EXPERTS AS
DENSITY ESTIMATION

Having now formulated prediction as a function approx-
imation problem, in this section we recast it as a density
estimation problem. The motivation for this is that prediction
learning using functions F or Fqs is limited with respect to
changes in shape and type of manipulation.

Consider a 2D projection at time t of a robotic finger
with global frame At, an object with global frame Bt, and
the constant global frame O (Figure 3). We can identify
local frames Al

t and Bl
t, rigidly attached to small local

planar surface patches at the contact point, or the points of
closest proximity on the object and finger. We define the
global information to be the information about changes of
the pose of the whole object, whereas the local information
is specified by changes in the local frames Al

t and Bl
t.
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Fig. 3. 2D projection at time t of a robotic finger with global frame At,
an object with global frame Bt, and a ground plane with constant global
frame O. Local frames Al

t and Bl
t describe the local shape of the finger

and an object at their point of closest proximity.

In order to combine both global and local informa-
tion, one can incorporate contact information represented
by transformations TAl

t,A
l
t+1 and TAl

t,B
l
t directly into the

domain of function Fqs. This, however, would significantly
increase the dimensionality of the function’s domain. Instead,
we recast the mapping Fqs as a conditional probability
Pqs(T

Bt,Bt+1 |·), i.e. a probability density over rigid body
transformations of the object [8]. This reformulation allows
us to combine the global and local information as a product
of densities to approximate Pqs, so that (schematically, for
some normalisation constant N )

Pqs ≈ N Pglobal Plocal (5)

where

Pglobal ≡ Pglobal(T
Bt,Bt+1 |TAt,At+1 , TAt,Bt , TBt,O) (6)

Plocal ≡ Plocal(T
Bl

t,B
l
t+1 |TAl

t,A
l
t+1 , TAl

t,B
l
t) (7)

denote the global and local density functions or “experts”
[8]. The densities Pglobal and Plocal factorise the condition-
ing variables of Pqs, and hence manage the complexity of
incorporating more information into the predictor.

The above global and local densities encode information
about which candidate rigid body transformations are more
or less feasible for each frame of reference respectively.
However, once we form the product of these two densities,
only transformations which are feasible in both frames will
have high probability in the resulting combined distribution.

The rationale for introducing global and local experts,
instead of using a straightforward function approximation,
can be explained by considering a backward-push experiment
as shown in Figure 4.

The configuration of finger and object during a backward
push is very different to those present in a training set
consisting only of forward pushes. A predictor comprised
of just a global expert will fail to generalize to a new push
direction that differs markedly from any observed in the
training set for the expert. However, by also using the local
expert Plocal, the predictor can learn that the finger does
not penetrate the object after contact. Any candidate motion
preferred by the global expert will be ‘vetoed’ by the local
expert if impenetrability is violated. Nevertheless, there are
other constraints on the object motion, such as the ground

Global (G)
predictor

Training Test

G & Local (L)
predictor

G & L & Shape
predictor

Fig. 4. Schematic diagram (2D projection of 3D scene) in which an object
(of L-shaped cross-section) on a supporting surface is pushed by a robotic
finger. Various predictors are trained solely on forward pushes (top left),
but tested on backwards pushes (top right). The top panels show the push
trajectory for the training and test phases, whereas the bottom panels show
the outputs from three types of predictor in the test phase. A predictor
comprised of just a global expert will fail to generalize, and will predict
that the object does not move as the finger passes through it (bottom left).
Adding a local expert will stop the finger penetrating the object, but does not
guarantee that the predicted object motion will respect other impenetrability
constraints (bottom middle). Finally, using an additional ‘local shape’ expert
attached to the base of the object, a physically plausible motion is obtained
(bottom right).

plane, which are not encoded by the local expert. To model
these other facts about possible object motion requires the
use of additional experts as described in the next section.

Returning to the formal development, we now consider
the relations between transformations expressed in the body
frame of the local patches and corresponding transformations
in the inertial frames. For coordinate frames as shown shown
in Figure 3, from object rigidity and using Equation (3) we
have:

TAl
t,A

l
t+1 = (T I,Al

t)−1T
At,At+1

in T I,Al
t (8a)

TBl
t,B

l
t+1 = (T I,Bl

t)−1T
Bt,Bt+1

in T I,Bl
t (8b)

where I is the inertial frame. TAl
t,B

l
t can be determined

directly from the shape frame:

TAl
t,B

l
t = (T I,Al

t)−1T
Al

t,B
l
t

in T I,Al
t (9)

For the finger-object scenario, a prediction problem can
then be defined as finding that transformation T̃

Bt,Bt+1

in in
the inertial frame which maximises the product of the two
conditional densities (experts) (6) and (7):

T̃
Bt,Bt+1

in = argmax
T

Bt,Bt+1
in

{
Pglobal Plocal

}
(10)

where the similarity transforms (3) (in frame Bt) and (8b)
must be used to evaluate Pglobal and Plocal for a given
T

Bt,Bt+1

in .
Starting with some initial state of the finger TA0 and object

TB0 , and knowing the trajectory of the finger A1, . . . AT

over T time steps, one can predict a whole trajectory of the
object B1, . . . BT , by iterating the prediction obtained from



Equation (10). That is, the output of the prediction at time t
is used as input to the prediction for the next time step.

IV. INCORPORATING INFORMATION FROM ADDITIONAL
EXPERTS

In addition to learning how an object moves in response
to a push, it is desirable to incorporate learned information
about the inherent tendencies of parts of an object to move
in various directions with respect to the environment or other
objects, regardless of whether the object is being pushed or
not. This additional information may help when predicting
the motion of a previously unseen object, or the response to
a novel push direction (Figure 4), because it provides some
prior knowledge about which kinds of motions are possible
and which are not.

We can incorporate this additional information by attach-
ing an arbitrary number of additional coordinate frames Bsnt

to various parts of the object (Figure 5).

Object

Environment

Bt
S1

Bt
S2

Bt
S3

T
Et
S1 , Bt

S1

E t
S2

E t
S1 E t

S3
T
Et
S3 , Bt

S 3

Fig. 5. Co-ordinate frames can be attached to an arbitrary number of local
shapes, and local experts can be learned for each of these frames, predicting
a distribution of how the frame may move next, given where it is at the
present time step.

We then learn densities, also known as local shape experts,
for the future motions of each of these frames. To obtain the
results presented in this paper, the number and location of
local shape experts on each of the different objects were
determined by hand.

The local shape densities are conditioned only on their
relative pose TESk

t ,BSk
t with respect to a corresponding pose

ESk
t of a patch on a ground plane at the present time step,

ignoring any information about the motions of the pushing
finger. For the k-th such frame, we estimate the local shape
conditional density:

Pshape,k ≡ Pshape(T
BSk

t ,B
Sk
t+1 |TESk

t ,BSk
t

) (11)

which represents the probability density over possible rigid
body transformations in the body frame of the k-th local
contact. Analogous to Equation (10), the subsequent motion
of the object in the inertial frame can be predicted as:

T̃
Bt,Bt+1

in = argmax
T

Bt,Bt+1
in

{
Pglobal Plocal

∏

k=1...N

Pshape,k

}
(12)

where N is the number of local shape experts (Figure 6).
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Fig. 6. Inputs and outputs of learned prediction system. The two-expert
approach can be extended to include opinions from multiple local shape
experts represented by coordinate frames SN .

V. IMPLEMENTATION

We have now presented two formulations of the prediction
learning problem: 1) as function approximation, and 2) as
density estimation. We have suggested that there may be an
advantage to solving the density problem by applying the
heuristic of a product of experts (densities).

Regression method. We used LWPR [10] to estimate the
mapping described by Equation (2). The regression scheme
was implemented using the LWPR software library [11].

Single expert and multiple expert methods. A variant of
Kernel Density Estimation is used to approximate conditional
densities in (12) (for details see [8]). The single expert
method employed only a global expert (6). The density
product (12) is maximised using the differential evolution
optimisation algorithm [12], which has a run time propor-
tional to the product of the population size and the number
of generations used in the algorithm. The run time also scales
linearly with the number of experts, the number of kernels
and the number of parameters used to encode the rigid body
transform.

Rigid body transformations used in both learners were
parametrised by 6 numbers: Euler angles and a displacement.

VI. EXPERIMENTAL STUDY

We have tested our prediction algorithms in a number
of experiments (see section C), in which a real robot arm
applies pushes to various real objects. The arm has accuracy
of ±1mm in the region of the contacts in the reported
experiments, and the predictors are trained on poses captured
by a particle filter based tracker, which has pose errors of the
order of ±2mm frames for most frames, with up to ±5mm
in 5% of frames for some videos where the polyflap object is
beginning to tip over. These tracking errors are significantly
smaller than the average prediction errors generated by any
of the predictors (± 20 to 80mm) as well as the differences
between those average prediction errors (± 6 to 50mm).

Section D presents the results of simulation experiments,
which are designed to test the ability of learned predictors
to generalise in various different ways. The simulation envi-
ronment usefully provides us with perfect ground-truth data



against which to evaluate predictions, and also enables a very
large number of experiments with many different values of
key parameters (e.g. shape of pushed objects). Replication
of the experiments in Section D on the real robot is planned
future work.

Section C shows that the virtual environment (using
NVIDIA PhysX) does not replicate the physical properties
of the real world perfectly. We hand tuned the parameters of
the physics engine to best fit the world, and in principle this
could also be done automatically. However, we have found
that even when optimised, the parameters neither correspond
to their true values, nor do they generalise well. However,
regardless of how well they correspond to the real world, the
simulations still provide a self-consistent experimental envi-
ronment within which to compare the accuracy of predictors
that have been trained within that environment.

A. Setup

Multiple experimental trials were performed, in which
a robotic arm equipped with a finger performs a random
pushing movement towards an object (Figure 7). In each
experiment data samples are stored over a series of such
random trials. Each trial lasts exactly 10 seconds, while data
samples are stored every 1/15th of a second.

For real experiments, we use a 5-axis Katana robotic
manipulator [13] equipped with a single rigid finger, and the
motion of pushed objects is captured using a single camera
and a visual tracking algorithm [14]. Simulation experiments
are carried out using the NVIDIA PhysX physics engine [15].

Local shape experts in the multiple expert method were
fixed by hand to a L-shaped object (referred to as “polyflap”)
as it is shown in Figure 5). In the case of a box-shaped object
(Experiments 3 and 5), there were 4 local shape experts fixed
to the edges of a box.

The bandwidth of all distributions used in the multiple
experts method as well as parameters of the LWPR regres-
sion method were tuned once by hand and kept constant
throughout all the experiments.

B. Performance measure

In all experiments, we take the output of the tracked 6D
pose of a real object to be ground-truth, and compare it
against predictions which were previously forecast by the
learned prediction system. The vision system does not pro-
vide perfect ground-truth, yielding typical errors of around
±2mm during successful tracking, or arbitrarily large errors
when the track is occasionally lost. However, comparing
predictions to the outputs of the tracker still provides some
useful information about discrepancies in the predictor, al-
though clearly the performance of the predictors is limited by
the accuracy of the data on which they are trained. Prediction
performance is evaluated as follows.

At any particular time step, t, a large number, N , of
randomly chosen points p1,tn , where n = 1 . . . N , are rigidly
attached to an object at the ground-truth pose, and the
corresponding points p2,tn to an object at the predicted pose.
At time step t, an average error Et can now be defined as the

l


Fig. 7. A 5-DOF robotic arm equipped with a finger performs a random
straight-line pushing movement of a variable length l=25±5 cm within a
cone with angle α=20 deg towards an object (top left). The movement begins
at a random location so that every small region on the upper part of an object
is equally likely to be pushed. The object behaviour can be complex and
varies depending on the finger trajectory and its pose relative to the object. In
the image sequence shown above, the object begins to rotate anti-clockwise
(top right - bottom left) before tilting (bottom right). The red wire-frame
shows the output from the vision tracking system. The green wire-frame
indicates the object pose predicted by the multiple-expert learning method,
while the blue wire-frame is generated by the PhysX simulator. Although
the PhysX predictions are qualitatively plausible, it was virtually impossible
to tune the simulator so that its predictions match reality for all training data.
Note that the entire motion sequence is predicted before the physical push
is initiated, without any correction from visual feedback during the push
execution.

mean of displacements between points on the object at the
predicted pose and points on the object at the ground-truth
pose:

Et =
1

N

∑

n=1...N

|p2,tn − p1,tn | (13)

Note that for each robotic push action, we predict ap-
proximately 150 consecutive steps into the future, with no
recursive filtering or corrector steps, hence it is expected
that errors will grow with range from the initial object pose.
We therefore find it more meaningful to normalise all errors
with respect to an “average range”, Rt, of the object from
its starting position, defined as:

Rt =
1

N

∑

n=1...N

|p1,tn − p1,0n | (14)

For a test data set, consisting of K robotic pushes, each of
which breaks down into many consecutive predictions over T
time steps, we can now define average error and normalised
average error:

Eav =
1

K

K∑

k=1

1

T

T∑

t=1

Et, Enorm
av =

1

K

K∑

k=1

1

T

T∑

t=1

Et

Rt

(15)



For each set of test data, we also report final error and nor-
malised final error, which represent the typical discrepancy
between prediction and ground truth that has accumulated
by the end of each full robotic push:

Ef =
1

K

K∑

k=1

|p2,Tn − p1,Tn |, Enorm
f =

1

K

K∑

k=1

|p2,Tn − p1,Tn |
RT

(16)

Note that both normalised errors have no units.
We performed 10-fold cross-validation where at the be-

ginning of each experiment all the trials are randomly
partitioned into 10 subsets. Prediction was then subsequently
performed (10 times) on each single subset, while learning
(only for learned approaches) was always performed on the
remaining 9 subsets of these trials. All the results were then
averaged to produce a single estimation.

C. Experiments with a real robot
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Fig. 8. Experiment 1 with a real robot and a polyflap object. Decrease in
average (left) and final (right) prediction errors with increasing number of
learning trials, for two different prediction methods.

Experiment 1: comparison of learning methods for a real
robot pushing a polyflap object. We have trained the system
on 9, 90 and 900 pushes of a polyflap object with a real
robotic finger (Figure 7). We evaluated the performance of
the multiple expert and regression methods. Figure 8 shows
that the average and final prediction error decreases with
increased number of trials used in learning for both tested
prediction methods. The multiple expert method performed
reasonably well, even when trained on as little as 9 example
pushes. The method performed particularly well with 90
learning trials, as local experts successfully prevented the
predictor from violating impenetrability constraints that were
frequently violated by the regression method. However, the
performance of the multiple expert method did not signifi-
cantly improve with 900 learning trials. One of the reasons
for this is that the visual tracking system is far from perfect.
The tracking often contains significant errors, and the quality
of tracking is not pose-independent. For example, cases of
tipping and toppling movements are particularly difficult
to track, so that the prediction system does not always
have sufficiently accurate training data to precisely learn all
possible motions.

Additionally we obtained predictions using the NVIDIA
PhysX physics simulator, with parameters hand-tuned to

NVIDIA PhysX

regression

multiple experts

0.00 0.05 0.10 0.15 0.20

Normalised average error

NVIDIA PhysX

regression

multiple experts

0.00 0.10 0.20 0.30 0.40

Normalised final error

Fig. 9. Experiment 1. Physics simulation is unable to match the perfor-
mance of learned predictors which have been trained in real experiments.

match the real system. Figure 9 presents a comparison of
the physics simulation and the learned predictors (trained
on 900 trials). Clearly, the physics simulator is unable to
match predictors trained in a real experiment, even though
the real training data contains significant errors due to
occasional failures and inaccuracies of the vision system. In
particular, the physics simulator has difficulty modelling the
frictional interactions of the real world, and often is unable
to accurately simulate a rotational movement of the object.

Experiment 2: comparison of learning methods for a real
robot pushing a small box. We have trained the system on
9, 90 and 450 pushes of a small box object with a real
robotic finger. Figures 11 and 12 show examples of the
multiple expert method making accurate predictions of the
box motion when it topples and when it rotates under manip-
ulative pushes. As with Experiment 1, the learning converges
within a few hundred example pushes. The multiple expert
performed reasonably well, even when trained on as little as
9 example pushes.
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Fig. 10. Experiment 2 with a real robot pushing a small box object.
Decrease in average (left) and final (right) prediction errors with increasing
number of learning trials, for two different prediction methods.

D. Experiments in a virtual environment

Experiment 3: extrapolative generalisation of pushing
directions. In this experiment, a virtual robotic arm applied
random orthogonal and oblique pushes to the outside of
a polyflap which were then used in training. In contrast,
the system was tasked to make predictions for previously
unencountered pushes – those applied to the inside surface
of the polyflap (thus pushing in the opposite direction to the
training pushes). We consider this to be a test of “extrapola-
tive” action generalisation, in that the push directions used



Fig. 11. Experiment 2: accurate predictions of the motion of a small box,
as it translates and rotates under a manipulative push from a real robot. The
green wire-frame indicates the predicted object pose; the red wire-frame
shows the tracked pose from the vision system.

