
EU FP7 CogX

ICT-215181

May 1 2008 (52months)

DR 9.3:

Proceedings of Summer School 2010

Danijel Sko£aj, Luka �ehovin and Marc Hanheide

University of Ljubljana, University of Birmingham

〈danijel.skocaj@fri.uni-lj.si〉
Due date of deliverable: July 31, 2010
Actual submission date: July 28, 2010
Lead partner: UL
Revision: �nal
Dissemination level: PU

This document describes the CogX Summer School organised at University
of Ljubljana in Ljubljana, Slovenia April 24-30, 2010. This was the second
out of three Summer Schools planned for. The main parts of the school were
technical tutorials covering the use of the common representations, planning
techniques and related software and hardware in CogX, invited tutorials
about the state of the art approaches on related topics, and a project to
be solved in groups to get hands-on experience and act as a team building
activity.
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Executive Summary

The second out of three Summer Schools planned for in the CogX project
was organised by UL April 24-30, 2010. As promised in the workplan for
the project, rather than having many invited speakers and a full schedule
which is the standard setup for summer schools, the emphasis was on hands-
on project work. The rationale behind this being that participants should
get to use the common hardware platform and sensors as well as work with
the common software platform CAST [1] and other tools, representations
and mechanisms that are commonly used in the integrated systems that are
being developed.

There were three invited speakers. David Hogg from the School of Com-
puting, University of Leeds presented a tutorial about the role of represen-
tation and learning in activity analysis. Norbert Kruger from the University
of Southern Denmark gave a tutorial on early cognitive vision. Ron Pet-
rick from the School of Informatics at the University of Edinburgh presented
a tutorial about representations for classical and knowledge-level planning.
The topics of the presented tutorials were highly related to the main research
issues we have been addressing in the project and which were in the focus of
this summer school (visual perception, learning, representations, planning).

At the end of the week, each participant had helped create one of �ve
integrated systems where components, both new and existing, had been com-
bined to allow the robot to move around autonomously and visually detect
objects. The robots had to plan how to move around the environment and
what questions to ask persons that were present. The summer school pro-
vided an important opportunity for the participants to meet and interact
both in work and social situations. Integration is at the heart of an IP
project and knowing the hardware and software system as well as each other
are important ingredients for making this process smooth and e�cient. To
conclude, the summer school was very successful.

Role of the Summer Schools in CogX

The CogX project aims not only to contribute new theories but also to
implement and create instantiations in robots to test these theories. In
CogX the Summer Schools provide an important vehicle towards this.

The objectives of the CogX Summer Schools include:

� train the researchers in the techniques and tools to be used in the
project, and in the methods employed in the state of the art in the
community

� establish a common ground of theoretical knowledge
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� e�ciently communicate knowledge to the researchers, both from exter-
nal parties in the form of invited speakers and from researchers within
the consortium

� increase impact of the dissemination by including external parties (in-
vited speakers and participants) in the summer school who get a close
look at the project

� build strong connections between the researchers within the consortium
by getting together for an extended time, interacting in working and
as well as social contexts

Contribution to the CogX scenarios and prototypes

Building a robotic system, which integrates di�erent functionalities into one
coherent system, is one of the main goals of the CogX project. Although the
system is expected to exhibit very di�erent capabilities (from navigation, to
learning, communication, and manipulation), all di�erent subsystems that
implement these capabilities are supposed to use the same hardware basis,
the same architecture schema and toolkit (CAST), and the same principles of
representation sharing (based on the Binder and Planning SA). It is therefore
very important that all the researchers are familiar with these principles and
that they know how to integrate the components they have been developing
in CAST. A particular focus of this spring school was on familiarisation of
the researchers with how to create and manage the robot beliefs about the
environment and how to plan actions to ful�ll the given goals. These ques-
tions are essential when developing system prototypes for CogX scenarios. In
addition, the chosen tasks were inspired by both scenarios, Dora and George.
The spring school in Ljubljana enabled us to address all the questions above
and to help the researchers to understand these mechanisms better. It has
therefore made a very important contribution to scenario based integration.
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1 Tasks, objectives, results

While the �rst CogX summer school (CSS) in Stockholm in 2009 aimed to in-
troduce the general hard- and software in the project and emphasised spatial
representations and actions this year's school focuses on autonomous delib-
erative behaviour and knowledge representations. The school was designed
as a combination of guest lectures and practical sessions. The lecturers in-
vited for the school were selected to complement the practical experience of
implementing AI planning and manipulating knowledge representations as
a result of epistemic actions. It was decided to build upon experiences par-
ticipants gathered in the �rst school and not start completely from scratch.
Therefore, the mobile robot platform was employed with its ability to move
autonomously and to maintain spatial representation. The tasks in the prac-
tical sessions were inspired by both scenarios � Dora and George � and in
fact were built upon the software and hardware basis developed in these two
scenarios in the �rst year of CogX.

1.1 Preparations

Hardware: In order to provide a really hands-on robotic experience we
shipped four robot platforms equipped with pan-tilt unit and stereo cam-
era setup to Ljubljana. The setup was exactly as is being used in the two
integration scenarios Dora and George to guarantee maximal compatibility
with the continuous integration in CogX. Besides the real platform, we also
developed a mostly complete simulation environment that allowed for testing
the developed system independently of any hardware. Here, we reused the
setup and system documented in DR7.2 to a great extent.
Software: Following the software release schema in CogX the summer school
is linked to one of two major annual milestones per year. Consequently,
integration e�orts peak the weeks before the school and lead to a stable
collection of software that is then used by all the participants. The software
employed at the CSS 2010 was based on the integration system Dora and
George. In addition to the abilities documented in DR7.2 some components
have been added:

� a people detector component that allows us to combine laser measure-
ments and visual input to detect people in the vicinity of the robot,
enabling it to initiate interaction

� a revised model of beliefs in our system as the foundation for the ad-
vanced knowledge representation for the school

� a GUI-based simple dialogue system to enable the robot to ask ques-
tions and receive answers, avoiding di�culties with speech recognition
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� a new Markov-logic based binding and tracking mechanism on the basis
of the beliefs to maintain a consistent knowledge representation in the
robot's working memory.

These extensions all go in line with the integration e�orts for the next mile-
stones of integrated demonstrators for George and Dora.

To ease implementation and maximise the learning opportunity, a vir-
tual machine image with Ubuntu and all required software components and
the simulation environment pre-installed was set up and distributed among
participants prior to the school. Also prior to the start of the school, partic-
ipants were asked to install the (virtual) system and have a few test runs to
get used to the general procedure.

1.2 Project Work

All participants where divided into project groups, including PIs. The two
main factors when forming the groups were i) diversity with regard to the
institutions people work for and ii) to distribute the knowledge and skills as
evenly as possible among the groups. The tutorials on belief models and on
planning provided the foundation for the tasks that had to be solved by each
group individually. Scores were assigned for each of the three tasks which
were:

1. �Whom do all these records belong to?� This �rst task was designed to
make people aware of the challenges they have to face. In this task there
was no autonomous behaviour of the robots, but the participants had
to plan action sequences by themselves and remote-control the robot,
to �nd (vinyl) records in the environment, recognise them visually, and
�nd persons to ask who the owner of that particular record might be.
The task also sketched the �nal task, where the robot has to learn the
associations and the location of records all autonomously. See page 21
for further details.

2. �Play it again� was designed as a �rst task the robot plans and executes
autonomously. Its task was to explore the test arena and �nd records
and remember their locations. It is a revival of the �nal task in the
�rst school, but now involving the whole CogX processing framework
including belief models, goal management, and planning. The par-
ticipants had to implement the processing chain that adds recognized
objects into the knowledge representation, develop a suitable planning
domain, and decide how they represent acquired knowledge in terms
of beliefs. These are key research questions of CogX that were studied
in this simplistic scenario. See page 23 for further details.

3. �InAct Pablo�: We called the robot developed during the spring school
Pablo (Planning And Belief models to Look for Objects) to re�ect the
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central aims of the school. This �nal task was designed to be a revival
of the �rst one but now performed completely autonomously by the
robot. The participants had to program the robot such that is was able
to localise humans and records, acquire knowledge by asking questions
or by looking around, and �nally, demonstrate all the knowledge it
acquired. This interactive task is detailed on page 26.

During the �ve days of practical work including implementation and test-
ing all �ve teams successfully accomplished task 1, four teams managed task
2 (one team decided to skip this task and focus on the �nal task), and all
had some success in the �nal task. The best team managed to �nd all of the
records, and also ask the right questions to humans in the environment to
learn which record belonged to whom in this �nal task.

1.3 Lessons Learned

Following the lessons learned in the �rst CSS we again kept the number of
speakers quite small and focused on the practical sessions. The heterogenous
group composition of about 5 participants per group really fostered commu-
nication and helped creativity. Basically, the decision to not start from
scratch but rather to implement new abilities on the basis of the system de-
veloped in year 1 worked quite well. But an additional rather spontaneous
lecture was required to help a number of new project members to catch up
with the concepts. The di�erent level of prior knowledge among participants
is a challenge that needs to be explicitly coped with in the coming sum-
mer schools in the project. Having three tasks to compete in, on the one
hand provided some sca�olding for incremental implementation, but on the
other hand also increased time pressure and caused some overhead. In the
future, one would probably reduce the e�ort to two incremental tasks. It
is promising that despite the short amount of time, all the teams did very
well in developing a system that was ready for a competition. These kinds
of code marathons have proven to be very promising approaches to boost
development in the project. The �nal summer school system provides the
code basis to develop the year 2 milestones of Dora and George.

1.4 Relation to the state-of-the-art

The tasks for the summer school were all designed along the lines of research
in CogX. In this year we placed special emphasis on interactive learning
and autonomous planning; in particular to plan for knowledge gathering
actions. We employed the state-of-the art technology in continual planning
and provided the participants a �rst hand experience in the foundation,
limits, and logics of AI planning. Hence the emphasis of this summer school
was on work accomplished in work packages 4 and 6.
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2 Proceedings

The proceedings is a modi�ed version of the proceedings handed out to the
participants of the CogX Spring School. Most of the local information has
been removed and some of the information that was only provided online on
the CogX intranet has been included.

First, some general information about the Spring school is given. Then
the course material is presented. This material was provided for the par-
ticipants on the CogX Wiki and served as main instructions for work. We
present it here in its original form, including two technical tutorials that
were given. The second part of the proceedings is composed of three tutori-
als presented by the invited speakers.

2.1 General information

2.1.1 Schedule

Sat, 24th April

09:00-09:30 Welcome and opening (Jeremy, Danijel, Marc)
09:30-10:45 Tutorial, David Hogg
10:45-11:00 Co�ee
11:00-12:30 Tutorial, David Hogg
12:30-13:45 Lunch (Hombre)
13:45-14:30 �rst task induction & technological introduction (Marc)
14:30-15:30 Robot setup and preparation
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15:30-15:45 Co�ee + snacks
15:45-17:30 1st (fun) competition, 15 minutes performance per team

+ 5 minutes setup time
17:30-19:00 Binding tutorial (Pierre) + Q & A
20:00-end Dinner (�estica)

Sun, 25th April

09:30-10:45 Tutorial, Norbert Krüger
10:45-11:00 Co�ee
11:00-12:30 Tutorial, Norbert Krüger
12:30-13:45 Lunch (Hombre)
13:45-15:00 Tutorial, Ron Petrick
15:00-15:15 Co�ee
15:15-16:45 Tutorial, Ron Petrick
16:45-17:00 Co�ee + snacks
17:00-18:30 Planning tutorial (Moritz)
18:30-end Walk to castle & dinner (Vodnikov hram)

Mon, 26th April

09:30-10:30 Task induction (Moritz, Marc) + Q & A
10:30-12:00 1st team session
12:00-12:30 another Q & A in plenary
12:30-13:45 Lunch (Hombre)
13:45-16:00 Hack & Test
16:00-16:30 Co�ee + snacks
16:30-19:00 Hack & Test
19:00-20:30 Dinner (self-organised)
20:30-22:00 (optional) Hack & Test

Tue, 27th April

09:30-10:00 Morning Q & A
10:00-12:30 Hack & Test
12:30-13:45 Lunch (Hombre)
13:45-16:00 2nd competition
16:00-19:00 Social event
19:00-20:30 Dinner (Sempre)

Wed, 28th April

09:30-12:30 Hack & Test
12:30-13:30 Lunch (IJS Sodexo)
13:30-16:00 Hack & Test
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16:00-16:30 Co�ee + snacks
16:30-19:00 Hack & Test
19:00-20:30 Dinner (self-organised)
20:30-00:00 (optional) Hack & Test

Thu, 29th April

09:30-12:30 Hack & Test
12:30-13:30 Lunch (IJS Sodexo)
13:30-16:00 Hack & Test
16:00-16:30 Co�ee + snacks
16:30-19:00 Hack & Test
19:00-20:30 Dinner (at department, Pizza)
20:30-02:00 (optional) Hack & Test

Fri, 30th April

09:00-09:30 Setup time
09:30-13:00 �nal competition (30 minutes performance + 10 minutes

setup)
13:00-14:00 Lunch (IJS Sodexo)
14:00-14:30 Award ceremony & closing
after 14:30 Leaving

2.1.2 Participants

ALU-FR

� Moritz Goebelbecker

� Thomas Keller

BHAM

� Rustam Stolkin

� Charles Gretton

� Marek Kopicki

� Marc Hanheide

� Jeremy Wyatt

� Veronica Arriola Rios

� Richard Dearden

TUW

� Michael Zillich

� Kai Zhou

� Thomas Mörwald

� Andreas Richtsfeld

KTH

� Kristo�er Sjöö

� Yasemin Bekiroglu

� Patric Jensfelt

� Andrzej Pronobis
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DFKI

� Geert-Jan M. Kruij�

� Pierre Lison

� Shanker Keshavdas

� Benoit Larochelle

� Harmish Khambhaita

UL

� Danijel Sko£aj

� Ale² Leonardis

� Matej Kristan

� Alen Vre£ko

� Marko Mahni£

� Barry Ridge

� Luka �ehovin

Invited speakers

� David Hogg

� Norbert Krüger

� Ron Petrick

2.1.3 Venue

The Spring school took place in the building of Faculty of Computer and
Information Science, University of Ljubljana, where the Visual Cognitive
Systems Laboratory is located. Most of the building was occupied. Each
team had its own room to work in, a part of the building was reserved for
the test area, while the plenary sessions were held in the lecture room.
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2.2 Course materials

2.2.1 System setup and preparation

This should be carried out by everyone participating in the school. Most
important: The system has to be installed on every partner's robot (Bamboo
Laptop)

We (Nick & Marc) will provide online support on Wednesday 21st April
2010 to sort out your problems. Please try before that date, so you have
something to ask!

This year we will be working both, on a real robot and in a simulation
environment. That means everybody can have the system running on their
own machines!

Preparing your Ubuntu System

We will only provide support for Ubuntu-based Linuxes. We had success
with 9.04, 9.10, and 10.4b releases. We recommend to install Ubuntu 9.10
Desktop edition as all this documentation refers to that release.

You can also use a VirtualBox to run the system in a virtual machine if
you don't want to install it natively on your machine. A prepared virtual
appliance can be downloaded from here. Unpack the archive and follow
option 1 in this tutorial.

Using the virtual machine is recommended for everyone who does not
want to install Ubuntu on her/his machine. Please assign as much memory
and processing power to the virtual machine so you can actually run our
system! However, every partner has to at least install their Bamboo with
the real system to run it on the robot. This has to be done before the school
starts.

Installing all required ubuntu packages

1. run sudo synaptic in your terminal

2. select from the menu [File->Read Markings...]

3. select the attached �le (This �le is for ubuntu 9.10 [karmic], it might
not work with others. You can open it in your favourite editor and see
which packages you should have installed in your system)

4. apply all changes by clicking [apply]

5. you might also want to install eclipse and subclipse to ease development
for the school.
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Install all cogx speci�c dependencies (CAST etc.) We provide a so-
called GAR-installer to ease installation. Simply follow these steps and you
should be able to install all relevant packages:

1. create your local folder which you want to use to build everything
in (doesn't really matter, everything will be installed in /usr/local
anyhow). do cd <name of your directory.

2. check out the installer: svn co https://codex.cs.bham.ac.uk/svn/nah/cogx/code/tools/gar-
installer/trunk gar-installer! You will need your cogx svn username
and password. This will create a directory "gar-installer", change into
it: cd gar-installer

3. GAR has a management of dependencies. So we can now simply change
into the directory "cogx/full-blown" and tell GAR to install this. It
will automatically also fetch, con�gure, build, and install all require
packages. So, let's do it (here a 'sudo' is required to gain administrative
permissions, enter your password when being asked for it: cd cogx/full-
blown; sudo make install

4. GAR now should be doing everything for you. It might �nd some
ubuntu packages still missing if you haven't installed everything in
step 1 (see above). It then asks you to con�rm the installation and
you should simply hit [return].

This procedure of course is prone to fail. Just let us know when you experi-
ence any problems. Missing libraries are usually to be blamed on the one you
modeled the dependencies in the GAR con�guration �les and most ofen on
"boost" libraries that create a version mess across Ubuntu releases. First try
to install missing ones again using "synaptic" or give us (the school team) a
shout. Another hint is to look at last year's tutorial to install CAST.

Almost there: learn the basics If you reached here, you are almost
done. You have all 3rd party stu� installed. Now you should, if you haven't
done already last year or sometimes else, familiarise yourself with CAST.
The tutorial from last year is still valid and it is assumed that you know the
basics about CAST as discussed in this tutorial.

2.2.2 Introduction

General

� this year's organisers (content-wise): Pierre Lison, Moritz Göbelbecker,
Marc Hanheide (and thanks to all the supporters: Michael, GJ, Kristof-
fer, Danijel, Marko,...)
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� remember last spring school, where we focused on navigation and spa-
tial (and object detection)

� this time we'll build on that

� the mobile robot will still search, but not manipulate

� it will plan and execute actions to learn more about its world

� its world is composed of objects and humans, places and rooms

� we focus on

� belief models as a generic representation of the robot's world that
is maintained and consolidated through binding processes...

� ...and on planning to extend this representation by carrying out ac-
tions.

What you are supposed to learn

� how to create a planning domain for a given problem / task

� how create beliefs about the world that are used to derive the planning
state

� how the general processing of (the new) binding works and how it can
be used

� how to employ the overall processing chain motivation → planning →
execution operates and intertwines with the belief-oriented representa-
tion of the world

� where the problems in real world application lies and why we would
need more probabilistic beliefs

� working in a developer team (using svn, talking to people, understand-
ing other's code,...)

� where we still introduced bugs :-)

Technologically

� CAST is used once again, the processing principles remain the same,
though some extensions could be learned. You should have familiarised
yourself with these Tutorials:

� CAST tutorial (this one is important)

� nav.sa tutorial (you should learn this, but not necessarily for this
spring school)
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� vision.sa tutorial (you'll need the object learning bit from this
one)

� it'll be more JAVA than C++ this time! You can use C++, but we
strongly recommend using JAVA this time. If you don't like it, do pair
programming, try to �nd your way with C++, do the brain work (de-
�ne the planning domain, think) or go implementing CAST bindings
for your favourite language and port CAST to Windows...

� actually, there is not too much programming involved, most of it
is already there.

� we have a simulation environment (and even a virtual appliance to be
installed in VirtualBox) => everybody can test and program!

Subarchitectures

� for those who haven't heard about subarchitectures: There are a function-
oriented of our systems:

� nav.sa

� spatial.sa

� coma.sa

� vision.sa

� comsys.sa

� planning.sa

� binding.sa

� ... (there might be even more)

� our focus is on binding and planning
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Pablo

� our robot PaBLO

� �Planning and belief models to look for objects�

� PaBLO...

