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In previous years, WP6 investigated how situated dialogue could be used
in human-robot interaction to help the robot learn more about its environ-
ment. This involved grounding dialogue in multi-agent models of beliefs and
intentions, dealing with the uncertainty and incompleteness in these models,
and communicating about the content in these models at different levels of
granularity. These dialogues were typically tutor-driven. In Year 4, WP6 ex-
plored topics that have to do with robot-initiated dialogues. We investigated
issues in common ground and transparency that help a robot to make use of
its dialogue capabilities to explain its internal state and past actions to its
user as well as to learn about the world by asking for missing knowledge or
for clarifying uncertain knowledge. Furthermore, Year 4 was used to consol-
idate longer-term efforts originating in previous project periods, such as a
software toolkit for natural language dialogue processing for talking robots.
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1 Tasks, Objectives, Results 1
1.1 Planned work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Actual work performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Abductive dialogue interpretation . . . . . . . . . . . . . . . . . . . 3
1.2.2 Common ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Verbalization of plans . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Additional work performed . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Software toolkit for situated dialogue processing . . . . . . . . . . . 8
1.3.2 Outreach: state-of-the-art in expectations, intentions, and actions

in human-robot-interaction . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Relation to state-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Annexes 12
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Executive Summary

One of the objectives of CogX is self-extension. This requires the robot to
have an intrinsic motivation – “curiosity” – to gather information, in order
to acquire new and revise old knowledge. One of the sources of information
about the world is dialogue. For dialogue to work, the robot needs to be
able to establish with a human some form of mutually agreed-upon under-
standing, a common ground. This requires the robot to provide transparency
about its actions and goals, as well as interpreting the intentions of its in-
terlocutor. The overall goal of WP6 is to develop adaptive mechanisms for
situated dialogue processing, to enable a robot to establish such common
ground in situated dialogue.

In Year 1, WP6 investigated how a robot could carry out a situated
dialogue with a human, about items in the world it needed to learn more
about. The robot was able to formulate questions against a multi-agent
model of situated beliefs, indicating what it did and did not know – and
what it would like to know. The robot was able to represent and reason with
uncertainty in experience, but it was relatively fixed in the strategies it would
follow to communicate with the human about resolving the uncertainty.

In Year 2, WP6 investigated several issues in how to make dialogue
behavior more adaptive. This covered several aspects: (1) Making dialogue
strategies more adaptive, and (2) varying how much a robot needs to describe
to be optimally transparent.

Throughout Years 1 and 2 we assumed the robot to have a fixed set of
communicative competences, particularly where it concerned grammatical
resources. Practically this meant that, even though the robot was still learn-
ing more and more about the world, it already knew how to talk about it. In
Year 3, WP6 shifted its focus on taking the CogX objective of self-extension
to the realm of situated dialogue processing as well. Making use of large
ontologies and on-line resources for modeling common sense indoor knowl-
edge (OMICS, WordNet, Bing image search) provided a powerful means for
large-coverage resources for communicating about indoor environments. At
the same time, we broadened the scope of self-extension in situated dialogue
to the aspect of language acquisition per se.

In Year 4, WP6 investigated issues in common ground and transparency.
We focused on verbalizing a robot’s internal state and background knowl-
edge, and integrating that functionality into human-robot interaction. This
helps the robot to explain its internal state and past actions to its user, and
to learn about the world by asking for missing knowledge or for clarifying
uncertain knowledge. The result is a context-adaptive approach for clarifi-
cation and explanation (Task 6.7), based in a robot’s own understanding of
what it does (not) know, and what it can (or cannot) attribute to a human
it interacts with. The robot can initiate these kinds of dialogue itself, moti-
vated by its own curiosity (Milestone M6.5). Over and beyond these efforts,
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we consolidated our longer-term efforts originating in previous project peri-
ods, resulting in a software toolkit for natural language dialogue processing
for talking robots (TaRoT).

Overall, the work in WP6 has led to a comprehensive theoretical and
practical framework for situated dialogue, in which we have paid particular
attention to issues in self-extension and introspection in and through dia-
logue. Our story of the situated nature of spoken dialogue in human-robot
interaction is based in a situationally, socially, and epistemically perspec-
tivized (i.e. “asymmetric”) notion of common ground (Yr4) and acquisition
(Yr3), and a cross-modal view on the relation between linguistic and extra-
linguistic information. We consider situated dialogue in the larger context of
a collaborative activity, using common ground and cross-modal connections
between information to establish intention, intension and denotation for ut-
terances – both for comprehension, and production, and for entities it does
or does not know about. The robot can verbalize and clarify this knowledge,
in context-adaptive ways, to establish transparency in common ground with
the user (introspection), and to drive deliberated, self-motivated forms of
learning (self-extension).

Role of Situated Dialogue in CogX

CogX investigates cognitive systems that self-understand and self-extend.
In most of the scenarios explored within CogX such self-extension is done in
a mixed-initiative, interactive fashion (e.g. the George and Dora scenarios):
the robot interacts with a human, to learn more about the environment.
WP6 contributes situated dialogue-based mechanisms to facilitate such in-
teractive learning. Furthermore, WP6 explores several issues around the
problems of self-understanding and self-extension in the context of dialogue
processing. The dialogue capabilities provided by WP6 enable the robot to
conduct situated dialogues for interactive learning based on its own curios-
ity. The models for spatially situated dialogue are grounded in the spatial
models developed in WP3 (see also DR.3.3 and DR.3.4, especially [41]).
The approach to continual abductive dialogue interpretation has a strong
relation to WP4, in that it is inspired by the continual planning approach
taken in that WP. At the same time, verbalization of past, ongoing, and
past actions is grounded in the planning representations developed in WP4.

Contribution to the CogX Scenarios and Prototypes

The work of WP6 presented in this deliverable, DR.6.5, contributes directly
to the George and Dora scenarios, in relation to work performed in WP1
(generating motivation goals from dialogue), WP3 (Qualitative spatial cog-
nition), WP4 (Planning of action, sensing and learning), WP5 (Interactive
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continuous learning of cross-modal concepts), and WP7 (Scenario-based in-
tegration). In particular, DR.7.3 reflects the work from WP6 in the sys-
tematic use of dialogue as a means of knowledge gathering and clarification,
and for establishing transparency. DR.7.4 (especially [31]) describes a robot
that is capable of continuous learning of visual concepts in dialogue with a
tutor. These learning dialogues can be initiated by the human tutor or by
the system itself.
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1 Tasks, Objectives, Results

1.1 Planned work

The overall goal of CogX is to arrive at a theory of cognitive robots which are
capable of self-understanding and self-extension. During the last years, WP6
worked on adaptive mechanisms for situated dialogue processing that would
enable a robot to discuss with a human what it did and did not understand
about the world. And, thus, through such dialogue, it could gain information
to help it learn more. While in the previous years, such dialogues were
mainly tutor-driven, the focus in Year 4 is on robot-initiated dialogues. The
planned work for WP6 in Year 4 is to support curiosity-driven self-extension
through situated dialogue and to provide means for making the robot’s self-
understanding transparent by verbalizing explanations of its internal states,
its decision-making and actions.

Task 6.7 Adaptive strategies for clarification and explanation. To-
wards the end of the project, the robot’s learning is primarily curiosity-
driven. This is an advance in that it now actively needs to initiate
dialogues, if it wants to interact with other agents. We therefore want
to investigate (adaptive strategies for) clarification and explanation,
more from the engagement-level [30], to address the issue of how to
set the context for a clarification request (i.e. scaffolding it), to avoid
“out-of-the-blue” behavior.

Milestone M.6.5 Mixed initiative situated dialogue-guided curios-
ity. The system will be able to initiate and drive situated dialogues for
interactive learning based on its own curiosity.