Fig. 12. Experiment 2: accurate predictions of the motion of a small box,
as it topples over, under a manipulative push from a real robot. The green
wire-frame indicates the predicted object pose; the red wire-frame shows
the tracked pose from the vision system.

in testing are all qualitatively different from those used in
training – the test push directions do not lie in the same
region of data covered by the training examples. The regres-
sion and single expert methods failed to predict the polyflap
behaviour, and gave physically implausible predictions in
which the fingertip penetrated the polyflap (Figure 13).
In contrast, the multiple expert method gave a relatively
accurate prediction, in which even inaccurate portions of
the object trajectory were still physically plausible, and did
not violate basic physical constraints on object behaviour
such as impenetrability (Figure 13). Note that the motion
model is entirely learned – there was no pre-programming
of Newtonian laws of motion, gravity, the ground plane, or
impenetrability constraints.

Experiment 4: extrapolative generalisation to novel

Fig. 13. Experiment 3. Simulation experiment in which predictors are
trained only on pushes applied to the inside of the polyflap (moving from
right to left in the figure), but are then tested on pushes applied to the outside
of the polyflap (i.e. from left to right). The multiple expert method (left
panel) predicts a rightwards movement, that comes close to the true motion,
does not violate impenetrability, and is physically plausible. In contrast,
the regression method (right panel) erroneously predicts that the fingertip
(shown as a ball) will pass right through the polyflap. The ground-truth and
the predicted poses are shown as solid and wire-frame shapes respectively.

Fig. 14. Experiment 4. Simulation experiment in which predictors have
been trained on a polyflap, but tasked with making predictions for a box.
The multiple expert method (left panel) predicts a motion which is erroneous
(i.e. fails to predict toppling in this case), but is in the correct direction,
is physically plausible, and does not violate impenetrability constraints.
In contrast, the regression method (right panel) violates impenetrability
constraints, as does the single expert method (not shown). The ground-
truth and the predicted poses are shown as solid and wire-frame shapes
respectively.

shapes. In this experiment, the predictors were trained on
a polyflap, but were then tasked with predicting the motion
of a box - a new shape which had never been encountered in
training. This is a test of “extrapolative” shape generalisation.
The multiple expert method correctly predicts the direction
of motion of the box, and makes a physically plausible
prediction (but fails to predict that the box should topple
over) (Figure 14). In contrast, the regression and single
expert methods constantly violate physics, predicting that the
fingertip will penetrate right through the box.

Fig. 15. Experiment 5 reveals limitations of the regression and single expert
methods, which fail to predict the motion of a polyflap when subjected to a
downward push (left panel). The multiple expert method can cope well with
this kind of shape variation (middle and right panels). The ground-truth and
the predicted poses are shown as solid and wire-frame shapes respectively.

Experiment 5: interpolative generalisation to novel
shapes. This is a virtual experiment, in which all training and
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Fig. 16. Experiments 3, 4 and 5. Action generalisation errors for back
pushes (Experiment 3), shape generalisation errors for a box (Experiment
4), and downward pushes (Experiment 5).

Exp Trials Predictor Eav Enorm
av Ef Ef

norm

[m] [m]
1 900 Multi exp. 0.021 0.078 0.036 0.146

900 Regression 0.027 0.104 0.050 0.206
n/a PhysX 0.044 0.189 0.083 0.372

2 450 Multi exp. 0.023 0.085 0.037 0.136
450 Regression 0.032 0.118 0.056 0.200

3 900 Multi exp. 0.005 0.014 0.015 0.039
900 Single exp. 0.054 0.150 0.143 0.367
900 Regression 0.051 0.139 0.141 0.360

4 900 Multi exp. 0.042 0.111 0.103 0.272
900 Single exp. 0.064 0.167 0.169 0.429
900 Regression 0.045 0.118 0.093 0.233

5 900 Multi exp. 0.002 0.009 0.008 0.036
900 Single exp. 0.007 0.035 0.023 0.119
900 Regression 0.007 0.033 0.026 0.129

TABLE I
COMPARATIVE PERFORMANCE OF TESTED PREDICTORS. Eav AND Ef

ARE MEASURED IN METRES. THE OTHER MEASURES ARE UNITLESS AS

EXPLAINED ABOVE.

testing data involve polyflaps constructed from two square
flanges. Random shape variation consists in varying the
angle at which the two square flanges are connected along
a common edge. This shape variation is very significant -
dramatically changing the finger-object contact relations. For
example, depending on small changes in the angle of the
flanges, the same push from above might cause the entire
object to move either leftwards or rightwards (Figure 15).
The experiment reveals limitations of the regression and
single expert methods. Since these methods do not encode
information about the contact variability, they do not gener-
alise well in situations where small changes in shape can
cause significant and qualitative changes in the resulting
motion, even when the robotic push is the same. In contrast,
the product of experts technique copes much better with
this kind of shape generalisation. We consider this a form
of “interpolative” generalisation task, in that the test and
training shapes are qualitatively similar and the range of test
shapes can be considered to be spanned by the range of
training examples. The results are presented in Figure 16.

VII. CONCLUSIONS

This paper has presented several methods by which a robot
can learn to predict the motions of a rigid object that will
result from manipulative pushing actions. We have shown

how regression can be used to efficiently learn the overall
“global” motion of a body. We have further shown how
multi-modal distributions of local parts of the motion can
be learned by Kernel Density Estimation, and how many
of these “local” experts can be combined as a product
of densities, significantly extending the capabilities of the
system with respect to generalization.

This is the first work of which we are aware, in which
explicit predictions of 3D object motions under push ma-
nipulation are enabled without hard coding of Newtonian
physics and physical constraints, but rather by learning based
on simple proprioceptive sensing and visual observations
of manipulated bodies. The learning approach significantly
outperforms approaches based on physics simulators which
often model real world interactions poorly, and which rely on
physical parameters which may not be known. Furthermore,
the proposed multiple expert approach provides a degree of
generalisation with respect to changes in shape and applied
actions.
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Abstract— Visual tracking of an object can provide a pow-
erful source of feedback information during complex robotic
manipulation operations, especially those in which there may
be uncertainty about which new object pose may result from
a planned manipulative action. At the same time, robotic
manipulation can provide a challenging environment for visual
tracking, with occlusions of the object by other objects or by
the robot itself, and sudden changes in object pose that may
be accompanied by motion blur. Recursive filtering techniques
use motion models for predictor-corrector tracking, but the
simple models typically used often fail to adequately predict
the complex motions of manipulated objects. We show how
statistical machine learning techniques can be used to train
sophisticated motion predictors, which incorporate additional
information by being conditioned on the planned manipulative
action being executed. We then show how these learned pre-
dictors can be used to propagate the particles of a particle
filter from one predictor-corrector step to the next, enabling
a visual tracking algorithm to maintain plausible hypotheses
about the location of an object, even during severe occlusion
and other difficult conditions. We demonstrate the approach in
the context of robotic push manipulation, where a 5-axis robot
arm equipped with a rigid finger applies a series of pushes to
an object, while it is tracked by a vision algorithm using a
single camera.

I. INTRODUCTION

This paper describes a novel approach to visual tracking
of an object undergoing pushing manipulation operations,
in which a robot arm, equipped with a single rigid finger,
applies a series of pokes or pushes to the object, causing
it to move from one pose to another. It may seem some-
what esoteric to focus on pushing, however there are good
reasons to do so. Pushing is a very fundamental form of
manipulation. More complex activities, such as dexterous
in-hand manipulation with multiple fingers, can be viewed
as combinations of many simultaneous single-finger actions.
More practically, even industrial pick and place operations
with a simple two jawed gripper often result in a pushing
phase, where uncertainties in both object and robot pose lead
to one jaw contacting the object before the other. This can
even lead to gross grasp failures when the object topples
over under pushing from the first jaw, before the second
jaw makes contact. Therefore it is important to solve the
problems of robotic pushing, and controlled pushing will
typically be reliant on tracking the object pose with a vision
system.

II. RELATED WORK

There is a limited body of literature describing vision al-
gorithms tailored specifically for robotic manipulation tasks.
For example, Drummond and Cipolla [1] incorporate knowl-
edge of kinematic constraints into tracking, to better track
articulated chains of rigid bodies, with a view to tracking
robotic arms for visual servoing. However, it is more usual
for researchers to simply take a generic tracking algorithm
and incorporate it with an existing manipulation planning
system, e.g. [2]. Typically the vision algorithms are drawn
from the model based tracking literature, for example [3–
5], which predominantly track by choosing candidate poses
of the tracked body, whose projected wire-frame edges best
match edges extracted from images. More recently, the
ability to make use of advanced graphics cards for high speed
projective calculations, means that such techniques can be
applied to tracking with robust particle filters, e.g. [6–8].

Particle filters rely on motion models, to propagate parti-
cles from one predictor-corrector step to the next. In prac-
tice, little may be known about the motion of the tracked
object, and so predominantly these motion models must
be very blunt instruments. It is typical to simply apply
Gaussian noise to particles to propagate them, assuming no
real understanding of how the object might move at the
next time step. However, if the tracked object is subject
to robotic manipulation, we should be able to make use
of our knowledge of the planned manipulative action, to
make a much more informed prediction of the next phase
of the objects motion. In the case of an object which is
rigidly held in the jaws of a hand or gripper, the motion
prediction problem becomes trivial since the object is exactly
constrained to follow the motion of the manipulating arm.
However, in pushing manipulation, the motion of an object
which will result from an applied single-finger push or poke
is much more uncertain.

Early approaches to predicting the effects of robotic
pushes on object motion, [9–13], attempted analytical so-
lutions of physical constraints. These approaches did not
progress beyond anything more complex than the simple 2D
case, with flat polygonal objects, constrained to slide on a
planar surface. More recently, Cappelleri [14] used physics
simulation software to plan manipulative pushes, but again



this was limited to a 2D problem, with a small, flat rectan-
gular object which was constrained to slide while floating
on a film of oil to simplify frictional interactions. We know
of little in the way of literature which specifically addresses
the prediction problem in robotic push manipulations of real
3D objects, which are subject to complex 6-dof motions such
as tipping and toppling over. It is possible to use physics
simulators to predict the motions of interacting rigid bodies,
however this approach is reliant on explicit knowledge of
the objects, the environment and key physical parameters
which can be surprisingly difficult to effectively tune in
practice, [15]. Furthermore, once a physics simulator has
been set up for a particular scenario, it is not generalizable
to new objects or novel situations.

In contrast, our recent work, [16] proposes a system which
can learn to predict the explicit 3D rigid body transforma-
tions that will result when an object in an arbitrary orienta-
tion is subjected to an arbitrary push. The system does not
make use of any physics simulation, or any hard coding of
Newtonian physics equations or physical constraints. Instead,
a statistical relationship between applied pushes and resulting
object motions is trained, by simply having the robot apply
a series of random pushes to the object, proprioceptively
recording the finger trajectories, and observing the resulting
object motions with a vision system.

In this paper, we provide an overview of the ”learning-to-
predict” architecture, and then show how it can be conve-
niently incorporated into a particle filter-based vision algo-
rithm to propagate particles from one frame to the next. We
demonstrate the effectiveness of the technique, for tracking
pushed objects past large occlusions and other difficult
circumstances, where attempting vision without adequate
prediction would fail.

III. OVERVIEW

The paper proceeds as follows. Section IV provides an
overview of our system for learning to predict the outcomes
of manipulative pushes. We describe how the motions of
rigid bodies are represented by coordinate frames and trans-
formations. We show how objects and their motions can be
decomposed and how a variety of probabilistic experts can be
trained to predict various aspects of these motions. We show
how to combine the opinions of these experts as a product
of densities, which is capable of significant generalization to
new objects with different shapes and different push direc-
tions which have not been encountered during training. In
Section V we describe our algorithm [17] for visual tracking
of 3D objects using edges, colour and texture features. We
then show how tracking can be improved by incorporating a
well trained predictor as described in Section IV. Section VI
presents results of this work, providing examples of how
the enhanced tracker copes with difficult situations such
as occlusion and motion blur. Section VII summarizes the
results, and discusses ongoing and future work.

IV. PREDICTION

This section is just a brief overview of the work in [16, 18]
to show how rigid body movement can be described in a
probabilistic form.

Fig. 1. A system consisting of three interacting bodies with frames A and
B and some constant environment with Frame O.

A system consisting of three interacting rigid bodies can be
described by coordinate frames A, B and O and by six trans-
formations between the bodies and different time steps (t−1,
t and t + 1), with respect to a constant environment O as
shown in Figure 1. A and B change in time and are observed
at discrete time steps . . . , t−1, t, t+1, . . . every non-zero ∆t.
As stated in [16] a triple of transformations TAt,O, TAt−1,At

and TAt,At+1 provide a complete description of a state of a
rigid body A in terms of classical mechanics. Of course the
same is true for some body B. The prediction problem can
be stated as: given we know or observe the starting states
and the motion of the pusher, TAt,At+1 , predict the resulting
motion of the object, TBt,Bt+1 . This is a problem of finding
a function:

f : TAt,Bt , TBt,O, TAt−1,At , TBt−1,Bt , TAt,At+1 → TBt,Bt+1

(1)
In many robotic applications manipulations are slow, so we

can assume quasi-static conditions and it is often possible to
ignore all frames at time t − 1. This conveniently reduces
the dimensionality of the problem, giving:

f : TAt,Bt , TBt,O, TAt,At+1 → TBt,Bt+1 (2)

Prediction learning using Functions (1) or (2) is limited
with respect to changes in shape (see Chapter 5.3 of [18]).
The problem can be expressed by a product of several proba-
bility densities over the rigid body transformation, encoding
global as well as local contact configurations. Figure 2 shows
the frames representing two different experts [18].
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System noise n is defined as

n = N(0, σ)
σ = (1 − c)σ0

c = mean(wi)
(10)

where c is the confidence of the particle distribution in the
current frame. Given the requirements for tracking accuracy
and speed for a typical table top scenario we chose a basic
standard deviation σ0 of 0.03 m for the translational and
0.5 rad for the rotational degrees of freedom. The standard
deviation is then scaled based on the confidence. This means
that as the confidence of the particles increases its noise level
decreases, leading to faster convergence. Observation noise
v is modeled in a similar manner as in Equation (10) with a
σ0 of 4 pixels.

The particle filter always tries to find the local maximum
in observation space. In the case of occlusion, as shown in
Figure 6 and 8, this leads to drifting of the tracker away from
the real pose of the object. To cope with this problem we
introduce a threshold cth for the confidence value c setting
the system noise level such that

n = N(0, σ) if c > cth
n = 0 if c ≤ cth

(11)

This means that below a certain confidence c ≤ cth the
tracker relies completely on the output of the predictor. We
currently set this threshold to an empirically determined
value between 0.3 and 0.5.

B. Image processing

We project the geometric model of the object (described
by vertices, faces and textures) into the image space using
the transformation TBt,O and standard techniques of com-
puter graphics such as perspective transformation and texture
mapping. In image space we compute the edge gradients of
the model gM and of the image captured by the camera gI .

C. Matching

Now it is possible to find a measure for the match, or
weight w of a pose TBt,O. For each point (u, v) on the
model M in image space we can compute the deviation of
the edge gradients by superimposing the projected model
over the image. The sum of the difference of the gradients
is computed as:

wi ∝ 1
ei

∫
(u,v)∈M

|gM (u, v) − gI (u, v) |
ei =

∫
(u,v)∈M

|gM (u, v) | (12)

where gM and gI are the colour gradients of the projected
model and the image respectively. A second approach for
matching is similar to (12), with respect to pixel-wise com-
parison of the model and the image. But instead of computing
the difference of gradients, the difference of the colour with
respect to the hue in HSV (Hue, Saturation, Value) colour
space is used.

wi ∝ 1

M

∫

(u,v)∈M

|hM (u, v) − hI (u, v) | (13)

where hM and hI are the hue values of the projected model
and the image respectively. The advantage of using a colour
based tracker is increased robustness against edge based
clutter as in Figure 8. Of course it is less robust against
changing lighting but the combination of both kinds of cues
can significantly improve the overall performance. How to
combine the two methods in an optimal way is an open issue
and remains as future work.

Figure 3 gives an overview of our method. As proposed
in [17] and [20], we use iterative particle filtering for better
computational performance and accuracy of the tracker. To
initialise the pose of the object we used SIFTs for visual
recognition and RANSAC for 3D pose matching. For more
details on this method please look up Section V in [22].

VI. RESULTS

In all our experiments we are using the tracking system
as described in Section V, and compare it against the tracker
without prediction which is the same system but without the
motion prediction step as in Figure 3. Other than motion
prediction we are using the same configuration for each of
the tracker, respectively non-iterative particle filtering with
100 particles for each frame. The number of particles was
chosen small enough to ensure real-time operation in normal
conditions, which however meant the tracker would run into
problems as conditions deteriorate. One option in such a
case would be to increase the number of particles, accepting
loss of real-time performance (and e.g. buffering images),
and indeed the tracker allows such dynamic resizing of
the particle set. The approach taken in this paper however
is to rely on an improved motion model based on the
learned predictors rather than throw more particles at the
problem, which allows us to also cover very severe cases
where no number of particles can maintain a successful
track. The following experiments are designed to illustrate
the differences in performance between tracking with and
without incorporating a learned prediction system. The poses
are drawn as wireframe models with the following colour-
code:

• White: Ground truth. Note that we did not use an
external system such as a magnetic tracker for obtaining
ground truth, but used the visual tracker itself in a high
accuracy non real-time setting with many iterations and
particles (4 and 200 respectively).