� can drive around

� can build maps

� can see objects & persons (ok, the name should be PabloP?!)

� can be engaged in simple GUI dialogues

� is smart (that's your part)

Prove Pablo's smartness in tasks

� we'll have not one, but three competitions!

1. Be Pablo's binder and planning component yourself: Me-Pablo:
You will operate the robot using the same level of abstraction that
is available to the component your are using later on to implement
autonomous Pablo.

2. First year's task revised: Play-it-again-Pablo: Pablo will plan and
act autonomously to �nd objects and report there whereabouts.

3. Harvesting information from humans:IntAct-Pablo: The holy grail
to be found in this school; �nd and interact with humans and re-
late information to each other in a meaningful way. Find out,
who ones which record!
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Schedule

� we might adjust if we need to

� we have several Q & A session (e.g. every morning) where you should
ask your questions regarding the task and other lacks of clarity

� we are around most of the time

� well, here is detailed the schedule

Checking out the spring school system for your team

� we created an SVN branch for each team.

� check it out in any directory you like to work in your machine. You
can use eclipse with subclipse as well to check out here (actually that
might be smart if you plan to use eclipse)

� check out from this location: https://codex.cs.bham.ac.uk/svn/nah/cogx/code/schools/css-
2010/team-''<team-name>''. team names:

� blue (Jeremy,...)
� violet (Richard,...)
� green (Danijel,...)
� red (Patric,...)
� orange (GJ,...)

� an example would be: svn co https://codex.cs.bham.ac.uk/svn/nah/cogx/code/schools/css-
2010/team-orange my-spring-school-system,don't touch other peo-
ple's SVN! Don't even look at it

� it'll look like this: schools/css-2010/master

� the idea is, that you mostly implement in spring-school-implementation,
though changes are allows elsewhere (not everywhere though,
not in the svn:externals!).

� This example will create a directory my-spring-school-system, you
can choose any other, too

Compile and test it

� change into the directory you just checked out the code

� test the simple simulation environment by running player instantiations/stage/spring-
school/cogxp3-spring-school.cfg (you are free to changeinstantiations/stage/spring-
school/cogxp3-spring-school.cfg
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� compile the spring school system by the following (assuming you are
still in your spring school top-level directory):

1. mkdir BUILD if it does not yet exist

2. cd BUILD

3. ccmake .. default could/should be �ne here, but you might want
to toggle some switches. press [c] twice and then [g] to generate
the make �les.

4. make install should build all C++/Python code everything and
also run ant to build the java code

� make sure your system has python-qt installed by running sudo apt-get
install python-qt4 for castcontrol

Running the �rst task in simulation

� remove old robot pose: rm -f robotpose.ccf

� copy the map from stored maps (you have to do this prior to every
run): cp stored-maps/1sttask-simulation/tmpmap.* .

� run castctrl: tools/castctrl/castcontrol.py

� make sure your settings look like this (your settings will be remem-
bered):

� click [Detect] in the con�gure tab
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� hit [F3] to start peekabot, player, log-server

� hit [F4] to start cast-servers

� hit [F5] to run your con�guration (in this case, the simulation of the
�rst task)

� you should see the GraphicalActionInterface where the robot is at your
command.

� for the �rst task we'll use "goto" and "look-for-persons" only

� test it!

� stop the system by hitting [Shift-F5,Shift-F4,Shift-F3]

� Notes

� if you experience problems with starting peekabot using castcon-
trol, untick it in castcontrol and run it manually

� for peekabot you need a link in peekabot's con�g dir. If you
don'thave it yet you might want to create it:
cd �
mkdir -p .peekabot
cd .peekabot
rm -rf data
ln -s <path to your installation of the spring-school-system>/instantiations/peekabot-
models/data .

Run it in real

� all you have to do is to change settings and setup your robot:
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2.2.3 Taks

First task: Whom do all these records belong to?

There was a party back there in the 80s and everybody brought their own
vinyl albums. The next morning they are all spread everywhere and it's
about time to clean-up. The robot helps by �nding out who is the owner of
each of the records?

Task Task: "Find all records in the environment and learn who owns which
record"

� the team remote-controls the robot (the team "replaces" planning and
beliefmodels)

� perception: blurred video image & Peekabot visualisation is all
you have

� use the GraphicalExecutionManager.java to execute actions with
the robot. The following actions do exist:

� gotoPlace
� turnAround
� askQuestion (by asking them loud, not using the robot's ac-
tion)

Rules

� each person owns zero or one record (not more)
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� each record has an owner

� persons are static at distinct places in the environment (they are too
tired from partying to move)

� records are static at distinct places in the environment (they are too
object-ish to move)

� humans are at least 2.5m apart from each other

� there are a minimum of two records and a minimum of three persons

� there is a maximum of four records and a maximum of six persons

� the number of records and persons and the pre-loaded map is the same
for all teams.

� the starting position is �xed for all teams.

� to position of objects and persons is changed for each run.

� there is hard time constraint of 15 minutes for the task, using this stop
watch.

� the robot is remote controlled from a room from which the team mem-
bers can't neither see the persons nor the objects nor the robot at any
time.

� The following questions are allowed and will be answered by humans
only if the robot is within communication distance (within 2m, it does
not have to face the person). Humans have limited knowledge, for
some questions there is a likelihood of knowing the answer. If the
person does not know she will either not answer or state she doesn't
know. What a person knows or doesn't know is de�ned prior to each
task by throwing dices.

Question Answer Likelihood of knowledge

"Is the record of the artist
XXX your record?"

Yes|No 100%

"Can you tell me the artist
of the record person YYY
brought here, please"

"It is XXX!" 50%

"Is the record of the artist
XXX in this room?"

Yes|No 100%

"In which room is the record
with artist XXX?"

"It is in room
ZZZ!" 50%
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"In which room is person
YYY?"

"She is room
ZZZ!" 50%

"In which room is person
YYY's album?"

"It is in ZZZ!" 25%

"What is the artist of your
record?"

"It is XXX!"
100% (if this person doesn't
have a record she will not an-
swer)

"What is your name?"
"My name is
YYY" 100%

"Which room is this?" "It is the ZZZ!" 100%

� each team should use their own robot

� the goal is to have a representation (on paper) of the following:

� where is each record (the records are discriminated by their artist
and the place by the place-id from peekabot)?

� where is each person (persons discriminated by their name and
the place by the place-id from peekabot)?

� who is the owner of each record

� rooms: we have three rooms (C, D, corridor)

Scoring

Achievement Score
each identi�ed and localized person (name<->place associa-
tion)

100

each identi�ed and localized record (title<->place association) 100
each fully correct assignment ("YYY, your record XXX is at
place PPP")

200

asking a question a person cannot answer (logically) -50
each wrong association (e.g. wrong place, wrong owner, no
guessing)

-50

� if task is completely achieved the fastest team wins

� scores are doubled if task is accomplished with self-installed system

Task 2: Play it again!

� This is a �rst task running autonomously

� It's about �nding objects

� It's the last spring school revisited, with the robot's behaviour being
generated by binding and planning
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Task

� The robot has to �nd object in the environment autonomously and
�nd out their names

� In the end, the teams have to prove (e.g. by showing a visualisation)
that the robot knows

� The goal is to determine the place id each of the objects is in!

� the objects to be found are again records

Rules

� there will be three records randomly distributed across the two rooms: C,
corridor.

� the three records will randomly be selected from the set of four records: James,
Jesus Jones, Heartbreakers, Chaka Khan.

� They have to referred to by these identi�ers.

� the map is entirely pre-recorded and will be provided:

� The object detectors for the four possible objects have to be trained in
advance by the teams themselves. See last year's tutorial.

� the robot has to prove somehow where it found which object. Teams
are free to choose how they realize it, e.g. using a component like

JAVA MG WMViewer castutils.viewer.ViewerCastComponent --
subscribe "beliefmodels.autogen.beliefs.StableBelief"

in your CAST con�guration (in instantiations/spring-school.*) is ab-
solutely su�cient!

� all objects will be positioned in a way that the robot can see them.

� the object is assumed to be correctly localized if the shortest walking
distance between object and place is less than 2m (generosity applies)

� a hard time constraint of 15 min applies

Scoring

achievement score

each correctly reported place id of an object (incl ob-
ject name)

100
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each falsely reported place of an object -20
doing it only in simulation all score divided by 3
robot notices when it has achieved it's goal 100
style points for "cool" result presentation (only if any
meaningful result)

between 0-100

Implementation hints

� There is API documentation here: http://www.cs.bham.ac.uk/�hanheidm/spring-
school-javadoc/index.html

� decompose the task, so everybody can work on something

� �rst think how you would model the problem. De�ne a goal string,
and show it to use to get advise!

� you might want to start with the simple goal and test that both in real
and simulation

� try to solve the task in simulation, but be aware that in real world,
perception is far from perfect

Getting objects on the binder

� in the system it is already implements for places, relations between
places, the position of the robot, and for persons

� the object detector whenever triggered puts VisualObject structures in
theWM (this data type is de�ned in subarchitectures/vision.sa/branches/stable-
0/src/slice/VisionData.ice). You don't have to change it.

� you need to get this object on the binder as a PerceptBelief? (see schools/css-
2010/master/tools/beliefs/src/slice/beliefmodels.ice)

� you might want to use the percept mediator (look at the example
for persons in
schools/css-2010/master/subarchitectures/binder/src
/java/binder/perceptmediator/components/PersonMediator.java
). This is an easy(?) way of implementing it, though it requires
you to understand what is going on...

� you can alternatively create a Java CAST component to do this
based on the beliefmodel API (see schools/css-2010/master/tools/beliefs/src/java
for the source or check http://www.cs.bham.ac.uk/�hanheidm/spring-
school-javadoc/index.html for API documentation. People are
advised to look at thetest.beliefmodels.* package in the API
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http://www.cs.bham.ac.uk/�hanheidm/spring-school-javadoc/test/beliefmodels/
builders/package-summary.html for examples of what to do (and
what not) when creating beliefs.

� you can write a C++ component that only uses the CAST-API,
but this is not recommended. You have to understand the belief
model API before you do this.

� try to understand how it works for Persons and adopt for visualobjects

� look at the output of the WMViewer (look for StableBeliefs?)

Working on planning

� look at the output of the WMViewer (look for StableBeliefs?)

� switch on debugging for the planner

� test your planning outside the system as well

Extending execution

� your central entry point: DoraExecutionMediator?, that has to be mod-
i�ed for the third task.

Task 3: InAct Pablo

� This is the �nal autonomous task

� It is similar to the �rst task, but you are now supposed to use belief
models and planning to generate the robot's behaviour

� please also refer to the �rst task's description: meetings/css10/material/task1

Task Task: "Find all records in the environment and learn who owns which
record"

� perception: person and object detectors

� detect that there is person near by

� detect pre-learned objects (they are identi�ed)

� The following actions do exist:

� gotoPlace
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� detect-person (try to detect a person without actively searching
for it)

� detect-object (try to detect any of the pre-trained objects without
actively searching for it)

� look-for-object (active search including full rotation)

� look-for-person (active search including full rotation)

� ask-for-<something> (several actions have to be implemented to
ask for speci�c features, a basic GUI is provided)

� con�rm-<something> (several actions have to be implemented to
con�rm hypotheses, a basic GUI is provided)

� the knowledge the robot has to acquire is:

� in which place are the record? indicating the place-id for each
object (referred to by its name)

� which record belongs to whom? Represented by the record name and
the person name

� in which place is each person? indicating the place-id for each
person (referred to by her/his name)

� in which room is each record? Represented by the record name and
the room name

� in which room is each person? Represented by the person name and
the room name

Rules If some rules are unclear, please ask and monitor this page for up-
dates!

General

� no additional constant domain knowledge is allowed (e.g. no aug-
mented maps, no pre-stored information abut places) besides the pro-
vided map, the probided rooms, and the trained object detectors. And
of course, the domain knowledge in MAPL and MLN.

� each person owns zero or one record (not more)

� each record has an owner

� persons are static at distinct places in the environment (they are too
tired from partying to move)

� records are static at distinct places in the environment (they are too
object-ish to move)
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� humans are at least 2.5m apart from each other (at di�erent places)

� there will be three records randomly distributed across the three rooms: C,
D, corridor.

� Rooms always have to be referred to by these names.

� the three records will randomly be selected from the set of four records: James,
Jesus Jones, Heartbreakers, Chaka Khan.

� They have to referred to by these names.

� the map is entirely pre-recorded and will be provided, as well will be
the assignment of places to rooms:

� every regular place is part of a room, gateway places are not part
of any room

� each room has more than 1 place

� The object detectors for the four possible objects have to be trained in
advance by the teams themselves. See last year's tutorial.

� the robot has to prove somehow what it learned. You'll get higher
scores the more "natural" you present your results. The robot could
use speech output, saying e.g.: "The record Heartbreakers in room C
at place 33 belongs to Pierre who is in room corridor at place 2"

� all persons will be positioned in a way that the robot can see them.

� all objects will be positioned in a way that the robot can see them.

� the setup will be the same for all teams, though not previously be
announced

� the objects and persons are assumed to be correctly localized if the
shortest walking distance between object and place is less than 2m (gen-
erosity applies)

� a hard time constraint of 30 min applies

� On Friday we will be strict with the time The order of performing is
determined by the ranking in Bowling. The Bowling champion are to
choose �rst when they want to perform.
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Rooms

� rooms are represented as ComaRoom in the WM.

� Coma in CogX is conceptual mapping that does reasoning on
concepts about rooms.

� a room is represented as a set of places that shared the same
concept.

� in this year's school, we use a "Fake-Coma".

� they are already being propagated as PereptBelief by appropriate me-
diators.

� you have to have a component in your CAST con�guration that reads
pre-stored rooms from a �le. The coma subarchitecture part should be
extended to:

# coma #########################

INCLUDE includes/coma.sa/coma-base.cast

JAVA MG player castutils.components.WorkingMemoryPlayer --state

--file stored-maps/3rdtask-real/coma.log

� this will load the stored ComaRoom elements and put them on the
working memory where other (existing) components mediate these
to PerceptBelief.

� in fact, starting up takes about 12 seconds with the room representa-
tion in place (due to synchronisation issues).

� in order to get the pre-stored map, of course, you have to update from
svn

� There is no provided simulation map for the 3rd task. You can create
it yourself. Simply follow these steps:

� clear the map before startup: rm tmpmap.*

� add the following to your CAST �le (e.g. spring-school-simulation.cast):
# coma #########################

INCLUDE includes/coma.sa/coma-base.cast

JAVA GD FakeComa fakecoma.components.GraphicalComa --debug

JAVA MG recorder castutils.components.WorkingMemoryRecorder

-- file coma-simulation.dump

� drag the robot carefully in stage to create a map
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� you create rooms by selecting all places in the GraphicalComa win-
dow and give it a name: C, corridor, D

� all memory content of the COMA working memory is now stored
in a �le and can be reloaded later on

� to reload you simple add the reader component to your CAST �le
(see above for the real system):
# coma #########################

INCLUDE includes/coma.sa/coma-base.cast

JAVA MG player castutils.components.WorkingMemoryPlayer

--state --file coma-simulation.dump

Asking humans

� The following questions are allowed and will be answered by humans

� people always answer correct if they have the knowledge

� people can answer only if the robot is within communication dis-
tance (within 2m, it does not have to face the person)

� Humans have limited knowledge, the likelihood is given in the ta-
ble. The likelihood is per-value. For instance, if a person doesn't
know the room of record A, it might still know the room of record
B. Please see attached spread sheet.

� If the person does not know she will state she doesn't know.

� If the robot asks a person that is non-existing, the asking action
will wail and no information will be reported

� What a person knows or doesn't know is de�ned prior to each
task by throwing dices.

Question Answer Likelihood of answering
"Is record XXX your record?" Yes|No 100%
"Is there a record in room ZZZ?" Yes|No can be derived
"Is there a person in room ZZZ?" Yes|No can be derived
"Is there a person in room ZZZ?" Yes|No can be derived
"Which record is owned by person
YYY "

"XXX" 50%, if YYY is not you, oth-
erwise 100%

"Who owns record XXX?" "XXX" 50%, if XXX is not yours, oth-
erwise 100%

"In which room is the record
XXX?"

"ZZZ" 50%
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"In which room is person YYY?" "ZZZ" 50%
"In which room is person YYY's
album?"

"ZZZ" 25%, if you are not YYY,
other wise 50%

"Which one is your record?" "XXX" 100% (if this person doesn't
have a record she will not an-
swer)

"What is your name?" "YYY" 100%

� you don't have to use/implement all questions

� you can only ask for information in a way that allows the person being
asked to unambiguously dereference the question. For example, you
must not ask for the owner of a record if you don't know the label.
Internal information (such as place ids, belief ids) are not eligible to
talk to people. You need to use thenames.

� you may call a restart at any time, max 2 times. the time runs and you
have to restart from the maps origin

� you may decide to perform in simulation at any time.

� The end time if a HARD deadline

� people in the test must face towards the robot at all times, the must
not make a grimace or anything

� one team member operates the robot (supervised by a referee), this
person and all spectators must always keep out of sight for the robot

Scoring

each correctly reported place id of a record (incl record name) 200
each correctly reported room name of a record (incl record
name)

100

each correctly reported place id of a person 100
each correctly reported name of a person 100
each correctly reported room name of a person (incl person
name)

100

each correct ownership association (incl person name and
record name)

200

each mistake in reporting the place of an object (also, dupli-
cates)

-25

each mistake in reporting the place of a person (also, dupli-
cates)

-25
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each mistake in reporting the room of an object -50
each mistake in reporting the room of a person -50
asking a question a person cannot answer (logically, e.g. in-
correctly dereferenced)

-50

doing it only in simulation
all score di-
vided by 4

robot reports achievement of task and �nishes 100
every minute �nished earlier than 30 minutes 10
style points for "cool" result presentation (only if any mean-
ingful result)

between 0-200

Implementation hints

� start with a simple, brute force attempt and re�ne

� not all question are necessary useful, some actions need to be imple-
mented, some are more complex than others

� Here are your entry points to start hacking:

� model your domains for planning here: schools/css-2010/master/spring-
school-implementation/domains

� design your Markov logic networks here: schools/css-2010/master/spring-
school-implementation/src/markovlogic

Final Score The ranks of the �rst task is not included in the �nal score

Rank rank score T2 rank score T3
1 10 20
2 6 12
3 3 6
4 1 2
5 0 0

The �nal score is computed as the sum of the rank score of the individual
tasks. The overall score
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2.3 Technical tutorials

2.3.1 Tutorial on binding and belief models

See the slides below.

2.3.2 Tutorial on planning

See the slides below.

2.3.3 A short recap

General about CAST and working memories

� CAST is an integration toolkit, tailored to the needs of cognitive sys-
tems engineering

� it's kind of a blackboard (basically some key-value maps) architecture
with basic operations: ADD, OVERWRITE, and DELETE

� event-driven processing, components register themselves to receive event
on ADD, OVERWRITE, and DELETE of content

� the WMViewer is a simple plugin-based viewer for such kind of
memory content

� CAST �les de�ne the system structure:
schools/css-2010/master/instantiations/spring-school-simulation.cast

The perception side

� OBJECTS: we use the FERNS detector and we simulate object detec-
tion using coloured blobs in stage.

� PEOPLE: we use a multimodal people detection that has been devel-
oped by a MSc student in Birmingham (again: simulated in stage using
coloured blobs, in the standard con�guration these are yellow.