Objective 2 Specific representations of beliefs about beliefs for the specific
cases of dialogue, manipulation, maps, mobility and some types of vi-
sion. [WPs 2,3,6]

Objective 3 Representations of how actions will alter the belief state of the
cognitive system, and those of other agents, as represented in the first
two objectives, i.e. models of the effects of actions on beliefs about
space, categorical knowledge, action effects, dialogue moves etc. [WPs
1,2,3,4,5,6]

Objective 9 Methods that enable a robot to represent and reason about its
beliefs and those of other agents to support natural dialogue and to
extend its own abilities and understanding. [WP 6]

Objective 11 A robotic implementation of our theory able to complete a
task involving mobility, interaction and manipulation, in the face of
novelty, uncertainty, partial task specification, and incomplete knowl-
edge. [WPs 2,3,6,7]
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1.2 Actual work performed

In Year 4 we developed new approaches for verbalizing a robot’s internal
belief state, reflecting what it does and does not know, and what it has
done so far. We have integrated this type of verbalization into our general
approach to situated dialogue processing. This involves tying it in with
our algorithms for situated referring expression generation and resolution,
and anchor progression. The primary function of this verbalization is to
make the robot’s understanding of, and reasoning about, the world more
transparent to the user (Task 6.5). This aids building up and maintaining
common ground in human-robot interaction, which is crucial if the robot
is to successfully use dialogue to obtain information from a human user
(Milestone M6.5).

We have achieved this task, and the corresponding milestone, as follows:

1. Building on earlier WP6 work we have further developed our abduction-
based approach to continual dialogue understanding (§1.2.1). This
makes it possible to reason explicitly with knowledge gaps, be they
attributable to the human or the robot itself, and their possible res-
olution through dialogue as a form of action within a collaborative
activity.

2. The very fact that we have knowledge gaps, and the obvious observa-
tion that robots and humans experience reality differently, have led us
to reconsider the notion of common ground (§1.2.2). Already in earlier
work on our abductive model we dropped the assumption on symmetry
between dialogue participants. We have now taken this to its logical
consequences, and built up a model of common ground which starts
from asymmetry in the social, situated, and epistemic factors which
play a role in common ground.

3. Finally, it is against this “asymmetric” background that we then con-
sider verbalization of internal state (§1.2.3). This state covers robot
beliefs, and past actions leading up those beliefs. The function of such
verbalization in dialogue is to explain what the robot believes, and
why it believes what it believes. This transparency, realized as a sub-
dialogue clarifying what the robot would like to know and why, then
provides the scaffolding for whatever question the robot is motivated
to ask (mixed-initiative dialogue).

A (partly stylized) example of such a sub-dialogue is as follows.

1. I moved from the lab to the kitchen,

2. to look for cornflakes
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3. I have searched for the cornflakes,

4. but I am unable to find them.

5. Could you tell me where the cornflakes are?

The example illustrates the verbalization of different plan/action steps
(1,3), reasons (2), and outcomes (4). This provides a background for for-
mulating the final question (5). Annex 1.2.3 describes in detail how the
sub-dialogue in (1)–(4) can be generated from a plan and its execution trace.

With this we also answer the reviewers comments, pertaining to WP6:

[T]he methods for interpreting and producing referring expres-
sions still need some work and are not yet a particularly con-
vincing showcase of the very interesting model of situated dia-
logue being developed in the project.

The work performed in Year 4 in WP6 (and through the integration
in WP7) brings back many of the different strands worked on over the
years. Using the integrated system functionality, we can now showcase our
approach in various complex settings in human-robot interaction for self-
extension.

The work performed in this WP meets several main objectives of CogX.
The approaches to abductive dialogue interpretation (§1.2.1) and modeling
common ground (§1.2.2) make contributions to Objectives 2, 3, 9 by provid-
ing methods for representing and reasoning about the beliefs of the robotic
agent and other (human) agents it interacts with. The work on situated
plan and execution verbalization (§1.2.3) makes further contributions to ob-
jectives 3 and 9 by allowing the robotic agent to verbalize its past actions
and intentions, thereby allowing a human agent to understand the robot’s
behavior and beliefs. Transparency of a robot’s intentions and actions has
been further investigated in the context of a special journal issue (§1.3.2).
Additionally, the work on dialogue interpretation and verbalization has been
implemented in a software toolkit for talking robots (§1.3.1), which has been
deployed in the WP7 integrated systems (cf. Objective 11).

1.2.1 Abductive dialogue interpretation

In task-oriented dialogues between two agents, such as between two humans
or a human and a robot, there is more to dialogue than just understanding
words. An agent needs to understand what is being talked about, and it
needs to understand why it was told something. In other words, what does
the speaker intends the hearer to do with the information, in the larger
context of their joint activity? Language understanding can thus be phrased
as an intention recognition problem: given an utterance from the human,
how do we find the intention behind it?
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Abductive Reasoning for Continual Dialogue Understanding
Jańıček (Annex 2.1) presents an extended model of the abductive con-
tinual approach to situated dialogue understanding. This model draws
inspiration from the field of continual planning [6], by explicitly cap-
turing the possible knowledge gaps in such an interpretation. The idea
is based on the notion of assertion, an explicit test for the validity of a
certain fact, going beyond the current context. This makes it possible
to deal with both uncertainty and incompleteness in situated dialogue
processing.

Let us briefly discuss an example that uses this mechanism. A more
detailed example can be found in the article in Annex 2.1.

Suppose that a human user is dealing with a household robot capable
of manipulating objects (picking them up, putting them down). The robot
and the human are both looking at a table with a mug (“mug1”), and the
human wants the robot to pick up the mug. The human’s utterance, “Take
the mug” is first parsed and analyzed semantically, and its translation is
made part of the abduction context c, within which the robot tries to make
sense of the utterance. The inference establishes several alternative proofs,
and weighs them by the ”costs” (probabilities) for the individual facts and
assumptions appearing in a proof. The best proof is the one with the lowest
cost. Suppose that the best proof state returned by abduce is the following:

uttered(human, robot, event1) [proved ] (1)

proposition(event1, take) [proved ] (2)
intends(event1,human, I) [assumed(p = 0.9)] (3)

relation(event1,patient, thing1) [proved ] (4)
refers to(thing1, X) [asserted ] (5)

pre-condition(I, object(X)) [asserted ] (6)
post-condition(I, state(is-holding(robot, X))) [assumed(p = 0.7)] (7)

The proof is an explanation of the event in terms of a partially specified
intention I related to the task specified above. An explanation is defined by
its pre- and post-condition. The precondition is the existence of an entity
X, and the postcondition is the state in which the robot is holding the entity
X.

Assumptions are made with an assumability probability according to
the beliefs the robot currently maintains, and inferences it can make from
more general background knowledge (i.e. a rule base). In our approach the
assumability function is manually designed, but it is conceivable to learn
or infer it automatically. Reference resolution (i.e., does “the mug” refer
to mug1 or to some other referent?) is therefore essentially treated as an
abduction problem.

Note that the proof state contains two atoms marked as assertions. These
are the explicit gaps in the proof that make it a partial interpretation. They
are chosen by the domain engineer, and since they need to be verified (or
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falsified) by an external process, they form the interface to external knowl-
edge bases and decision-making, which will select some of the assertions,
and tries to verify them.

Suppose that the assertion (5) is tested first. This amounts to resolv-
ing the referring expression represented by thing1. Under the open-world
assumption, two interpretations are conceivable: the referent is mug1 or the
human might be referring to an object that is not part of common ground,
and the reference thus cannot be resolved. The commitment to one of these
interpretations is made by taking into account the probabilities and uncer-
tainties about the world that are represented in the robot’s beliefs.

The next assertion (6) expressed the presupposition accommodation that
there exists an object to which the human is referring. This opens the
possibility for further clarification in case the reference in (5) could not be
resolved with a sufficient level of confidence.

In case the reference has been resolved to mug1, but with low confidence,
the robot might ask “Did you mean I should take this object?” (pointing
at the mug, testing the hypothesis pre(I, object, mug1)).

Likewise, in case the robot abductively concludes that the human is
referring to an unknown mug, it might ask “Which object did you mean?”,
prompting the human to give an answer that would ultimately become the
proof of the test action for pre(I, object(X)).

Alternatively, the robot might simply bring the most likely object. The
human’s acceptance of the choice would then verify the assertion. This is,
again, a matter for consideration in the external planning and goal manage-
ment.

1.2.2 Common ground

In order to interpret what it is that is being communicated, one needs to
construct a meaning representation. In the processes of constructing mean-
ing, one can appeal to different sources of information. In situated dialogue,
these sources at least encompass the situation being described (focus sit-
uation); any other physical or discursive contexts, or common knowledge
(resource situations); and the ways in which the communication partners
take part in the dialogue (social situation) [11]. Figure 1 provides an exam-
ple.