• Green: Tracking with prediction as proposed in this
paper.

• Red/Magenta: Tracking without motion prediction.
• Blue: Pure motion prediction without visual feedback

by the tracker, i.e. in Equation (7) nt+1 = 0.

For visual observation a camera is capturing images with
a resolution of 800×600 at a frame rate of 30 Hz and
highly accurate time-stamps. Tracking is executed in real-
time whereas in critical situations, where the prediction
system has to take over, the data is buffered and evaluated
at a frame rate of 1-5 Hz.





C. Experiment - Motion blur

Another example of a difficult situation is fast movement
of the object relative to the camera. Figure 7 illustrates such
a case, where a box is pushed forward causing it to tilt until
it reaches an unstable pose and finally toppling over. This
is a very critical situation for visual observation. The falling
object moves quite fast, causing the image to blur.

Again the tracker with (green) and without prediction
(red), and the pure predictor (blue) are initialised at the
same starting pose. During the first phase of the sequence
the predictor proposes an erroneous rotation of the object,
while the vision system extracts the correct pose relatively
accurately (top row of Figure 7). However, by the time of
the unstable pose shown in the lower-left image the tracker
with prediction is already better than the tracker without
prediction. The object is moving fast during the next frames
causing the effects mentioned above. The tracker without
prediction can not follow the fast movement, loses track and
gets trapped in a local maximum. The predictor on the other
hand proposes the right pose and the corresponding tracker
refines the result.

Fig. 7. Failure of tracking without prediction in case of a toppling object.
(edge-based tracking with prediction: green, without prediction: red, pure
prediction: blue)

D. Experiment - Occlusion with motion blur

The hardest case for a visual observation system is the
combination of fast movement and occlusion. We tested this
case by applying a pushing manipulation where the object is
hidden behind an occluder where it topples over, as shown
in Figure 8.

In the top-left image enough parts of the object are visible
and both of the trackers produce good results. The top-right
image shows the object behind the occluder already in the
phase of falling down as the blur suggests. The lower-left
is the subsequent frame and illustrates the large change of
the pose, which causes the tracker without prediction to fail,

whereas the tracker with prediction overcomes this difficult
situation. The pose of the pure predictor is also very close
to the real one, but suffers from integrating error over the
trajectory.

Fig. 8. The toughest case: toppling combined with occlusion. (colour-
based tracking with prediction: green, without prediction: red, pure predic-
tion: blue)

Note that for this experiment we placed a virtual occluding
object in the scene. This allowed us to vary the size and
texture of the occluder and most importantly to position it
right in front of the toppling object.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this work we demonstrated how objects can be tracked
in 3D under visually challenging situations such as occlusion,
motion blur and fast movement. We summarized the main
ideas of probabilistic prediction and explained edge and
colour based 3D tracking using a Monte Carlo particle filter.
We show how the use of probabilistic prediction as motion
model for the tracker leads to clearly improved accuracy
as well as robustness. There are cases where erroneous
prediction can degrade tracking performance (e.g. in unstable
contact configurations), but these are outweighed by the
majority of cases where prediciton is correct and especially
for occlusion.

B. Future Work

Although the robustness of the tracker is already improved,
there are several points which remain open.

First of all the confidence of a visual observation is not
very distinctive and it is very hard to find a good measure
indicating whether the pose it suggests is wrong or not.
As described in Section V we manually set a threshold.
Obviously this is not the optimal solution since this threshold
depends on the visual model of the object and the clutter
in the environment, especially introduced by the occluder.



I.e. for an edge based tracker it is very hard to tell if
it is correct or not in case of edge rich clutter as shown
in Figure 8, whereas the colour based tracker is strongly
influenced by objects which are coloured similar to the
object, with respect to Equation (13).

Although the predictor is trained using visual tracking, this
still happens in an offline stage for now. For an automated
system it is desirable to learn the predictor online. This leads
to a chicken-and-egg problem. Since at the beginning the
predictor is not trained, the tracker produces bad results for
challenging situations, which can thus not be learned by the
predictor. As mentioned above, the tracker is not able to
reliably measure the correctness of the pose suggested and
the predictor will thus learn those wrong poses.

Furthermore, at the moment the predictor provides only
the most likely pose in Equation (4) to the tracker. This
means that we do not make full use yet of the probabilistic
framework inside the predictor.
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Assessing Grasp Stability Based on Learning
and Haptic Data

Yasemin Bekiroglu, Janne Laaksonen, Jimmy Alison Jørgensen, Ville Kyrki, Member, IEEE,
and Danica Kragic, Member, IEEE

Abstract—An important ability of a robot that interacts with
the environment and manipulates objects is to deal with the un-
certainty in sensory data. Sensory information is necessary to, for
example, perform online assessment of grasp stability. We present
methods to assess grasp stability based on haptic data and machine-
learning methods, including AdaBoost, support vector machines
(SVMs), and hidden Markov models (HMMs). In particular, we
study the effect of different sensory streams to grasp stability. This
includes object information such as shape; grasp information such
as approach vector; tactile measurements from fingertips; and joint
configuration of the hand. Sensory knowledge affects the success of
the grasping process both in the planning stage (before a grasp is
executed) and during the execution of the grasp (closed-loop online
control). In this paper, we study both of these aspects. We propose
a probabilistic learning framework to assess grasp stability and
demonstrate that knowledge about grasp stability can be inferred
using information from tactile sensors. Experiments on both sim-
ulated and real data are shown. The results indicate that the idea
to exploit the learning approach is applicable in realistic scenarios,
which opens a number of interesting venues for the future research.

Index Terms—Force and tactile sensing, grasping, learning and
adaptive systems.

I. INTRODUCTION

GRASPING is an essential skill for a general-purpose ser-
vice robot, working in an industrial or home-like environ-

ment. If object parameters such as pose, shape, weight, and/or
material properties are known, grasp planning that uses analyt-
ical approaches can be employed [1]. In unstructured environ-
ments, these parameters are uncertain, which present a great
challenge for the current state-of-the-art approaches.

Extraction and appropriate modeling of sensor data can alle-
viate the problem of uncertainty. Many approaches to robotic
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object grasping exist, and most of these have been designed to
deal with known objects. To estimate the shape and pose of an
object, visual sensing has been widely used [2]–[7]. However,
the accuracy of vision is limited, for example, due to imperfect
calibration and occlusions. Small errors in object pose are, thus,
common even for known objects, and these errors may cause
failures in grasping. These failures are commonly difficult to
prevent at the grasp execution stage if the hand is not equipped
with sensors. Tactile and finger force sensors can be used to re-
duce some problems [8], [9] but are still uncommon in practice.
We have observed that due to uncertainty in the observations, a
grasp may fail due to slippage or collision, even when all fingers
have adequate contact forces, and the hand pose with respect to
the object is not very different from the planned one.

The main contribution of our study is a new approach that in-
corporates knowledge of uncertainty in the observations when
predicting the stability of a grasp. We show how grasp stability
can be assessed based on data extracted both prior to and during
execution. The data contain object information such as shape,
grasp information such as approach vector, and online sensory
and proprioceptive data including tactile measurements from
fingertips and joint configuration of the hand. In a real-world
robot platform, all measurements that are acquired from the en-
vironment are noisy and associated with a degree of uncertainty.
Our goal is to create a system which is capable of performing
prediction of grasp stability from real-world sensory streams.
In order for the system to be robust, the uncertainty in the ob-
servations needs to be taken into account. Probabilistic methods
provide a framework to deal with uncertainty in a principled
manner and will, to this end, provide the foundation on which
our system is built. Our aim is to model the embodiment spe-
cific and inherently complex relationship between grasp stabil-
ity and the available sensory and proprioceptive information.
Methods that are based on AdaBoost, support vector machines
(SVMs), and hidden Markov models (HMMs) are proposed and
compared.

Our approach is a learning-based framework that relies on
having a training dataset that is assumed to sample the domain
of possible scenarios well. This poses a challenge: Acquiring
such data is associated with a significant cost with respect to
time and computation. In order to alleviate this problem, we use
a simulator from which we can generate a large set of synthetic
training data in a controlled environment with relative ease.
The approach to use synthetic training data is justified by per-
forming inference on real-world examples. Moreover, the gen-
eralizability of the grasp stability estimation is experimentally
evaluated. The results demonstrated that the stability estimation

1552-3098/$26.00 © 2011 IEEE
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generalizes well to new objects even with a moderate number
of objects used in training. In summary, this paper demonstrates
that knowledge about grasp stability can be inferred using in-
formation from tactile sensors, while grasping an object before
the object is further manipulated. This is very useful since, if
an unstable grasp is predicted, objects can be regrasped before
attempting to further manipulate them.

In the following section, the contributions of our work are
discussed in detail in relation to the state-of-the-art work in the
area. This is followed by a presentation of the theoretical frame-
work in Section III and the employed learning methodology. In
Section IV, the simulator, the database, and the real-data col-
lection are described. We present the results of experimental
evaluation in Section V and conclude our work in Section VI.

II. CONTRIBUTIONS AND RELATED WORK

In robotic object grasping, there has been a lot of effort during
the past few decades [1]. Grasp stability analysis is a tool that is
often used in grasp planning, where the grasp is planned using
grasp quality measures derived from stability analysis. Most
of the work on grasp stability assessment relies on analytical
methods and focuses on rigid objects, albeit some work has
considered the analysis of grasps on deformable objects [10].
Compared with our approach, the analytical methods require
exact knowledge of the contacts between the hand and the object
to estimate the stability of a grasp.

Most of the grasp-planning approaches that are tested in sim-
ulation have the common property to use a strategy that relies
on the object shape. Modeling object shape with a number of
primitives such as boxes, cylinders, cones, spheres [4], [11], or
superquadrics [12] reduces the space of possible grasps. The
decision about the suitable grasp is made based on grasp quality
measures given contact positions. However, none of these ap-
proaches provide a principled way to deal with uncertainties that
arise in dynamic scenarios or in the errors inherent to simpli-
fication with primitives, which can potentially be solved using
tactile feedback. This is also the main objective and contribution
of the study presented here.

One of the issues that are often faced in household scenarios is
deformable objects. Planning grasps for these types of objects is
not at all well studied as rigid objects. Examples can be found in
the literature, such as [13], where the deformation properties of
objects are learned, and then a suitable grasping force is planned
for the associated objects.

To cope with the fact that the exact knowledge of the object
and the hand is not available, we employ tactile sensors that
measure a range of pressure levels. Tactile sensing has been
used for various purposes in prior studies, and we focus on the
use of tactile sensors in the remaining survey of the related
work. There are recent examples that perform grasp generation
from visual input and use tactile sensing for closed-loop control
once in contact with the object. For example, the use of tactile
sensors has been proposed to maximize the contact surface for
removing a book from a bookshelf [14]. Application of force,
visual, and tactile feedback to open a sliding door has been
proposed in [15]. In our study, the main difference is that the

tactile sensors are used to assess the stability of a grasp. Thus,
rather than using the tactile data for control, we use them in
order to reason about grasp stability.

Learning aspects have been considered in the context of grasp-
ing mostly for the purpose of understanding human grasping
strategies. In [16], it was demonstrated how a robot system can
learn grasping by human demonstration using a grasp experi-
ence database. The human grasp was recognized with the help of
a magnetic tracking system and mapped to the kinematics of the
robot hand using a predefined lookup table. Another approach
is to use vision. However, measuring the contact between ob-
ject and hand accurately is a nontrivial task. The system in [2]
learns grasping points by using hand-labeled training data in the
form of image regions which indicate good grasping regions. A
probabilistic decision system is employed on previously unseen
objects to determine a good grasping point or region. In [3],
vision is used to create grasp affordance hypotheses for objects
and refine the grasp affordance hypotheses through grasping.
The result is a set of grasps that will produce good grasps on a
specific object.

Current learning approaches that use tactile sensors are fo-
cused on either determining the properties of objects [17]–[19]
or object recognition [19]–[22]. Different properties of objects
give valuable information that can be further used in grasp sta-
bility analysis. In [17], the pose of the object is determined
using a particle-filter technique based on the tactile informa-
tion gained from the contacts between a gripper and the object.
Similar work was presented by Hsiao et al. [23], where object
localization was performed with knowledge of tactile contacts
on specific objects. In [18], the surface type (edge, flat, cylin-
drical, and sphere) of the tactile contact is determined using
a neural network. In [19], tactile information that is extracted
from the sensors on a two-fingered gripper is used to determine
the deformation properties of an object. However, learning or
analyzing such object properties through tactile sensors do not
answer the question of grasp stability directly compared with
the work presented here.

Work on using tactile sensors for recognition of manipulated
objects has been reported rather recently. The main approach is
to use multiple grasp or manipulation attempts and then learn
the object through the haptic input from the manipulations or
grasps. Current approaches use either one-shot data from the end
of the grasps [21], [22] or temporal data collected throughout
the grasp or manipulation execution [19], [20]. In [21], a bag-of-
words approach is presented that aims to identify objects using
touch sensors available on a two-fingered gripper. The approach
processes tactile images collected by grasping objects at differ-
ent heights. In [22], a similar approach is taken for a humanoid
hand. A more traditional approach to learning is employed with
features extracted from tactile images in conjunction with hand
joint configurations as input data for the object classifier. In [20],
entropy is used to study the performance of various features in
order to determine the most useful features in recognizing ob-
jects. In this case, a plate that was covered with a tactile sensor
was used as the manipulator. However, the object recognition
using the recognized good features did not perform here as well
as it did in the other presented works. Thus, no attempts have
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been made to use tactile sensors that are placed on a robotic
hand to predict the stability of a grasp. We have presented the
idea of grasp stability prediction using tactile sensors in [24]
with some initial results, and we extend our work in this paper.

III. PROBLEM FORMULATION AND MODELING

To determine grasp stability is difficult, when factors that af-
fect the stability are uncertain or unknown. We show that with a
probabilistic approach, it is possible to assess grasp stability us-
ing tactile measurements. Mapping from tactile sensor measure-
ments to grasp stability is complex and not injective because of
variability in object parameters, grasp, and hand types, as well
as the uncertainty inherent in the process. Thus, we consider
grasp stability as a probability distribution

P (S|H(t), j(t), O,G) (1)

where grasp stability, which is denoted by S, depends on differ-
ent measured and/or known factors. The factors that are taken
into account in our model are 1) H: force/pressure measure-
ments from tactile sensors; 2) j: joint configuration of the hand;
3) O: object information, e.g., object identity or shape class; and
4) G: information relevant to the grasp, e.g., approach vector
and/or hand preshape. Grasp stability S is a discrete variable
with two possible states: a grasp is either stable or unstable,
while the other variables can be discrete or continuous. Our
goal is to assess the effect of factors in (1) to grasp stability by
considering different subsets of the variables.

We study the problem using both instantaneous measurements
of variables and time-series measurements. With instantaneous
measurements, the stability is assessed only from the instant
the robot hand is static and closed around the object. This ap-
proach is referred to as one-shot classification. In contrast, the
time-series approach takes into account measurements that are
generated during the whole grasping sequence. The variables
H and j are, thus, represented from time t0 to tn , where t0
and tn represent the start and the end of the grasping sequence,
respectively. In the case of one-shot classification, we use the
measurements once the hand has reached a static configura-
tion, which is an approach similar to [21]. Thus, we compare
the distribution defined by (1) with one that discards the time
series:

P (S|H(tn ), j(tn ), O,G). (2)

We show that both approaches that are described by (1) and (2)
are valid and that grasp stability can be assessed based on them.
To study the contribution of object O and grasp knowledge G,
we have set up a hierarchy as depicted in Fig. 1. The hierarchy
is divided into levels, each with increasing amount of sensory
information being available. At the top level of the hierarchy,
only the information that is related to the hand itself, H , and j
is used. Thus, we estimate

P (S|H, j) =

∫ ∫
P (S|H, j,O,G) p(G|O) p(O) dO dG .

(3)
Considering only sensor information, the overall distribution
will be somewhat uninformative—there is significant uncer-

Fig. 1. Hierarchical recognition of grasp stability taking into account different
types of sensory knowledge.

tainty as the same sensor readings can be associated with both
stable and unstable grasps for different objects, grasp approach
vectors, and hand preshapes. Subsequently, when more pieces
of information are considered, the estimation of the distribution
should be more specific, resulting in better discrimination. At
the second level, we consider that object shape or object instance
is known:

P (S|H, j,O) =

∫
P (S|H, j,O,G) p(G) dG . (4)

Finally, at the third level, we consider knowledge about the ap-
plied grasp, and estimate the stability through P (S|H, j,O,G).
Since knowledge of all the variables that are present in (1) is
assumed, the uncertainty in the stability estimation is expected
to decrease.

In the rest of this section, we describe methods to estimate
the density functions using a classification approach. SVMs and
AdaBoost are used to model the instantaneous model, according
to (2), while HMMs are used for the general time-series case,
according to (1). Although the probabilistic framework is pre-
sented as a method to estimate grasp stability using haptic data,
it is also possible to use the proposed framework with other
types of sensory information.