� The visual components are con�gured in
schools/css-2010/master/instantiations/includes/vision.sa

� perception is the beginning of our processing chain:perception -> binder
-> planner -> execution

� for sake of simplicity we here also consider the places the robot is
at and the robots position as perceptual entities that are updated
if required.
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� there is a set of perceptmediators
schools/css-2010/master/instantiations/includes/binder.sa/perceptmediators.cast

� these are a generic implementation for the use case of a 1-to-1
mapping of working memory entries to PerceptBelief with spe-
cialized transfer functions, e.g. for Persons.

� look at
schools/css-2010/master/subarchitectures/binder/src/java/binder/perceptmediator

The binder

� See tutorial

� in the current system we use belief models as a generic representation
of the world (or, more, would the system beliefs the world is like)

� Belief generally have distribition(s) of di�erent types. In this schools,
we are only using discrete feature distribution that are independent of
eachother.

� thus, you can think of a belief as a structure that has simply a
set of named features of di�erent types:

� PointerValue: to refer to other beliefs
� StringValue, IntegerValue, Boolean (see API)

� all perceptual information has to be put to CAST's working memories
as PerceptBeliefs.

� their addition or modi�cation (ADD, OVERWRITE) trigger the
Binder to propagate these beliefs in a multi-stage procedure:

� PerceptBelief
� PerceptUnionBelief
� MultimodalBelief
� TemporalUnion
� StableBelief

� The binder framework does all the propagation for you and the com-
ponents that work on it are de�ned in CAST �les again: schools/css-
2010/master/instantiations/includes/binder.sa

� While most of the binder components are rather simple Forwarder, the
tracker component uses already Markov logic networks to implement
the actual tracking. The current implementation is in schools/css-
2010/master/spring-school-implementation/src/markovlogic/tracking/tracking-
objects.mln, you can change this formulars to make tracking more ro-
bust. How?
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� in the end, the binder creates StableBeliefs which are the basis for
the Planner. You can easily see these StableBeliefs in the WMViewer
component.

The planner

� the planner has a generic component that translates StableBeliefs into
planner states. You don't have to write this, it's done by the planner
framework.

� the planner state (the problem) generated by the planner is created
in subarchitectures/planner.sa/src/python/problem*.mapl.

� in this transformation process, the planner uses the following rules:

� stable beliefs are transformed into objects

� PointerValues are dereferenced to objects in the planner domain

� features of Type BooleanValue are transformed into predicates of
the object or functions of type Boolean (depending on the domain
de�nition)

� StringValue and IntegerValue are represented as functions in the
planner domain (see systems/spring-school-2010/spring-school
-implementation/domains)

� in fact, Moritz slides (page 25) tell that internally a predicate is
only a function of type boolean

� it is very important that the domain �le correctly de�nes the functions,
predicates, and objects that are generated... otherwise, the planner will
crash (with some useful explanation in the logs!)

� it is highly recommended to generate "problems" by letting the system
run and do planner debugging "o�ine" as explained in the planning
tutorial.

� the planner receives its goal from motivation.

� this general framework does goal generation, �ltering and man-
agement.

� in our school, we only use one generator, the manual �lter, and the goal
managers : schools/css-2010/master/subarchitectures/motivation.sa/con�g/cast-
includes/motivation.cast

� for some historic reason, execution is part of motivation
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Execution mediators

� create action instances for speci�c action triggered by the planner

� a mapping between the name of the action in the planner domain and
actual implementing datatype has to be established here

� look here for an almost complete example:
schools/css-2010/master/spring-school-implementation/src/java/execution
/components/SpringSchoolExecutionMediator.java
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  Introduction

The spring school system for this year includes the binder

subarchitecture

The binder is a central hub gathering and processing 
information about the world, coming from various sources

This information is represented as beliefs

We‘ve been working over the last months on a new 
framework for representing and constructing multi-modal 
beliefs of the environment

What you are going to use during this spring school is a 
very early prototype of this framework
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  What is the binder?

The binder constructs explicit, spatio-temporally 
grounded representations of the environment 

based on perceptual inputs retrieved from the various modalities

and on information communicated by other agents

These representations are called beliefs, and are 
expressed in a single, unified formalism

The binder is more than a mere information repository.  
The goal is to use the binder as an integrated process for 
information fusion, refinement, and abstraction:

Provides a rich, multi-modal model of the external context

Essential for high-level cognitive abilities (planning, interaction, etc.)
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  A new framework

We recently developed a new theory for “belief model 
formation” (aka binding) to formalise this process

It is based on Markov Logic, a first-order probabilistic language 
(combination of graphical models and first-order logic)

Why? Need to capture both the rich relational structure of the 
environment and the uncertainty of our observations

Internal engine for probabilistic inference is based on an existing 
software package for Markov Logic: Alchemy

See our WP1 extended report for the theoretical foundations 
of our work

This theory is partly implemented in the system you will be 
using for the spring school task
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  Representation of beliefs

The environment we need to model is simultaneously complex,
multi-agent, dynamic and uncertain

We need a representation which can handle this!

In the “new binder”, every unit of information is a belief

Beliefs are constrained both spatio-temporally and epistemically

Their content is expressed as a probability distribution over alternative 
values, which can be expressed as features or propositional formulae

Beliefs can be linked with each other to capture the relational structure

The initial beliefs are low-level, and are gradually fused, refined 
and abstracted by the binder system

The final outcome is a collection of final, stable beliefs

8
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  What is a belief?

9

Belief i

Epistemic status:

σ[here-and-now]

{robot}
percept

Spatio-temporal frame:

Ontological category:

k

...ϕ2Formula

Probability:

ϕ1Formula

Probability:

Exists ∧
〈Label〉 mug ∧
〈Colour〉 blue ∧
〈Location〉 k ∧
〈Height〉 11.2

Exists ∧
〈Label〉 mug ∧
〈Colour〉 purple ∧
〈Location〉 k ∧
〈Height〉 11.2

Probability distribution δ

¬Exists

Formula ϕ3

0.70.2

0.1Probability:

Belief

Belief history:

Origin o

[
ancestors : [o]
offspring : [b1, b2]

]

Belief b1 Belief b2
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  Constructing and updating beliefs

Beliefs are inserted by the local subarchitectures into the 
binding working memory

Belief representing sensory inputs observed from 
perceptual modalities are called percepts

The insertion of percepts into the binder can be done 
directly (via CAST), or via percept mediators

Percept mediators provide an intermediary layer of generic 
processes to create percept beliefs

Useful for synchronization

Of course, percepts can also be updated (overwrite 
operation) or deleted at any time

10
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  Belief content

The belief content is expressed as probability distribution over 
alternative values

It is typically instantiated via an global existence probability for the 
entity combined with a set of specific features

Each feature is also expressed as a probability distribution 

The features are usually assumed to be conditionally independent of each other

Example: a belief about a red ball

P(Exists) = 0.85

P(type=ball | Exists) =0.9 , P(type=mug | Exists) = 0.05

P(colour=red | Exists) = 0.8, P(colour=pink | Exists) = 0.1

Builders are available in tools/beliefs for easily constructing 

beliefs

11
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  Example code in Java

12

CondIndependentDistribs features = BeliefContentBuilder.createNewCondIndependentDistribs();

List<FeatureValueProbPair> labelPairs = new LinkedList<FeatureValueProbPair>();
labelPairs.add(new FeatureValueProbPair(FeatureValueBuilder.createNewStringValue("Mug"), 0.9f));
labelPairs.add(new FeatureValueProbPair(FeatureValueBuilder.createNewStringValue("Ball"), 0.05f));

BasicProbDistribution labelDistrib = 
BeliefContentBuilder.createNewFeatureDistribution("label", labelPairs);          

BeliefContentBuilder.putNewCondIndependentDistrib(features, labelDistrib);

ProbDistribution beliefcontent = 
BeliefContentBuilder.createNewDistributionWithExistDep(0.85f, features);

CASTBeliefHistory hist = 
PerceptBuilder.createNewPerceptHistory(new WorkingMemoryAddress ("local_subarch_id","vision"));

PerceptBelief belief = 
PerceptBuilder.createNewPerceptBelief(id, "object", "here", this.getCASTTime(), beliefcontent, hist);

insertBeliefInWM(belief)
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  More practical infos

The code for constructing beliefs is to be found in 
tools/beliefs

The representation is specified in a slice file: tools/
beliefs/src/slice/beliefmodels.ice

JUnit tests are also available (in tools/beliefs/src/

java/test) and provide you with plenty of example 

code for constructing beliefs

Once a belief is constructed, it can be inserted/updated/
deleted in the working memory using the usual CAST 
operations, or the BeliefWriter interface

13
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  The binder subarchitecture

15

Binder

Working 
Memory

Subsystem 1 Subsystem 2 Subsystem 3

Local 
WM

... ...

Local 
WM

... ...

Local 
WM

... ...

... ...

refine

update

Processing components

retrieve
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  Binding operations

The process of constructing high-level representations 
from perceptual inputs is formalised in four steps:

Perceptual grouping: beliefs from distinct modalities which may 
pertain to the same entity are grouped together

Multi-modal estimation: the measurements from the uni-modal 
beliefs are used to derive multi-modal estimates

Tracking: beliefs are unified over time (by relating current 
observations of an entity to past observations)

Temporal smoothing: the estimates in the beliefs are refined using 
both past and present measurements

For the spring school task, only the tracking step will be 
directly useful

16
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  Good luck!

Good luck in your work!

And have fun playing with the 
system :-)

If you have any problems or 
questions regarding the binder 
implementation, please don‘t 
hesitate to ask me

23
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Moritz Göbelbecker Planning Tutorial

Introduction
Planning

Planner.SA
Tasks

You are going to learn about:

Planning basics
PDDL and MAPL
The CogX planner implementation
Interactions between Planner and Binder

Moritz Göbelbecker Planning Tutorial

Introduction
Planning

Planner.SA
Tasks

1 Introduction

2 Planning
PDDL
MAPL

3 Planner.SA
The Planning Loop
Binder to Planner
Planner to Binder

4 Tasks
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PDDL
MAPL

The Planning Problem

Definition
Given an initial state and a goal formula, find a sequence of
actions that leads to a state which satisfies the goal.
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PDDL
MAPL

Classical Planning

Deterministic
Fully observable
Propositional statements
Closed world assumption

That which isn’t known to be true is false
The set of objects is fixed

No numeric rescources
No time
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PDDL
MAPL

Object Fluents

Multi-valued state variables
Introduced in PDDL 3.1
In addition to propositional statements
Fluents that have no known value are explicitely unknown
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Continual Planning

Interleave planning and execution
Monitor the plan execution
When the plan is no longer valid: replan
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PDDL
MAPL

PDDL

A standardised language to describe planning problems
Used by the International Planinng Competition
Separate domain and problem descriptions.
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PDDL
MAPL

Domain description

(define (domain cogx)
(:requirements ...)
(:types ...)
(:constants ...)
(:predicates ...)
(:functions ...)

(:action ...)
(:action ...)
(:action ...)

)
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Requirements

(define (domain cogx)

(:requirements :mapl :adl :object-fluents)

(:types ...)
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PDDL
MAPL

Type definition

(:requirements ...)

(:types
place - object
place_status place_name - object
robot - agent
robot person - movable

)

(:constants ...)
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PDDL
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Domain constants

(:types ...)

(:constants
placeholder trueplace - place_status

)

(:predicates ...)
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Predicates

(:constants ...)

(:predicates
(connected ?n1 - place ?n2 - place)
(occupied ?p - place)

)

(:functions ...)
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Functions

(:predicates ...)

(:functions
(is-in ?r - movable) - place
(placename ?n - place) - place_name
(placestatus ?n - place) - place_status

)
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Action description

(:action move
:parameters (?a - robot ?to ?from - place)
:precondition (and

(= (is-in ?a) ?from)
(connected ?from ?to)
(not (occupied ?to)))

:effect (and
(assign (is-in ?a) ?to))

)
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Conditions

Atoms (p ?args), (= (f ?arg) ?value)

Negations (not (Condition))

Conjunctions (and A B C ...)

Disjunctions (or D E F ...)

Implications (imply A B)

Existential Quantifier (exists (?x - type) (p ?x))

Universal Quantifier (forall (?x - type) (p ?x))
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Effects

Atoms (p ?args)

Negations (not (Atom))

Assignments (assign (f ?arg) ?value)

Conjunctions (and A B C ...)

Universal effects (forall (?x - type) (Effect))

Conditional effects (when (Condition) (Effect))
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Action costs

(:requirements :action-costs ...)

(:action move
:parameters (?a - robot ?to ?from - place)
:precondition (and

(= (is-in ?a) ?from)
(connected ?from ?to)
(not (occupied ?to)))

:effect (and
(assign (is-in ?a) ?to)
(increase (total-cost) 42))

)
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Problem description

(define (problem cogx-problem)
(:domain cogx)

(:objects ...)
(:init ...)
(:goal ...)
(:metric ...)

)
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Objects

(:domain cogx)

(:objects dora - robot
p1 p2 p3 p4 - place)

(:init ...)
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Initial state

(:objects ...)

(:init
(= (is-in dora) p1)
(connected p1 p2)
(connected p2 p3)
(connected p3 p4)

)

(:goal ...)
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Goal formula

(:init ...)

(:goal (and
(= (is-in dora) p4))

)

(:metric ...)
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Optimization function

(:goal ...)

(:metric minimize (total-costs))
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MAPL

MultiAgent Planning Language
Extension of PDDL
Support for continual planning
Support for knowledge representation
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MAPL Types

boolean
Predefined constants true, false
Internally, all predicates are functions of type boolean

agent
Represents entities that can execute actions.
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Actions in MAPL

(:action move
:agent(?a - robot)
:parameters (?to - place)
:variables (?from - place)
:precondition (and

(= (is-in ?a) ?from)
(connected ?from ?to)
(not (occupied ?to)))

:effect (and
(assign (is-in ?a) ?to))

)
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Modal predicates

Allow the expression of beliefs about facts.
(kval ?a (variable)): ?a knows the value of
variable.
(in-domain (variable) ?value): variable can
possibly take the value ?value.
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Assertions

Assertions allow us to decide when to replan
Replan-Condition: subset of the precondition that triggers
replanning when satisfied.
Assertions will never be executed.
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Assertions

(:action assertion_pick_up
:agent(?a - robot)
:parameters (?o - thing)
:variables (?p - place)
:precondition (and

(= (is-in ?a) ?p)
(in-domain (is-in ?o) ?p))

:replan (kval ?a (is-in ?o))
:effect (and

(assign (is-in ?o) ?a))
)
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Moritz Göbelbecker Planning Tutorial

Introduction
Planning

Planner.SA
Tasks

The Planning Loop
Binder to Planner
Planner to Binder

Motivation

binder

WM

Belief

Belief

Belief

planner.sa

WMMotivation

Planner

Execution

task
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Moritz Göbelbecker Planning Tutorial

Introduction
Planning

Planner.SA
Tasks

The Planning Loop
Binder to Planner
Planner to Binder

Monitoring

binder

WM

Belief

Belief

Belief

planner.sa

WMMotivation

Planner

Execution

task

action
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State Generation

World state on the Binder:
Beliefs representing objects with features
Beliefs representing relations between objects

0A
occupied=true
name=”xyz”

0B
occupied=false
name=”abc”(0.5), ”def”(0.0)
room=0D

0C
type=relation
connected=true

element0
element1
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The Planning Loop
Binder to Planner
Planner to Binder

State Generation

0A
occupied=true
name=”xyz”
placestatus=”trueplace”

(occupied place 0A)
(= (name place 0A) place name xyz)
(= (placestatus place 0A) trueplace)

0C
type=relation
connected=true

0A 0B

(connected place 0A place 0B)
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The Planning Loop
Binder to Planner
Planner to Binder

State Generation

0A
name=”xyz” (1.0)

(= (name place 0A) place name xyz)

0B
name=”xyz” (0.5)
name=”abc” (0.5)

(in-domain (name place 0B)
place name xyz)
(in-domain (name place 0B)
place name abc)

0C
name=”xyz” (0.0)
name=”abc” (0.0)

(not (in-domain (name place 0C)
place name xyz))
(not (in-domain (name place 0C)
place name abc))
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Type Inference

No hardcoded type information in Beliefs
Types are determined by the features they have or occur in.

0A
placestatus=”trueplace”
occupied=false

0C
type=relation
connected=true

0B

(connected ?n1 - place ?n2 - place) - boolean
(placestatus ?n - place) - place status
(occupied ?n - place) - boolean
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Type Inference

type-member can be used as additional type hint

0E
type=”robot”
is-in=0A

0F
type=”person”
is-in=0A

robot person - movable

(is-in ?m - moveable) - place
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Feeding back information to the binder

Sometimes you might want to keep track of success/failure
of previous actions.
Change the execution modules to put updates on the
binder.
Would be nice to have this in the planning domain.
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Update Effects

(:action move
:agent(?a - robot)
:parameters (?to - place)
:variables (?from - place)
:precondition (and

(= (is-in ?a) ?from)
(connected ?from ?to)
(not (occupied ?to)))

:effect (and
(assign (is-in ?a) ?to)
(update (occupied ?from) false)
(update-failed (occupied ?to) true))

)
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Make the robot move

Action: (move ?a - robot ?to - place)

Goal: “The robot is at place 2”
What to do if you can’t predict belief ids?
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Visit everything

Keep track of what you visited.
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Asking questions

Action: (ask-for-placename ?a - robot ?p -
belief)

Action: (verify-placename ?a - robot ?p -
belief ?val - value)

Will ask about the “name” feature of a belief.
Find out the names of all places.

Moritz Göbelbecker Planning Tutorial



Planner Options
Axioms

Planning Tutorial - Addendum
CogX Spring School 2010

Moritz Göbelbecker
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Moritz Göbelbecker Planning Tutorial - Addendum

Planner Options
Axioms

Planner options

Fast Downward can use lots of combinations of heuristics
Unfortunately, most don’t work with axioms (used
internally)
of seems to be a good value
Set in subarchitectures/planner.sa/src/
python/standalone/config.ini

Moritz Göbelbecker Planning Tutorial - Addendum

Planner Options
Axioms

Axioms

Axioms allow the definition of predicates that depend on
other predicates.
Derived predicates may be set in the initial state but not in
action effects.

Example
(:derived (connected ?loc ?loc2 - place)

(connected ?loc2 ?loc))

Moritz Göbelbecker Planning Tutorial - Addendum

Planner Options
Axioms

(forall (?x - type) (or (a ?x)
(b ?x)))

Will cause an exponential blowup in grounded axiom size.
Axioms to the rescue:

(:derived (c ?x - type) (a ?x))
(:derived (c ?x - type) (b ?x))

(forall (?x - type) (c ?x))

Moritz Göbelbecker Planning Tutorial - Addendum
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2.4 Invited tutorials

2.4.1 David Hogg: Activity analysis: representation and learning

See the slides below.

2.4.2 Norbert Kruger: Early Cognitive Vision: Vision for Cogni-

tion

See the slides below.

2.4.3 Ron Petrick: Representations for classical and knowledge-

level planning

See the slides below.

EU FP7 CogX 51



School of something
FACULTY OF OTHER

Activity analysis: 

representation and learning

David Hogg

University of Leeds

CogX meeting, April 2010

Introduction

Representing what is possible

Learning about what is possible

Dealing with visual uncertainty

Representing what is possible
Learning about what is possible
Dealing with visual uncertainty

Representing activities

Instantaneous configuration:

Joint configuration

),( 21 naaa L=x

),( RL
xxx =

Joint angles

Pixel values

Representing activities

(x,y) position in image (x,y,s) position
& shape in image

Time-series of configurations )(
t21

xx,x L

6

Representing activities

state([[tex2,col2,pos0],[tex2,col1,pos1]],t521).

action(utt1,t521).

time(t521).

successor(t518,t521).