The social situation in situated dialogue makes it clear that communi-
cation partners look at the world from different perspectives. Some of the
effort in communicating therefore goes into establishing a common ground
between partners. The point is to establish a mutual understanding of what
is being talked about, what is appealed to notably in reference to the world
[8, 7]. This is a dynamic process, in which partners coordinate and align
their beliefs [39, 28].
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Figure 1: Different situations in meaning: “Now it is to my right” appeals
in contrast to the previous situation (“now”), preceding dialogue (“it”), the
current situation (“is”), and the current social situation (“to my right”).

This need for common ground is not restricted to communication be-
tween humans. It holds just as much for human-robot interaction, where
understanding and facilitating different perspectives on the world is crucial
to establishing an effective collaborative context.

There is no Common Ground in Human-Robot Interaction
There is an inherent asymmetry to situated communication, especially
in human-robot interaction. Robots literally see the world differently.
This raises an important issue for how to model common ground be-
tween a human and a robot. Traditional approaches to common ground
adopt a possible worlds-like model theory, on which a shared belief rep-
resents the fusion of two private beliefs within a single model. This
silently assumes a symmetry in categories against which both private
beliefs can be interpreted: A symmetry which cannot be assumed for
human-robot interaction. Hence, on such a model, there is no common
ground between humans and robots. Kruijff (Annex 2.2) presents an al-
ternative model theory, which captures the inherently subjective nature
of experience. It is based on a notion of propositions-as-proofs, turn-
ing subjective interpretation as well as the projection to intersubjective
verification into a notion of inference or argumentation. Beliefs are
arguments, whether private, attributed or shared. This results in a for-
mulation of common ground as a dynamic structure of always argued,
but possibly only partially confirmed, or partially assumed, beliefs.

Common ground is a complex notion. Generally speaking, it is about
something between communicative partners: Namely, “shared understand-
ing.” Minimally, this is a shared understanding of the entities which have
been talked about, grounded in the (possibly situated) domain of discourse
[8, 7, 39]. After entities have been introduced into common ground, they are
accessible for reference. Naturally, there can be more to common ground. In
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task-oriented domains, common ground provides an interface between the
task domain itself, and the communication which mediates and coordinates
collaboration in that domain. Typically, this then leads to considering in-
tentions, plans, and tasks to be part of common ground as well. On top
of which we can essentially consider all that is implied by the concept of
situated meaning [11], illustrated e.g. in Figure 1. (And that would include
“commonsense knowledge,” e.g. what if the robot was discussing not an
edible apple, but a Mac?) As said, common ground is a complex notion.

1.2.3 Verbalization of plans

Interactive intelligent robots need to possess two important features: au-
tonomy and communication skills. Situated communication can comprise
different modalities, like, e.g., spoken dialogue. Autonomy can range from
simple reactive control loops to sophisticated goal-directed action planning
and execution. If the robot and its user are supposed to engage in some
form of collaborative activity – no matter if it is a cognitive assistant whose
main purpose is to support its human user, or if it is a curious robot whose
main drive is to learn about the world – the human crucially needs to be
able to know and understand the robot’s actions (past, present, as well as
intended ones) in as far as they are relevant for achieving a task at hand;
the robot’s autonomous decision-making and acting need to be transparent
to the human.

We consider the verbalization of plans as one way of achieving such
a transparency in situated discourse. In the context of CogX, we want
to endow our robots with the ability to tell a human user about present
objectives, what actions were executed in the past and what further actions
are planned.

Situated Plan and Execution Verbalization
We present an approach to verbalizing reports of intentions and actions
of a planner-enabled agent. We consider the case of an interactive
intelligent robot that is endowed with a symbolic AI planner. The robot
uses the planner to determine and execute sequences of actions in order
to achieve a given goal. Since the robot is operating in a real, physical
environment, making use of possibly imperfect sensing and actuating, it
is likely to encounter unforeseen events or failures, and therefore needs
to re-plan in order to come up with alternative plans for achieving its
goal. In order to tell a human about what was planned, what was and
was not successfully done, what happened – and why – we present a
method for generating natural language reports based on such intended
plans and the event structure of their execution. This verbalization
is inherently situated in nature. For one, external entities that are
used in the planning process refer to things, persons, or locations in
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the physical environment that the robot and the hearer are situated in.
Secondly, the robot’s intentions and actions are temporally related to
the discourse situation: the robot might report about its current plans
and attempts for executing an ongoing task; the robot might explain
what it did and what it couldn’t successfully do in order to establish
common ground for asking the human for help; or the the robot might
simply report about past events and give details about why it chose to
do what.

The approach has been implemented on the integrated robotic system
Dora [17]. Dora is programmed to exhibit a variety of intelligent behaviors,
among which other intelligent mechanisms might arbitrate. However, these
decisions might (initially) be intransparent to a human observer. We hence
want Dora to provide verbal reports of what it attempted to do and why
– thus establishing transparency about the complex spatio-temporal and
causal relationships of its actions and action attempts.

Dora is equipped with a switching symbolic-probabilistic AI planner [12],
able of continual planning and re-planning [6]. The approach is integrated
in the general natural language processing sub-system of Dora and shares
its linguistic resources with the other dialogue capabilities [19]. The ver-
balization module is connected to Dora’s spatial knowledge base in order to
refer to entities in Dora’s spatial environment [40, 41, 42].

1.3 Additional work performed

1.3.1 Software toolkit for situated dialogue processing

In CogX, we gathered substantial knowledge and experience in developing
functionality for situated dialogue processing. This extended the experience
we had already gained in the project preceding CogX, namely CoSy. In Year
4, we dedicated effort to consolidating this knowledge and experience in a
toolkit. This toolkit, called the Talking Robots Toolkit or tarot provides
a set of reusable functionalities and resources to build dialogue systems for
human-robot interaction.

TAROT– The Talking Robots Toolkit
tarot is an open-source software framework for building spoken dia-
logue functionality for human-robot interaction. tarot does not im-
pose a specific (cognitive) architecture for building a dialogue system.
Its framework allows for multi-threaded (or asynchronous) processing.
Processes are defined as glass boxes [25] (not black-boxes) and interact
in an event-driven fashion. tarot is written in the Scala program-
ming language and targets the Java platform. Annex 2.4 provides a
technical description.
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1.3.2 Outreach: state-of-the-art in expectations, intentions, and
actions in human-robot-interaction

Human-robot interaction as a scientific field has received much attention in
the past years. The research performed in the context of CogX, especially
concerning situated natural language processing and human-robot spoken
communication, draws from and directly contributes to this field.

One tangible and relevant outcome of this was that researchers from the
CogX consortium (Marc Hanheide, Geert-Jan M. Kruijff, Hendrik Zender)
organized the ICRA 2010 Workshop on Interactive Communication for Au-
tonomous Intelligent Robots (ICAIR). Its topics centered around making
robots articulate what they understand, intend, and do. Being a successor
to the ICRA 2008 Workshop on Social interaction with Intelligent Indoor
Robots (SI3R), it attracted researchers from different fields of robotics who
work on robots that communicate.

As a follow up to this workshop as well as to the HRI 2011 Workshop
on The Role of Expectations in Intuitive Human-Robot Interaction (Verena
Hafner, HU Berlin; Manja Lohse, Bielefeld U; Joachim Meyer, Ben-Gurion
University of the Negev, Israel; Yukie Nagai, Osaka U; Britta Wrede, Biele-
feld U), the editors of the International Journal of Social Robotics proposed
to organize a Special Issue on Expectations, Intentions and Actions, for
which Marc Hanheide, Manja Lohse, and Hendrik Zender served as guest
editors.

Journal of Social Robotics: “Expectations, Intentions & Actions”
This special issue (Annex 2.5) bundles recent advances in embodied
and situated social human-robot interaction. The key questions are
how meeting or failing to meet the user’s expectations influences the
efficiency and effectiveness of human-robot interaction; how more ef-
fective and efficient interaction with humans can be achieved using
modalities available to a robot; how robots can be equipped with models
enabling them to understand their users’ state of mind; and similarly,
how they can make their own expectations and states explicit through
eligible communication channels. Each of the seven contributed arti-
cles in this issue highlights different aspects around the central theme
of expectations, intentions, and actions in human-robot interaction.
The topics covered range from recognition of verbal and non-verbal
cues of intentions and expectations, to verbalization and presentation
techniques that make internal processing of the robot accessible to the
human.