A. Feature Representation

First, we describe the input features for the classifiers. In this
work, a three-fingered Schunk Dextrous Hand (SDH) with seven
degrees of freedom and equipped with six 2-D Weiss Robotics
pressure-sensitive tactile pads [25] is used as a demonstration
hardware platform. Tactile measurements are recorded from
the first contact with the object until a steady state is reached.
The whole measurement sequence is denoted by xi

1 , . . . , xi
Ti

,
where i is the index of the measurement. For one-shot classi-
fication, tactile measurements at the steady state are used and
denoted xi

Ti
. Training data are generated both in simulation

and on real hardware and will be presented in Section IV. The
notation used in this paper is as follows.

1) D = [oi ], i = 1, . . . , N denotes a dataset with N obser-
vation sequences.

2) oi = [xi
t ], t = 1, . . . , Ti is an observation sequence.

3) xi
t = [Mi,t

f ji,t
v ], f = 1, . . . , F, v = 1, . . . , V is the ob-

servation at time instant t given the ith sequence; F is the
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Fig. 2. Example grasping sequence of a cylinder and the corresponding tactile
measurements.

number of tactile sensors; and V is the number of joints
of the robot hand.

4) Mi,t
f includes the moment features that are extracted from

the tactile readings Hi,t
f on the sensor f at time instant

t, given the ith sequence. Details about the extraction of
these features are given later in this section.

5) ji,t
v is a joint angle at time instant t given the ith sequence.

The acquired data, thus, consist of tactile readings Hi,t
f and

joint angles of the hand ji,t
v . For the SDH, we store 3 × (14 × 6)

readings on proximal and 3 × (13 × 6) on distal sensors, and
seven parameters represent the pose of the hand given the joint
angles. Example images from the tactile sensors are shown in
Fig. 2. The tactile images in the figure represent a stable grasp
of a cylinder.

Tactile data are relatively high dimensional and redundant.
Thus, we borrow ideas from image processing and consider the
2-D tactile patches as images. Each tactile image is represented
using image moments. The general parameterization of image
moments is given by

mp,q =
∑

z

∑

y

zpyqf(z, y) (5)

where p and q represent the order of the moment, z and y rep-
resent the horizontal and vertical positions on the tactile patch,
respectively, and f(z, y) represents the measured contact. We
compute moments up to order 2, (p + q) ∈ {0, 1, 2}, for each
sensor array separately. These then correspond to the total pres-
sure and the distribution of the pressure in the horizontal and
vertical directions. Thus, there are in total six features for each
sensor resulting in an observation xi

t ∈ R6F +V . Normalizing
the feature vector is a common step in machine-learning meth-
ods. In our case, moment features and finger joint angles are
normalized to zero mean and unit standard deviation. Normal-
ization parameters are calculated from the training data and then
used to normalize the testing sequences.

B. One-Shot Recognition

In this section, we examine the learning of grasp stability
based on tactile measurements acquired at the end of a grasping

sequence, i.e., once the final grasp has been applied to the ob-
ject. We claim that if successful separation between stable and
unstable grasps can be learned from examples, one-shot classi-
fication can determine the stability of the grasp from any haptic
observation xi

t measured during a grasp. This information can
then be used in grasp control to determine when the robot hand
has reached a stable configuration.

In this paper, two types of nonlinear classifiers, AdaBoost and
SVM, are used in the experiments to demonstrate the ability
to learn the stability of the grasps. AdaBoost and SVM were
the best performing classifiers in [26]. AdaBoost is a boosting
classifier, which has been developed by Freund and Schapire
[27], that works with multiple so-called weak learners to form a
committee that performs as the classifier. Here, we use AdaBoost
implementation from [28].

SVM classification [29], [30] is also suitable for the prob-
lem. SVM is a maximum margin classifier, i.e., the classifier
fits the decision boundary so that maximum margin between
the classes is achieved. This guarantees that the generalization
ability between the classes is not lost during the training of the
SVM classifier. We use the libSVM implementation presented
in [31]. Another critical feature of the SVM for our use is the
ability to use nonlinear classifiers instead of the original linear
hyperplane classifier. Nonlinearity is achieved using different
kernels; in this study, the radial basis function

K(xi, xj ) = e−γ‖xi −xj ‖2

for γ > 0 (6)

is used as the kernel for SVM. Moreover, as an extension to
the basic two-class SVM, probabilistic outputs for SVM are
used to analyze the results given by the SVM. This idea was
first presented in [32]. The SVM output y(x) is converted to a
probability according to

p(t = 1|x) = σ(Γy(x) + Λ), y(x) = K(w,x) + b (7)

where parameters Γ and Λ are estimated using training data, and
σ(·) is the logistic sigmoid function. This probability is, thus,
related to the earlier general discussion by

P (S = stable|H(t), j(t), O,G) = p(t = 1|x) . (8)

C. Temporal Recognition Using Hidden Markov Models

Time-series grasp stability assessment is performed based on
HMMs [33]. Here, we use HMM implementation from [34]. We
construct two HMMs: one representing stable and one unstable
grasps. Classification of a new grasp sequence is performed by
evaluating the likelihood of both models and choosing the one
with higher likelihood. For the HMM, we use the notation λ =
(π,A,B), where π denotes the initial probability distribution,
A is the transition probability matrix

A = aij = P (St+1 = j|St = i), i, j = 1 . . . N (9)

and B defines output (observation) probability distributions
bj (x) = fXt |St

(x|j), where Xt = x represents a feature vec-
tor for any given state St = j. In this paper, we evaluate both
ergodic (fully connected) and left-to-right HMMs.
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The estimation of the HMM model parameters is based on the
Baum–Welch procedure. The output probability distributions
are modeled using Gaussian mixture models (GMMs)

fX (x) =

K∑

k=1

wk
1

2πL/2
√

|Ck |
e− 1

2 (x−μk )T C −1
k

(x−μk ) (10)

where
∑K

k=1 wk = 1, μk is the mean vector, and Ck is the co-
variance matrix for the kth mixture component. The unknown
parameters θ = (wk , μk , Ck : k = 1...K) are estimated from
the training sequences o = (x1 , ...xT ). Initial estimates of the
observation densities in (10) affect the point of convergence of
the reestimation formulas. Depending on the structure of the
HMM (ergodic versus left-to-right), we use a different initial-
ization method for the parameters of the observation densities.
The two initialization procedures are given as follows.

1) For an ergodic HMM, observations are clustered using
k-means. Here, k is equal to the number of states in the
HMM, and each cluster is modeled with a GMM using
standard expectation maximization. Initial parameters for
the GMMs are found using k-means algorithm.

2) For a left-to-right HMM, each observation sequence is
divided temporally into equal length subsequences. Then,
each GMM is estimated from the collection of correspond-
ing subsequences. Thus, the GMMs represent the temporal
evolution of the observations. Initial parameters are found
as in the case of an ergodic HMM.

IV. DATA COLLECTION

For a learning system to achieve good generalization capa-
bilities, relatively large training data are typically required. To
generate large datasets on real hardware is time consuming, and
in robotic grasping, it is difficult to generate repeatable experi-
ments due to the dynamics of the process. However, if suitable
models are available, simulation can be used for generation of
data for both training the learning system and performance eval-
uation. In our study, we generate both simulated and real training
data as explained next.

A. Simulator

The grasp simulator RobWorkSim,1 which is described in
[35], is used to generate training data including tactile mea-
surements. The simulator is used in combination with the open
dynamics engine (ODE) physics engine and provides support to
simulate articulated hands, PD joint controllers, grasp quality
measures, camera sensors, range sensors, and tactile sensors.
The primary motivation to use RobWorkSim over the more
widely used GraspIt! [36] is the integrated support for tactile
array sensors.

1) Tactile sensor model: The tactile array sensor simulation
in RobWorkSim is an experimental model that transforms the
point contacts of the ODE to sensor measurements by describing
the deformation of the sensor surface given a point force f

1More information about RobWorkSim can be found in
http : //www.robwork.org/.

Fig. 3. Measured (a) and (c) versus simulated (b) and (d) sensor values. The
tactile images were generated by pressing a sharp edge onto the sensor surface.

applied perpendicular to it. The model was originally described
in [37]. The model assumes that the deformation or response
is linear with the magnitude of the point force, which is a fair
assumption for small forces. Given the deformation function
h(x, y) where x and y are specified relative to the center (a, b)
of the contact, the total deformation of the surface of an array of
rectangular texels with size (A,B) can be found by integrating
over the surface of each texel by

gm,n (a, b) =

∫ (A+ 1
2 )m−a

(A− 1
2 )m−a

∫ (B+ 1
2 )n−b

(B− 1
2 )n−b

h(x, y)dxdy (11)

where (a, b) is the center point of the contact, and (m,n) is the
texel index. This surface integration is approximated using the
rectangle method. Point force experiments on the real sensors
suggested that the deformation decreased with the inverse of the
square of the distance from the point force. We use an isotropic
function to approximate the deformation of the sensor surface

h(x, y) = (f · ntexel)max

(
− β +

α

1 + x2 + y2
, 0

)
(12)

where (x, y) is specified relative to (a, b), and ntexel is the
normal of the texel on which the point force f is applied. The
parameters (α, β) were found by fitting the model to experi-
mental data extracted from real sensors. Fig. 3 shows a visual
comparison between the real and the simulated sensor output,
where a sharp edge was pressed against both sensors.

Assessing grasp quality requires taking properties of the hand
(orientation, joint configuration, friction, elasticity, and grasping
force) and object (shape, mass, friction, contact locations, area,
and contact force) into account. In the simulated environment,
these parameters are known. We use a widely known grasp
quality measure based on the radius ε of the largest enclosing
ball in the grasp wrench space (GWS). We construct the GWS
as proposed in [38] by calculating the convex hull over the
set of contact wrenches wi,j = [fT

i,jλ(di × fi,j )
T ]T , where fi,j

belongs to a representative set of forces on the extrema of the
friction cone of contact i. di is the vector from the torque origin
to contact i, and λ weighs the torque quality relative to the force
quality.

It is not obvious how to determine λ due to the differences
between forces and torques. We, therefore, calculate force space
and torque space independently and use the radius of the largest
enclosing ball in each of these to give a 2-D quality value (εf , ετ )
for each grasp. A third quality measure εcmc that is based on
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Fig. 4. Objects in simulation were generated in three sizes (75%, 100%, and
125%): hamburger sauce, bottle, cylinder, box, sphere.

the distance between the centroid of the contact polygon C
and the center of mass CM of the object [39] is used: εcmc =
‖CM − C‖. This measure captures the same properties as the
torque measure; however, it is more robust with regard to the
point contact output of the simulator. Stable grasps are defined
as those for which all three quality values are within a certain
threshold. The thresholds have been determined experimentally.

B. Generating Training Data in Simulation

The database includes examples of stable and unstable grasps
on different objects. We examine stability starting from the most
general case in the hierarchy specified in Fig. 1 and continue by
including information about subsequent properties until reach-
ing the most specific case. At the top level of the hierarchy, data
are generated on objects with different shapes using approach
vectors that are generated uniformly from a sphere, referred to
as a spherical strategy. At the second level, the shape informa-
tion is given; hence, grasps are generated separately per object
shape with the spherical strategy. At the third level, the approach
vector is formed based on the object shape: Side or top grasps
are applied with more than one preshapes. At the bottom level,
the preshape is also chosen per object shape and approach vec-
tor. Fig. 4 shows examples of objects that are included in the
database.

Each grasping sequence in the database is generated by plac-
ing the hand in a specific configuration with respect to the object
and then closing the fingers. For the recognition that relates to
levels 1 and 2 in the recognition hierarchy (see Fig. 1), a sim-
ple spherical grasp strategy with a randomly chosen preshape is
used. The spherical grasp strategy generates the approach direc-
tion for the hand by sampling the unit sphere around the center
of mass of the object. Each sample then consists of a vector that
points toward the center of mass of the object.

The strategy and the preshapes used for level 3 in the recog-
nition hierarchy are shape specific. Therefore, strategies were
developed for each shape used in the experiments. The hand
preshapes for level 3 were generated with finger joint values in
the interval ([−90;−70], [−10; 10])◦, where the seventh joint
was one of 90◦, 60◦, and 0◦, as shown in Fig. 5.

The following grasp strategies are applied for the shape
primitives.

1) Sphere—The approach directions are sampled randomly
from the unit sphere with origin in the center of gravity of
the object. Both the ball preshape (60◦) and the parallel
preshape (0◦) were used.

2) Cylinder—The object is approached either from the top or
from the side. When approaching from the top, a ball grasp

Fig. 5. Hand configuration when the seventh joint is at 90◦, 60◦ and 0◦.

Fig. 6. Few examples from the execution of real experiments.

Fig. 7. Objects used in real experiments, with last three deformable.

preshape is used, and the approach direction is pointing
toward the object center of mass. For side grasps, the
approach is sampled with an angle of 0–20◦ with respect
to the horizontal plane, pointing toward the center of mass
of the object. The preshape in the side grasp uses an angle
of 0 on joint 7 so that a parallel grasp can be obtained.

3) Box—The object is approached using a vector lying in
the plane defined by the world z-axis and the longest axis
of the box and pointing toward the center of gravity. A
parallel preshape of the hand is used.

In addition, two natural objects, i.e., the hamburger sauce and
the bottle (see Fig. 4), used the same strategy as the cylinder.
The tactile information and the joint configuration are recorded
from simulation at regular time intervals.

In general, the performance of the simulation is largely de-
pendent on the level of details of the geometries in both hand
and objects. In our setup, to generate a simulated grasp using a
modern quad core computer took approximately 2 s.

C. Generating Training Data on a Robot

The real-world experiments show the feasibility to assess
grasp stability on physical robot platforms. The experiments
aim to serve as a proof of concept rather than assessing the ex-
act performance rates in different use cases. The experimental
evaluation on real data follows the methodology used in simula-
tion such that similar objects and same grasp types are used. The
objects are placed such that they are initially not well centered
with respect to the hand to assess the ability of the methods to
cope with the uncertainty in pose estimation. A few example
grasps are shown in Fig. 6. The real data include side grasps on
the objects in Fig. 7 with the preshape shown in Fig. 5, where
the seventh joint is 0◦. After preshaping, the hand closes the
fingers with equal speeds, while limiting the maximum torque
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Fig. 8. Example of a failed grasp when only visual input is used. Details about the system are reported in [7].

of each actuator until reaching a static state where the object
does not move or a fully closed hand configuration is reached.
The latter occurs in the case of an unsuccessful grasp.

Tactile readings and corresponding joint configurations were
recorded starting from the first contact until a static state is
achieved. To generate stable/unstable label for a grasp, the ob-
ject is lifted and rotated [−120◦, +120◦] around the approach
direction. The grasps where the object is dropped or moved in
the hand were labeled as unstable. One hundred stable and 100
unstable grasps were generated for each object. Data process-
ing, training, and classification followed the same methodology
as described for the simulated data.

V. EXPERIMENTS

We begin the experimental part by describing a simple demon-
stration scenario to show that the proposed approaches are viable
in real applications. As the main experimental contribution, we
then proceed to study the effect of different types of information
for the estimation of grasp stability, starting with the experimen-
tal setup in Section V-C, followed by results in Sections V-D
(one-shot recognition) and E (temporal recognition).

A. Demonstration

The feasibility of the approach is demonstrated in a realistic
scenario. The demonstration is included to better show how
the proposed methodology can be integrated in a real robotic
system. Quantitative evaluation of the methodology is presented
after the demonstration.

A vision-based system can provide information about the
specific objects in the scene, and their pose [4]–[6] or potential
grasping points on the object [7], [40]. In our previous work, we
have shown how this can be done for known [4], unknown [5],
[6], and familiar objects [7], [40]. However, in the previous work
there were many cases that resulted in unsuccessful grasps. One
example using system from [7] is shown in Fig. 8, and more
examples are provided in the supplementary material.

The scenario that is demonstrated is as follows: Objects of
the known geometry are placed in the workspace of a robot
in a known position similar to [4]. Grasp hypotheses from a
planner [41] are applied on the real robot by placing each of
the five objects (see Fig. 9) in a known position. The planner
is performing object decomposition for complex objects and
plans grasps on the decomposed parts [4]. In our scenario, the

Fig. 9. Objects used to generate a dataset for the demonstration.

planner is configured for a specific preshape. To demonstrate
grasping of asymmetric objects in different poses, we place
them in four different orientations with respect to the robot.
After a suitable grasp is generated by the planner, the hand is
moved to a preshape position, and the fingers are closed. After
a steady state is reached (no change is detected in the tactile
sensors), the stability of the grasp is estimated. Finger closing
is controlled by executing a constant velocity motion for the
finger joints and simultaneously limiting the maximum force by
limiting the current for the finger actuators.

Before the system can be operated, a training (calibration)
process, which is required for each individual robotic hand,
needs to be completed. The calibration process is described in
Algorithm 1. The algorithm is run using the objects in Fig. 9;
114 stable and 114 unstable grasps are generated, including
58 grasps from the white spray bottle and 32 grasps from
the pink detergent bottle in Fig. 9. While the calibration al-
gorithm is not tied to a particular classification methodology,
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in the demonstration, the HMM classifier that is presented in
Section III-C is shown.

The operation mode of the demonstration system is described
in Algorithm 2. A grasp is estimated as stable if the probability
of a stable grasp exceeds the probability of the grasp being unsta-
ble, i.e., P (S = stable) > P (S = unstable). The probabilities
are estimated using the well-known HMM “forward algorithm”
to compute the probability of the observed sequence of mea-
surements, assuming equal prior probabilities for stable and
unstable.