Time-series of sets of logical atoms

Needham et al., AIJ 2005



Hamid et al., AIJ 2009

Sequence of propositions (adjacencies of person to location)

1 3 8 2 10 6

Qualitative spatial and temporal relations

Region Connection Calculus – RCC8 

(Randell et al., ICKRR 1992), 
Allen’s temporal relations 

(Allen, CACM 1983)

Representing spatial-temporal 

configuration as a graph

DR PO PO DR PO

m f s f 0 < s f f m

Spatial 
relations

Temporal 
relations

Objects

Sridhar et al., AAAI 2010

Representing object categories

As a subset of all configurations X, defined by 

algebraic constraints (Brooks, AIJ 1981)
As a probability function p(X) 

over configurations

17.0 < MOTOR-LENGTH x MOTOR-RADIUS < 21.0

from Heinrich Bulthoff

Representing event categories

String grammar, Chomsky, 1956

Regular Grammar

S => aA

A => aA

A => bB

B => b 

S A

B

a
a

b

b

Equivalent to a Finite State Machine

As a subset of all configuration sequences

Context-free grammar (CFG)

S => aAb

A => aB

B => ab

Allows for ‘subroutines’ (e.g. raising arm)



Probabilistic models for event categories

As a probability function over  configuration sequences

),,( 21 tp xxx L

This probability function defines a stochastic process
1x 2x 3x 1−tx tx

),|(),|()|()(),,( 12121312121 −= ttt ppppp xxxxxxxxxxxxx KKK

Factorisation of joint distribution

Represent as a dynamic Bayesian network

)|()|()|()(),,( 12312121 −= ttt ppppp xxxxxxxxxx LL

1x 2x 3x

Reduce to a tractable form by simplifying terms where possible, 
for example

Known as a 1st order Markov process

Simplification/approximation

By convention, show one ‘cycle’ only and omit the variables

A Markov model for pedestrian motion

K quantised configurations of

1st order Markov chain

( , , &, &)x y x y

Anomaly detection* Prediction*
* From a similar model
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Hidden Markov models (HMMs)

observations

hidden class or ‘state’
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Stochastic grammar

Ivanov and Bobick, PAMI 2000

Probabilities for alternative

rewrites

Stochastic Context-Free grammar

Stochastic regular grammar equivalent to a Markov chain



Behaviour as plan execution

Human activities result from agents executing goal-directed plans

People can’t help perceiving motion in this way

Heider & Simmel, 1944

Long history of work in AI on planning:

• Hierarchical planning

• Handling uncertainty

• non-deterministic plan decomposition into sub-plans

• non-determinism in outcomes from different actions

• uncertainty in the observation of these outcomes

• Plan recognition by probabilistic inference over the stochastic process 
modelling execution of an actor’s plans

General model for probabilistic hierarchical planning

• Abstract Markov policies (AMP), Sutton, Precup and Singh, 1999

• Abstract Hidden Markov Models (AHMM), Bui, Venkatesh and West 
JAIR 2002

Abstract Hidden Markov Models
Bui, Venkatesh and West, JAIR 2002

Possible states of the world S

Possible actions A

In state s, action a results in state s’ with probability

‘Local’ policy

),( ssa
′σ

),,,( ππππ σβπ DS=

applicable states

destination states

probability of stopping for

each destination state

probability of performing

action a in state s

]1,0[: →× ASππσ

Abstract policy                                           over a set of abstract policies),,,( ****

*

ππππ
σβπ DS= Π

Like a local policy, except actions replaced by policies from Π

]1,0[: ** →Π×
ππ

σ S

From Bui et al., JAIR 2002

An example

From Bui et al., JAIR 2002

6 cameras

Floor divided into a 
grid of cells (state)



From Bui et al., JAIR 2002

Region (state space) and policy hierarchy

2 policies: ‘using’, ‘passing through’

2 policies: ‘exit left’, ‘exit right’

Plan execution for transportation
Liao, Patterson, Fox, and Kautz, AIJ 2007

From Liao et al., AIJ, 2007

goals

trip switching locations

From Liao et al., AIJ, 2007

Observations from GPS

Represent streets and junctions with a directed graph G=(V,E)

e

d

Person location given by road segment (edge e) and distance from junction d

locationcar 

ocityperson vel

locationperson 
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cvlx

GPS observation

Sensor model:                          given by a Gaussian density function

Motion model:                                         given by a Kalman filter

)|( kk lzp

),,|( 1 kkkk vllp τ−

Transportation mode: BUS, FOOT, CAR, BUILDING

- determines Gaussian velocity distribution of person

- only changes in CAR mode

Trip segment: (start location, end location, transportation mode)

- determines transition probabilities at junctions (nodes)

kc

0.7

0.3

0.2
0.8



Goals, e.g. friend’s home, workplace, grocery store

- determines transition probabilities at end of trip segments

Goal sequence determined by transition probabilities:

g1 g2 g3

g1 0 0.2 0.8

g2 0.6 0 0.4

g3 0.1 0.9 0

Current
goal

New goal

Novelty is TRUE or FALSE:   when true ignore goal and trip segment levels

Policy (goal) recognition using probabilistic inference over the
Bayesian network (Rao-Blackwellized filter)

Experiment

• 60 days of GPS from one person

• 30 days used for learning parameters of the model (e.g. transition 
probabilities for goal segments and trip segments)

• 30 days for testing

Plan execution using generic strategies

Problems with plan execution over a 

fixed network:

• unfamiliar scenes

• changes in scene layout

• rare events

Need a general planning strategy.

Anomaly detection via plan recognition

Ranking of path planning strategies 
(Golledge, 1995)
1.   Shortest distance
2.   Least time
3.   Fewest turns
4.   Most scenic/aesthetic
5.   First noticed
6.   Longest leg first
7.   Many curves
8.   Many turns
9.   Different from previous (novelty)
10. Shortest leg first

Hannah Dee, VS 2006

A person’s path is anomalous if 
not explainable as the execution of 
a goal-directed plan: following the 
shortest route to a known exit

Method

Learning phase

• Locate obstacles by hand (e.g. 

hedges, buildings)

• Track cars/people and locate ‘exits’

(e.g. doorways, stationary cars)

Monitoring phase

• Track cars/people and for each:

• generate shortest paths from entry-

point towards all known exits

• score explicability of actual path by 

comparison to the closest of these

Results

Compare with the performance of 

people doing a similar task

• “If you were a security guard, would 

you regard the behaviour of the agent 

highlighted in this video as 

interesting? Please indicate on the 

following questionnaire, with 1 being 

uninteresting and 5 being interesting”

Car park dataset, with 269 
people/car movements

High rank correlation between 
automatic explicability scores and 
the mean human interest scores



Representing what is possible
Learning about what is possible
Dealing with visual uncertainty

Learning about activities

What can be learnt by 
passive visual observation?

Do we need other sensory 
modalities, active 
exploration, tutoring?

Learning about activities

Two broad approaches:

(1) Objects detected and tracked; activities derived from the 

resulting configuration space (trajectory, moments etc.)

(2) Activities derived directly from pixel-based ‘configurations’

(e.g. histograms of salient motion-features, flow)

With labelled examples

and without… from Al-Rajab et al., AMDO 2008

Detect moving objects

Visual words: Quantised position and 
velocity of these objects

Atomic activities (person trajectories): co-
occurring visual words

Learning activity classes without labels

Johnson & Hogg, IVC 1996

Visual words: Quantised 
position and flow direction of 
‘changed pixels’

Atomic activities: Co-occurring 
visual words (in short clips)

Interactions: Co-occurring 
atomic activities (in short clips)

Wang, Ma and Grimson, TPAMI 31(3) 2009

Learning (layered) activity classes without 
labels and without objects Interactions

Mixture over 29 atomic activities for each interaction.

Instances of each discovered interaction:

colours distinguish between atomic activities

red curve is the average mixture over whole corpus



Boiman & Irani, ICCV 2005

Learning activity classes without labels and 
without objects

By modelling the motion 
in the vicinity of each 
pixel

Discovering event classes from activity 
graphs

Aircraft turnaround domain

(EU project Co-Friend).

Sridhar et al., AAAI 2010

objects

spatial relations

temporal relations

3-layer 
activity graph

Set of event classes C
Set of event instances G

Assume a generative model

Generative model for activity domains and instances:

),( GCp

set of event classes set of event instances

),|(

)(

))(),|((maxarg)),((maxarg
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AGCGP

CP

CpAGCGpGCp
GCGC

=

favours a small number of classes, each 

generating similar and complex events

discourages sharing of objects between 

events   

Typical event mined from multiple 
turnarounds

More events Inducing a functional object taxonomy
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Form Boolean matrix of the role played by objects in each event class 
(+ partially generalised classes)

Compress the rows (pattern for each object) using PCA

Obtain object taxonomy by hierarchical-clustering of the compressed rows
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Emergent object categories from aircraft 

turnaround domain

Trolleys Misc Loaders Plane 

Pullers

Bridges Planes

Representing what is possible
Learning about what is possible
Dealing with visual uncertainty

School of something
FACULTY OF OTHER

Radar tracking

Dealing with 

• missed detections

• spurious detections

Long history from radar literature and elsewhere:

Ingemar Cox, A Review of Statistical Data Association Techniques for Motion 

Correspondence, International Journal of Computer Vision, vol. 10, pp. 53-66, 1993.

School of something
FACULTY OF OTHER

Seek

Find the optimal global explanation:

Given a set of noisy observations     over a period of time.

An explanation is a partition of these observations
where each part defines a track and      contains all spurious observations 
(false alarms)

0 1{ , , }
K

ω τ τ τ= K

Y

0τ

))|((argmax Yp ω
ω Ω∈

Standard approach

Formulation from Oh, Russell and Sastry, CDC-04

School of something
FACULTY OF OTHER

Defining 
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Assumptions:

(1) each track behaves as a stochastic linear system:

(note that matrix A and noise term scaled 

according to the width of interval

)|( Yp ω

(2) new objects and false alarms occur as Poisson processes

(3) objects disappear and are undetected with fixed probability at each time-step

School of something
FACULTY OF OTHER

For a given      at time-step t, assume:

objects persist from t-1

new objects appear

objects disappear

objects detected

false alarms

objects undetected
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School of something
FACULTY OF OTHER

Integer Programming
Morefield, IEEE-TAC 1977

• Create a large set of feasible tracks F (a covering), many of which will 

be inconsistent with one another.

• Seek the optimal partition from a subset of these tracks + false alarms

))|((argmax Yp
F

ω

ω
ω

Ω∈
⊂

School of something
FACULTY OF OTHER

from http://www.vision.ee.ethz.ch/~bleibe/index.html

Tracking from the output of a pedestrian detector

Example
from Leibe, Schindler, and Van Gool, ICCV 2007

School of something
FACULTY OF OTHER

Multiple-Hypothesis Tree (MHT)
Reid, IEEE-TAC 1979

• Iteratively extend partial tracks at each time-step

• Pursue multiple hypotheses where there is ambiguity

• Prune unlikely hypotheses to keep search tractable

k=1

School of something
FACULTY OF OTHER

Multiple-Hypothesis Tree (MHT)
Reid, IEEE-TAC 1979

• Iteratively extend partial tracks at each time-step

• Pursue multiple hypotheses where there is ambiguity

• Prune unlikely hypotheses to keep search tractable

k=1

k=2

School of something
FACULTY OF OTHER

Multiple-Hypothesis Tree (MHT)
Reid, IEEE-TAC 1979

• Iteratively extend partial tracks at each time-step

• Pursue multiple hypotheses where there is ambiguity

• Prune unlikely hypotheses to keep search tractable

k=1

k=2

k=3

School of something
FACULTY OF OTHER

Markov Chain Monte Carlo Data Association
Oh, Russell, and Sastry, CDC-04, 2004

• Draw samples from posterior                 and select the maximum. 
Use Markov Chain Monte Carlo (MCMC) to do this efficiently.

( | )p Yω

initialise

repeat many times

Sample      from proposal distribution

Replace     by      with (acceptance) probability:

end
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School of something
FACULTY OF OTHER

Introduction to MCMC

MCMC – Markov Chain Monte Carlo

When to use?

• You can’t sample from the distribution itself

• Can evaluate it at any point

1

1

2

2

3

3

4

5

4 5 …1 4

School of something
FACULTY OF OTHER

Introduction to MCMC

School of something
FACULTY OF OTHER

From Oh, Russell and Sastry, CDC-04, 2004

MCMC moves School of something
FACULTY OF OTHER

Same approach at a higher level

Task:  link people dropping-off and picking-up bikes

Damen & Hogg, BMVC 2009

School of something
FACULTY OF OTHER

Method

• Track people (+/- bikes) entering and 

leaving rack area

• Detect new clusters of dropped & 
picked bikes each time rack area 
becomes empty

• Find optimal combination of drop-pick 
and pass-through events

))|((maxarg Yp ω
ω

School of something
FACULTY OF OTHER

Formal definition of the model

Attribute multiset grammar



School of something
FACULTY OF OTHER

Defining

Based on:

• Change in the area of person-blobs between entering and leaving rack

• Proximity of people to bike clusters

• Similarity of bike clusters between drop and pick

• Prior probabilities for the different events

)|( Yp ω School of something
FACULTY OF OTHER

Likelihood of a person dropping, picking 

or passing through

Area difference of person-blob 

entering and leaving the rack

School of something
FACULTY OF OTHER

Likelihood of a drop/pick linkage

Pixel-wise comparison of 

bike-clusters

Drop

Pick

School of something
FACULTY OF OTHER

Optimise using an annealed MCMC

Connect Agent

Disconnect Agent

Change Agent

Change Bike

Switch Bikes

Possible moves:

Connect Drop-Pick

Disconnect Drop-Pick

Change Drop

Change Pick

Switch Drop-Pick

Enter-exit problem



Cognitive Vision Lab

Early Cognitive Vision: 
Vision for Cognition

Emre Baseski, 

Norbert Krüger, 
Dirk Kraft 

University of Southern 
Denmark

Florentin Wörgötter
University of Göttingen

Sinan Kalkan 
METU

Nicolas Pugeault
University of Surrey

Cognitive Vision Lab

Overview
• Motivation from human vision

• An Early Cognitive Vision System

• Grounding of objects and grasping affordances

• Relation to Marr and ’mainstream computer vision’

• Exercise

Cognitive Vision Lab

Main Application
• Grounding Objects and grasping affordances in (co-

operation with Renaud Detry and Justus Piater)
• Grasping of unknown objects

• Pose estimation

• Birth of the object: Detection of objectness and object shape 
learning

• Learning of object specific grasping affordances

Cognitive Vision Lab

Overview
• Motivation from human vision

• An Early Cognitive Vision System

• Grounding of objects and grasping affordances

• Relation to ’mainstream computer vision’

• Exercise

Cognitive Vision Lab

The visual pathways

Cognitive Vision Lab

25-04-2010 The Maersk McKinney Moller Institute 6



Cognitive Vision Lab

The visual pathways

• Large areas (V1-V4) responsible for feature processing

Cognitive Vision Lab

Visual Modalities

Orientation (Hubel, Wiesel 1962)

Phase (Jones, Palmer 1987)

Disparity (Barlow et. al 1967)

Colour (Hubel, Wiesel 1967)

Motion (Hubel, Wiesel 1967)

Junctions (Shevelev 1995)

Cognitive Vision Lab

Very Complex Cells in IT (Tanaka 1997)

25-04-2010 The Maersk McKinney Moller Institute 9

Cognitive Vision Lab

Connectivity

• High Degree of Connectivity

• 1012 Neurons

• 1015 Connections

25-04-2010 The Maersk McKinney Moller Institute 10

Cognitive Vision Lab

Some Reflections about Human Visual Scene 
Representations
• The human visual representation is multi-purpose

• many tasks (e.g., grasping, navigation, recognition, categorization, ...) need to be 
solved

• need of a generic representation

• Large cortical areas are devoted to feature processing with a large intra and 
intercortical connectivity

• Richness
• covering multiple aspects of visual information and eventually also other sensorial data 

(haptic information)

• Geometric and appearance based information

• Hierarchy
• Change of representation from level to level

• Reusabilty of parts

• Visual representations are needed for actions

• These thoughts are not new
• Biederman, Geman, Perona, Buelthof, and more

• but how much become they realized by currently used representations in Computer 
Vision?

Cognitive Vision Lab

Overview
• Motivation from human vision

• An Early Cognitive Vision System

• Grounding of objects and grasping affordances

• Relation to Marr and ’mainstream computer vision’

• Exercise



Cognitive Vision Lab

Early Cognitive Vision System
• Local Primitves

• Local symbolic image descriptors

• Properties: Predictivity and Bandwidth Limitation

• Relations between Primitives

• Temporal: (Rigid) Motion

• Spatial: Extended structures

• Disambiguation

• Feedback

• Signal Symbol Loops

Cognitive Vision Lab

Overview of ECV system

Cognitive Vision Lab

Early Cognitive Vision System
• Local Primitves

• Local symbolic image descriptors

• Properties: Predictivity and Bandwidth Limitation

• Relations between Primitives

• Temporal: (Rigid) Motion

• Spatial: Extended structures

• Disambiguation

• Feedback

• Signal Symbol Loops

Cognitive Vision Lab

Local Image Structures

Homog. patches Edges Junctions Texture

2D

geometry

appearance
mean colour

shading gradient

none 2D orientation

2 or 3 colours

phase

2D intersection

multiple orientations

probably too 

unstable

none

not understood

3D

geometry

appearance as in 2D

surface patch

3D point and

3D orientation

3D intersection

multiple orientations

(exception: T-junct.)

probably too 

unstable
not understood

surface patch

as in 2D

Cognitive Vision Lab

Distinguishing Image Structures using the concept of 
Intrinsic Dimensionality

• Continous characterization

• We can learn an additional Bayesian classifier on top of the iD triangle

M. Felsberg, S. Kalkan and N. Krüger. Continuous Dimensionality Characterization of Image Structures. Image

and Vision Computing 27:628-636, 2009. 

D. Goswami, S. Kalkan, N. Kruger. Bayesian Classification of Image Structures. Scandinavian Conference 

on Image Analysis (SCIA) 2009. 

Image structures by their 

intrinsic dimensionality
The iD Triangle

constrast
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Cognitive Vision Lab

Local Image Structures and their relation to Depth

S. Kalkan, F. Wörgötter and N. Krüger. First-order and Second-order Statistical Analysis of 3D and 2D 

Structure. Network: Computation in Neural Systems, 18(2), pp. 129-160, 2007. 

S. Kalkan, F. Wörgötter and N. Krüger. Statistical Analysis of Local 3D Structure in 2D Images. CVPR 2006. 



Cognitive Vision Lab

Image and 3D Structures

25-04-2010 The Maersk McKinney Moller Institute 19

S. Kalkan, F. Wörgötter and N. Krüger. First-order and Second-order Statistical Analysis of 3D and 2D 

Structure. Network: Computation in Neural Systems, 18(2), pp. 129-160, 2007. 

S. Kalkan, F. Wörgötter and N. Krüger. Statistical Analysis of Local 3D Structure in 2D Images. CVPR 2006. 

Cognitive Vision Lab

Local Image Structures and their relation to Depth

S. Kalkan, F. Wörgötter and N. Krüger. First-order and Second-order Statistical Analysis of 3D and 2D 

Structure. Network: Computation in Neural Systems, 18(2), pp. 129-160, 2007. 