1.4 Relation to state-of-the-art

Below we briefly discuss how the obtained results relate to the current state-
of-the-art. We refer the reader to the annexes for more in-depth discussions.
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Abduction Our approach to situated dialogue processing is based on our
ongoing research in dialogue as part of continual (“contingency-based”) col-
laborative activity ([23], and [24]). Dialogue modeling is connected to multi-
agent models of situation awareness. These models capture beliefs and in-
tentions, and their inherent uncertainty and incompleteness with respect un-
derstanding the environment. It is a strongly intention-oriented approach,
in the sense of [2, 1, 14, 29, 9]. It accords a strong role to common ground
in interaction [21, 20]. Core to the approach is abductive inference. This is
inspired by [34, 35, 33], but differs in that our approach does not assume
symmetry in understanding between the different dialogue partners. The
recent work reported in this deliverable illustrates how we take asymmetry
in understanding to dealing with partial information (Annex 2.1), and to
a reconsideration of the subjective and intersubjective nature of content in
common ground (Annex 2.2)

Common ground Understanding and facilitating common ground in human-
robot interaction has received substantial attention in recent years [21, 22,
20]. As put forward by several researchers [32, 38, 36, 27], common gound
is indeed crucial for establishing an effective collaborative context. Failure
to do so typically leads to a breakdown in communication, see e.g. [36, 29].
There is a large body of work on considering intentions, plans, and tasks to
be part of common ground [2, 14, 1, 29, 16, 3, 15, 9, 23]. The problem com-
mon to all these approaches is that they assume a symmetry between inter-
locutors: How the speaker sees and talks about the world is how the hearer
understands the world. This symmetry-assumption is explicitly stated in
e.g. [35]. We can also see it reflected in the formal aspects of the model
theories underlying these approaches. Common ground on a belief in propo-
sition p means that, in a single possible worlds model, we can reach a world
on which p holds from the worlds on which the private and attributed beliefs
about p hold. This is incorrect, as it assumes that the different interlocutors
have a single (symmetric) objective model for interpreting. This ignores the
fundamentally subjective nature of experience, and the inherent differences
between humans and robots. The algebraic model theory we propose here
overcomes these problems.

Plan and execution verbalization Brenner [4] describes the use of clas-
sical AI planning techniques for interpretation and execution of human com-
mands. He sketches how a robot can understand natural language (NL),
plan the realization and revise its plans based on new perceptions. Their
approach is similar to ours in that the goal is to couple planning symbols to
natural language semantics and surface forms. In contrast to the approach
presented in this paper, their approach focusses on understanding rather
than on generation.
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However, what we are interested in is the generation of natural language
from planned and executed goal-directed sequences of actions. One domain
where such an approach is chosen is story telling. Telling stories requires
methods from many subfields of artificial intelligence (AI), e.g. planning,
reasoning about beliefs, and dialogue systems. In [5] an approach to story
generation using a continual multi-agent planner is presented. The Virtual
Storyteller is another framework that generates simple story texts [37]. It is
based on simulation of virtual characters in a story world. An event sequence
is captured by a ‘Plot Agent’ in a formal representation. The representations
are similar to the plans in [5], i.e., STRIPS-like [10]. A ‘Narrator’ component
turns the representation into an actual story by selecting the content and
processing it with NLG techniques. Story telling and NLG are also brought
together in, e.g., [26].

Another system that verbalizes some kind of plans is PROVERB [18]. In
this work, mathematical natural deduction (ND) style proofs are verbalized.
As input there is a representation of a ND proof. It is processed by a
macro-planner to plan output that consists of primitive actions. The actions
can be defined as communicative goals they fulfill as well as their possible
verbalizations. Subsequently, more detailed linguistic decisions are made in
the micro-planning component. Syntactic realizations are done using Tree-
Adjoining Grammar (TAG). The final output then is the ND proof in natural
language.

When verbalizing plans and actions for autonomous robots, an additional
aspect comes into play: the agent’s observations are potentially incorrect
or incomplete, and execution (as well as execution failures) become a key
issue. In such a context it is desirable to have a formal way to determine
an explanation of why a plan went wrong and how the problem could be
solved. Göbelbecker et al. [13] provide a formalization regarding this issue.
The work presented here addresses the prerequisites for informing the user
about failures executing the plan and how the user could help to solve the
problems. In order to achieve this, we investigate appropriate strategies for
a suitable verbalization of the planned and performed actions in a way that
is understandable to a human user.
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2 Annexes

2.1 Jańıček, “Abductive Reasoning for Continual Dialogue
Understanding”

Bibliography Miroslav Jańıček. “Abductive Reasoning for Continual Di-
alogue Understanding.” In M. Slavkovik and D. Lassiter, editors, New Di-
rections in Logic, Language, and Computation. Springer, 2012 (to appear).

Abstract This paper presents a continual context-sensitive abductive frame-
work for understanding situated spoken natural dialogue. The framework
builds up and refines a set of partial defeasible explanations of the spoken
input, trying to infer the speaker’s intention. These partial explanations are
conditioned on the eventual verification of the knowledge gaps they contain.
This verification is done by executing test actions, thereby going beyond the
initial context. The approach is illustrated by an example set in the context
of human-robot interaction.

Relation to WP The paper presents an extended and improved version
of the approach presented in DR.6.3. It provides the basic inference mech-
anism for reasoning about beliefs and intentions in the context of dialogue
processing. In the context of DR.6.5 it is instrumental in determining the
appropriate epistemic context for scaffolding mixed-initiative dialogue for
curiosity-driven learning – i.e. which beliefs held by the robot (private or
attributed) need to be verbalized, to explain what the robot does or needs
to know.
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2.2 Kruijff, “There Is No Common Ground In Human-Robot
Interaction”

Bibliography Geert-Jan M. Kruijff. “There Is No Common Ground In
Human-Robot Interaction.” Manuscript, 2012.

Abstract There is an inherent asymmetry to situated communication.
Those communicating look at the world from different perspectives. This
holds particularly true for human-robot interaction. Robots literally see the
world differently: They experience reality in fundamentally different ways.
This raises an important issue for how to model common ground between
a human and a robot. Traditional approaches to common ground adopt a
possible worlds-like model theory, on which a shared belief represents the
fusion of two private beliefs within a single model. This silently assumes
a symmetry in categories against which both private beliefs can be inter-
preted: A symmetry which cannot be assumed for human-robot interaction.
Hence, on such a model, there is no common ground between humans and
robots. This paper presents an alternative model theory, which captures
the inherently subjective nature of experience. It is based on a notion of
propositions-as-proofs, turning subjective interpretation as well as the pro-
jection to intersubjective verification into a notion of inference or argumen-
tation. Beliefs are arguments, whether private, attributed or shared. This
results in a formulation of common ground as a dynamic structure of always
argued, but possibly only partially confirmed or partially assumed beliefs.

Relation to WP Common ground in dialogue indicates a level of mu-
tual understanding between interlocutors, of what is being talked about. In
CogX, “what is being talked about” primarily concerns beliefs about experi-
ence of an environment, or about inferred (possibly attributable) character-
istics of an environment. Common ground can thus be argued to be based
on to the ability to align experience and expectations. This is crucial for
an effective transfer of information in communication; without it, dialogue
is unlikely to yield insights which the robot can use to drive its learning.
The problem that now arises in human-robot interaction is that robots and
humans experience reality fundamentally differently. A robot cannot simply
assume that a human “symmetrically” understands what it is talking about.
The robot needs to reason, within its limited capabilities, how the human
may understand the environment, and to what extent that might correspond
to how it understands the environment itself. The manuscript describes an
approach to formulating an algebraic model theory on which we can define a
logic for reasoning about different epistemic and situated perspectives, and
how they could be aligned.
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2.3 Schoch & Zender, “Situated Plan and Execution Verbal-
isation”

Bibliography Gerald Schoch and Hendrik Zender. “Situated Plan and
Execution Verbalisation.” Technical Report (2012).

Abstract In this paper, we present an approach to verbalizing reports of
intentions and actions of a planner-enabled agent. We consider the case of
an interactive intelligent robot that is endowed with a symbolic AI planner.
The robot uses the planner to determine and execute sequences of actions in
order to achieve a given goal. Since the robot is operating in a real, physical
environment, making use of possibly imperfect sensing and actuating, it
is likely to encounter unforeseen events or failures, and therefore needs to
re-plan in order to come up with alternative plans for achieving its goal.
In order to tell a human about what was planned, what was and was not
successfully done, what happened – and why – we present a method for
generating natural language reports based on such intended plans and the
event structure of their execution. This verbalization is inherently situated
in nature. For one, external entities that are used in the planning process
refer to things, persons, or locations in the physical environment that the
robot and the hearer are situated in. Secondly, the robot’s intentions and
actions are temporally related to the discourse situation: the robot might
report about its current plans and attempts for executing an ongoing task;
the robot might explain what it did and what it couldn’t successfully do in
order to establish common ground for asking the human for help; or the the
robot might simply report about past events and give details about why it
chose to do what.