Fig. 10 shows snapshot images from the operation of the
system.2 The robot attempts to grasp a bottle by first plac-
ing the hand in a preshape position given by the planner
mentioned earlier, as shown in Fig. 10(a). Then, the fingers
are closed as described earlier. The closed grasp is shown
in Fig. 10(b) with the corresponding tactile measurements in
Fig. 10(c). The grasp is predicted to be unstable, with the log-
likelihood ratio log P (unstable)/P (stable) of the two models
being 191.1270 > 0, indicating unstable grasp. Now, in order
to demonstrate that the failure was correctly predicted, instead
of regrasping, the robot is nevertheless commanded to lift the
object. The object drops as shown in Fig. 10(d), demonstrating
the ability to correctly recognize an unsuccessful grasp. Next, to
demonstrate that the stable grasps are also successfully recog-
nized, another grasp that is generated by the same grasp planner
is shown in Fig. 10(e). The closed grasp and the corresponding
tactile measurements are shown in Fig. 10(f) and 10(g). Based
on the measurements, the grasp is predicted to be stable, with
the difference across log-likelihoods of the two models being
−537.7687 < 0, indicating a stable grasp. Lifting and rotating
the object around demonstrates this in Fig. 10(h), which con-
cludes the demonstration.

B. Evaluation of Learning Capability

The experiments are divided according to the hierarchy pre-
sented in Section III. The goal is to evaluate the effect of the
increasing knowledge on the classification results with both
one-shot and temporal classification approaches.

1) Level 1 (No constraints): On this level, no constraints
are placed on the data that are used for training the classifiers.
In other words, only tactile sensor measurements and the joint
configuration are available, and the other variables are unknown.
The grasps are sampled from a sphere, and the hand is oriented
toward the object. The data are collected in simulation across
multiple object shapes and scales.

2See the supplementary video for a more detailed demonstration.

2) Level 2 (Constraints on object shape): The shape of
the object is known, enabling the use of shape-specific clas-
sifiers. The grasps are randomly sampled from a sphere, and
the hand is oriented toward the object. The data are collected in
simulation.

3) Level 3 (Constraints on approach vector, preshape, and
object shape): On level 3 of the hierarchy, constraints are placed
on the approach vector, the grasp preshape, and the object shape.
The data are collected using a manually chosen approach vector,
and the preshape is adjusted to the shape of the object. On this
level, the shape is known so that shape-specific classifiers can
be used. Both simulated data and real data are available at this
level.

C. Experimental Setup

1) Data: The simulated data that are used in the experiments
consist of five objects with three different grasp configurations
applied to them. Three of the objects have primitive shape (box,
cylinder, and sphere), and two have natural shape (hamburger
sauce and bottle). Each object is scaled to three different sizes:
0.75, 1.0, and 1.25 of the original size. For each object/size/grasp
combination, 1000 unstable and 1000 stable grasps are randomly
chosen from the database described in Section IV-B. Thus, each
object/grasp dataset consists of 3000 stable and 3000 unstable
grasps. When we refer to specific simulated object/grasp combi-
nation, terms side and top are used for grasps that are generated
as side and top grasps, while sph. is used for grasps that are
generated uniformly from a sphere around the object (random
approach vector). Altogether, there are then 30 000 samples for
the five objects. We also refer to the root node of the informa-
tion hierarchy, which contains all samples of primitive shapes:
a total of 18 000 samples.

The real data that are collected include nine objects with 100
unstable and 100 stable grasps for each object. Thus, there are
1800 samples in the real data set. The details of the real-data
collection are described in Section IV-C.

2) One-shot recognition: As mentioned in Section III-B, we
utilize the AdaBoost algorithm in one-shot classification. Be-
cause of the formulation of the AdaBoost, a weak learner needs
to be chosen. In the experiments, a decision tree with a branch-
ing factor of 1 was used as the weak learner, effectively reducing
the tree to a series of linear discriminants. The branching factor
was determined from a series of tests that showed that using a
branching factor of 1 performed as good as or better than larger
branching factors on the data described in Section IV. Two hun-
dred iterations of AdaBoost were run to find the final classifier in
all experiments. For an SVM classifier, γ = 0.03, and constant
C related to the penalty applied to incorrectly classified training
samples [29] is set to C = 0.4.

All experiments are reported as tenfold cross-validation av-
erages, except where otherwise noted. In each case, the datasets
used to train and test the classifiers are balanced, i.e., the datasets
contain equal number of unstable and stable grasps. Image mo-
ments are used as the feature representation for the one-shot
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Fig. 10. Operation of the system. First row shows unsuccessful grasp, while the second row shows successful grasp. (a) and (e) Hand in a preshape position.
(b) and (f) Closed grasp. (c) and (g) Tactile measurements. (d) Object dropped, while lifting. (h) Lifting and rotating the object successfully.

classifiers. The joint data in addition to the tactile data are also
included in the features unless otherwise noted.

3) Temporal recognition: To study if the temporal informa-
tion improves the recognition performance, two HMMs, one
for stable grasps and another for unstable ones, were trained.
The stopping criterion for HMM training was a convergence
threshold of 10−4 with a 10-iteration limit. In order to improve
the reliability of the evaluation, both ergodic and left-to-right
HMM were evaluated independently. The reason for these multi-
ple experiments is that by evaluating multiple temporal models,
we aim to understand if the temporal ordering plays part in
the modeling. The covariance of the mixture model component
distributions was forced to be diagonal.

In the training of the temporal model, the structure of the
HMM needs to be chosen in the form of structural parameters,
which describe the number of HMM states and the number of
mixture model components for each state. These were chosen
experimentally such that the HMM was trained using differ-
ent parameter settings, and the setting producing at least lowest
equal error rate result (equal number of false positives and nega-
tives) or better performance than that was chosen. The number of
states was varied between 2 and 6, while the number of mixture
components was between 2 and 5.

Experiments were performed both on simulated and real data.
For simulated data, randomly chosen 80% of the samples were
used for training and the other 20% for testing. For the real data,
tenfold cross validation was used to evaluate the performance,
and the best parameter setting over all folds was chosen.

Image moments were used as features, similar to one-shot
learning. However, to reduce the number of parameters in HMM
and speed up the training process, principal component analysis
was applied to the moment and joint measurements separately
to reduce the dimensionality of the dataset. The number of prin-
cipal components was chosen such that at least 99% of the total
variance is retained.

D. One-Shot Recognition Results

In this section, we present a collection of experiments based
on the information hierarchy in Fig. 1 using the AdaBoost clas-
sifier. SVM classifier is used with image moments to examine
the separability of the grasp stability at each level by means
of log-likelihood histograms. We also study the effect of the
joint configuration data on the classification by including or
excluding them from the feature vector for the classifier when
using real data. Training time for the classifiers is less than
five min, for the reported amount of samples. Adaboost train-
ing time increases linearly with the amount of samples, while
SVM training time increases quadratically. Classification of a
single sample takes less than 10 ms with both of the presented
classifiers. SVM classification time increases linearly with the
amount of samples used for training.

1) Real data: The experiments begin by showing results us-
ing real data. Sampling grasps with a real hand is a slow process,
and thus, the sample size is limited. To study the effect of the
amount of samples used for training, we ran a series of tests
with variable sample sizes. In each case, the same object was
used both for training and testing. The results of these tests are
shown in Table I, which shows the classification rates for train-
ing datasets of difference sizes. The test shows that for a specific
grasp on the cylindrical object, 100 samples are already enough
to reach classification performance levels achieved with higher
amount of samples; the differences in classification performance
above 100 samples are not statistically significant. However, this
is the case only when the stable and unstable grasps are distinc-
tive, i.e., we achieve a high rate of correctly classified grasps. In
the case of the white bottle dataset, where the classification rate
is lower, the results show that more than 200 samples could be
useful in increasing the classification performance.

Classification results as percentages for single object clas-
sifiers (known object case) are presented in columns 2 and
3 of Table II. Classification rates are shown both with joint
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TABLE I
ADABOOST CLASSIFICATION RATES (IN PERCENT) ON DATASETS WITH

VARIABLE AMOUNT OF SAMPLES

TABLE II
ADABOOST CLASSIFICATION RATES (IN PERCENT) ON KNOWN AND UNKNOWN

OBJECTS WITH AND WITHOUT JOINT DATA

configuration data and without it, and the classification rates
were computed for image moment feature representations. The
main focus in this experiment is to study prediction of the
grasp stability on known objects that the system has previously
learned. The average classification rate for known objects is
82.5% including joint data and 81.4% excluding them from the
measurements. Thus, the inclusion of joint data seems to benefit
the recognition but only to a minor effect. Moreover, the result
indicates that at least with known objects the proposed approach
seems to have adequate recognition rate for practical usefulness.

We also study how well the trained system can cope with
unknown objects, i.e., objects that have not been used to train
the system. The results are shown as percentages of correct
classification in columns 4 and 5 of Table II, which are adjacent
to the results with known objects. The results are for a system
that has been trained on all the objects except the object for
which the classification rate is shown. The average recognition
rate is 73.8% with joint data and 72.7% without them. The
results show that while the classification rate is lower than with
known objects, it is still possible to make predictions of the grasp
stability on unknown objects to some extent. However, this holds
true only when similar grasps are applied on unknown objects
as were applied to the objects that the system were trained on.
In comparison, including grasps from all objects, including the
one being tested, for a single classifier yields a result of 78.6%
correct classification across all the objects in the real object set.
This indicates that the variety of objects that are used in training
plays an important role in order to attain good performance and
that the knowledge of object identity is useful but does not seem
necessary if the training data include same or similar objects.

Two objects of a primitive shape are included in the real data:
a box and a cylinder. Table III shows classification percentages
when the classifier is trained only on one of the primitive objects.
The classifier is then asked to classify the grasp stability of
grasps made on real-world objects with different shapes. Cross
validation was not needed in this case, because the training and
test sets are naturally separate. The average classification rate
for the cylinder model is 68.0% and for the box model 66.4%.

TABLE III
CLASSIFIER PERFORMANCE (IN PERCENT) WHEN TRAINING WITH

A PRIMITIVE OBJECT

TABLE IV
ADABOOST CLASSIFICATION RATES (IN PERCENT) ACCORDING

TO THE INFORMATION HIERARCHY ON SIMULATED DATA

These results no longer seem adequate for a real system, which
again suggests that the variety in the training data is essential.

2) Simulated data: In contrast with the real data, in simula-
tion we are able to sample a large number of grasps from differ-
ent objects and using different grasp strategies. The following
classification results were achieved using the simulated datasets
described in Section IV. In Table IV, classification percentages
are reported for each node in the information hierarchy. The
root node (level 1) was randomly subsampled to 12 000 sam-
ples due to computational constraints and has classification rate
of 75.3%. The average classification for level 2 (known object,
unknown approach vector) is 76.5% and, for level 3 (known ob-
ject, known grasp), 77.5%. A trend that increasing knowledge
increases classification rate appears, similar to the experiments
with real data. However, the trend is significantly weaker com-
pared with the real data. Somewhat surprisingly, the real-data
classification rates are notably higher when more information is
available, and the trend is stronger, compared with simulation.

While the primitive shapes that are used in Table IV are simple
shapes, we can use these primitive shapes to train the classifier
and then use the classifier to classify grasps sampled from more
natural, complex objects. The results are shown as percentages
of correct classifications in Table V. Each row corresponds to a
tested natural object (hamburger sauce and bottle), while each
column corresponds to a combination of a training object and
grasp strategy. Comparison results when training the classifier
with the natural object and corresponding grasping strategy are
shown in italic font. The figures in the table show that having
data from the correct object has a notable positive effect on the
classification rates. This is again a positive argument for the
beneficial effect of a variety of training data.

Using the SVM and its ability to output estimates of the
prediction certainty gives us a possibility to examine the perfor-
mance of the classifier on different datasets in more detail com-
pared with AdaBoost, which supports only the hard decision
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TABLE V
ADABOOST TRAINING WITH A PRIMITIVE SHAPE AND CLASSIFYING GRASPS SAMPLED FROM A NATURAL OBJECT WITH SIMULATED DATA

Fig. 11. Likelihood ratios for comparison of separability. (a) Root node, all objects, random grasp vector. (b) Cylinder, random grasp vector. (c) Cylinder side
grasp. (d) Real cylinder side grasps.

TABLE VI
HMM CLASSIFICATION RATES (IN PERCENT) ON DATASETS WITH VARIABLE

AMOUNT OF SAMPLES

TABLE VII
HMM CLASSIFICATION RATES (IN PERCENT) ON KNOWN AND

UNKNOWN OBJECTS

boundary. This comparison can be seen in Fig. 11. In Fig. 11,
log-likelihood ratios log 1 − P (S)/P (S) calculated from the
probabilities for stable and unstable samples are shown in his-
togram form: red for unstable and light blue for stable. The
classification errors are shown in filled color, with the filled
area indicating the error probability. Fig. 11(a)–(c) is from sim-
ulated data, and Fig. 11(d) is from the real cylinder grasped
with the SDH. It is evident from the figure that increasing in-
formation makes the distributions for stable and unstable grasps
more separate, which was also indicated by the earlier results.
Moreover, the figure also supports the finding that classifying
the real data seems to be easier than the simulated data. Finally,
the figure supports the use of probabilistic approaches for grasp
classification, as the ability to measure the uncertainty in classi-
fication is important as it can, for example, allow tuning of the
classification system to give fewer false positives.

TABLE VIII
HMM CLASSIFICATION RATES (IN PERCENT) WHEN TRAINING WITH A

PRIMITIVE OBJECT ONLY

TABLE IX
HMM CLASSIFICATION RATES (IN PERCENT) ACCORDING TO THE

INFORMATION HIERARCHY ON SIMULATED DATA

E. Recognition Based on Temporal Model Results

In this section, we present HMM classification results that are
obtained from the previously defined experiments. With given
parameters, the training time for the HMM is less than 30 min
for the reported amount of samples. The training time increases
linearly with the amount of samples. Classification of a single
sample takes less than 50 ms.

1) Real data: Similar to one-shot classification, we begin by
investigating the general performance and the required number
of samples to achieve good generalization properties. Table VI
shows HMM classification percentages corresponding to Ta-
ble I. The results demonstrate that the performance of the HMM
classifier does not change much for distinctive grasps such as
the ones from the deformable cylinder. While the average clas-
sification rates are similar to the one-shot model, the temporal
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TABLE X
HMM TRAINING WITH A PRIMITIVE SHAPE AND CLASSIFYING GRASPS SAMPLED FROM A REAL-WORLD OBJECT WITH SIMULATED DATA

model seems to have better generalization capability in that the
classification rate does not decrease significantly with smaller
datasets.

Classification percentages for single object classifiers are pre-
sented in Table VII, both with joint configuration data (w/j) and
without them (wo/j), to study the prediction capabilities on ob-
jects the system has previously learned with the two HMM
types (left-to-right: LR, ergodic: ERG). The average classifi-
cation rate for known objects (with joint data) is 82.4% with
LR and 81.7% with ERG which are on a par with the one-shot
learning (see Table II). Thus, with single object classifiers, the
inclusion of temporal information did not increase classification
performance.

Table VII also includes the results that study how well the
trained system can cope with unknown objects, corresponding
to Table II for the one-shot learning. The rates that are not
included (marked with a dash) were below the level of chance.
The results are similar in the way that the classification rates
drop with unknown objects, the average rate with joint data
being 77.5% for LR and 77.0% for ERG. However, the rate for
unknown objects is in most cases high enough such that while
the classification rate is lower than with known objects, it is
still possible to make useful predictions of the grasp stability
on unknown objects. LR seems to outperform ERG slightly in
both cases, but the difference is not very significant. The reason
for the difference is likely to be the simpler structure forced by
the LR model, which in turn is likely to prevent overfitting. In
comparison, using all data from all objects for a single classifier
yields a result of 78.3% for LR model and 76.5% for ERG. It
is remarkable that the difference between these and the results
without the test object in the training data is less than 1%. Thus,
with real data, it seems that the generalizability of grasp stability
across objects is surprisingly good.

Table VIII shows classification results when the classifier is
trained only on one of the primitive objects, corresponding to
one-shot learning results shown in Table III. The average rate for
cylinder primitive is 64.6% for LR and 62.3% for ERG, which
are below the results of one-shot recognition. For box primitive,
the recognition rate for pitcher was below level of chance and
is thus not shown. On average, the rates for box primitive are
nevertheless higher than those for the cylinder primitive and
also higher compared with the one-shot learning. The cause of
failure for the single object could not be identified. Altogether,
the results are in agreement with those from one-shot learning in
that the variety of training data seems important to attain good
and stable performance.

2) Simulated data: Using the simulated data, Table IX re-
ports the results for each node in the information hierarchy,

corresponding to Table IV for the one-shot learning. For the
LR model, the average classification for level 1 (root node, un-
known object, and unknown approach vector) is 64.9%, 69.9%
for level 2 (known object and unknown approach vector), and
for level 3 (known object and known grasp), it is 67.5%. The
results for ERG are similar. There are two observations to be
made. First, these are consistently lower than those with one-
shot learning, which is the opposite behavior compared with the
real-data experiments, indicating that the simulated and real data
do not match exactly. Second, the trend that increasing knowl-
edge increases performance is broken for level 3, although the
difference is not very significant. A possible explanation for this
is that the stability of top and side grasps is on average more
difficult to model with the HMM compared with modeling the
stability of a grasp with random approach vector, because it is
possible that some of the grasps with a random approach vector
might be especially easy to recognize correctly.