S. Kalkan, F. Wörgötter and N. Krüger. Statistical Analysis of Local 3D Structure in 2D Images. CVPR 2006. 

Cognitive Vision Lab

Early cognitive vision: A local perspective

Homog Patches Edge Primitives

Junctions Texture

Movie

Cognitive Vision Lab

25-04-2010 The Maersk McKinney Moller Institute 22

Cognitive Vision Lab

The Maersk McKinney Moller Institute

Visual Primitives (2D)

Visual primitives

Local contour descriptor

Multi-modal

Position

Orientation

Phase

Colour

Optic flow

T
fc,x,=

Geometry

Appearance

N. Krüger, M. Lappe and F. Wörgötter. Biologically Motivated Multi-modal Processing of Visual Primitives. Interdisciplinary Journal 

of Artificial Intelligence the Simulation of Behaviour, AISB Journal, 1(5): 4 17-427, 2004. 

N. Krüger and F. Wörgötter. Multi-modal Primitives as functional Models of Hyper-columns and their use for contextual 

Integration. Proceedings of the 1st International Symposium on Brain, Vision and Artificial Intelligence.

Cognitive Vision Lab

Multi-Modal Visual Edge Primitives

Kovesi 1999, Granlund, Felsberg

The Phase

• describes the local image 
structure by one parameter

• symbolic desription is 
different for line and edge 
structure (2 versus 3 
colours) 

Phase



Cognitive Vision Lab

Primitives as functional Abstraction of 
Hyper-columns in V1

Visual Modalities

Orientation (Hubel, Wiesel 1962)

Phase (Jones, Palmer 1987)

Disparity (Barlow et. al 1967)

Colour (Hubel, Wiesel 1967)

Motion (Hubel, Wiesel 1967)

Junctions (Shevelev 1995)

They give a condensed information 
about the local edge patch for the next 
stage of processing

Bandwidth

Semantic Content

Split of geometry and appearance

High Predictivity

N. Krüger and F. Wörgötter. Symbolic Pointillism: Computer Art motivated 

by Human Brain Structures. Leonardo, MIT Press 38(4) p:337-340,2005. 

Kruger and Worgotter 2005, Leonardo Kruger and Worgotter 2005, Leonardo

Kruger and Worgotter 2005, Leonardo Kruger and Worgotter 2005, Leonardo



Kruger and Worgotter 2005, Leonardo Kruger and Worgotter 2005, Leonardo

Cognitive Vision Lab

The Maersk McKinney Moller Institute

3D-primitive reconstruction

3D-primitive:

position

orientation

reference plane

phase

colour

size

Geometry Appearance

N. Pugeault (2008). Early Cognitive Vision: Feedback 

Mechanisms for the Disambiguation of Early Visual 

Representation, PhD

Cognitive Vision Lab

The Maersk McKinney Moller Institute

Visual Primitives (3D)

stereo

Cognitive Vision Lab

The Maersk McKinney Moller Institute

m

T

Reconstruction Uncertainty (very different from point 
features)

Cognitive Vision Lab

Differences to SIFT
• SIFT

• Very good for matching

• Implicit representation of image patch content in  a 

histogram

• Primitives

• Condensation

• Completeness

• Explicit representation of content of local signal

• (Embedded in local context)

24-04-2010 The Maersk McKinney Moller Institute 36



Cognitive Vision Lab

Two Problematic Issues
• Question 1: Why do we want to make such a transformation. We 

could stay at the pixel level (e.g., using pdes)
• explicitness allows the definition of higher level relations

• condensation reduces number of those relations

• separation of appearance and geometry allows for separated access

• predictivity for disambiguation

• Question 2: Is there and justification for designing it exactly that 

way
• I do not know

• One way to address this is feature learning with additional constraints 
•P. König and N. Krüger. Perspectives: Symbols as self-emergent entities in an 
optimization process of feature extraction and predictions. Biological Cybernetics 
94(4):325-334. 2006.

• Another way: Justification by successful applications 

• Some design choices can be justified by image statistics

• Bias/variance dilemma (Geman, Bienenstock)
• We might need to define prior knowledge justified by arguments or 

resemblance to th ebiological system

Cognitive Vision Lab

A case for condensation

25-04-2010 The Maersk McKinney Moller Institute 38

Peter König, Norbert Krüger (2007). Symbols as 

self-emergent entities in an optimization process 

of feature extraction and predictions. Biol 

Cybern (2006) 94: 325–334.

Cognitive Vision Lab

Natural Scene Statistics

25-04-2010 The Maersk McKinney Moller Institute 39

N. Krüger. Collinearity and Parallelism are Statistically Significant Second Order Relations of Complex 

Cell Responses. Neural Processing Letters 8:117-129, 1998.

M. Sigman, G.A. Cecchi, C.D. Gilbert, and M.O. Magnasco. On a common circle: Natural scenes aand 

gestalt rules. PNAS, 98(4):1935{1949, 2001.

W.S. Geisler, J.S. Perry, B.J. Super, and D.P. Gallogly. Edge co-occurrence in natural images predicts 

contour grouping performance. Vision Research, 41:711{724, 2001.

Cognitive Vision Lab

Gestalt Laws and natural Scene Statistics

-50    -40   -30 -20 -10     0     10    20    30     40     50 

Krüger 1998. Geisler 2001, Sigman 2001.

Orientation + Contrast Transition

+ Colour+ Optic Flow

Krüger and Wörgötter 

(2002). Network: 

Computation in Neural 

Systems.

Cognitive Vision Lab

Vision Machine

24-04-2010 The Maersk McKinney Moller Institute
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• Pre-processing
• Bayer pattern and 

rectification

• Dense representation
• Phase based Stereo and 

Optic Flow

• Symbolic descriptors
• 2D and 3D edge 

descriptors

• Ego-motion
• 5D vector

• IMOs
• using dense 

representation and 
egomotion

Jensen et al. (submitted), Lars B.W. Jensen (’PhD’)

Cognitive Vision Lab

Vision Machine as Visual Frontend for Systems



Cognitive Vision Lab

Real-time processing of Primitives in a 
hybrid architecture (CPU and GPU)

Cognitive Vision Lab

• Performance Measurement in comparison to single CPU

– a speed up of approximately a factor 90, and

– a reduction of latency of a factor 26

• Standard Hardware (PC + 2 GPUs)

– Price approx. 2500 Euros (with PC, without cameras)

Real-time processing of Primitives

Movie

Cognitive Vision Lab

Early Cognitive Vision System
• Local Primitves

• Local symbolic image descriptors

• Properties: Predictivity and Bandwidth Limitation

• Relations between Primitives

• Spatial: Extended structures

• Temporal: (Rigid) Motion

• Feedback

• Signal Symbol Loops

Cognitive Vision Lab

Early Cognitive Vision System
• Local Primitves

• Local symbolic image descriptors

• Properties: Predictivity and Bandwidth Limitation

• Relations between Primitives

• Spatial: Extended structures

• Temporal: (Rigid) Motion

• Feedback

• Signal Symbol Loops

Cognitive Vision Lab

Early cognitive vision: A semi-global 
perspective

Homog Patches Edge Primitives

Junctions Texture

Cognitive Vision Lab

Left, t=0 Right, t=0

Left, t=1 second Stereo Context

Co-linearity Context

Motion Context

Co-planarity Context

Co-colority Context

........



Cognitive Vision Lab

Connectivity

25-04-2010 The Maersk McKinney Moller Institute 49

Cognitive Vision Lab

Some Relations

25-04-2010 The Maersk McKinney Moller Institute 50

Cognitive Vision Lab

Problems of Reasoning with Relations

• Relations make relevant structural information 
explicit
• Action assciation

• Object recognition

• Space of relations increases exponentially

• Hence relations need to be defined between 
contours

contours colinearity coplanarity normal distance

Cognitive Vision Lab

Embedding of Primitives in contours
• NURBS

• Parametrization of 

inbetween positions

• Smoothing out noise in 

reconstruction process
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Emre Baseski (PhD, submitted)

Cognitive Vision Lab

Problems when dealing with 3D Relations

Cognitive Vision Lab

Application of Relations I: Lane Detection

• Learning of lane structure

• Images with labeled lanes

• We can associate 3D 
descriptors as well as 
groups therefof to lanes 
and non-lane structures

• Prior probability 
distributions and 
conditional probability 
densities for individual 
cues 

• The probability of entities 
belong to the lane or non-
lane can be computed by 
Bayes formula

Bosemann et al. (2009)



Cognitive Vision Lab

Lane Detection
• Posterior probability densities

The posterior probability densities for individual and grouped entities, 

together with the influence of grouping on the L1 

Cognitive Vision Lab

Lane Detection

Results of the Bayesian framework applied on different frames. 

The blue color marks the 2D contours that contain the 3D lane contours.

Cognitive Vision Lab

Lane Detection
• Evaluation

Using the 2D extension we obtain a classification success rate to 85.1% 

and a positive success rate to 83%. Once the contour relations are used 

after applying an uncertainty threshold, we obtain a classification success 

rate of 87.7% and a positive success rate of 87.7% as well.

Class Amount of selected entities

Primitives
Contours of 6 

primitives

Contours of 6 

primitives with 2D 

extension

Contours of 6 

primitives with 

uncertainties

True positive 12347 2666 2874 2247

True negative 21304 803 834 259

False positive 8687 796 588 316

False negative 572 91 60 34

Cognitive Vision Lab

Application II: Grasp-Feature Associations
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• Co-planarity Relation between visual entities define 

potential grasping affordances

.

Co-Planarity and Colour Information. Robotics and Autonomous Systems.

Movie

Cognitive Vision Lab

Other Applications
• Object Recognition

• Pose Estimation

• Tracking
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Cognitive Vision Lab

Early Cognitive Vision System
• Local Primitves

• Local symbolic image descriptors

• Properties: Predictivity and Bandwidth Limitation

• Relations between Primitives

• Spatial: Extended structures

• Temporal: (Rigid) Motion

• Feedback

• Signal Symbol Loops



Cognitive Vision Lab

Motion Estimation Motivation
• Motion information is fundamental for humans and 

animals

• Egomotion

• Motion of Objects

• Its estimation is based on Constraints defined by 

Correspondences

• Different kinds of correspondences (associated to 

different kind sof image structures) are possible

Cognitive Vision Lab

Motion Estimation Motivation
• Its estimation is based on Constraints defined by 

Correspondences

• Bodo Rosenhahn, Oliver Granert, Gerald Sommer (2002). Monocular Pose 
Estimation of Kinematic Chains.

• Bodo Rosenhahn, Gerald Sommer (2002). Adaptive Pose Estimation for Different 
Corresponding Entities.

Cognitive Vision Lab

Motion Estimation with different kinds of 
Entities
• Controlled Robot motion

• Ground truth known

• http://www.mip.sdu.dk/covig/sequences.html

Florian Pilz, Nicolas Pugeault, and Norbert Kruger. Comparison of Point and Line Features and  Their Combination for Rigid Body 

Motion Estimation. Statistical and Geometrical  Approaches to Visual  Motion Analysis, Springer LNCS 5604, p: 280-304, 2009. 

Cognitive Vision Lab

Motion Estimation based on Sparse Correspondences

• Combining Point and Edge 
Features

• stabilzes motion estimation 

• edges: more frequent but 
weaker constraints

• point features: less frequent 
but stronger constraint

• There are are situations in 
outdoor scenes where there ar 
enot enough point features

Florian Pilz, Nicolas Pugeault, and Norbert Kruger (2009). Comparison of Point and Line Features and 

Their Combination for Rigid Body Motion Estimation. In: Statistical and Geometrical Approaches to Visual 

Motion Analysis. 

Cognitive Vision Lab

Motion Computation

Cognitive Vision Lab

Disambiguation using motion information
• Stereo faces two problems

• Wrong correspondences leading to outliers

• Uncertainties

• Occclusion

• By means of motion all three problems can be solved

• Structure from Motion

• Bundle Adjustment

• One particularity of our approach

• Not points or lines are the entities on which we operate 

but symbolic primitives

• We want to develop an structure from motion algorithm 

that can be applied to all kind of entities
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Disambiguation using Motion Information

Motion

Movie

N. Pugeault, K. Pauwels, M. Van Hulle, F. Pilz & N. Krüger. A Three-Levels Architecture for Model-Free Detection and Tracking 

of Independently Moving Objects. VISAPP 2010.

Cognitive Vision Lab

The Maersk McKinney Moller Institute

On top Bayesian Filtering amd integration
of new Features

State vector st=(t, r,A) with A = ( ; cl; cr),  with associated uncertainty matrix 

t
Prediction st+1=(RBM(t,r),A), appearance unchanged 

Three processes:

1) Scaled Unscented Kalman (SUR): high flexibility for using different 

modalities since predicted state covariances become estimated from the 

data

2) Bayesian accumulation of confidences

3) Including new unmatched entities

Accumulated Matching probability

Match Probability

Match History

Cognitive Vision Lab

Accumulation
• State vector st=(G,A) with 

• With geometry vector G=(X, )with associated uncertainty 

matrix t

• Appearance bector A = ( ; cl; cr),

• Prediction st+1=(RBM(t,r),A) 

• Three processes address the three problems

• Bayesian Filtering elliminates outliers

• Unscented Kalman Filter (UKF) improves 3D reconstruction

•Since the UKF computes Covariance Matrices on the fly, 

every kind of feature can be easily integrated

• Mechanisms for introducing novel pbject aspects 
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The Maersk McKinney Moller Institute

Convergence

a) artificial example b) real objects
Movie

Pugeault et al. (BMVC 2008), Pugeault PhD 2008

Cognitive Vision Lab

Extension to other descriptors

25-04-2010 The Maersk McKinney Moller Institute 71

K. Simonsen, M. Nielsen, F. Pilz, N. Krüger, N. Pugeault, Spatial-Temporal Junction Extraction and Semantic 

Interpretation. 5.th International Symposium on Visual Computing. Lecture Notes for Computer Science (LNCS), 

Springer Verlag 2009.

Cognitive Vision Lab

Early Cognitive Vision System
• Local Primitves

• Local symbolic image descriptors

• Properties: Predictivity and Bandwidth Limitation

• Relations between Primitives

• Spatial: Extended structures

• Temporal: (Rigid) Motion

• Feedback

• Signal Symbol Loops



Cognitive Vision Lab

11/04/2008 DRIVSCO 2nd Review Meeting, Göttingen 2008

Signal Symbol Loop: Concept
Reasoning on symbolic Level allows for 

predictions on lower levels that can be used to 

enhance low-level feature extraction

This requires that the symbolic information is 

made again comparable to the sub-symbolic 

information

Cognitive Vision Lab

11/04/2008 DRIVSCO 2nd Review Meeting, Göttingen 2008

Signal Symbol Loop: Mathematics

inverse function

Inverse Function 

• Contexts on 
symbolic level

• Rigid body 
motion

• Part and 
Object 
Knowledge

• Becoming fed 
back by inverse 
function

Cognitive Vision Lab

11/04/2008 DRIVSCO 2nd Review Meeting, Göttingen 2008

Signal Symbol Loop: Results

S. Kalkan, S. Yan, V. Krüger, F. Wörgötter and N. Krüger. A Signal-Symbol Loop Mechanism For Enhanced 

Edge Extraction. Int. Conf. on Computer Vision Theory and Applications (VISAPP'08), January, 2008.

Cognitive Vision Lab

Improving Stereo by guiding dense stereo 
through sparse stereo
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Jarno Ralli et al. (accepted): Disparity Disambiguation by Fusion of Signal-

and Symbolic-Level Information, Machine Vision and Aplications.

Cognitive Vision Lab

Improving Stereo by guiding dense stereo 
through sparse stereo
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Jarno Ralli et al. (accepted): Disparity Disambiguation by Fusion of Signal-

and Symbolic-Level Information, Machine Vision and Aplications.

Cognitive Vision Lab

Early cognitive vision: Status 

Homog Patches Edge Primitives

contours

Junctions
Texture

surfaces
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Complete Early Cognitive Vision System

Homog Patches Edge Primitives

Junctions
Texture

contourssurfaces

surfaces

Cognitive Vision Lab

Cognitive Vision Lab

Overview
• Motivation from human vision

• An Early Cognitive Vision System

• Grounding of objects and grasping affordances

• Relation to Marr  and ’mainstream computer vision’

• Exercise

Cognitive Vision Lab

Grounding of Objects and Grasp Affordances
(in co-operation with Justus Piater and Renaud Detry)

• Problem Statement

• Sub-modules

• Grasping Unknown Objects

• Detection of ’Objectness’ and Learning Object 
Shape

• Pose estimation

• Learning grasp affordance densities

• A system perspective

Cognitive Vision Lab

Grounding of objects and grasping affordances:
Definition of the problem

• Given 
• an agent being able to grasp and 

• an arbitrary (rigid, edge-dominated) 
object in a scene the agent does not 
know anything about beforehand

• Without any supervision, the agent is 
supposed to
• find out that there is a (novel) object in 

the scene,

• compute a representation of the object 
and memorize it,

• use the memorzied representation to 
recognize a new appearance of the 
object in the scene and detect its pose,

• learn how to grasp the object in a way 
that allows for an optimal grasp in a 
given situation.

• Basically it can be read as: Learning 
from ’scratch’
• that there is an object,

• how it looks like,

• and how to grasp it.

Cognitive Vision Lab

Baron von
Muenchhausen
also called
’Der Luegenbaron’
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Embodiment at SDU
• Keeping things simple

• High precision industrial robot

• Controlled camera robot setting

• Two finger gripper

• Exploration
• Actions in unpredictable 

situtations
•Foam

•Force-torque sensor

• Basic knowledge on body 
movements and environment
• Pro-prioceptive information is 

(more or less directly) usable

• Path planning

• Collision avoidance

Cognitive Vision Lab

Module I: Grasping unknown objects
• Co-planarity Relation between visual entities define 

potential grasping affordances

.

Cognitive Vision Lab

Grasping unknown objects

Movie

• Surprising result: A success rate between 30-40% is 

already achievable by such a simple mechanisms.

– One reason is high level mechansism for hypotheses rejections 

through motion planning

• There is an autonomous success evaluation based on 

haptic information

– Collision 

• Force-torque sensor above threshold

– no success 

• distance between fingers =0 after grasping attempt

– unstable 

• distance b.f. > 0 after grasping attempt and =0 after lifting

– stable 

• distance b.f. > 0 after grasping attempt and after lifting

Cognitive Vision Lab

Establishment of
Episodic memory success

unstable

collision

success

no

success

Cognitive Vision Lab

Episodic memory can be used for learning important 
features and relations given by ECV system

• Since there are many co-

plpanarity relations a large 

number of potential grasp 

options become computed

• The system chan choose 

which option to execute 

Features

Type

Prediction

L. Bodenhagen et al., Learning to Grasp Unknown Objects Based on 3D 

Edge Information. 2009 IEEE International Symposium on Computational 

Intellegience in Robotics and Automation (CIRA2009)

Cognitive Vision Lab

Summary Module 1
• It is possible wihout any supervision 

• to achieve physical control over objects without explicit object 
knowledge by a rather simple behaviour

• to establish an episodic memory with labeled data in terms of grasping 
attempts and their success
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Module 2: Accumulation
• What is an object? 

• Corresponding to the three criteria for ’objectness’ by 
Gibson

•Temporal Stability

•Manipulatability

•Appropriate size

• An object is 

• something in the robots hand

• that moves according to the robots pro-prioceptive 
information

Cognitive Vision Lab

• Once physical control over an 

object is achieved based on the 

predictions based on robot motion 

can be made that establish an 

object

• Body knowledge can 

be used to substract 

gripper 

SLAM, 

Structure from Motion

Movie

Pugeault, N., Wörgötter, F., and Krüger, N. Accumulated 

Visual Representation for Cognitive Vision (BMVC 2008).

on

of Objectness and Extraction of Object Shape through Object Action Complexes. International Journal of Humanoid 

Robotics (IJHR), 2008, 5, 247-265.