Relation to WP The approach is integrated in the general natural lan-
guage processing system developed in this WP and shares its linguistic re-
sources with the other dialogue capabilities, cf. Section 2.4. The verbaliza-
tion module is connected to the spatial representations developed in WP3
in order to refer to entities in Dora’s spatial environment. By this it builds
upon previous work in this WP on spatially situated generation of referring
expressions.

The approach has been implemented on the integrated robotic system
Dora (WP7), which is equipped with a switching symbolic-probabilistic AI
planner, able of continual planning and re-planning. Thereby, the work pre-
sented here has also a close connection to the research on planning performed
in WP4.
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2.4 Jańıček, “Robust situated language processing with TAROT:
The Talking Robots Toolkit”

Bibliography Miroslav Jańıček. “Robust situated language processing
with TAROT: The Talking Robots Toolkit.” Manuscript. (2012).

Abstract This document describes tarot the Talking Robots Toolkit.
tarot is an open-source software framework for building spoken dialogue
functionality for human-robot interaction. tarot does not impose a specific
(cognitive) architecture for building a dialogue system. Its framework allows
for multi-threaded (or asynchronous) processing. Processes are defined as
open “glass” boxes, and can interact in an event-driven fashion. tarot is
written in the Scala programming language and targets the Java platform.

Relation to WP The manuscript describes a toolkit which consolidates
the knowledge and experience gained in CogX in developing systems for
situated dialogue processing in HRI.
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2.5 Hanheide et al., “Expectations, Intentions, and Actions
in Human-Robot Interaction”

Bibliography Marc Hanheide, Manja Lohse and Hendrik Zender. “Ex-
pectations, Intentions, and Actions in Human-Robot Interaction.” Inter-
national Journal of Social Robotics, 4(2):107–108, Springer Verlag, April
2012.

Abstract Human-robot interaction is becoming increasingly complex through
the growing number of abilities, both cognitive and physical, available to to-
day’s robots. At the same time, interaction is still often difficult because
the users do not understand the robots’ internal states, expectations, in-
tentions, and actions. Vice versa, robots lack understanding of the users’
expectations, intentions, actions, and social signals.

This article constitutes the editorial of a special issue on “Expectations,
Intentions & Actions” of the International Journal of Social Robotics. The
special issue bundles recent advances in addressing these challenges. The
key questions are how meeting or failing the user’s expectations influences
the efficiency and effectiveness of human-robot interaction; how more effec-
tive and efficient interaction with humans can be achieved using modalities
available to a robot; how robots can be equipped with models enabling them
to understand their users’ state of mind; and similarly, how they can make
their own expectations and states explicit through eligible communication
channels.

Each of the seven articles in the special issue highlights different aspects
around the central theme of expectations, intentions, and actions in human-
robot interaction. The topics covered range from recognition of verbal and
non-verbal cues of intentions and expectations, to verbalization and presen-
tation techniques that make internal processing of the robot accessible to
the human.

Relation to WP Meeting or failing to meet the users expectations in-
fluences the efficiency and effectiveness of human-robot interaction. The
article’s discussion complements the more fundamental issues of common
ground in HRI presented in Annex 2.2.
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Abstract. In this paper we present a continual context-sensitive ab-
ductive framework for understanding situated spoken natural dialogue.
The framework builds up and refines a set of partial defeasible explana-
tions of the spoken input, trying to infer the speaker’s intention. These
partial explanations are conditioned on the eventual verification of the
knowledge gaps they contain. This verification is done by executing test
actions, thereby going beyond the initial context. The approach is illus-
trated by an example set in the context of human-robot interaction.

Keywords: Intention recognition, natural language understanding, ab-
duction, context-sensitivity.

1 Introduction

In task-oriented dialogues between two agents, such as between two humans or
a human and a robot, there is more to dialogue than just understanding words.
The robot needs to understand what is being talked about, but it also needs to
understand why it was told something. In other words, what the human intends
the robot to do with the information in the larger context of their joint activity.

Therefore, understanding language can be phrased as an intention recognition
problem: given an utterance from the human, how do we find the intention behind
it?

In this paper, we explore an idea inspired by the field of continual planning
[8], by explicitly capturing the possible knowledge gaps in such an interpretation.
The idea is based on the notion of assertion, an explicit test for the validity of
a certain fact, going beyond the current context.

The structure of the paper is as follows. After briefly introducing the notion
of intention recognition, abduction and situatedness in the next section, we in-
troduce the continual abductive reasoning mechanism in §3, and discuss it on
an example in §4, before concluding with a short summary.

2 Background

The idea of expressing understanding in terms of intention recognition has been
introduced by H. P. Grice [12,20]. In this paper, we build on Stone and Thoma-
son’s approach to the problem [23] who in turn extend the work done by Hobbs



and others [13], and base their approach to intention recognition on abductive
reasoning.

2.1 Abduction

Abduction is a method of explanatory logical reasoning introduced into modern
logic by Charles Sanders Peirce [11]. Given a theory T , a rule T ` A → B
and a fact B, abduction allows inferring A as an explanation of B. B can be
deductively inferred from A∪T . If T 6` A, then we say that A is an assumption.

There may be many possible causes of B besides A. Abduction amounts to
guessing ; assuming that the premise is true, the conclusion holds too. To give a
well-known example:

Suppose we are given two rules saying “if the sprinkler is on, then the
lawn is wet” and “if it rained, then the lawn is wet”. Abductively infer-
ring the causes for the fact that the lawn is wet then yields two possible
explanations: the sprinkler is on, or it rained.

Obviously, as there may be many possible explanations for a fact, in practical
applications there needs to be a mechanism for selecting the best one. This may
be done by purely syntactic means (e.g. lengths of proofs), or semantically by
assigning weights to abductive proofs and selecting either the least or most
costly proof [22], or by assigning probabilities to proofs [18]. In that case, the
most probable proof is also assumed to be the best explanation. Our approach
combines both aspects.

2.2 Intention Recognition

Abduction is a suitable mechanism to perform inferences on the pragmatic (dis-
course) level. For understanding, abduction can be used to infer the explanation
why an agent said something, in other words the intention behind the utterance.

An intention is usually modelled as a goal-oriented cognitive state distinct
from desires in that there is an explicit commitment to acting towards the goal
and refraining from actions that may render it impossible to achieve [7,10].

For the purposes of this paper, we shall treat intentions as intended actions
that have pre- and post-conditions, similar to planning operators in automated
planning. Pre-conditions express the necessary conditions before the action is
executed (and sufficient for its execution), and post-conditions express the nec-
essary conditions after the action is executed.

Note that reasoning with intentions allows us to reverse the task, and search
for appropriate (surface) presentation of a given intention [24]. Intentions can
therefore serve as a middle representational layer and abduction as the inference
mechanism by using which we either turn a realisation into an intention, or the
other way around.



2.3 Situated Understanding

Suppose that a human user is dealing with a household robot capable of ma-
nipulating objects (finding them, picking them up, putting them down). The
human wants the robot to bring him the mug from the kitchen, so he instructs
the robot by saying:

“Bring me the mug from the kitchen.”

Now, what should the robot do? In the beginning, the utterance is just a
stream of audio. The robot has to detect voice in the audio data, and if the
speech recognition works well enough, it will be able to obtain the surface form
of the utterance, i.e. the words that were spoken by the human.

Once the word sequence is recognised, the robot needs to assign linguistic
structure to it so that it can reason about its logical structure. The logical
structure of the utterance is typically not in any way related to the actual situated
experience of the robot. The noun phrases “the mug“ and “the kitchen” are just
referring expressions standing for some entities in the real world, and can be
manipulated as expressions using logical rules without the need to be concerned
about value of the standing-for relation.

However, this relation is absolutely crucial to understanding what the human
said and why. Without being able to reduce the referring expressions to the
corresponding real-world entities there is no true understanding, and – more
importantly – there can be no appropriate reaction, which presumably is one of
the reasons why the human uttered the sentence in the first place (i.e. to elicit
such a reaction).