The classification performance when training with primitive
shapes but testing with real-world objects is shown in Table X,
corresponding to Table V for the one-shot classification. The
classification rates with the correct object are shown in italic
font for comparison. The results indicate that on average the
classification is significantly improved by having the correct
object model instead of a general primitive model, again indi-
cating the importance of variety in training data. Moreover, the
results are again inferior to one-shot recognition, strengthening
the finding that the temporal information is not essential for
recognition with the available simulated data. To conclude, the
real-world cases seem to contain dynamic phenomena that can
be modeled better using a temporal model.

VI. CONCLUSION AND FUTURE WORK

Uncertainty is inherent to the activities that robots perform
in unstructured environments. Probabilistic techniques have
demonstrated the strength to cope with the uncertainty in robot
planning, decision making, localization, and navigation. In the
area of robot grasping, there have been very few examples to
solve problems such as assessing grasp stability by taking un-
certainty into consideration.

In this work, it was shown how grasp stability can be as-
sessed based on uncertain sensory data using machine-learning
techniques. Our learning framework takes into account object
shape, approach vector, tactile data, and joint configuration of
the hand. We have used a simulated environment to generate
training sequences, including the simulation of the sensors. The
methods were evaluated both on simulated and real data using
a three-fingered robot hand. Our work demonstrates how grasp
stability can be inferred using information from tactile sensors,
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while grasping an object before the object is further manipu-
lated or during the manipulation step. We have implemented
and evaluated both one-shot and temporal learning techniques.
The temporal information was found to somewhat increase gen-
eralization capabilities in that a smaller number of training ex-
amples were needed and that the generalization performance to
new objects was slightly increased. These come with the cost
of increased computational complexity. One focus of the ex-
periments was to study prediction capabilities of the proposed
methods for known objects. We have also studied how the sys-
tem can cope with unknown objects, i.e., objects that have not
been used in the training step. The results show that while the
classification rate is lower than with known objects, it is still
possible to make useful predictions of the grasp stability on
unknown objects. In summary, the experimental results show
that tactile measurements allow assessment of grasp stability.
The aim of this paper was not a perfect discrimination between
successful and unsuccessful grasps but, rather, a measure of
certainty of grasp stability. This also means that a system may
be built to reject some stable grasps while having fewer unsta-
ble grasps classified as stable ones. Experiments showed that
using sequential data to evaluate grasp stability appears to be
beneficial during dynamic grasp execution.

Our current study proceeds in several directions. First, we are
in the process of integrating the presented system with a vision-
based pose estimation system and grasp planning. Second, we
are implementing a grasping system based on the proposed
ideas for local control of grasps and corrective movements. In
both cases, the aim is to demonstrate a robust object grasping
and manipulation system for both known and unknown objects
based on visual and tactile sensing. Finally, we have developed a
more elaborated probabilistic framework in which we study the
joint probability of object-relative gripper configurations, tactile
perceptions, and grasping feasibility. Here, we have developed a
kernel-logistic-regression model of pose- and touch-conditional
grasp success probability. The goal is to show how a learning
framework can be used for grasp transfer, i.e., if the robot has
learned how to grasp one type or category of objects, to use this
knowledge to grasp a new object.
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[18] A. Jiméneza, A. Soembagijob, D. Reynaertsb, H. V. Brusselb, R. Ceresa,
and J. Ponsa., “Featureless classification of tactile contacts in a grip-
per using neural networks,” Sens. Actuators A: Phys., vol. 62, nos. 1–3,
pp. 488–491, 1997.

[19] S. Chitta, M. Piccoli, and J. Sturm, “Tactile object class and internal state
recognition for mobile manipulation,” in Proc. IEEE Int. Conf. Robot.
Autom., Anchorage, AK, May 2010, pp. 2342–2348.

[20] M. Schöpfer, M. Pardowitz, and H. J. Ritter, “Using entropy for dimension
reduction of tactile data,” presented at the 14th Int. Conf. Adv. Robot.,
Munich, Germany, Jun. 2009.

[21] A. Schneider, J. Sturm, C. Stachniss, M. Reisert, H. Burkhardt, and W.
Burgard, “Object identification with tactile sensors using bag-of-features,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., St. Louis, MO, 2009,
pp. 243–248.
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Integrating Grasp Planning with Online Stability Assessment
using Tactile Sensing

Yasemin Bekiroglu, Kai Huebner and Danica Kragic

Abstract— This paper presents an integration of grasp plan-
ning and online grasp stability assessment based on tactile data.
We show how the uncertainty in grasp execution posterior to
grasp planning can be dealt with using tactile sensing and
machine learning techniques. The majority of the state-of-the-
art grasp planners demonstrate impressive results in simulation.
However, these results are mostly based on perfect scene/object
knowledge allowing for analytical measures to be employed.
It is questionable how well these measures can be used in
realistic scenarios where the information about the object and
robot hand may be incomplete and/or uncertain. Thus, tactile
and force-torque sensory information is necessary for successful
online grasp stability assessment. We show how a grasp planner
can be integrated with a probabilistic technique for grasp
stability assessment in order to improve the hypotheses about
suitable grasps on different types of objects. Experimental
evaluation with a three-fingered robot hand equipped with
tactile array sensors shows the feasibility and strength of the
integrated approach.

I. INTRODUCTION

Grasping is an essential skill for a general purpose service
robot to work in an industrial or home-like environment. A
successful grasp is often described as a relationship between
an object and a gripper that allows for further manipulation
of the object. Given that some of the object and gripper
parameters such as pose, shape, weight and/or material
properties are known, grasp planning can be performed. For
this purpose, analytical approaches have been developed and
improved over the last two decades, as [1], [2], [3], and
recently summarized in [4]. These achievements enabled
simulation of grasps and evaluation of grasp planners on
a measurable basis. Thus, most state-of-the-art simulation
environments for grasping, e.g., GraspIt! [5], RobWorkSim
[6] or OpenGrasp [7], employ analytical measures to com-
pute grasp stability in simulated scenarios. The possibility of
performing extensive and efficient experiments in simulation
alleviates the maintenance of expensive equipment. It also
provides information about the necessary parameters for
stability analysis, like contact surfaces, center of mass, or
friction coefficients.

In unstructured real-world environments, however, these
parameters are uncertain, which presents a great challenge
to the aforementioned approaches. Extraction and modeling
of appropriate sensor data is commonly used to alleviate
the problem of uncertainty. For instance, visual input is

This work was supported by EU through the project CogX, IST-FP7-
IP-215181 and Swedish Foundation for Strategic Research. The authors
are with the Computer Vision and Active Perception Lab, Centre for Au-
tonomous Systems, School of Computer Science and Communication, KTH,
Stockholm, Sweden. {yaseminb,khubner,dani}@kth.se.

Fig. 1. The Schunk Dexterous Hand and example tactile array readings.

commonly used to determine the pose or shape of an object
[8]. However, the accuracy of vision in terms of object
pose estimation is limited even for known objects, as small
errors in object pose are common and may cause failures in
grasping. In terms of object shape approximation, algorithms
are far from approximating objects at an accuracy that makes
the necessary parameters comparable to their real values.

The consequences of such failures at the planning stage are
difficult to prevent at the grasp execution stage, even though
tactile and finger force sensors can be used to reduce them.
Still, a grasp may fail even when all fingers have adequate
contact forces and the hand pose is not much different from
the planned one, e.g. if slippage or collision occur, [9].

We can therefore conclude that in realistic applications,
grasp stability can not be assessed without the possibility
of an error. In addition, the relationships between grasp sta-
bility, available sensory information, and actuator accuracy
are embodiment-specific and inherently complex. To cope
with these issues, we propose a probabilistic approach to
model the relationship between tactile sensory information
(see Fig. 1) and grasp stability. This strategy also allows
for detection of failures at the grasp execution stage, such
that objects can be regrasped before attempting to further
manipulate them.

The contributions of our work are identified together
with the related work in Section II. Section III presents
the data generation using a grasp planner and Section IV
stability assessment using Hidden Markov Models (HMMs).
In Section V, the experimental setup and the experimental
evaluation are presented. We conclude our work in Sec-
tion VI.

II. RELATED WORK

In robotic object grasping there has been a lot of effort
during the past few decades, see [8] for a recent survey.
Most of the state-of-the-art grasp planning approaches first
model the object shape with a number of primitives such as
boxes [10], cylinders, cones, spheres [11], or superquadrics
[12] to reduce the space of possible grasps. The decision
about a suitable grasp is then made based upon analytical
grasp quality measures. Such analytical approaches rely on
accurate knowledge about the contacts between the hand

2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

978-1-61284-380-3/11/$26.00 ©2011 IEEE 4750



and the object in order to estimate the stability of a grasp.
Therefore, few of these planners have been applied on real
robot platforms, but in simulation only.

To operate in scenarios where exact knowledge of the
object and the hand is not available, tactile and/or force-
torque sensors can be used for control once in contact with
the object. For instance, [13] proposes to maximize the tactile
contact surface for removing a book from a bookshelf. In
[14] force, visual and tactile feedback are combined to open
a sliding door similarly to our previous work [15], [16].

In [17], the 3D pose of an object is determined based on
tactile information. Similar work is presented in [18], where
object localization is performed with knowledge of tactile
contacts on specific objects. The surface type (e.g., edge,
flat, cylindrical, sphere) of the tactile contact is determined
using a neural network in [19]. In [20], tactile information
is extracted from the sensors on a two-fingered gripper to
distinguish properties of objects such as the open/closed and
fill state.

There has also been work on object shape learning based
on tactile data. The approaches use either one-shot data from
the final state of the grasps [21], [22] or temporal data col-
lected throughout the grasp or manipulation execution [20],
[23]. In [21], a bag-of-words approach is presented which
aims to identify objects using touch sensors available on a
two-fingered gripper. The approach processes tactile images
collected by grasping objects at different heights. In [22],
a similar approach is taken for a humanoid hand. A more
traditional approach to learning is employed with features
extracted from tactile images in conjunction with hand joint
configurations as input data for the object classifier. In [23],
a measure of entropy is used to identify the most useful
features for object recognition. In this case, a plate covered
with tactile sensor is used as the manipulator.

In summary, the focus in the above is either the use of
tactile data for object manipulation control or exploration of
object properties, but not the stability assessment. Learning
or analyzing object properties only through tactile sensors
does not answer the question of grasp stability. In our earlier

work, [24], [25], we have presented initial results of grasp
stability prediction using tactile sensors, where part of the
evaluation was performed in simulation. In this paper, we
extend our work along the following lines: (i) We concentrate
on grasp stability implementation and evaluation on a real
system rather than in simulation. (ii) For this purpose, we
integrate our method with a simulation-based grasp planner,
in order to (iii) analyze the relation between analytical
stability in simulation and real grasps under consideration of
a range of uncertainties. (iv) For our learning mechanism, we
apply an extended evaluation strategy based on the following
stability degree formulations. We label a grasp as reached if
it was at least possible to move the hand into the planned
pose. If lifted, the object was also successfully lifted up
vertically. Transported means a stable transport to a fixed
location without dropping. The two last stages describe if
the object was successfully rotated in the transported location
and finally if the grip was so firm that it could be manually
pushed. We mark a grasp as stable when it at least reached
rotated state.

III. DATA ACQUISITION AND GRASP PLANNING
In our previous work [25], we generated the training data

by applying side and top grasps on a set of training objects.
The position of the object was changed slightly with respect
to the robot hand over a number of test trials. In order to
acquire two training sets of tactile readings – one to classify
stable grasps, and one for unstable ones – we manually
annotated grasps as stable / unstable. As a major assumption,
grasps were aimed at the center of mass of each object.

In this paper, we automate the grasp planning and stability
labeling by using a part-based grasp planner. Grasps on parts
are more useful in terms of task-oriented grasping, and they
represent a good trade-off between learning from random
grasps and learning from manual side- and top-grasps only.
Specifically, using a grasp planner that prunes the space of
possible grasps, and thereby also tactile patterns, simplifies
the classification as well as acquisition of training data on a
real platform. On the other hand, part-based grasping is more
challenging than our earlier restriction to grasps centered
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Fig. 2. We generate grasp positions for 5 known objects using the BADGr framework. We compare acquired stability levels of both the real (top) and
the simulated (bottom) execution of each grasp. For the real setup, we acquire sensor data to learn real stability and unstability from two HMMs. The
light green box on the right bottom represents a side view of a box for a part of an object. The offset distances mentioned in Sec. III-A and Tab. I are
described by ∆i.
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on the center of mass. Especially for part-based grasps, the
center of mass is an important factor for stability. For the
experimental evaluation, we selected a publicly available
box-based grasp planner, BADGr [26]. We illustrate the
complete processing pipeline of our data acquisition in Fig. 2.

The grasp planner allows us to approximate given objects
with primitive box shapes based on an efficient minimum
volume bounding box implementation. Except for the work
presented in [27], this grasp planner has not been evaluated
on a real robot. In our case, we use ‘known objects’ in a
similar way by first generating object-centered grasps offline.
In our setup, the pose of each object will be fixed. This allows
us to evaluate and compare and their analytical stability in
GraspIt [5] with our evaluation of stability in the real world.

A. Results for Analytic Grasp Analysis in Simulation

In Tab. I, we present the results generated for 5 test
objects, and divide into those detected as stable or unstable
through analytic analysis in the simulator. For the asymmet-
ric objects, a range over all 4 orientations is shown. For
our later training, we aim at approximately 20 samples per
object and stability class. We therefore increase the number
of grasps by adding 3 offset distances that influence the palm
position along the approach vector. Given a side-view of a
box around a part, (see the light green box in Fig. 2), and
an approach vector (see the arrow from its left), these ∆i

decentralize the original grasp center position on the object.

B. Results for Real Grasp Analysis

The planned grasp hypotheses were applied on the real
robot by placing each of the 5 objects (Fig. 2) in a known po-
sition. The labels obtained by executing the simulated grasps
on the real setup are given in Tab. I. The column planned
grasps and +3∆ distances include the ranges for the number
of hypotheses produced by the grasp planner depending on
the orientations of the objects and the corresponding ranges
extended by the offset distances. For example, for the green
cup, 2 out of 8 unstable and 1 out of 21 stable grasps in
simulation, are labeled as stable (being rotated) and unstable
(being reached) respectively in experiments on the robot. In
order to have equal number of stable and unstable grasps,
some grasps are repeated as seen in the last column of the
table. For a small and light object such as the cup, predictions

TABLE I
STATISTICS ON STABILITY IN SIMULATION AND REAL EXPERIMENTS.

In Simulation Real Evaluation Dataset
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Cup s 6-9 27-36 2 - - 8 10 20 19+1(white) u 3-11 12-48 17 - - 2 -
Cup s 9-10 21-26 1 - - 1 19 22 7+15(green) u 3-6 24-38 5 1 - 2 -
Salt s 11 40 5 1 - 7 14 28 14+14(round) u 5 24 5 1 2 6 1

Bottle s 5-8 17-19 - 3 7 7 9 18 18(pink) u 2-14 14-62 5 3 - 2 -
Bottle s 5-6 15-23 4 2 3 7 14 30 26+4(spray) u 11-16 45-65 2 7 8 8 1

in simulation are in general correct. For the cylindrical
salt bottle, which is relatively small but heavier than the
cup, predictions for unstable grasps are less reliable with
the highest rate of unstable grasps in simulation labeled as
stable in real experiments, (46.66%). Predictions about stable
grasps for this object are in line with the real experiments.
The highest rate of stable grasps which are labeled as
unstable in real experiments (38.46%) were obtained from
the deformable pink bottle. The most complicated object in
shape, the spraybottle, provided relatively high contradictory
results, 34.61% unstable grasps labeled as stable and 30%
stable grasps labeled as unstable in the real experiments.

From the table, we note that grasps that are supposed
to succeed may fail due to several reasons which will be
discussed shortly. Two example grasps are given in Fig. 3 to
demonstrate how grasps may be labeled differently from the
planned ones after execution on the real setup. As seen in
Fig. 3, the grasps during the real experiments fail, although
they were generated as stable grasps in simulation. Five
different grasps (Fig. 4) were chosen and repeated 10 times to
see the variance in the labels assigned by the real evaluation,
Tab. II. While in one case, G1, a stable grasp can be unstable
in all trials, other stable grasp examples in simulation, G4,
G5, could be stable in real experiments or may result in
different levels of unstability in some trials such as grasp
G3. An unstable example, G2, can also be stable in some
trials. In summary, these experiments show that even the
same grasps may be classified differently in real experiments,
which therefore motivates the need for online assessment.

C. Analytical vs. Real Grasps

The above analysis exemplifies typical uncertainties and
variances emerging for several reasons: not only state-of-the-
art simulation environments lack modeling real correspon-
dences, but also repetition of the same grasps may result in
variable outcomes. We sketch the major issues immanent in
our comparison of GraspIt and our real system:

Fig. 3. Grasps that are stable in simulation but failed in real experiments.

TABLE II
VARIANCE OF LEVELS OF STABILITY FOR 5 GRASPS. GRASP NAMES ARE

GIVEN WITH (GRASPIT LABEL, REAL LABEL).