Cognitive Vision Lab

Summary module 2
• Once the agent has physical control over an object, it

• can detect ’objectness’

• compute a geometric/appearance representation of the object

Cognitive Vision Lab

The first learning cycle: Birth of the (first) object

the Object: 

Detection of Objectness and Extraction of Object Shape through Object Action Complexes. International Journal of 

Humanoid Robotics (IJHR), 2008, 5, 247-265. 

Cognitive Vision Lab

Some objects being ’born’

Cognitive Vision Lab

Module 3: Pose estimation
• Based in object knowledge objects can be recognized and their pose being 

estimated

• Method
• Learn probablistic relational models of ECV feature combinations

• Matching using probablistic inference 

ECV

ECV

R. Detry, N. Pugeault, J. Piater. A Probabilistic Framework 

for 3D Visual Object Representation. IEEE PAMI 2009. 
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Results

Cognitive Vision Lab

Summary module 3

• Once the agent has an object in its memory
• it can find the object in the scene and

• compute its pose 

Cognitive Vision Lab

Module 4: Learning grasp affordance densities
(with Justus Piater, Renaud Detry, Oliver Kroemer and Jan Peters)

• Module 1: Learning grasping without explicit object knowledge

• With the additional object knowledge after the ’Birth of the Object’ the system can now explore 
how to grasp this specific object

• Coding Grasp Densities:
• A grasp is just coded by the pose of the end-effector

• A grasp attempt can be transformed to a 6D kernel which is the basic building of the grasp density

• A full grasp density is build up by a number of kernels

• Advantage
• Representinh the manifold of affordances

• Optimal grasp coded as maximum on grasp density

Cognitive Vision Lab

Grasp Denisties

Renaud Detry, Dirk Kraft, Anders Glent Buch, Norbert Krüger and Justus Piater. Refining Grasp Affordance 

Models by Experience. IEEE International Conference on Robotics and Automation, 2010.

Cognitive Vision Lab

Grasp Densities
• Grasp Densities 

express all grasping 

affordances associated 

to a specific object 

• The optimal grasp in a 

specific context can 

then be computed 

online

25-04-2010 The Maersk McKinney Moller Institute 101

Cognitive Vision Lab

Two ways of learning: 
Exploration or Learning by Demonstration

Generic Grasping

(Module 1)
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Second learning cycle (Grasp Exploration)

Movie

Cognitive Vision Lab

Hypothesis Density Empirical Density

Cognitive Vision Lab

Summary module 4
• Once the agent has an object in its memory

• it can find the object in the scene, compute its pose

• and associate grasp hypothesis to the object in the scene 

• test the hypothesis (->empirical affordance density)

Cognitive Vision Lab

Grounding of objects and grasping affordances:
Definition of the problem
• Given 

• an agent being able to grasp and 

• an arbitrary (rigid, edge-dominated) 
object in a scene the agent does not 
know anything about beforehand

• Without any supervision, the agent 
is supposed to
• find out that there is a (novel) object in 

the scene,

• compute a representation of the object 
and memorize it,

• use the memorzied representation to 
recognize a new appearance of the 
object in the scene and detect its 
pose,

• learn how to grasp the object in a way 
that allows for an optimal grasp in a 
given situation.

• Basically it can be read as: 
Learning from ’scratch’
• that there is an object,

• how it looks like,

• and how to grasp it.

Cognitive Vision Lab

Bootstrapping from a System 
Point of View

Cognitive Vision Lab

World-view of the Innate System

Early Cognitive Vision (ECV) System

Semantically rich and highly structured visual representations

GR: First ’reflex-like’ behaviour
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World view of the Cognitive System

Cognitive Vision Lab

Birth of the Object

Object

Visual features changing according to pro-prioceptive 

information

Three criteria by Gibson

Temporal stability

Relative size

Manipulatability

Cognitive Vision Lab

World view of the Cognitive System

Pugeault et al. (2008), BMVC; Detry et al (2009), PAMI

Cognitive Vision Lab

Cognitive Vision Lab

World view of the Cognitive System

Cognitive Vision Lab

World view of the Cognitive System

....
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Performing a plan using pushing and grasping OAC

D. Omrcen, A. Ude,  and A. Kos (2008), Learning primitive actions through object exploration, International 

Conference on Humanoid Robots.

R. Petrick et al. (2009), Combining Cognitive Vision, Knowledge-Level Planning with Sensing, 

and Execution Monitoring for Effective Robot Control. ICAPS. 

Movie

Cognitive Vision Lab

Overview
• Motivation from human vision

• An Early Cognitive Vision System

• Grounding of objects and grasping affordances

• Relation to Marr and ’mainstream computer vision’

• Exercise

Cognitive Vision Lab

’Main Stream Computer Vision’

• Two steps
1.Some feature extraction (e.g., SIFT)

2.Learning a classifier on a large set of data

• Example: Bag of Words

24-04-2010

    

Object Bag of ‘words’

Cognitive Vision Lab

Classifier

• Two Issues

• Words are not understood (implicit representation)

• And hence the relations between these words neither
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Six properties of the ECV System
• ECV is an in-between processing stage that bridges early 

vision and high-level cognitive vision

• ECV computes a generic and task independent scene 
representation which facilitates higher level processes

• ECV computes explicit and interpretable contextually 
embedded visual information

• ECV represents local image and scene structures according to 
their 2D as well as their underlying (statistically justified) 3D 
properties, leading to four different kinds of local descriptors 
with appropriate contextual embeddings

• ECV makes use of the redundancy of visual information to 
disambiguate ambiguous local processing of visual 
information

• ECV makes use of a carefully selected choice of hard-wired 
knowledge as well as appropriate degrees of freedom in the 
design of local descriptors and their relations

• ECV provides a natural interface for `Vision for Action‘

Cognitive Vision Lab

Marr 1982
• 3 Stages

• Primal Sketch: Multi-scale Edge Detection

• 2.5D Sketch: Viewer centered Scene Representation

• 3D Sketch: Object Centered Representation
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Relation to Marr
• Hierarchical processing

• As in Marr's approach the ECV make use of an explicit  hierarchical processing scheme.

• Different structures in different streams 

• As in Marr's approach we use different streams for different sub-aspects of visual information. 

•We can make use of the research in the last three decades on understanding the processing 

of the different visual modalities. 

• A difference to the approach of Marr however is the use of condensed local descriptors as an 

intermediate step between early processing and the processing of global entities.

• Disambiguation 

• A major difference to Marr's approach is to explicitly account for the ambiguity of visual information 

at early stages and to realize disambiguation processes to arrive at more reliable information at 

higher levels.

• Relation to Actions

• The ECV system does not solve 'the vision problem' but has to be understood as part of a cognitive 

bootstrapping agent which is able to perform actions in the world. These actions themselves can 

facilitate the actual extraction process (closed-loop systems).

• Real-time processing 

• The complexity of the involved processes is huge. Forty years ago Marr's paradigm was simply not 

realizable. However, increased computational power (also supported by special hardware such as 

GPUs [54]) allow for the realization of processes with a complexity as required in the ECV system.

24-04-2010 The Maersk McKinney Moller Institute 121

Cognitive Vision Lab

• Maybe 

• a modification of Marr’s approach is possible 

today!

• Computer Vision should try again to build generic 

representations

• The ECV system tries to do that

• However, it is not as OpenCV a selection of 

algorithm but a concrete visual representation

• We like to make it available to the community

• Just send me an email: norbert@mmmi.sdu.dk
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Conclusion

Cognitive Vision Lab

Thanks to

Cognitive Vision Lab

Overview
• Motivation from human vision

• An Early Cognitive Vision System

• Grounding of objects and grasping affordances

• Relation to ’mainstream computer vision’

• Exercise

Cognitive Vision Lab

Grounding of objects and grasping affordances:
Definition of the problem
• Given 

• an agent being able to grasp and 

• an arbitrary (rigid, edge-dominated) 
object in a scene the agent does not 
know anything about beforehand

• Without any supervision, the agent 
is supposed to
• find out that there is a (novel) object in 

the scene,

• compute a representation of the object 
and memorize it,

• use the memorzied representation to 
recognize a new appearance of the 
object in the scene and detect its 
pose,

• learn how to grasp the object in a way 
that allows for an optimal grasp in a 
given situation.

• Basically it can be read as: 
Learning from ’scratch’
• that there is an object,

• how it looks like,

• and how to grasp it.

Cognitive Vision Lab

Learning from Scratch?
• The system is able to learn objects and grasping affordances 

without any supervision

• Exercise

• Does the systen learn from scratch?

• If no, what is the prior knowledge used?
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• This does not work in physics

• However, we can define boostrapping mechanisms which 
establish world knowledge through exploration based on
• combination of behaviours

• a suitable body

• and a sufficient degree of prior knowledge in the processing system

Cognitive Vision Lab

Some comments on autonomy?

Cognitive Vision Lab

Semantic Object and Scene Representation

Lars B.W. Jensen and Emre Baseski

Cognitive Vision Lab

Signal-Symbol Loops

Cognitive Vision Lab

Summary
• Early Cognitive Vision System

• Definition: ...

• Motivated by human visual system 

• Rather complete in the edge domain

• Other image structures and their relations become added 
...

• Make it available to the community

• Structural properties of ECV system became 
exploited in two applications
• Grounding of objects and grasping affordances 

• Scene representations in Driver assistance domain

Cognitive Vision Lab

Disambiguation

Left Right

Stereo Context Similarity

Pugeault et al.  (2006)

Grouping and Stereo Motion

Pugeault et al.  (2006)

Important Property of Representations: 

Predictivity at the primitives is higher than at the original pixel level

Koenig and Kruger (2006)
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Cognitive Vision Lab

University of Southern Denmark

Odense
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Eight properties of the ECV System
1. ECV is an in-between processing stage that bridges early vision and 

high-level cognitive vision

2. ECV computes a generic and task independent scene representation 
which facilitates higher level processes

3. ECV computes symbolic (explicit and interpretable) contextually 
embedded visual information

4. ECV makes use of the redundancy of visual information to 
disambiguate ambiguous local processing of visual information

5. ECV represents local image and scene structures according to their 
2D as well as their underlying (statistically justified) 3D properties, 
leading to four different kinds of local descriptors with appropriate 
contextual embeddings

6. The ECV system realizes three kinds of disambiguation processes 
making use of hierarchical congruency between levels

7. ECV reflects the bias/variance dilemma by making use of a carefully 
selected choice of hard-wired knowledge as well as appropriate 
degrees of freedom in the design of local descriptors and their 
relations

8. ECV provides a natural interface for `Vision for Action‘
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Outline

1. What is planning?

2. Classical STRIPS-style planning

3. Belief space/knowledge-level planning

4. PKS: Planning with Knowledge and Sensing

5. Planning and natural language

6. Related problems

⇒ This talk will focus on representation.
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What I won’t talk about
• Probability

• Preferences

• Hierarchical planning

• Spatial reasoning

• Cost optimization

• Temporal planning

• Control knowledge

• SAT planning

• Heuristic search

• ...
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What is planning?
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What is planning?

“I want to take the train from Ljubljana to Munich.”

Go to the station, buy a ticket, check the departure board for track
information, go to the track, board the train, . . .
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What is planning?
“I want to take the train from Ljubljana to Munich.”

Go to the station, buy a ticket, ask someone for track information, go
to the track, board the train, . . .

Ron Petrick / Representations for classical and knowledge-level planning / CogX Spring School / 2010-04-25 6



Two plans

Plan 1 Plan 2
Go to the station Go to the station
Buy a ticket Buy a ticket
Check the departure board Ask someone for information
Go to the track Go to the track
Board the train Board the train
. . . . . .

• Physical “task” actions (e.g., “go to the station”).

• Observational/information gathering actions (e.g., “check the
departure board”).

• Dialogue (speech) actions (e.g., “ask someone for information”).
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Automated planning
• Automated planning techniques are good at building goal-directed

plans of action under many challenging conditions, given a suitable
description of a domain.

• A planning problem consists of:

1. A representation of the properties and objects in the world and/or
the agent’s knowledge, usually described in a logical language,

2. A set of state transforming actions,
3. A description of the initial world/knowledge state,
4. A set of goal conditions to be achieved.

• A plan is a sequence of actions that when applied to the initial state
transforms the state in such a way that the resulting state satisfies the
goal conditions.
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STRIPS (Fikes & Nilsson 1971)

• A world state is represented by a closed world database D and
negation as failure. This gives rise to a simple and efficient way of
representing facts about the world:

– φ is true if φ ∈ D,
– ¬φ is true if φ 6∈ D, where φ is a ground atom.

• Actions are the sole means of change in the world.

• An action’s preconditions specify the conditions under which an action
can be applied, evaluated against D (qualification problem).

• An action’s effects specify the changes the action makes to the world,
applied by updating D.

– Add list: properties A makes true are added to D,
– Delete list: properties A makes false are removed from D,
– All other properties are unchanged (frame problem)

(McCarthy & Hayes 1969).
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STRIPS actions

Action Preconditions Add list Delete list
pickup(x) handEmpty holding(x) handEmpty

onTable(x) onTable(x)
dropInBox(x, y) holding(x) inBox(x, y) holding(x)

box(y) handEmpty empty(y)

• Action operators: pickup, dropInBox

• Properties: handEmpty, onTable, . . .

• Objects: b1, o1, . . .
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STRIPS actions...(2)

Action Preconditions Add list Delete list
pickup(x) handEmpty holding(x) handEmpty

onTable(x) onTable(x)
dropInBox(x, y) holding(x) inBox(x, y) holding(x)

box(y) handEmpty empty(y)

• Actions are state transforming.

• Applying the effects of an instantiated action A to a database D
updates the database to produce a new database (denoting a new
state) resulting from the execution of A.

• We can generate plans by chaining together fully instantiated actions.
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Planning with STRIPS actions

D box(b1)
holding(o1)
empty(b1)

D D
pickup(o1) dropInBox(o1,b1)

box(b1)
handEmpty
empty(b1)

onTable(o1)

box(b1)
handEmpty
inBox(o1,b1)

Initial state

• Example: achieve a state where inBox(o1, b1) holds.

• The resulting plan is the action sequence:

[pickup(o1), dropInBox(o1, b1)].
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Recent STRIPS planning
• STRIPS forms the core of PDDL (McDermott et al. 1998), the language of

many modern planners and the language of the International Planning
Competition (http://ipc.icaps-conference.org/).

• Many popular planners use a form of STRIPS, e.g.,
FF (Hoffmann & Nebel 2001), LAMA (Richter & Westphal 2008),
SGPlan (Hsu et al. 2006), . . .

• “Classical” planning with complete knowledge and deterministic action
effects is the most popular track in the International Planning
Competition. E.g., see the results of the IPC 2008 deterministic track
at http://ipc.informatik.uni-freiburg.de/.

Ron Petrick / Representations for classical and knowledge-level planning / CogX Spring School / 2010-04-25 13

Planning Domain Definition Language (PDDL)
• Version 1.2 (IPC-1998): STRIPS + ADL (conditional effects, general

preconditions),

• Version 2.1 (IPC-2002): temporal planning, numeric state variables,
durative actions,

• Version 2.2 (IPC-2004): derived predicates, times literals,

• Version 3.0 (IPC-2006): trajectory constraints (temporal logic),
preferences (soft constraints),

• Version 3.1 (IPC-2008): functional state variables.
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International Planning Competition (IPC)
International Planning Competition 2008 – Deterministic Part

Results

Competition rules

Planner submission

◮ participants submit planners before seeing any domains, no “tuning period”
◮ planner modifications only allowed for bug fixes, diffs checked rigorously
◮ participants must publish planner source code

Competition tracks

◮ three track categories, each with a satisficing track and optimization track:
◮ sequential: STRIPS + action costs

objective: minimize total cost (sum of action costs)
◮ temporal: STRIPS + durative actions + (some domains with) numeric fluents

objective: minimize total time (makespan)
◮ net benefit: STRIPS + action costs + soft goals + (some domains with) numeric fluents

objective: maximize net benefit (utility of achieved goals minus total cost)
◮ each track is a completely separate competition
◮ temporal optimization and net benefit satisficing tracks cancelled for lack of participants

Scoring function

◮ emphasis on plan quality, runtime does not count towards score
◮ 6–9 domains per track, 30 problems per domain
◮ planner score: total score for the 180–270 problems
◮ organizers run each planner on each problem (30 minute timeout, 2 GB memory limit)
◮ each problem scores up to 1 point: ratio best known quality vs. generated plan’s quality
◮ optimal tracks: suboptimal solutions lead to score 0 for the whole domain

Total scores

Sequential satisficing track

LAMA 235.58

baseline 175.73

FF(hsa) 168.58

FF(ha) 156.64

C3 150.56

SGPlan 6 139.64

(Upwards) 94.50

DTGPlan 82.08

DAE-1 54.65

DAE-2 45.43

Plan-A 34.42

◮ Winner: LAMA
◮ Runner-up: FF(hsa)
◮ Jury Award: C3

Sequential optimization track

baseline 116

Gamer 115

HSP∗F 111

HSP∗0 82

CO-Plan 71

Mips-XXL 62

CPT3 46

(Upwards) 25

CFDP 24

(Plan-A) 17

◮ Winner: Gamer
◮ Runner-up: HSP∗

F

Temporal satisficing track

baseline 144.04

SGPlan 6 125.63

TFD 103.41

CPT3 62.35

DAE-1 51.09

DAE-2 38.43

TLP-GP 5.73

◮ Winner: SGPlan 6
◮ Runner-up: Temporal Fast

Downward

Net benefit optimization track

Gamer 71

Mips-XXL 55

HSP∗P 49

◮ Winner: Gamer
◮ Runner-up: Mips-XXL

Sequential satisficing track

Cyber security

C3 10.65
DAE-1 0.00
DAE-2 0.00
DTGPlan 0.00
FF(ha) 21.87
FF(hsa) 21.68
LAMA 29.92
Plan-A 2.27
SGPlan 6 6.27
(Upwards) 0.00
baseline 4.00

Elevators

19.00
4.34
2.70

16.92
10.62
12.09
23.35

not attempted
20.00

2.60
24.96

Openstacks

10.07
3.03
1.40

13.65
8.17
8.26

27.33
3.00

12.09
4.97

21.36

ParcPrinter

C3 18.00
DAE-1 14.45
DAE-2 5.80
DTGPlan 16.44
FF(ha) 16.00
FF(hsa) 23.00
LAMA 20.93
Plan-A 0.00
SGPlan 6 24.39
(Upwards) 26.91
baseline 26.53

Peg Solitaire

19.70
3.89
3.00
0.67

21.48
22.65
28.88
13.00
10.01
25.00
19.52

Scanalyzer-3D

22.95
8.92
9.41

10.15
23.79
23.89
25.64
15.15
20.24
12.35
23.51

Sokoban

C3 17.96
DAE-1 0.00
DAE-2 0.00
DTGPlan 1.84
FF(ha) 15.28
FF(hsa) 17.83
LAMA 24.11
Plan-A 1.00
SGPlan 6 7.69
(Upwards) 5.00
baseline 21.08

Transport

5.81
4.96
5.26

17.78
15.76
15.34
28.93

not attempted
18.08

5.84
19.33

Woodworking

26.41
15.06
17.87

4.64
23.67
23.84
26.49

not attempted
20.85
11.83
15.45

Sequential optimization track

Elevators

CFDP 0
CO-Plan 6
CPT3 1
Gamer 22
HSP∗

0 8
HSP∗

F 8
Mips-XXL 2
(Plan-A) not attempted
(Upwards) 0
baseline 11

Openstacks

6
4
1

20
6

21
6
2
0

19

ParcPrinter

3
5

17
0

14
16

7
0
0

10

Peg Solitaire

CFDP 8
CO-Plan 25
CPT3 10
Gamer 22
HSP∗

0 21
HSP∗

F 27
Mips-XXL 24
(Plan-A) 12
(Upwards) 25
baseline 27

Scanalyzer-3D

3
6
3
9

11
6
6
0
0

12

Sokoban

0
12

3
18

4
14

6
3
0

19

Transport

CFDP 0
CO-Plan 8
CPT3 3
Gamer 11
HSP∗

0 9
HSP∗

F 10
Mips-XXL 6
(Plan-A) not attempted
(Upwards) 0
baseline 11

Woodworking

4
5
8

13
9
9
5

not attempted
0
7

Temporal satisficing track

Crew Planning

CPT3 5.00
DAE-1 12.76
DAE-2 13.76
SGPlan 6 22.97
TFD 9.34
TLP-GP 0.00
baseline 16.21