Grounding the relation in reality is therefore a crucial task that any cognitive
agent has to tackle. However, since all sensory perception is necessarily partial
and subject to uncertainty, there is no guarantee that the “knowledge base”, a
formalisation of the current snapshot of the knowledge about the world, contains
the information necessary for such a grounding. In other words, a situated agent
cannot afford the luxury of reasoning under closed-world assumption, and has
to venture beyond that.

This means that the robot must be able identify its knowledge gaps, and
verify or falsify them while trying to understand the human’s utterance. This
implies that the processes of understanding an input and acting on it are inter-
leaved and that there is a bi-directional interface between them.

3 Approach

This paper extends the work of Stone and Thomason on context-sensitive lan-
guage understanding by explicitly modelling the knowledge gaps that inevitably
arise in such an effort due to uncertainty and partial observability. The approach
is based on generating partial hypotheses for the explanation of the observed be-
haviour of other agents, under the assumption that the observed behaviour is



intentional. These partial hypotheses are defeasible and conditioned on the va-
lidity (and eventual verification) of their assumptions.

In this section, we examine the abductive reasoning system capable of repre-
senting knowledge gaps in the form of partial proofs, how such partial proofs can
be generated and verified or falsified, and the semantic framework used in our
system to capture linguistic meaning that the system then grounds in reality.

3.1 Partial Abductive Proofs

Our abductive inference mechanism is essentially Hobbs and Stickel’s logic pro-
gramming approach to weighted abduction [13,22] enhanced by a contextual
aspect [3] with the weights in the system being assigned a probabilistic interpre-
tation following Charniak and Shimony [9].

Abduction Context. Inference in our system makes use of four ingredients:
facts (denoted F), rules (R), disjoint declarations (D) and assumability func-
tions (S), collectively called the abduction context. The proof procedure uses
these iteratively in order to derive proofs of an initial goal.

– Facts are modalised formulas of the form

µ : A

where µ is a (possibly empty) sequence of modal contexts, and A is an atomic
formula, possibly containing variables.

– Rules are modalised Horn clauses, i.e. formulas of the form

(µ1 : A1/t1) ∧ ... ∧ (µn : An/tn)→ (µH : H)

where each of the µi : Ai and µH : H are modalised formulas. Each an-
tecedent is annotated by ti, which determines the way the antecedent is
manipulated and is one of the following:

• assumable(f) – the antecedent is assumable under function f ;
• assertion – the antecedent is asserted, i.e. identifies a knowledge gap,

conditioning the validity of the proof on it being proved in a subsequent
reinterpretation (see below).

– Assumability functions are partial functions f , f : P(F)→ R+
0 , where P(F)

is the set of modalised formulas, with the additional monotonicity property
that if F ∈ dom(f), then for all more specific (in terms of variable substi-
tution) facts F ′, F ′ ∈ dom(f) and f(F ) ≤ f(F ′). We also define an empty
(“truth”) assumability function ⊥ such that dom(⊥) = ∅.
Since they are partial functions, assumability functions determine both whether
a modalised formula may be assumed and the cost of such an assumption.
As a special case, the empty assumability function ⊥ can be used to prevent
the formula from being assumed altogether.



– A disjoint declaration is a statement of the form

disjoint(µ : A1, . . . , µ : An)

which specifies that at most one of the modalised formulas µ : Ai may be
used in the proof. Ai and Aj cannot be unified for all i 6= j.

Proof Procedure. The proof procedure is an iterative rewriting process start-
ing from some initial goal state. A proof state is a sequence of marked modalised
formulas (called queries in this context)

Q1[n1], . . . , Qm[nm]

The markings ni are one of the following:

– unsolved(f) – the query is yet to be proved and can be assumed if it is in
the domain of the assumability function f ;

– proved – the query is proved in the proof state;
– assumed(f) – the query is assumed under assumability function f ;
– asserted – the query is asserted – its validity is not to be determined in the

current context.

Algorithm 1 defines the proof procedure in detail. The top-level function
abduce takes an abduction context c and a proof state Π, and returns a set of
proof states that

(1) are transformations of Π,
(2) are consistent with c, and
(3) do not contain any unsolved queries.

First, the input proof state is checked for validity with respect to the disjoint
declarations D in the function is-disjoint-valid. If the check turns out to be
negative, the proof state is discarded, and abduce returns an empty set.

If Π satisfies the disjointness constraints, the function tf-dup turns it into
a set of proof states where unsolved queries that have already been proved,
assumed or asserted are removed. The transformation returns a non-empty set
of proof states. This step ensures that no query is examined more than once.

Next, each proof state resulting from tf-dup is again checked whether it
contains an unsolved query. If it does not, then the conditions (1)–(3) above are
already fulfilled, and the proof state ends up in the result.

If it does, the proof procedure resolves the proof state against the facts,
rules and assumability functions, collecting the results, and recursively calling
abduce on them so as to satisfy the above conditions.

Formally, given a proof state

Π = Q1[n1], . . . , Qm[nm]

where Qi is the leftmost query marked (guaranteed to exist at this point) as
unsolved(f) where f is an assumability function, the transformation rules tf-
fact, tf-rule and tf-assume each return a (possibly empty) set of trans-
formed proof states, and are defined as follows:



– tf-fact (resolution with a fact): For all Q ∈ F such that the Q and Qi are
unifiable with a most general unifier σ (denoted σ = unify(Q,Qi)), add a
new state Π ′ to the result of the transformation:

Π ′ = Q1σ[n1], . . . , Qiσ[proved ], . . . Qmσ[nm]

– tf-rule (resolution with a rule): For each rule r ∈ R of the form

G1/t1, . . . , Gk/tk → H

(with variables renamed so that it has no variables in common with Π) such
that there is a σ = unify(H,Qi), i.e. the rule head is unifiable with the
unsolved query, add a new state Π ′ to the transformation result:

Π ′ = Q1σ[n1], . . . , Qi−1σ[ni−1],
G1σ[p1], . . . , Gkσ[pk], Qiσ[proved ],
Qi+1σ[ni+1], . . . , Qmσ[nm]

The query markings pi are derived from ti for all i ∈ {1, . . . , k} as follows:

if ti = assumable(f), then pi = unsolved(f)
if ti = assertion, then pi = asserted

– tf-assume (assumption): If Q ∈ dom(f) such that there is a most general
unifier σ = unify(Q,Qi), add a new state Π ′ to result of the transformation:

Π ′ = Q1σ[n1], . . . , Qiσ[assumed(f)], . . . , Qnσ[nm]

Note that the proof procedure along with the definition of assumability func-
tions ensures that the cost of the proofs are monotonic with respect to unification
and rule application, allowing for the use of efficient search strategies.

Knowledge Gaps and Assertions. Our extension of the “classical” logic-
programming-based weighted abduction as proposed by Stickel and Hobbs lies
in the extension of the proof procedure with the notion of assertion based on the
work in continual automated planning [8], allowing the system to reason about
information not present in the knowledge base, thereby addressing the need for
reasoning under the open-world assumption.

In continual automated planning, assertions allow a planner to reason about
information that is not known at the time of planning (for instance, planning
for information gathering), an assertion is a construct specifying a “promise”
that the information in question will be resolved eventually. Such a statement
requires planning to be a step in a continual loop of interleaved planning and
acting.

By using a logic programming approach, we can use unbound variables in the
asserted facts in order to reason not only about the fact that the given assertion
will be a fact, but also under-specify its eventual arguments.