Grasp Reached Lifted Transp. Rotated Pushed
G1(S, Reached) 10 - - - -
G2(U, Lifted) 2 1 4 3 -
G3(S, Transp.) 3 3 - 4 -
G4(S, Rotated) - - - 5 5
G5(S, Pushed) - - - 6 4

G1 G2 G3 G4 G5

Fig. 4. Grasps used in the repeated experiments.
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1) Perception: In our study, we use static poses for known
objects. However, even the human inaccuracy in placing an
object with the same pose is a factor that can make repetition
difficult. In automated machine vision scenarios, e.g. pose
estimation of known, or surface estimation of unknown
objects, we can assume such accuracy to be even worse.

2) Actuator Control: Similarly to a slight variance in the
object’s pose, inaccuracies in the joint positioning of both
robot arm and hand, or in dynamic grasp control may have
strong effects on the success of a grasp.

3) Contact & Sensor Models: For the sake of efficiency,
contact models, e.g. point contacts or soft contacts, may
be inaccurately or only partially provided in a simulated
environment. In a similar way, simulated models of the tactile
sensors have to be reliable to match the real world.

4) Physics & Dynamics: Another key to bring simulation
closer to the real world are robust physics and dynamics en-
gines. As in the real world, an object should be dynamically
affected by any forces, e.g. exerted by the fingers or gravity.

5) Object Properties: Linked to the dynamics of the
scene, knowledge about various object properties is funda-
mental. On a basic level, this is often approached by mapping
discrete material properties, e.g. plastic, metal or glass, to
friction cone angles that define the grasp wrench space. Other
properties, as deformability, center of mass, or wearout of
objects and hands, are much more difficult to model.

These considerations emphasize the strengths of a method
for online stability assessment in the real world, using
learning techniques and close loop methods. Our approach
to this problem by using Hidden Markov Models (HMMs)
will be formalized in the next section.

IV. ONLINE STABILITY ASSESSMENT USING
HIDDEN MARKOV MODELS

A. Feature Representation

In this work, we work with a three-fingered Schunk
Dexterous Hand (SDH) with seven degrees of freedom and
six two-dimensional tactile patches (see Fig. 1). Tactile
measurements and corresponding joint configurations are
recorded starting from the first contact with the object until
a steady-state is reached. The data can be described by
the following notation. An observation sequence with T
observations is denoted by x1, .., xT . An observation at time
instant t is denoted by xt = [M t

f jt
v], where f = 1, .., F , with

F the number of tactile sensors, and v = 1, .., V , with V the
number of joints of the robot hand. M t

f includes features
extracted from the tactile readings Ht

f on the sensor f at
time instant t and jt

v is a joint angle at time instant t.
For the SDH, we store 3×(14×6) readings on proximal

and 3×(13×6) on distal sensors, plus 7 parameters represent-
ing the shape of the hand given the joint angles. Example
images from the sensors are shown at the Tactile Sensor Data
Acquisition stage in Fig. 2 during a stable grasp of a cylinder.
Considering the two-dimensional tactile patches as images,
we employ image moments mp,q as a representation in order

to reduce the dimensionality. Moments are given by

mp,q =
∑

z

∑
y

zpyqH(z, y), (1)

where p and q represent the order of m, z and y the horizon-
tal and vertical position on the tactile patch, and H(z, y) the
measured contact. We compute moments up to order two,
(p + q) ∈ {0, 1, 2}, for each sensor array separately, which
then correspond to the total pressure and its distribution in
the horizontal and vertical direction. Therefore, six features
for each sensor result in an observation xt ∈ R6F+V . Finally,
moment features and finger joint angles are normalized
to zero-mean and unit standard deviation. Normalization
parameters are calculated from the training data and then
used to normalize the testing sequences.

B. Hidden Markov Models (HMMs)

Time-series grasp stability assessment is performed using
Hidden Markov models [28]. In this section, we provide a
basic description for the HMM-based inference. More details
can be found in [25]. As sketched in Fig. 2, we train two
HMMs: one representing stable and one unstable grasps.
Classification of a new grasp sequence is performed by
evaluating the likelihood of both models and choosing the
one based on Maximum Likelihood approach. In this work,
we evaluate both ergodic (fully connected) and left-to-right
HMMs. The estimation of the HMM model parameters is
based on the Baum-Welch procedure. The output probability
distributions are modeled using Gaussian Mixture Models
(GMMs). Unknown parameters are estimated from the train-
ing sequences o = (x1, .., xT ).

C. Principal Component Analysis

Principal Component Analysis (PCA) is used to reduce
the dimensionality of the dataset which in turn reduces the
number of HMM parameters and speeds up the training. PCA
determines the directions along which the variability of the
data is maximal. Let ~M t = (M t

1, ..,M
t
F ) be the features

extracted from tactile sensor readings and ~jt = (jt
1, .., j

t
V )

be the corresponding joint configurations. We apply PCA
separately to both sets of variables ~M t and ~jt and project the
dataset onto their respective basis of Eigenvectors. Principal
components are extracted from the final observations in
the training sets in order to reduce the computations. The
principal components describing 99% of the total variance
are used.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

To examine the recognition performance, two HMMs, one
for stable grasps and another for unstable ones were trained
with the stopping criteria being the convergence threshold
10−4 with an iteration limit. Different numbers of iterations
were applied as seen in Fig. 5(a). Since increasing the
iteration number did not improve performances, an itera-
tion limit of 10 was chosen for the experiments. In order
to improve the reliability of the evaluation, both ergodic
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(a) (b)
(c)

Fig. 5. Classification rates with different (a) iteration numbers using cross validation, and thresholds with (b) and without (c) cross validation.

(a) (b) (c)

Fig. 6. HMM model selection: (a) with th1; (b) with th2; (c) with th3.

(a) (b) (c)

Fig. 7. The distribution of log-likelihood ratios: (a) with th1; (b) with th2; (c) with th3.

and left-to-right HMM were evaluated independently with
different structure parameters. In general, ergodic and left-to-
right HMMs had comparable results, hence the experimental
results were given with left-to-right structure. The range of
2-6 for the number of states and 2-5 for the number of
components in a mixture were evaluated. The covariance
matrix structures were forced to be diagonal. From these
settings, two types of experimental results are provided
with the aim of demonstrating the performance in detail:
with and without cross validation. The experimental results
with 10-fold cross validation are presented with the best
parameters over all folds. For the experiments in which we
do not apply cross validation, the data is separated randomly
into a training (75%) and testing set (25%). With given
parameters, the training time for the HMM is a few minutes
for the described dataset linearly increasing with the iteration
number. Classification of a single sample takes less than a
second.

B. Recognition based on Temporal Data

HMMs are trained to estimate the likelihood L that the
observed data oi could have been generated by the model λ,
i.e. L = P (oi|λ). In order to compare the predictions of two

TABLE III
HMM CLASSIFICATION RATES AND PARAMETERS WITH th1 , th2 , th3 .

Node Cross Validation No Cross Validation
Rate Parameters Rate Parameters

th1 87.16% (6, 3; 3, 5) 87.93% (5, 5; 3, 5)
th2 77.42% (5, 2; 3, 4) 79.31% (3, 2; 5, 5)
th3 66.78% (5, 2; 3, 4) 72.41% (4, 2; 5, 5)

models, a threshold could be set for the difference between
log-likelihoods, log(L), of the two models. Therefore, for
a sequence to be recognized as stable or unstable, the other
models’ predictions must be lower with respect to the chosen
threshold in comparison. In Fig. 5(b,c), the performances are
given with and without cross validation. Tab. III presents the
chosen parameters for the corresponding experiments in Fig.
5(b,c) with 3 thresholds (the lowest, th1, the middle, th2, and
the largest, th3). Parameters are given in the format (state
(stable, unstable); mixture components (stable, unstable)). It
is evident that the classification rates are reasonable both
with and without cross validation.

Fig. 6(a,b,c) are given with true positive rates against false
positive rates to demonstrate how the HMM model parame-
ters are chosen after training with different parameters. Each
point in the figures indicates the performance of a trained
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HMM pair while the red cross indicates the performance
of the selected HMM pair. Different HMM models were
trained with different numbers of mixture components and
states. Finally, the best HMM pair was chosen based on the
maximum classification rates for stable and unstable grasps.
The blue lines cross where the classification performance
gives equal number of false positives/negatives. The chosen
HMM models result in a performance around this point as
the best possible one among the trained models. The system
can be adjusted so that the false positive rate is kept as low
as possible while rejecting some stable grasps, since for our
problem, classifying unstable grasps as stable grasps should
be avoided as much as possible. We note that these results
are based on the maximum recognition rates given the test
set in order to see how good the classification could be.

To depict the difference on performance, the distributions
of logarithms of likelihood ratios are presented for the three
thresholds. Let Ls and Lu be the log likelihoods of the stable
and unstable HMM models, then r = Ls − Lu shows the
log of the likelihood ratio. Fig. 7(a,b,c) show the histograms
of these ratios (r) for stable and unstable samples. Green
bars show the difference for stable samples and red bars
are for unstable samples. We note that the green and red
bars are more separate when the classification rate is higher.
When the stability is more difficult to recognize, namely the
classification rate is lower, there is more overlap.

VI. CONCLUSION

We have presented a system that integrates grasp planning
and online grasp stability assessment based on tactile data
on different types of objects. An important contribution of
the presented work is an implementation and evaluation
of the approach on a real robot system equipped with a
three-fingered robot hand. We have analyzed the relation
between analytical stability in simulation and real grasps
under consideration of a range of uncertainties. In addition,
we have applied an extended evaluation strategy based on
different stability levels for the probabilistic learning tech-
nique. An extensive experimental evaluation demonstrates
the feasibility of the approach and provides the bases for
future implementation of the system for tactile exploration
and closed loop control of corrective movements.
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Learning Tactile Characterizations
Of Object- And Pose-specific Grasps

Yasemin Bekiroglu Renaud Detry Danica Kragic

Abstract— Our aim is to predict the stability of a grasp from
the perceptions available to a robot before attempting to lift up
and transport an object. The percepts we consider consist of the
tactile imprints and the object-gripper configuration read before
and until the robot’s manipulator is fully closed around an object.
Our robot is equipped with multiple tactile sensing arrays and it
is able to track the pose of an object during the application
of a grasp. We present a kernel-logistic-regression model of
pose- and touch-conditional grasp success probability which we
train on grasp data collected by letting the robot experience
the effect on tactile and visual signals of grasps suggested by a
teacher, and letting the robot verify which grasps can be used to
rigidly control the object. We consider models defined on several
subspaces of our input data – e.g., using tactile perceptions or
pose information only. Our experiment demonstrates that joint
tactile and pose-based perceptions carry valuable grasp-related
information, as models trained on both hand poses and tactile
parameters perform better than the models trained exclusively
on one perceptual input.

I. INTRODUCTION

This paper studies the exploitation of tactile, visual, and
proprioceptive data for assessing stability in both planning and
executing grasps.

Grasp planning relies on (1) the extraction of information
from the agent’s environment (e.g., through vision), and on
(2) the recovery of memories related to the current envi-
ronmental configuration (e.g., previous attempts to grasp a
particular object). Because of the uncertainty inherent to these
two processes, designing grasp plans that are guaranteed to
work in an open-loop system is difficult. Grasp execution
can thus greatly benefit from a closed-loop controller which
considers sensory feedback before and while issuing motor
commands.

Humans make extensive use of input from several sensor
modalities when executing grasps [2, 3]. Clearly, vision is
one of the modalities which contribute substantially to grasp
control and stability [4, 5, 6]. Touch is another one, as
supported by numerous studies which show the influence of
tactile feedback on different grasp sub-processes [2, 3, 7,
1, 8]. For example, Johansson and Westling [7] have shown
that anesthetizing a subject’s fingers – thereby impairing his
sense of touch while leaving his motor capabilities intact –
directly leads to a loss in the subject’s proficiency in grasping
and lifting up objects. These observations are reflected in
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Fig. 1: Reproduction of “Predictive ‘feed-forward’ sensory
control of manipulation”, from R. Johansson [1], Fig. 5,
p. 56. In Johansson’s work [1], the sensorimotor planning
and execution of manipulative tasks is formalized with a
closed-loop system which integrates dynamic touch and visual
perception with sensorimotor memories. A manipulative action
is planned from visual input, which triggers an appropriate
learned action program. As motor commands are being issued,
sensor signals are continuously compared to values predicted
by an internal forward model, which permits the detection of
unexpected events. In turn, unexpected events trigger recovery
procedures and the refinement of the forward model.

the work of Johansson et al. [2, 7, 1] who presented an
empirical formalization of the human grasping behavior as a
closed-loop system involving visual and touch feedback and
a memory-based controller, see Figure 1. A key part of this
work emphasized humans’ ability to predict the repercussion
of manipulative actions onto sensory channels by means of
a (learned) forward model, thereby allowing us to react to
unexpected situation and maintain grasp stability.

In robotics, vision-driven grasping and manipulation have
been extensively studied [9, 10]. Vision has typically been
used to plan grasping actions, and to update action parameters
as objects move. Touch-based grasp controllers have also been
studied, with emphasis on designing programs for controlling
finger forces to avoid slippage and to prevent crushing objects
[11, 12, 13].

In this paper, we discuss means of learning some of the
models and sensorimotor programs which contribute to the
system depicted in Figure 1. By observing the sensor signals
issued during the execution of grasps demonstrated by a
human, our agent learns what it feels like to grasp an object
from a specific side, and learns which grasping configurations



lead to a stable grasp. When planning a grasp, the agent
is able to compute an initial estimate of the stability of
the planned grasp. As the grasp is being executed and the
manipulator’s fingers are brought around the object, the pose
(3D position and 3D orientation) of the object is continuously
tracked. When fingers come in contact with the object, afferent
tactile signals are compared to the signals predicted by the
learned feed-forward model for the current object-gripper
configuration, yielding an updated estimate of the stability of
the grasp. In a learning scenario, the agent can then proceed
with an attempt to transport and shake the object to gather
an empirical confirmation of its stability assessment, possibly
updating the feed-forward model. During execution, if the
stability estimate is too low, the agent may decide to move
the manipulator to a better configuration before lifting up the
object.

In mathematical terms, our agent learns an empirical rep-
resentation of pose- and/or touch-conditional grasp success
probability. This model predicts the stability of a grasp from
tactile data and/or object-gripper pose parameters. We consider
models defined on several subspaces of our input data – e.g.,
using only tactile perceptions or pose information. Models
are optimized and evaluated with f -fold cross-validation. This
model is presented in Section III.

To our knowledge, learning grasp controllers jointly from
live visual and tactile feedback has not been attempted before.
This experiment poses a number of technical challenges. As
an object will often move while the robot is closing its hand
to grasp it, the agent needs to track the pose of the object
during the grasp, which is made difficult by the partial object
occlusions effected by the robot hand. Section IV presents an
overview of the robotic system we implemented to run our
experiment.

We present an experiment that demonstrates that tactile per-
ceptions carry valuable grasp-related information, as models
trained on both hand poses and tactile parameters can perform
better than the models trained exclusively on hand poses or
tactile signals.

II. RELATED WORK

Our work is related to vision-based grasp planning, tactile
sensing, and robot learning.

Grasp planning is often approached by approximating object
shape with a number of shape primitives such as boxes,
cylinders, cones, spheres [14] and superquadrics [15] in order
to limit the number of possible grasps and prune the search
space to find stable grasps. Borst et al. [16] reduced the number
of candidate grasps by generating random grasps dependent on
the object surface and filtering them with a simple heuristic.
Ciocarlie et al. [17] reduced the configuration space of a
robotic hand to find pre-grasp postures from which the system
searched for stable grasps. Grasp planning was also perfomed
by using databases. Goldfeder et al. [18] demonstrated a grasp
planner that used global similarity between a 3D model and
the objects in a large database of 3D objects and grasps based
on the intuition that similar objects were likely to have similar

grasps. Li et al. [19] utilized a user-created database of human
grasps. After a shape matching algorithm found the hand
shape that best matched the query object, the alignment of the
hand pose to the object shape was determined. The resulting
candidate grasps were clustered and pruned depending on the
task.

Learning aspects were considered in the context of grasp-
ing some of which focus on understanding human grasping
strategies. Ekvall et al. [20] demonstrated how a robot system
could learn grasping by human demonstration using a grasp
experience database. The human grasp was recognized with
the help of a magnetic tracking system and mapped to the
kinematics of the robot hand using a predefined lookup-table.
Learning was also used to infer good grasping configurations
based on visual input. Saxena et al. [21] introduced a system
that learned grasping points by using hand labeled training data
in the form of image regions which indicated good grasping
points. A probabilistic decision system was then applied to
previously unseen objects to determine a good grasping point
or a region. Detry et al. [22] used vision to create grasp affor-
dance hypotheses for objects and refined the grasp affordance
hypotheses through grasping. The result was a set of grasps
that would produce good grasps on a specific object. Erkan
et al. [23] presented a probabilistic approach to model the
success probabilities of grasp configurations obtained from
visual descriptors and combined active and semisupervised
learning to tackle the scarcity of labeled grasps.