Elevators

1.98
6.46
2.96

18.81
11.29

not attempted
23.10

Model Train

not attempted
not attempted
not attempted

13.01
1.48

not attempted
12.00

Openstacks

CPT3 4.00
DAE-1 7.04
DAE-2 4.00
SGPlan 6 13.07
TFD 26.14
TLP-GP not attempted
baseline 18.20

ParcPrinter

17.38
11.93

6.81
11.04

5.67
1.73

13.87

Peg Solitaire

29.00
11.89

9.89
15.39
23.32

4.00
24.35

Sokoban

CPT3 5.00
DAE-1 1.00
DAE-2 1.00
SGPlan 6 9.31
TFD 9.57
TLP-GP 0.00
baseline 16.88

Transport

not attempted
not attempted
not attempted

11.54
4.29

not attempted
7.24

Woodworking

not attempted
not attempted
not attempted

10.48
12.31

not attempted
12.19

Net benefit optimization track

Crew Planning

Gamer 4
HSP∗

P 16
Mips-XXL 8

Elevators

11
5
4

Openstacks

7
5
2

Peg Solitaire

Gamer 24
HSP∗

P 0
Mips-XXL 23

Transport

12
12

9

Woodworking

13
11

9

Image: (Helmert, Do, & Refanidis 2008) from http://ipc.informatik.uni-freiburg.de/
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Action compilation
• Compile complex actions into

ordinary PDDL actions
(McIlraith & Fadel 2002,
Claßen et al. 2007,
Baier & McIlraith 2006,
Baier, Fritz, & McIlraith 2007).

action processDataset(?d)
precondition:

dataset(?d) and
not(processedDataset(?d))

effect:
i = 1 ;
while (i <= size(?d))

count = count + i ;
i = i + 1

endWhile ;
processedDataset(?d)

endAction

Compilation example: (Petrick 2009)

(:action processDataset
:parameters (?d)
:precondition

(and (not (context-loop))
(dataset ?d)
(not (processedDataset ?d)))

:effect
(and (assign (i) 1)

(context-loop)
(context-loop-params ?d)))

(:action processDataset-inLoop
:parameters (?d)
:precondition

(and (context-loop)
(context-loop-params ?d)
(<= (i) (size ?d)))

:effect
(and (increase (count) (i))

(increase (i) 1)))

(:action processDataset-endLoop
:parameters (?d)
:precondition

(and (context-loop)
(context-loop-params ?d)
(not (<= (i) (size ?d))))

:effect
(and (processedDataset ?d)

(not (context-loop))
(not (context-loop-params ?d))))
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Example: PACO-PLUS project (EU FP6)

“Perception, Action, and Cognition
through learning of Object-Action
Complexes”

http://www.paco-plus.org/

Image: Asfour et al., Universität Karlsruhe

Image: Kraft & Krüger, University of Southern Denmark

• Multiple robot platforms.

• Task and dialogue planning.

• Portions of the planning-level
representation are induced
from the robot’s interaction
with the real world.
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PACO-PLUS: task planning in a kitchen domain

“Classical” planning actions

grasp(o, l, h) Grasp object o from l using gripper h.
graspFromEdge(o, l, h) Grasp object o from the edge of l using gripper h.
move(l1, l2) Move the robot from location l1 to location l2 .
nudgeToEdge(o, l, h) Nudge flat object o to the edge of l using gripper h.
open(l, h) Open l with gripper h.
openPartial(l, h) Partially open l with gripper h.
openComplete(l, h) Finish opening l with gripper h.
close(l, h) Close l with gripper h.
passObject(o, h1, h2) Pass object o from gripper h1 to h2.
placeUpright(o, l, h) Put object o upright at l using gripper h.
putDown(o, l, h) Put object o down at l using gripper h.
putIn(o, l, h) Put object o into l using gripper h.
removeFrom(o, l, h) Remove object o from l using gripper h.

Example plan: ensure the applejuice is in the fridge:

placeUpright(applejuice, sideboard, lefthand),
grasp(applejuice, sideboard, righthand),
move(sideboard, fridge),
openPartial(fridge, lefthand),
passObject(applejuice, righthand, lefthand),
openComplete(fridge, righthand),
putIn(applejuice, fridge, lefthand),
close(fridge, lefthand).

(Petrick et al. 2009)
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PACO-PLUS: task planning in a kitchen domain...

Images: Asfour et al., Universität Karlsruhe

• Classical STRIPS-style planning is often sufficient for many
task-based domains in PACO-PLUS.

• The ability to model a particular task depends on the level of
abstraction.
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Belief space/knowledge-level planning
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Recall: properties of classical planning
• A completely specified initial world state (closed world assumption).

• Actions are deterministic and map world states to world states.

⇒ The completeness of the world state is preserved.

⇒ Agent do not need to sense the environment.

⇒ Not always (usually?) realistic.
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Action and belief/knowledge
• In many real-world domains, an agent may not have complete

knowledge of its environment (e.g., open world).

• Examples

– Robot with sensors exploring an unknown building.
– Software agent in an operating system domain.
– Agents interacting with other agents using natural language.

• Physical actions not only have effects that change the state of the
world, but also the mental state of the agent performing the action.

• Actions may have nondeterministic effects (e.g., sensing actions).

• What if an agent performs actions that change it’s mental state but not
the state of the world? What if the agent believes something that isn’t
true in the world?

⇒ Representing and reasoning about belief/knowledge.
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Types of open world planning
• Conformant planning

– Incomplete world states,
– No sensing actions.

• Contingent planning

– Incomplete world states,
– Sensing actions.

• Planning under uncertainty

– Usually probabilistic.

• Also see the terms: “planning with incomplete information and
sensing”, “belief space planning”, “planning with knowledge”, ...
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Representing an agent’s knowledge
• How can we represent an agent’s incomplete knowledge about the

state of the world for planning?

• Issues to consider:

– What types of knowledge should be represented? Restrictions?
Agents may have knowledge of facts, functions, universals, etc.

– How do we represent the effects of sensors?
At plan time, a planner must reason about information that will
become known at some point in the future.

– Does this representation enable practical plan generation?
General reasoning with expressive representations can lead to
intractability.

• Many approaches in the knowledge representation (KR) community.
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Possible worlds
• The incomplete knowledge of an agent can be modelled by a set of

worlds, each a possible version of how real world configured.

• Each world can be thought of as a first-order model.

• Worlds are related by an accessibility relation.

• Intuitively:

– Knowing φ to be true ≈ φ is true in every possible world.
– Not knowing whether or not φ is true ≈ there exist worlds in

which φ is true and worlds in which φ is false.

• The representation can be quite general, however, there is a
computational drawback from working directly with possible worlds:

n atomic formulae ⇒ potentially 2n possible worlds.
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Belief space planning

Classic state space planning Belief state planning

• Many planning approaches model belief states—sets of ordinary
states representing the planner’s beliefs—and construct plans by
reasoning about these states (Smith & Weld 1998, Weld et al. 1998, Cimatti &
Roveri 2000, Bertoli et al. 2001, Brafman & Hoffmann 2004, Hoffmann & Brafman
2005, Bryce 2007, . . . ).
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Belief space planning...(2)

• Verifying action preconditions: must check truth in each ordinary state.

• Applying action effects: update each ordinary state with effects.

• What about belief/knowledge? Must consider changes across all
ordinary states in a belief state.
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Belief space planning...(3)

• State space explosion is a potential problem when the planner’s
knowledge is particularly uncertain.

• Open question: what is the best way to represent and reason with
these sets? Heuristic search, model checking, compression
techniques, . . .
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Modal logics of belief/knowledge
• Belief/knowledge (and action) can be modelled using a logical

representation, and understood in terms of possible worlds
(Hintikka 1962, Kripke 1972, Moore 1985, Fagin et al. 1995).

• Syntactically: an operator K is added to an ordinary first-order
language, extending it by the rule: if φ is a formula then so is K(φ).
Intuitively, K(φ) means “φ is known”.

• Semantically: language can be interpreted over a collection of
possible worlds, each a first-order model.

• A non-modal formula φ is true at a particular world w (w |= φ) iff it is
true according to standard rules for interpreting first-order formulae.

• A formula of the form K(φ) is interpreted to be true at w iff φ is true at
every world accessible from w.

• Problem: general reasoning is intractable.
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Restricted logics
• Alternative approaches have addressed the reasoning problem by

placing restrictions on the syntactic form of the underlying logic, and
avoiding the use of possible worlds.

– Interval-valued epistemic fluents (Funge 1998): a special fluent IF

measures the (un)certainty of a corresponding fluent F by
maintaining an interval of possible values for F. E.g., IF = 〈c, d〉
means that F must take a value between c and d.

– Belief fluents (Demolombe & Parra 2000): associate a pair of fluents
KF (“F is known to be true”) and K¬F (“F is known to be false”)
with each ordinary fluent F and directly model how KF, K¬F, and
F change due to action.

– 0-approximation (Son & Baral 2001): represent knowledge by sets of
predicates known to be true and known to be false, to
approximate the knowledge modelled by a set of possible worlds.

• Other approaches in the literature, e.g., (Soutchanski 2001,
Petrick & Levesque 2002, Liu & Levesque 2005, Vassos & Levesque 2007, . . . )
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Compilation approaches
• A recent trend in the planning community has been to find ways of

transforming “difficult” classes of planning problems into “simpler”
problems that are more easily solved (e.g., using classical planners).

• Compile belief space problems into a form that can be used with
ordinary PDDL planners like FF.

– Conformant domains (Palacios & Geffner 2009),
– Contingent domains (Albore et al. 2009).
– Closely related to ideas in approaches like (Son & Baral 2001, Petrick

& Levesque 2002, . . . )

• No guarantee technique will work on all domains; transformed
problem may be an approximation of the original problem.

• Good performance on standard benchmarks. See, e.g.,
(Palacios & Geffner 2009).
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PKS: Planning with Knowledge and
Sensing
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Planning at the knowledge level
• Main idea: build plans based on what the planner knows.

– What types of knowledge do we need?
– How do we represent this knowledge?
– How do we reason and plan with this knowledge?

• Model actions by the changes they make to the planner’s knowledge
state, rather than the world state.

• Theory: use a restricted modal logic of knowledge.
• Practice: use an extended STRIPS representation.
• Focus:

– Correct but incomplete knowledge,
– Actions that can sense and manipulate the environment,
– Emphasis on contingent planning.

⇒ PKS – “Planning with Knowledge and Sensing”
(Petrick & Bacchus 2004, 2004).
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What knowledge does PKS represent?
• Relational facts about the world

handEmpty, inDir(gcc, /usr/bin),¬rainy, . . .

• Functional information

combo(safe) 6= 23−42−12, parentDir(parentDir(dirA)) = dirC, . . .

• Disjunctive information

“I know that the light switch is on or off.”

• Plan time knowledge that will be resolved at execution time

“After checking the thermometer I will come to know the temperature.”

• Local closed world information (Etzioni et al. 1994)

“I know what objects are in the box.”

• . . .
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How does PKS represent knowledge?
• Use a collection of databases: Kf , Kw, Kv, Kx, LCW.

• Each database is restricted to a particular type of knowledge.

• Knowledge is assumed to be correct, but is incomplete.

• The contents of each database have a fixed translation to formulae in
a modal logic of knowledge.

• Given a set of databases (DB)
⇒ formal translation defines the planner’s knowledge state (KB).

• Rather than modelling sets of possible worlds, the modal formulae
directly represent the planner’s knowledge state.

• Planning: actions update DB ⇒ update KB.
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Kf database
• Knowledge of positive and negative facts

rainy,¬inDir(gcc, music), combo(safe) = c1, temperature 6= 32.

• Similar to a standard STRIPS database.

• Not closed world! Negative facts must be explicitly represented.

Translation
For ℓ ∈ Kf , KB includes the formula

K(ℓ).
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Kw database
• Knowledge of binary sensing effects

φ ∈ Kw : the planner “knows whether” φ.

• Example: sense whether boxA is open or not,

open(boxA) ∈ Kw.

– At plan time the planner knows that it will come to know whether
the box is open or not.

– At execution time it will have definite knowledge of the actual
outcome (i.e., the disjunction will be resolved).

Translation
For φ(~x) ∈ Kw, KB includes the formula

(∀~x).K(φ(~x)) ∨ K(¬φ(~x)).
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Kv database
• Knowledge of function values, multi-valued sensing effects

f ∈ Kv : the planner “knows the value” of f .

• Example: read a combination for a safe from a piece of paper,

combo(safe) ∈ Kv.

– At plan time the planner knows that it will come to know the
value of the combination.

– At execution time the planner will have definite knowledge of the
actual combination (i.e., a number).

Translation
For f (~x) ∈ Kv, KB includes the formula

(∀~x)(∃v).K(f (~x) = v).
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Kx database
• Exclusive-or knowledge

(ℓ1|ℓ2| . . . |ℓn) ∈ Kx : exactly one of the ℓi must be true.

• Example: either c1 or c2 is the combination of the safe,

combo(safe) = c1 | combo(safe) = c2 ∈ Kx.

• Additional information may “resolve” or “simplify” Kx knowledge. E.g.,
in the above example, coming to know c2 is not the combination of the
safe means we can conclude c1 is the combination of the safe.

Translation
For (ℓ1|ℓ2| . . . |ℓn) ∈ Kv, KB includes the formula

K(

n
_

i=1

ℓi ∧ (¬ℓ1 ∧ . . . ∧ ¬ℓi−1 ∧ ¬ℓi+1 ∧ . . . ∧ ¬ℓn)).
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LCW database
• Local closed world information (Etzioni et al. 1994).
• LCW formulae assert that Kf contains a complete list of all objects

satisfying the formula. The planner can conclude that an object does
not satisfy the formula if it isn’t explicitly listed in Kf .

• Example: the planner knows all the objects in boxA,

inBox(x, boxA) ∈ LCW.

If inBox(cupB, boxA) 6∈ Kf then conclude K(¬inBox(cupB, boxA)).

Translation
For every formula φ(~x) ∈ LCW, φ(~x) = α1(~x) ∧ . . . ∧ αk(~x),
C =

˘

~c : αi(~x/~c) ∈ Kf , 1 ≤ i ≤ k
¯

(C is the set of tuples of constants
explicitly listed in Kf as satisfying φ), KB includes the formula:

(∀~x).
^

~c∈C

¬(x1 = c1 ∧ . . . ∧ xn = cn) ⊃ K(¬φ(~x/~c)).
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PKS knowledge states
• Given a set of databases (DB), the formal translation defines the

planner’s knowledge state (KB).

• Restrictions on databases contents means that there are restrictions
on the kinds of knowledge that can be modelled.

• Cannot model certain types of knowledge, e.g., general disjunctions

K(P(a) ∨ Q(b, c)).

• Tradeoff expressiveness for tractable reasoning.

– Cannot model certain planning problems.
– Avoid reasoning directly about individual possible worlds.
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How does PKS reason about knowledge?
• A primitive query language is used to ask simple questions about the

planner’s knowledge state

– K(α), is α known to be true?
– Kv(t), is the value of t known?
– Kw(α), is α known to be true or known to be false?
– The negation of the above queries.

• A sound, but incomplete, inference procedure checks the database
contents to determine the truth of a query.

• Reasoning is restricted but more than single database lookup.

• Used to evaluate preconditions, conditional rules, and goals.
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PKS planning problems
• Planning problem: 〈I, G,A,U〉
• Initial knowledge state I: initial contents of databases.

• Goal conditions G: set of primitive queries

⇒ Must be satisfied in every knowledge state that could arise from
executing a plan.

• A: non-empty set of action specifications.

• U : set of domain specific knowledge update rules.
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PKS actions (A)
• Actions are described by their parameters, preconditions, and effects,

based on an extension of STRIPS.

• Parameters: a set of variables bound to produce an action instance.

• Preconditions: conjunctive set of primitive queries, each of which must
evaluate to true in order for the action to be applied.

• Effects: conditional effect rules of the form C ⇒ E,

– Effect preconditions C: set of primitive queries,
– Database updates E: list of add and del operations to any of the

databases.

⇒ Easy to compute new knowledge states by forward chaining.

– Evaluate preconditions against a set of databases DB (KB),
– Effects update DB ⇒ update KB.
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Example: drop and inspect actions

Action Preconditions Effects
drop(x) K(holding(x)) del(Kf , holding(x))

add(Kf , onFloor(x))
add(Kf , dropped(x))
del(Kf ,¬broken(x))
K(fragile(x)) ⇒

add(Kf , broken(x))
inspect(y) add(Kw, broken(y))
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Example: drop and inspect actions...(2)

drop(vase)

inspect(boxA)

drop(boxA)

holding(boxA)

fragile(vase)
holding(vase)

holding(vase)
fragile(vase)
onfloor(boxA)
dropped(boxA)

holding(boxA)
fragile(vase)
onfloor(vase)
dropped(vase)
broken(vase)

holding(vase)
fragile(vase)
onfloor(boxA)
dropped(boxA)

broken(boxA)

Kf

Kf Kf

Kw

Kf

Initial knowledge state
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Domain specific update rules (U)
• PKS also provides a facility to specify rules that could be triggered

after any action is applied.

• Such rules can be used to describe properties like knowledge-level
state invariants.

• Allow sets of conditional effect rules of the form C ⇒ E: effect E is
triggered in any knowledge state where C holds.

• Example: come to know an object is fragile if it has been dropped and
is broken,

K(dropped(x)) ∧ K(broken(x)) ⇒ add(Kf , fragile(x)).

• Such rules could also be included as part of each action specification.
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How does PKS generate plans?
1. If the goals G are satisfied in the final DB of each plan branch then

return the current plan.

2. Otherwise, choose a plan branch where the goals aren’t satisfied and
try to extend the branch. Choose an action A whose preconditions are
satisfied in the final DB of that plan branch, apply A’s effects to DB,
and continue planning.

3. Alternatively, add a conditional branch point to a plan branch.
– Add a 2-way branch by picking a ground instance α ∈ Kw. Along

one branch, add α to Kf ; along the other branch, add ¬α to Kf .
– Add an n-way branch by picking a ground instance f ∈ Kv,

provided f is restricted by an entry (f = c1|f = c2| . . . |f = cn) ∈ Kx.
Along each branch i, add f = ci to Kf .

– Continue planning along each branch.

4. Fail if the plan cannot be expanded and the goals are not satisfied
along all plan branches.
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Plan correctness
• Plan correctness relies on two criteria (Levesque 1996)

– Plan time: an agent must know it will have enough information at
execution time for a plan to achieve the goals.

– Execution time: an agent must have sufficient knowledge at
every step of the plan to execute it.

• PKS satisfies Levesque’s criteria

– Goals are satisfied along every branch of a conditional plan.
– Plan branches based on sensed Kw formulae resolve to definite

knowledge at execution time.
– The planner will have sufficient knowledge at the right time to

determine which branch to execute.
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PKS planning domains
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Opening a safe

Action Effects
dial(x) add(Kw, open)

del(Kf ,¬open)
add(Kf , justDialled = x)
K(combo = x) ⇒

add(Kf , open)

• Build a plan to open a safe given a fixed set of possible combinations.
• Initial knowledge of combinations

(combo = c1|combo = c2| . . . |combo = cn) ∈ Kx.