Algorithm 1 Weighted abduction

abduce(c = (F ,R,D,S), Π = Q1[n1], . . . , Qm[nm]):
if is-disjoint-valid(D, Π) then
R← ∅
for all Π ′ ∈ tf-dup(Π) do

if Π ′ contains a query marked as unsolved then
H ← tf-fact(F , Π ′) ∪ tf-rule(R, Π ′) ∪ tf-assume(S, Π ′)
R← R ∪⋃

P∈H abduce(c, P )
else
R← R ∪ {Π ′}

end if
end for
return R

else
return ∅

end if

is-disjoint-valid(D, Π = Q1[n1], . . . , Qm[nm]):
for all d = disjoint(D1, . . . , Dq) ∈ D do

if ∃i 6= j 6= k 6= l s.t. ∃σ, σ′: σ = unify(Di, Qk) and σ′ = unify(Dj , Ql) then
return false

end if
end for
return true

tf-dup(Π = Q1[n1], . . . , Qm[nm]):
if Π contains a query marked as unsolved then
i← arg minj∈{1,...,m−1}(∃f s.t. nj = unsolved(f))
H ← ∅
for all s ∈ {i+ 1, . . . ,m} s.t. unify(Qi, Qs) = σ do
H ← H ∪ tf-dup(Q1σ[n1], . . . , Qi−1σ[ni−1], Qi+1σ[ni+1] . . . , Qmσ[nm])

end for
if H 6= ∅ then return H else return {Π} end if

else
return {Π}

end if



The proposed notion of assertion for our abductive system is based on test
actions 〈F 〉 [4]. Baldoni et al. specify a test as a proof rule. In this rule, a goal
F follows from a state a1, ..., an after steps 〈F 〉, p1, ..., pm if we can establish F
on a1, ..., an with answer σ and this (also) holds in the final state resulting from
executing p1, ..., pm.

An assertion is the transformation of a test into a partial proof which assumes
the verification of the test, while at the same time conditioning the obtainability
of the proof goal on the tested statements. µ : 〈D〉 within a proof Π[〈D〉] to
a goal C turns into Π[D] → C ∧ µ : D. Should µ : D not be verifiable, Π is
invalidated.

Probabilistic Interpretation. In weighted abduction, weights assigned to
assumed queries are used to calculate the overall proof cost. The proof with the
lowest cost is the best explanation. However, weights are usually not assigned any
semantics, and often a significant effort by the writer of the rule set is required
to achieve expected results [13].

However, Charniak and Shimony [9] showed that by setting weights to − log
of the prior probability of the query, the resulting proofs can be given proba-
bilistic semantics.

Suppose that queryQk can be assumed true with some probability P (Qk is true).
Then if Qk is assumable under assumability function f such that f(Qk) =
− log(P (Qk is true)), and under the independence assumption, we can repre-
sent the overall probability of the proof Π = Q1[n1], ..., Qn[nm] as

P (Π) = e
∑m

k=1 cost(Qk)

where

cost(Qk) =

{
f(Qk) if nk = assumed(f)
0 otherwise

The best explanation Πbest of a the goal state G is then

Πbest = arg min
Π proof of G

P (Π)

Exact inference in such a system is NP-complete, and so is approximate
inference given a threshold [9]. However, it is straightforward to give an anytime
version of the algorithm – simply by performing iterative deepening depth-first
search [19] and memorising a list of most probable proofs found so far.

Comparison with Other Approaches. Our system is similar to Poole’s Prob-
abilistic Horn abduction [18]. The main difference, apart from the proof proce-
dure which is cost-based in our case, is that we do not include probabilities in
our formulation of disjoint declarations. Since we avoid duplicate assumptions,
we are able to model the semantics of disjoint declarations with probabilities.

On the other hand, having a general disjoint declaration allows us to define
exclusivity rules such as



Algorithm 2 (Nondeterministic) continual abduction

continual-abduction(c,Π):
c = context
Π = proof

while Π contains assertion A do
c′ ← test-action(c, A)
H ← abduce(c′, A)
for all Π ′ ∈ H do

continual-abduction(c′, Π ′)
end for

end while
return Π

disjoint([p(X, yes),p(X,no)])

without having to specify the prior probabilities of the disjuncts.
Moreover, in our rule sets for natural language understanding and generation,

we need to be able to manipulate logical structure (e.g. logical forms of utter-
ances) efficiently. We have found that the logic-programming-based approach
is quite satisfactory in this aspect, since it permits the use of standard Prolog
programming techniques. In approaches to probabilistic abduction that are not
based on logic programming, such as Kate and Mooney’s abduction in Markov
Logic Networks [15], these techniques are not applicable, which crucially limits
their applicability to our domain.

3.2 Generating Partial Hypotheses

For each goal G, a the function abduce returns a set of proofs H, with a total
ordering on this set. Due to the use of assertions, some of these proofs may
be partial, and their validity has to be verified. The presence of assertions in
the proofs means that there is a knowledge gap, namely the truth value of the
assertion. Each assertion thus specifies the need for performing a (test) action.
This action might require the access to other knowledge bases than the abductive
context, as in the case of resolving referring expressions, or an execution of a
physical action.

Formally, given an initial goal G and context c, the abduction procedure
produces a set H of hypotheses c : Π → C ∧ ci : Ai, where ci is a sub-context in
which where an assertion Ai ∈ Π may be evaluated. Such proofs are thus both
partial and defeasible — they may be both extended and discarded, depending
on the evaluation of the assertions.

The set of possible hypotheses is continuously expanded until the best full
proof is found. This process is defined in Algorithm 2.

The algorithm defines the search space in which it is possible to find the
most probable proof of the initial goal G. The important point is, however, that



it is just that — a definition. The actual implementation may keep track of
the partial hypotheses it defines, and take the appropriate test actions when
necessary, or postpone them indefinitely. The cost of performing an action is not
factored into the overall proof cost.

The partial hypotheses therefore serve as an interface layer between the lan-
guage understanding and external decision-making processes (such as planning
in a robotic architecture).

3.3 Representing Linguistic Meaning

For representing linguistic meaning in our system we use the Hybrid Logic De-
pendency Semantics (HLDS), a hybrid logic framework that provides the means
for encoding a wide range of semantic information, including dependency rela-
tions between heads and dependents [21], tense and aspect [17], spatio-temporal
structure, contextual reference, and information structure [16].

Hybrid Logic. Classical modal logic suffers from a surprising “asymmetry”.
Although the concept of states (“worlds”) is at the heart of model theory, there
is no way to directly reference specific states in the object language. This asym-
metry is at the root of several theoretical and practical problems facing modal
logic [6,1].

Hybrid logic provides an elegant solution to many of these problems. It ex-
tends standard modal logic with nominals, another sort of basic formulas that
explicitly name worlds in the object language. Next to propositions, nominals—
and, by extension, possible worlds—therefore become first-class citizens in the
object language. The resulting logical framework retains decidability and favourable
complexity [2].

Each nominal names a unique state. To get to that state, a new operator
is added, the satisfaction operator. The satisfaction operator that enables us to
“jump” to the state named by a nominal. The satisfaction operator is written
@i, where i is a nominal.

Formally, let Prop = {p, q, ...} be a set of propositional symbols, Mod =
{π, π′, ...} a set of modality labels, and Nom = {i, j, ...} a non-empty set disjoint
from Prop and Mod. We define the well-formed formulas of the basic hybrid
multimodal language L@ over Prop, Mod and Nom as such:

φ ::= i | p | ¬φ | φ→ ϕ | 〈π〉φ | [π]φ | @iφ

A formula @iφ states that the formula φ holds at the unique state named by i.
In more operational terms, the formula @iφ could be translated in the following
way: “go to the (unique!) state named by i, and check whether φ is true at that
state”.

Hybrid Logic Dependency Semantics. HLDS uses hybrid logic to capture
dependency complexity in a model-theoretic relational structure, using ontolog-
ical sorting to capture categorial aspects of linguistic meaning, and naturally



capture (co-)reference by explicitly using nominals in the representation. The
dependency structures can be derived from CCG [5], which is the setup used in
our system, but other approaches are possible.

Generally speaking, HLDS represents an expression’s linguistic meaning as
a conjunction of modalised terms, anchored by the nominal that identifies the
head’s proposition:

@h:sorth (proph ∧ 〈Ri〉 (di : sortdi ∧ depi))

Here, the head proposition nominal is h. proph represents the elementary pred-
ication of the nominal h. The dependency relations (such as Agent, Patient,
Subject, etc.) are modelled as modal relations 〈Ri〉, with the dependent be-
ing identified by a nominal di. Features attached to a nominal (e.g. 〈Num〉
〈Quantification〉, etc.) are specified in the same way.

Figure 1 gives an example of HLDS representation (logical form) of the sen-
tence “Bring me the mug from the kitchen”. The logical form has six nominals,
event1, agent1, person1, thing1 , from1 and thing1, that form a dependency struc-
ture: event1 is the the head of dependency relations Actor (the dependent being
agent1), Patient (thing1), Recipient (person1), Modifier (from1), and Subject (the
sentence subject, agent1).

Each nominal has an ontological sort (illustrated on event1, the sort is
action-non-motion) a proposition (bring), and may have features (Mood).