In our work, we propose a system that learns to differentiate
between successful and unsuccessful grasping configurations
based on online visual and tactile feedback. The visual feed-
back is obtained by using a real-time tracker during grasping.
We demonstrate the feasibility of our system on multiple
objects.

Tactile sensing was used for various purposes in prior stud-
ies. For example, tactile sensing was used to maximize contact
surfaces to remove a book from a bookshelf [24]. Application
of force, visual and tactile feedback to open a sliding door
was proposed by Prats et al. [25]. Tactile information was also
used to determine object pose [26], the surface type (edge, flat,
cylindrical, sphere) of the tactile contact [27] and deformation
properties of objects [28]. Object shape was also extracted
based on tactile feedback. Bierbaum et al. [29] performed
a tactile exploration strategy with an anthropomorphic five-
finger hand guided along the surface of previously unknown
objects and a 3D object representation was built based on
acquired tactile point clouds. Recognition of manipulated
objects with tactile sensors was studied by using multiple
grasp or manipulation attempts to learn the object shape from
haptic signals. Schneider et al. [30] presented a bag-of-words
approach to identifying objects using touch sensors available
on a two-finger gripper. The approach processed tactile images
collected by grasping objects at different heights. Gorges et
al. [31] followed a similar approach for a humanoid hand by
using features extracted from the tactile images in conjunction
with the hand joint configurations as input data for the object
classifier. Schöpfer et al. [32] used entropy to study the



Fig. 2: Experimental robotic platform, composed of an indus-
trial arm, a three-finger gripper equipped with tactile sensing
arrays, and a camera. There are six tactile sensing arrays. The
rightmost image shows an example of tactile readings obtained
during a grasp.

performance of various features in order to determine the most
useful features in recognizing objects using a plate covered
with tactile sensor as the manipulator.

Differently from the aforementioned approaches, we are
using tactile feedback to reason about grasp stability before
further manipulating the object.

III. LEARNING GRASP STABILITY

Our aim is to infer grasp stability from the tactile imprints
and the object-gripper configuration available before lifting up
an object, and to provide the agent with means of learning
from experience of how to make stability assessments.

A. Perceptual Input

Our robot platform is composed of an industrial arm and a
three-finger hand, see Figure 2. Tactile imprints are delivered
by pressure-sensing arrays deployed on the hand. Each of
the hand’s three fingers is composed of two segments, both
covered by an array, yielding a total of 6 tactile arrays, see
Figure 2. The tactile data is relatively high-dimensional and
to some extent redundant. Therefore, we start by representing
the acquired data as features. Here, we borrow some ideas
from image processing and consider the two-dimensional
tactile patches as images. We employ image moments as a
suitable representation which also reduce the dimensionality.
The general parameterization of image moments for one tactile
array A is given by

mp,q =
∑

i

∑

j

ijAij (1)

where p and q represent the order of the moment, and i and j
represent the horizontal and vertical position on the tactile
patch. We compute moments up to order two, (p + q) ∈
{0, 1, 2}, which yields 6 numbers that model the total pressure
and the distribution of the pressure in the horizontal and
vertical direction. We denote a tactile input vector by t. Such
a vector contains moments from the six tactile pads and
therefore holds 6× 6 numbers.

Through visual and proprioceptive feedback, our platform
is able to acquire object and gripper poses in real time.
Gripper poses are simply obtained from the kinematics of
the robot. Obtaining object poses is more challenging. As an

object will often move while the robot is closing its hand to
grasp it, the agent needs to compute the pose of the object
after having closed the hand around it. This computation is
made difficult by the partial object occlusions effected by
the hand. Our aim however is not to get perfectly accurate
pose information, but rather a rough idea of how the object is
approached. We address this issue by tracking the movement
of the object for the complete duration of the grasp. We are
currently using a system which tracks the pose of a textured
CAD model in a monocular video stream [33]. Tracking object
textures greatly helps handling partial object occlusions and
distractions induced by the hand.

We aim at designing a stability predictor that is indepen-
dent of the position of an object. For this reason, we do
not predict stability from the manipulator and object poses
directly. Instead, we base our predictions on the relative object-
manipulator pose. Object-relative manipulator configurations
allow our system to encode notions such as “grasping a bottle
from the side is better than grasping it from the top.” However,
stability will often not only depend on the relative object-
gripper configuration, but also on the absolute orientation of
the object. When an elongated object lies on a flat surface, it
is generally better to grasp it close to its center of mass. Yet, if
the object is standing, grasping it near its tip is acceptable. As
a result, we also base our predictions on the angle between the
gripper’s approach vector and a direction aligned with gravity.

B. Stability Classification

We predict grasp stability with object-specific classifiers
trained to discriminate between percepts that lead to stable
or unstable grasps for a specific object. Our agent learns
an empirical representation of pose- and touch-conditional
grasp stability probability. This model is learned from a set
of examples denoted by

Z = {(xi, yi)}i=1,...,n (2)

where each pair (xi, yi) is composed of perceptual readings
xi ∈ Rd (pose and touch) and a binary stability label
yi ∈ {stable, unstable}. Perceptual data are read during the
execution of a grasping plan, shortly after the agent closed
the manipulator’s fingers around the object, but before any
attempt to lift or transport the object. The probability of pose-
and touch-conditional grasp stability is modeled with kernel
logistic regression (KLR). In the next paragraph, we give an
intuitive explanation of KLR applied to our problem. A short
formal description follows. For further details on the theory
behind logistic regression and kernel methods, we refer the
reader to the work of Yamada et al. [34], Erkan et al. [23],
and Schölkopf and Smola [35].

KLR models the stability probability of a grasp character-
ized by a perceptual vector x with the help of a weighted sum
of the similarities between x and each vector in the training
dataset Z. The weights associated to stable grasps will gener-
ally be positive, while those associated to unstable grasps will
be negative. If x resembles percepts of Z that lead to stable
grasps, its probability of stability will thus be high. In order to



restrict values to the [0, 1] interval, KLR models probabilities
by plugging the weighted sum described above into the logistic
function f(z) = 1

1+e−z , which smoothly grows from 0 to 1
as its argument varies from minus infinity to infinity. Weights
are usually chosen to maximize the probability of the training
set.

Formally, we model the probability of pose- and touch-
conditional grasp stability as

p(y = stable|x; v) = 1

1 + exp {−∑n
i=1 viK(x, xi)}

(3)

where p(y = stable|x) is the probability of success of a grasp
characterized by the tactile and pose vector x, K is a kernel
function that models the similarity between two perceptual
readings and v is a weight vector chosen to maximize the
regularized stability probability of the data

−
n∑

i=1

log p(yi|xi; v) + c trace(vKvT ) (4)

where K is the kernel Gram matrix, with Kij = K(xi, xj),
and c is a constant. This problem can be solved, e.g., with
Newton’s method. For more details, we refer the reader to the
work of Yamada et al. [34]. In the experiments below, the
constant c is chosen by cross-validation.

C. Kernel Function

As explained above, we consider perceptual signals in the
form of tactile readings, relative object-gripper configurations,
and an angle that represents the tilt of the hand’s approach
vector relative to gravity.

A vector x representing perceptual observations can be
written as

x = (t, g, a) (5)

where t is the tactile data, g is the object-relative gripper pose,
and a is the angle between the approach vector and the vertical.
The kernel K is defined as

K(x1, x2) = Kt(t1, t2)Kg(g1, g2)Ka(a1, a2). (6)

The kernel function Kt simply corresponds to a multivariate
isotropic Gaussian function

Kt(t1, t2) = G(t1; t2, σt), (7)

where σt is a bandwidth parameter. In the next section, an
optimal bandwidth is computed by cross-validation.

An object-relative gripper pose is composed of a 3D position
and 3D orientation. We define the gripper pose kernel Kg
as the product of a position and an orientation kernel. Let
us denote the decomposition of a pose g into position and
orientation by p and o respectively. We define Kg with

Kg(g1, g2) = G(p1; p2, σp)
eσo o

T
1 o2 + e−σo o

T
1 o2

2
(8)

where G is a trivariate isotropic Gaussian kernel, the fraction
corresponds to a pair of antipodal von-Mises Fisher distri-
butions (Gaussian-like distribution on the rotation group [36,

(a) “Bottom” seed grasp (b) “Middle” seed grasp

Fig. 3: Seed grasps for a detergent bottle. Each seed grasp is
shown when the bottle is standing and lying.

(a) “Middle” grasp (b) “Tilted” (c) “Top”

Fig. 4: Seed grasps for a coffee pot.

37]), and the bandwidths σp and σo are fixed to allow for
deviations of 20 mm and 20◦ respectively. For a more detailed
mathematical description and motivation of SE(3) kernels, we
refer the reader to the work of Sudderth et al. [37].

The kernel function Ka corresponds to a Gaussian function

Ka(a1, a2) = G(a1; a2, σa), (9)

where σa is a bandwidth parameter. In the next section, an
optimal bandwidth is computed by cross-validation.

IV. EXPERIMENTS

In this section, we present the perceptual data collected
by the robot (392 grasps in total), and we discuss classifi-
cation error rates for pose-based classification, tactile-based
classification, and tactile-and-pose–based classification. We
present in Section IV-A an experiment in which the agent
explores grasping configuration around grasps demonstrated
by a human. In Section IV-B, the agent tries grasps uniformly
along one edge of an object.

A. Exploration around Demonstrated Grasps

We ran the first experiment on the two objects shown in
Figure 3 and Figure 4. For each object, we demonstrated to
the agent sets of two and three “seed” grasps that should be
interesting to explore. Each of these grasps was parametrized
by the pose of the hand with respect to the object. The agent
was then tasked to explore the objects around these grasps.
Each grasp trial worked as follows: An object was laid in
front of the robot, at an arbitrary position. The standing/lying
configuration of the objects also varied. For instance, Figure 3
shows the detergent bottle grasped when standing and when
lying on the table. The agent estimated the pose of the object
and selected one of the seed grasps available for that object.



Fig. 5: Examples of grasps and associated tactile readings. Greyscale patterns correspond to the readings obtained from the
frontmost distal array. The rightmost image of each image pair shows an overlay of the object’s shape model aligned to the
pose computed by the pose tracker [33].

Let us denote that grasp by gs. In order to explore the object in
the neighborhood of gs, the agent generated a random grasp
ĝr from P (gr) ∝ Kg(gs, gr), where Kg is defined by Eq.
8. In effect, this lead the agent to explore grasps distributed
a few millimeters/degrees away from gs. The grasp gr was
executed by the robot. As the hand is rather big with respect
to the objects, only two fingers were used. Grasping was run
by simultaneously closing the fingers and applying a constant
closing force on all joints. Once the hand had stopped, the
agent recorded the pose of the object (which was usually
different from the initial object pose) and the tactile imprints.
It finally attempted to lift up the object. If lift-up could be
achieved robustly, the grasp was marked as stable. If the object
slipped or rotated in the hand while being lifted up, the grasp
was marked unstable.

For the detergent bottle of Figure 3, seed grasps were
defined at half height, and at the bottom end. Both seed grasps
were explored in standing and lying configurations. The seed
grasps of the coffee pot are shown in Figure 4. For standing
configurations, all three seed grasps were explored. When
lying on the table, only the “middle” was tried.

In this experiment, a total of 342 grasps were collected,
i.e., 232 and 110 for the detergent bottle and the coffee pot
respectively, with half of these stable and the other half unsta-
ble. Each grasp i consists of the grasp’s perceptual readings
ti, gi, ai as defined by Eq. 5. For each object, tactile moments
ti were normalized to zero mean and unit variance. In order
to evaluate the relevancy of tactile and visual feedback for
stability estimation, we studied rates of correct classification
for classifiers based on (1) tactile feedback alone, (2) pose
feedback alone, and (3) both tactile and pose together. We
note that as pose parameters cannot be shared across objects,
each classifier is specific to one object – a classifier is learned
and evaluated with the data collected for a single object.
Stability classification was computed from the probabilistic
stability model defined above (3). A grasp characterized by
x was predicted to be stable if P (y = stable|x) > 1

2 .
When classifying on tactile imprints or pose exclusively, the
kernel of Eq. 6 was redefined as K(x1, x2) = Kt(t1, t2) or
K(x1, x2) = Kg(g1, g2)Ka(a1, a2) respectively. We computed
success rates by ten-fold cross-validation. Cross-validation was
run for several values of the tactile kernel bandwidth parameter
σt (values between 0.5 and 5), and several values of the

Detergent Coffee pot

Tactile feedback only 82% 82%

Pose feedback only 90% 73%

Pose and tactile feedback 93% 82%

TABLE I: Correct classification rates from ten-fold cross-
validation of three variants of the stability classification model
for the detergent bottle and coffee pot.

regularization constant c (see Eq. 4). Rates obtained with the
best parameters are presented in Table I. For the detergent
bottle, considering pose and tactile feedback jointly yields a
higher classification rate than considering either pose or tactile
alone. The bottle was explored around two seed points, both
when standing and lying. When standing, both seed grasps
lead to stable and unstable grasps. However, when lying, most
grasps around the bottom of the bottle were unstable, while
grasps around its center were both stable and unstable. Tactile
feedback alone can difficultly make a difference between a
grasp applied to the bottom of the bottle while it is standing
or lying. For these grasps, the pose information (in the form
of the angle of the grasp approach with the vertical) allows
the classifier to separate stable and unstable grasps. For grasps
applied around the center of the bottle, pose information allows
the model to make reasonably good predictions, but taking
tactile feedback into account refines these predictions.

For the grasps tried on the coffee pot, tactile feedback
provides a better classification than pose, and considering both
tactile and pose yields the same rate as tactile alone. The
coffee pot is a rather light object compared to the detergent
bottle. As a result of its low weight, the dependency of grasp
stability on the standing/lying configuration of the object was
less important than for the bottle. Tactile imprints however
provided equally good stability assessments.

We also evaluated classification rates as a function of the
amount of data available to the agent. Using fixed values for
σt and c, we ran ten-fold cross-validations on increasingly
large subsets of the collected data. We considered fractions
of the data going from 20% to 100% of the total collected
data, for each of which we ran multiple cross-validations. The
mean classification rates are shown in green in Figure 6. These
graphics show that for the detergent bottle, even small numbers
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(c) Detergent bottle, tactile and pose feedback
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(f) Coffee pot, tactile and pose feedback

Fig. 6: Rates of correct classification as a function of the available amount of data.

Fig. 7: Illustration of the grasps executed by the robot. The left
image shows a “middle” grasp, which always succeeded, while
the right image shows an “extremity” grasp which always
failed. The object was continuously explored between these
two points.

of examples allow for robust pose-based classification. For the
coffee pot, collecting more data allows for more robust pose
predictions. Red-shaded areas show one standard deviation. In
all cases, the variance of the predictor decreases as the number
of examples increases.

B. Exploration along the Top Edge of a Box

In the second experiment, the agent explored grasp poses
distributed alongside the top side of a box (see Figure 7).
Our aim with this experiment was to study how the transi-
tion between stable and unstable grasps occurred, and how
accurately it was reflected by pre-grasp perceptual data. The
wrist poses of the grasps executed by the robot were demon-
strated by a human by teleoperation. The box was grasped
by simultaneously closing the two fingers and continuously
applying a constant closing force on all joints. A total of 50
grasps were executed, amongst which 25 were stable and 25
were unstable. Grasps applied near the middle of the top face
of the box were always stable (see left image in Figure 7).
As grasps were tried closer to the extremity of the box, they
remained stable for a few centimeters, then abruptly became

unstable. Unstable grasps were characterized by a rotation of
the object when the robot tried to lift it up.

Stability classification was evaluated as explained above.
Classification rates computed from tactile data alone yielded
a 94% rate. Rates computed from pose data alone, and from
pose plus tactile data, lead to 100% correct predictions. Several
comments can be made on these results. First, pose perfectly
separated stable grasps from unstable ones. We note however
that in our setup, the camera is pointed directly at the objects,
and the objects cover a large fraction of the camera’s field
of view. If the camera were to cover a larger field, such
as the whole robot workspace, pose estimation would be
less accurate, and pose-based classification would be less
reliable, therefore motivating the use of additional perceptual
modalities. Second, in this experiment, tactile imprints can
discriminate surprisingly well grasps applied on both ends of
the box. Although this discrimination may be useful in certain
situations, it is likely that it is limited to the specific part of the
box that was explored by the robot. As discussed below, one
of our future aims is to learn models that characterize a part of
an object, and which would thus be applicable to novel objects
that share the same part. In this context, it will be interesting
to study how tactile characterizations such as those learned for
the box, or the objects of the previous section, generalize to
novel objects.

V. CONCLUSION

This paper studied the viability of concurrent object pose
tracking and tactile sensing for assessing grasp stability on
a physical robotic platform. We presented a kernel-logistic-
regression model of pose- and touch-conditional grasp success
probability, and a robotic platform that can track the pose of
an object while it is grasping it, and that can acquire tactile



imprints of the grasps it executes. We showed that the robot is
able to use data collected by human demonstrations to learn
grasp stability classifiers. Our results showed that stability
assessments based on both tactile and pose data can provide
better rates than assessments based on tactile data alone.

Because models rely on the pose of an object, each model
that the agent learns is only usable with that particular object.
It is not realistic to imagine that an agent would learn different
model of every object that exists. To overcome this limitation,
we project to learn models that characterize only a part of an
object, and which would thus be applicable to novel objects
that share the same part.
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