• Update rules

K(justDialled = x) ∧ K(¬open) ⇒ add(Kf , combo 6= x),
K(justDialled = x) ∧ K(open) ⇒ add(Kf , combo = x).

• Goal: K(open).
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Opening a safe...(2)

dial(c  )

dial(c  )

dial(c  )

K+

K+

K+

K−

K−

K−

combo = c

combo = c

combo = c

combo = c

branch on open

dial(c  )1

2

3

n

n

3

2

1
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Opening a safe...(3)

Action Effects
dial(x) add(Kw, open)

K(combo = x) ⇒
add(Kf , open)

• Open a safe when the planner “knows the value” of the combination.
• Initial knowledge of combinations

combo ∈ Kv.

• Goal: K(open).

Kv combo
Kv combo

Kf opendial(combo)

The simple plan dial(combo), where combo is a function, suffices here.
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Operating system domain

Action Preconditions Effects
cd(d) K(dir(d)) add(Kf , pwd = d)

K(inDir(d, pwd)
cd−up(d) K(dir(d)) add(Kf , pwd = d)

K(inDir(pwd, d)
ls(f , d) K(pwd = d) add(Kw, inDir(f , d))

K(file(f ))
¬Kw(inDir(f , d))

• Count the number of copies of a file in a directory tree where the
directory tree is known but not necessarily the directory contents.

• There is at most one copy of a file in each directory.
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Operating system domain...(2)

Domain specific update rules
¬K(processed(f , d)) ∧ K(inDir(f , d)) ∧ Kv(size(f , d)) ⇒

t = [(sizeMax > size(f , d))? sizeMax : size(f , d)],
add(Kf , sizeMax = t),
add(Kf , count = count + 1),
add(Kf , processed(f , d))

¬K(processed(f , d)) ∧ K(inDir(f , d)) ∧ ¬Kv(size(f , d)) ⇒
add(Kf , sizeUnk = sizeUnk + 1),
add(Kf , processed(f , d))

¬K(processed(f , d)) ∧ K(¬inDir(f , d)) ⇒
add(Kf , processed(f , d))

• Domain encoding uses a function count and numerical expressions.

• If a directory has not been processed, and the file is known to be in the
directory, increment the count.
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Operating system domain...(3)

4 3 3 2

?

?

K+ K−

K+ K+K− K−

cd(planning)

cd(icaps)

ls(paper.tex,root)

icaps kr
paper.tex

How many instances of

indir(paper.tex,planning)?

ls(paper.tex,planning)

pwd=root

paper.tex

paper.tex?

planning

indir(paper.tex,root)?

count=
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Poisonous liquid

Action Effects
pour-on-lawn ¬K(¬poisonous) ⇒

del(Kf ,¬lawn-dead)
K(poisonous) ⇒

add(Kf , lawn-dead)
sense-lawn add(Kw, lawn-dead)

• What happens when an unknown bottle of liquid is poured on a
healthy lawn? If the lawn is dead after pouring the liquid then the
liquid must be poisonous and must have initially been poisonous.

• Postdictive reasoning (Sandewall 1994): perform additional reasoning
about generating plan sequences. New conclusions don’t follow solely
from action effects but also from action non-effects.
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Poisonous liquid...(2)
1. Generate a conditional plan

Kf Kf

Kf

sense−lawnpour−on−lawn
branch on lawn−dead

lawn−dead lawn−deadKw lawn−dead

lawn−dead

2. Form linearisations (possible execution branches)

Kf Kf lawn−dead

sense−lawnpour−on−lawn

lawn−dead

Kf lawn−dead Kf lawn−dead

sense−lawnpour−on−lawn

3. Augment states by postdiction rules
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Poisonous liquid...(3)

Kf Kf lawn−dead

sense−lawnpour−on−lawn

lawn−dead

Kf lawn−dead Kf lawn−dead

sense−lawnpour−on−lawn

⇒ Linearisations of conditional plan.
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Poisonous liquid...(4)

Kf Kf Kf

poisonous

lawn−dead lawn−dead

poisonous

lawn−dead

poisonous

Kf lawn−dead

poisonous

Kf lawn−dead

poisonous

Kf lawn−dead

poisonous

sense−lawnpour−on−lawn

sense−lawnpour−on−lawn

⇒ Plan states augmented by postdiction.
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PKS in PACO-PLUS
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PACO-PLUS: object manipulation

Image: Kraft & Krüger, University of Southern Denmark
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PACO-PLUS: object manipulation...(2)

Action Preconditions Effects
graspA−table(x) K(clear(x)) add(Kf , inGripper(x))

K(gripperEmpty) add(Kf ,¬gripperEmpty)
K(onTable(x)) add(Kf ,¬onTable(x))
K(reachableA(x))
K(radius(x) ≥ minA)
K(radius(x) ≤ maxA)

findout−open(x) ¬Kw(open(x)) add(Kw, open(x))
K(onTable(x))

. . . . . . . . .

(Petrick et al. 2009)
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PACO-PLUS: remove all objects

Images: Kraft & Krüger, University of Southern Denmark

• A simple plan to remove all objects:

graspD−table(obj1),
putInto−object(obj1, obj2),
graspB−table(obj2),
putAway(obj2).
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PACO-PLUS: remove all “open” objects

Images: Kraft & Krüger, University of Southern Denmark

• A conditional plan to remove an open object:

findout−open(obj1),
branch(open(obj1))
K+ :

graspA−table(obj1),
putAway(obj1)

K− :
nil.
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PACO-PLUS: locating objects in the kitchen

Image: Asfour et al., Universität Karlsruhe

• “Search and retrieve” plans

• Example: find the cereal
and bring it to the
sideboard.

– Check the sideboard,
– Check the cupboard,
– Check the stove,
– . . .
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Planning and natural language
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Natural language and planning
• Natural Language Generation (NLG) is a major subfield of natural

language processing, concerned with computing natural language
sentences or texts that convey a piece of information to a user.

• Dialogue systems are computer systems designed to carry out natural
language conversations with human users. An important component
of most dialogue systems is the dialogue manager which is
responsible for making appropriate conversational moves.

• Can be viewed as problems involving actions, beliefs, and goals:

A speaker tries to change the mental state of the
hearer by applying actions that correspond to the
utterance of words or sentences.

⇒ Obvious parallels to planning.
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Natural language and planning...(2)
• The link between natural language and planning has a long tradition,

e.g., (Perrault & Allen 1980, Appelt 1985, Clark 1996, Stone 2000), including early
BDI-based approaches, e.g., (Litman & Allen 1987, Cohen & Levesque 1990,
Grosz & Sidner 1990), . . .

• Early approaches suffered due to inefficient planning techniques.

• Recent work has tended to separate “task” planning from other types
of natural language planning and has focused on specialized
approaches, e.g., finite state machines, information state, rule-based
approaches to speech act theories, dialogue games, . . .

• There has been a renewed interest in applying modern planning
techniques to natural language problems, e.g., (Koller & Stone 2007,
Benotti 2008, Brenner & Kruijff-Korbayová 2008, Koller & Petrick 2008).
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Sentence generation as planning
• Sentence generation is the problem of computing, from a grammar

and semantic representation, a sentence that expresses this
meaning. E.g., “The white rabbit sleeps.”

• Tree Adjoining Grammar (Joshi & Schabes 1997)

S:self

NP:subj ! VP:self

sleeps

V:self

N:self

rabbit

NP:self

the

N:self

white N:self *

{sleep(self,subj)} {rabbit(self)} {white(self)}

(Koller & Stone 2007, Koller & Petrick 2008)

Elementary trees contribute semantic content.
• Trees are instantiated by substituting individuals from a knowledge

base for semantic roles. E.g., a and b are rabbits, a is white, b is
brown, and e is an event in which a sleeps.
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Sentence generation as planning...(2)
• Can be translated into a planning problem (Koller & Stone 2007).
• Classical planning actions model operations that add elementary

trees to a derivation (Koller & Petrick 2008), e.g.,
(:action add-sleeps

:parameters (?u - node
?xself - individual
?xsubj - individual)

:precondition
(and (subst S ?u)

(referent ?u ?xself)
(sleep ?xself ?xsubj))

:effect
(and (not (subst S ?u))

(expressed sleep ?xself ?xsubj)
(subst NP (subj ?u))
(referent (subj ?u) ?xsubj)
(forall (?y - individual)

(when (not (= ?y ?xself))
(distractor (subj ?u) ?y)))))

• A plan must satisfy the syntactic and semantic linguistic requirements
[add−sleeps(root, a), add−rabbit(subj(root), a), add−white(subj(root), a)].
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Planning in instruction giving
• GIVE: “Generating Instructions in Virtual Environments” (Koller et al. 2007).

• Build a system capable of producing natural language instructions to
guide a human user in performing some task in a virtual environment.

http://www.give-challenge.org/research/

• A theory-neutral task that tests all components of an NLG system.

• A GIVE problem is very similar to a Grid planning problem (IPC 1998).

– Discretised tiles of equal size,
– Users can turn 90o left or right, or move forward one tile,
– Additional requirement to press buttons in the right order, reason

about large numbers of world objects, and navigate complicated
room shapes.
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Planning in instruction giving...(2)

Example GIVE map Virtual 3D GIVE client

(Koller & Petrick 2008)
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Planning in instruction giving...(3)
• Classical planning actions describe task-level operations, e.g.,

“move”, “turn”, “press button”, etc. (Koller & Petrick 2008).
(:action move

:parameters (?from - position
?to - position
?ori - orientation)

:precondition
(and (player-pos ?from)

(adjacent ?from ?to ?ori)
(player-orient ?ori)
(not-blocked ?from ?to)
(not-alarmed ?to))

:effect
(and (not (player-pos ?from))

(player-pos ?to)))

• Plans are often non-trivial (e.g., 108 steps using the example map)
[turn−left(north, west), move(pos 5 2, pos 4 2, west), manipulate(b1, pos 4 2, off , on), . . .].

• Domain offers challenges beyond classical planning, e.g., plan
summarisation and elaboration, strict run-time requirements, user’s
actions failing to match generated instructions, etc.
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Situated dialogue and tacit actions (Benotti 2007, 2008)

• Situated dialogue-based interactions can be advanced using dialogue
actions, physical actions, and sensing actions.

• In particular, actions can be explicit or tacit.
• Tacit physical actions can be inferred using classical planning, while

tacit sensing actions can be inferred using a knowledge-level planning
approach, e.g., PKS.

• Application to text adventure games.

Action Preconditions Effects
trykey(x, y) K(accessible(x)) add(Kw, fits in(x, y))

K(locked(x))
K(key(y))
K(inventory obj(y))

. . . . . . . . .

take(silver key, table),
take(golden key, table),
trykey(silver key, door),
branch(fits in(silver key, door))
K+ :

unlock(door, silver key),
open(door)

K− :
unlock(door, golden key),
open(door).

Example PKS actions and a conditional plan in a text adventure domain (Benotti 2007, 2008)
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PKS and dialogue planning
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PKS dialogue planning (Steedman & Petrick 2007)

Plan 1 Plan 2
Go to the station Go to the station
Buy a ticket Buy a ticket
Check the departure board Ask someone for information
Go to the track Go to the track
Board the train Board the train
. . . . . .

Observational action step Dialogue step (speech act)

⇒ Both actions serve as information gathering steps in the plan.

⇒ Can we reason about dialogue acts in the same way as ordinary
actions? Can we use the same machinery for planning?

Ron Petrick / Representations for classical and knowledge-level planning / CogX Spring School / 2010-04-25 77

PKS dialogue planning with speech acts
• Motivation: some actions like ask and tell can be modelled as sensing

actions. We can represent certain dialogue problems as instances of
planning with incomplete information and sensing.

• Can we apply knowledge-level planning techniques to this problem?

– Dialogues involve multiple participants,
– Actions correspond to speech acts, e.g., ask, tell, . . .
– Plans specify mixed-initiative discourse among participants.

• Formal representations exist: many logical languages for reasoning
about actions and change, e.g., (Moore 1985; Scherl & Levesque 1994, 2003;
Stone 1998; Steedman 1997, 2002; . . . ).

⇒ What kinds of changes do we need to make to PKS?
How tractable is the reasoning?
In what kinds of domains can we apply these techniques?
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Participants and common ground

• We use labels (modalities) for referencing dialogue participants and
common ground.

[S] Speaker supposition
[H] Hearer supposition
[X] , [Y] , . . . Other participant/agent suppositions
[CXY] Common ground between X and Y

Examples
[S] p “The speaker supposes p.”
[S] [H] p “The speaker supposes the hearer supposes p.”
[H] [CSH] [S] p “The hearer supposes it’s common ground

between the speaker and hearer that the
speaker supposes p.”
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Knowledge assertions
• Use restricted PKS knowledge assertions as the basis (content) of

knowledge expressions, i.e.,

Kp “Know p”,
Kvt “Know the value of t”,
Kwp “Know whether p”.

• Use Kv and Kw to represent indefinite information, such as the
information returned by sensing actions.

• Combine labels with knowledge assertions.

Examples
[S]¬Kcombo(safe) = c1
[S] [H] Kvtrack
[S] [CSH] Kwopen(boxA)
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Reasoning with labelled knowledge

• Rules for reasoning about speaker-hearer suppositions and common
ground modalities (Steedman & Petrick 2007):

A1. [X]φ ⇒ φ Supposition Veridicality
A2. [X]¬φ ⇒ ¬ [X]φ Supposition Consistency
A3. ¬ [X]φ ⇒ [X]¬ [X]φ Negative Introspection
A4. [C]φ ⇔ ([S] [C]φ ∧ [H] [C]φ) Common Ground
A5. [X] [C]φ ⇒ [X]φ Common Ground Veridicality

• We require rules similar to these to augment PKS’s standard
inference procedure.

⇒ No specific conversational rules or intent recognition rules are used.
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Knowledge requirements of ask and tell

R1. “If X doesn’t know p and X knows Y does, X can ask Y
about it.”

⇒ Knowledge-level preconditions for ask.

R2. “If X asks Y about p, it makes it common ground X doesn’t
know it.”

⇒ Knowledge-level effects for ask.

R3. “If X knows p, and X knows p is not common ground, X
can tell Y p.”

⇒ Knowledge-level preconditions for tell.

R4. “If X tells Y p, Y stops not knowing it and starts to know it.”

⇒ Knowledge-level effects for tell.
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Knowledge-level dialogue actions

Action Preconditions Effects
ask(X, Y, p) ¬ [X] p add([CXY]¬ [X] p)

[X] [Y] p
tell(X, Y, p) [X] p add([Y] p)

[X]¬ [CXY] p

• We can encode the knowledge requirements for speech acts like ask
and tell in terms of their preconditions and effects.

• We can build plans by chaining together actions using our extra rules
for reasoning about modalities.
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Example: taking a train

F1. “If I know what time it is then I’ll know what track my train is on.”

[S] Kvtime ⇒ add([S] Kvtrack)

F2. “I don’t know what track my train leaves from.”

[S]¬Kvtrack

F3. “I suppose you know what time it is.”

[S] [H] Kvtime

F4. “I suppose it’s not common ground I don’t know what time it is.”

[S]¬ [CSH]¬ [S] Kvtime
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Dialogue plan generation

Goal: [S] Kvtrack (I need to know which track to go to)

(D1) ⇒ [H] Kvtime (F3),(A1)
(D2) ⇒ ¬ [S] Kvtime (F2),(A2),(F1)
(D3) ⇒ Apply action: ask(S, H, Kvtime)
(D4) ⇒ [CSH]¬ [S] Kvtime (D3),(R2)
(D5) ⇒ Apply action: tell(H, S, Kvtime)
(D6) ⇒ [S] Kvtime (D5),(D2),(R4)
(D7) ⇒ [S] Kvtrack (D6),(F1)

Plan: [ask(S, H, Kvtime), tell(H, S, Kvtime)].
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Dialogue plan generation...(2)

Goal: [S] Kvtrack (I need to know which track to go to)

(D1) ⇒ [S]¬ [S] Kvtime (F2),(A2),(F1),(A3)
(D2) ⇒ [S]¬ [CSH]¬ [S] Kvtime (F4)
(D3) ⇒ Apply action: tell(S, H, ¬ [S] Kvtime)
(D4) ⇒ [CSH]¬ [S] Kvtime (R2)

⇒ . . .

⇒ Apply action: tell(H, S, Kvtime)
⇒ . . .

Plan: [tell(S, H,¬ [S] Kvtime), tell(H, S, Kvtime)].
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Dialogue plan generation...(3)

Plan 1 Plan 2
ask(S, H, Kvtime) tell(S, H,¬ [S] Kvtime)
tell(H, S, Kvtime) tell(H, S, Kvtime)

• Plan generation takes place in the space of multi-agent plans

– No reasoning about other agents’ goals or intentions,
– Cannot guarantee other agents’ actions.

• Approach is driven by the knowledge state, i.e., what the planning
agent knows about the world and the other agents’ beliefs.

• Both direct and indirect speech acts can be generated from the same
mechanisms for reasoning about knowledge and common ground.
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PACO-PLUS: dialogue planning
Robot1: Let’s make breakfast. [goal-propose(breakfast)]

Robot2: I don’t know how to make breakfast. [assert(¬know(breakfast))

Robot1: To make breakfast we must bring the [explain(breakfast :- loc(cereal,sideboard) ∧
cereal and the milk to the sideboard. loc(milk,sideboard))]

Robot2: Is the cereal at the sideboard? [ask(loc(cereal,sideboard))]

Robot1: No. [tell(no)]

Robot2: Where is the cereal? [ask(loc(cereal, X))]

Robot1: The cereal is in the cupboard. [tell(loc(cereal,cupboard))]

Robot2: Is the milk at the sideboard? [ask(loc(milk,sideboard))]

Robot1: No. [tell(no)]

Robot2: Where is the milk? [ask(loc(milk, X))]

Robot1: The milk is in the fridge. [tell(loc(milk,fridge))]

Robot2: Okay. I suggest I go to the cupboard, [assert-plan(move(sideboard,cupboard),...]

pickup the cereal, bring it to the
sideboard, then go the fridge, pickup
the milk, and bring it to the sideboard.

⇒ Use the same underlying plan generation mechanisms for both task
planning and dialogue planning.
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Related problems

Ron Petrick / Representations for classical and knowledge-level planning / CogX Spring School / 2010-04-25 89

Learning action representations
• Where do planning representations come from?
• Use machine learning techniques to learn actions from state

snapshots. E.g., (Wang 1995; Amir & Chang 2008; Modayil & Kuipers 2008;
Pasula, Zettlemoyer, and Kaelbling 2007; Mourão et al. 2009).

Example: results of learning STRIPS action effects in partially observable ZenoTravel
and Depots domains using voted perceptrons (Mourão et al. 2009).
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Plan execution monitoring
• How are plans executed after they’re

generated? How do we know whether
plan execution was successful?

• Compare predicted/expected states
against actual/observed states.

• Assesses whether to continue
executing an existing plan, replan,
(partially) resense the world, etc.

• Many approaches in the literature, often
system dependent.

Images: Kraft & Krüger, University of Southern
Denmark. See also (Petrick et al. 2009).
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System architecture
• How does everything fit together?

Example: PACO-PLUS ARMAR system architecture (Petrick et al. 2010)
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What else is there?
• Probability

• Preferences

• Hierarchical planning

• Spatial reasoning

• Cost optimization

• Temporal planning

• Control knowledge

• SAT planning

• Heuristic search

• ...
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ICAPS 2009 at a glance

A word cloud of the top 100 words appearing in titles of ICAPS 2009 papers, generated at http://www.wordle.net/
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