@event1:action-non-motion(bring ∧
〈Mood〉 imp ∧
〈Actor〉 (agent1 : entity ∧ addressee)
〈Patient〉 (thing1 : thing ∧mug ∧
〈Delimitation〉 unique ∧
〈Num〉 sg ∧
〈Quantification〉 specific) ∧

〈Recipient〉 (person1 : person ∧ I ∧
〈Num〉 sg) ∧

〈Modifier〉 (from1 : m-wherefrom ∧ from ∧
〈Anchor〉 (place1 : e-place ∧ kitchen ∧
〈Delimitation〉 unique ∧
〈Num〉 sg ∧
〈Quantification〉 specific)) ∧

〈Subject〉 agent1 : entity)

Fig. 1. HLDS semantics for the utterance “Bring me the mug from the kitchen”

Every logical form in HLDS, being a formula in hybrid logic, can be decom-
posed into a set of facts in the abductive context corresponding to its minimal
Kripke model. The resulting set of abduction facts obtained by decomposing the
logical form in Figure 1 is shown by Figure 3.



thing1 : thing
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Fig. 2. Minimal model for the hybrid logic formula in Figure 1

HLDS only represents the meaning as derived from the linguistic realisation
of the utterance and does not evaluate the state of affairs denoted by it. This sets
the framework apart from semantic formalisms such as DRT [14]. The grounding
in reality is partly provided by the continual abductive framework by generating
and validating (or ruling out) partial abductive hypotheses as more information
is added to the system.

4 Example

Let us examine the mechanism in an example introduced in §2.3.

The human’s utterance,

“Bring me the mug from the kitchen.”

is analysed in terms of HLDS (see Figure 1), and its translation (see Figure 3)
is made part of the abduction context c.

The robot tries to make sense of the utterance by proving the goal

uttered(human, robot, event1)

in the abduction context c. Suppose that the best proof state returned by ab-
duce is the following:



sort(event1, action-non-motion),
prop(event1, bring),
feat(event1,mood, imp),
rel(event1, actor, agent1),
sort(agent1, entity),
prop(agent1, addressee),
rel(event1, patient, thing1),
sort(thing1, thing),
prop(thing1,mug),
feat(thing1, delimitation,unique),
feat(thing1, num, sg),
feat(thing1, quantification, specific),
rel(event1, recipient, person1),
sort(person1, person),
prop(person1, i),
feat(person1, num, sg),
rel(event1,modifier, from1),
sort(from1,m-wherefrom),
prop(from1, from),
rel(from1, anchor, place1),
sort(place1, e-place),
prop(place1, kitchen),
feat(place1, delimitation, unique),
feat(place1, num, sg),
feat(place1, quantification, specific),
rel(event1, subject, agent1)

Fig. 3. The translation of the hybrid logic formula in Figure 1 into abduction facts

uttered(human, robot, event1) [proved ] (1)
prop(event1,bring) [proved ] (2)

intends(event1,human, I) [assumed(engagement)] (3)
rel(event1,patient, thing1) [proved ] (4)

refers-to(thing1, X) [asserted ] (5)
refers-to(place1, P ) [asserted ] (6)

pre(I, object(X) [asserted ] (7)
pre(I, is-in(X,P )) [asserted ] (8)

refers-to(person1,human) [proved ] (9)
prop(person1, i) [proved ] (10)

rel(event1, recipient,person1) [proved ] (11)
post(I, has(human, X)) [proved ] (12)

The proof is an explanation of the event (1) in terms of a partially specified
intention I (3), defined by its pre- and post-conditions. The pre-conditions are
the existence of an entity X (7) and that X is located in another entity P (8).
The post-condition (12) is the resulting state in which the human has X (12).



The proof appeals to the logical form of the utterance in atoms (2), (4),
(10), (11). Also, atom (9) is proved from (1) and (10) (whoever uses “I” refers
to themselves), and (12) is a consequence of (2), (9) and (11) (bringing x to a
person p means ending up in a state in which p has x).

Atom (3) is assumed under the assumability function engagement , which is
supplied in the abduction context before calling abduce and specifies the robot’s
subjective probability of being engaged in a conversation with the particular
human at the time the utterance was observed.

Note that the proof state contains four atoms marked as assertions: (5), (6),
(7) and (8). These are the explicit gaps in the proof that make it a partial
interpretation. They are chosen by the domain engineer, and since they need
to be verified (or falsified) by an external process, they form the interface to
external knowledge bases and decision-making. Since for now those atoms are
marked as asserted, there is nothing more that abduce can do.

The initiative then shifts to an external decision-making process. It selects
some of the assertions, and tries to verify them.

A sensible strategy1 might be to first establish the referent of place1. This
could be resolved against the internal knowledge base (in case the robot has been
given a tour of the household), or it could trigger the exploration behaviour – in
order to resolve place1, the robot could try finding it first. Again, choosing which
behaviour is more appropriate depends on the application, and on the planning
method that is invoked by the decision-maker in order to verify the assertion.

Once the assertion is verified, the proof is updated accordingly, in our case
by replacing all occurrences by replacing the unbound variable P by a unique
symbol, for instance by the identifier idkitchen of the topological region in the
robot’s topological map:

refers-to(place1, idkitchen) [proved ] (6’)
resolves-to-toporegion(place1, idkitchen) [assumed(topo)] (6”)

The atom (6) in the original proof state is expanded by a proof state consist-
ing of queries (6’) and (6”), thereby replacing P in the entire proof by idkitchen ,
and adding the cost of assuming (6”) to the overall proof cost. This atom is
assumed under an assumability function topo, supplied as part of the abduction
context in which the proof is expanded – i.e. by the external knowledge source.
An assumption is added instead of a fact so that the external knowledge base
performing this operation can express uncertainty about the resolution result.

The proof is therefore expanded into the following:

1 Note that the problem of what determing good verification strategies and choosing
them is beyond the scope of this paper.



uttered(human, robot, event1) [proved ] (1)
prop(event1,bring) [proved ] (2)

intends(event1,human, I) [assumed(engagement)] (3)
rel(event1,patient, thing1) [proved ] (4)

refers-to(thing1, X) [asserted ] (5)
refers-to(place1, idkitchen) [proved ] (6’)

resolves-to-toporegion(place1, idkitchen) [assumed(topo)] (6”)
pre(I, object(X) [asserted ] (7)

pre(I, is-in(X, idkitchen)) [asserted ] (8)
refers-to(person1,human) [proved ] (9)

prop(person1, i) [proved ] (10)
rel(event1, recipient,person1) [proved ] (11)

post(I, has(human, X)) [proved ] (12)

Now there are just three assertions left: (5), (7) and (8). These express the
knowledge gaps about the referent of “the mug”, the existence of the object, and
its location, respectively.

There are, as before, several possible ways of verifying these. The most sen-
sible one would probably be going to the kitchen (i.e. the topological region
idkitchen) and searching for objects there, which would verify both (8) and (7)
and expand them with all objects it finds. There would be many parallel proof
states resulting from such an expansion, and the robot would have to prune them
down by verifying the remaining assertion (5).

One way of doing that would be to bring all objects one by one to the human,
asking “did you mean this one?” Alternatively, the robot might simply bring the
most likely object. The human’s acceptance of the choice would then verify the
assertion. This is, again, a matter for consideration in the higher level of planning
and goal management.

5 Conclusion

This paper presents an abductive framework for natural language understanding
that is based on abductive reasoning over partial hypotheses. The framework is
set within the process of intention recognition.

The abductive framework is contextually-enhanced version of a logic pro-
gramming approach to weighted abduction with a probabilistic semantics as-
signed to the weights. Our extension of this framework is in the introduction of
the notion of assertion, which is essentially a requirement for a future test to
verify or falsify the proposition, i.e. to fill a knowledge gap about the validity
of the proposition. The hypotheses are therefore defeasible in the sense that the
falsification of their assertions leads to a retraction and adoption of an initially
less likely alternative.

By explicitly reasoning about these knowledge gaps, the system is able to go
beyond the current context and knowledge base, addressing the need for reason-
ing under the open-world assumption. The responsibility for filling those knowl-
edge gaps then falls to external decision-making processes. These processes can



then use probabilities to express their confidence in the solutions they provide,
thereby addressing the need for capturing the ubiquitous uncertainty stemming
from unreliable sensory perception and partial observability of the world.
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