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CogX is concerned with establishing a theoretical framework within which
to pose different problems related to self-understanding and self-extension.
In this paper we describe the final state of our approach to representing and
filling gaps and uncertainties in the robot’s knowledge state. Rather than
provide an exhaustive survey of the ways we choose to represent gaps in spe-
cific modalities (as already performed in DR.1.2 in year 2), we instead show
for a small number of different types of gap how they are represented and
filled. The key contribution is the difference in how task-driven gap filling
and curiosity-driven gap filling occurs. We show how these two types can be
unified through a hierarchy of drives in our motivation system, and how we
detect, select and fill gaps in each case.
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Executive Summary

This report presents the work during the CogX project on representations
of gaps and uncertainty. In particular it describes our systems theory of
how such gaps and uncertainties should be dealt with. Earlier versions of
this theory have been presented, e.g. in [6]. In this paper we extend that
theory to describe more fully how an agent can reason about gaps, and how
to fill them. This required us to solve several open problems in planning and
knowledge representation. The report is split into parts focused on curiosity
driven knowledge gathering and on task driven knowledge gathering. During
the former the robot must compare quite different learning goals and select
one. This requires that the robot is able to perform introspection on its own
representations, and we show how we do this in the George system. Our
other assumption here is that the comparison of different possible learning
goals should be done rapidly via a motivation system because of the in-
tractability of planning the effects of all possible learning activities. The
motivation system makes the problem tractable by heuristically comparing
goals and choosing a small subset to achieve, rather than reasoning about
plans to achieve many of those goals. Regarding task driven knowledge
gathering our idea is that by enabling a planner to reason about (limited)
open worlds the robot is able to hypothesise the existence of unsensed (but
previously experienced) entities that are useful or necessary to achieving its
task. In addition it is able to explain planning failures (which form one
of the kinds of surprise we outlined at the beginning of the project) in the
same way. In this paper we describe all our of task driven work via a case
study from the Dora system, and the curiosity driven work via a case study
from the George system. Finally task driven and curiosity driven knowledge
gathering can both be handled by our motivation system, giving a simple
way to choose between them. In DR.1.4 we will describe a more sophisti-
cated way to handle the trade-off between curiosity driven and task driven
activity. The task addressed in DR.1.5 is Task 1.1, of which we said

Task 1.1 Beliefs and beliefs about knowledge producing
actions. We will examine how a system can represent, in a uni-
fied way, beliefs about incompleteness and uncertainty in knowl-
edge. This will start with work on their representation that will
feed into WPs 2, 3 & 4, and it will later unify the modality spe-
cific representations of incompleteness and uncertainty coming
up from these packages. Representations of knowledge produc-
ing actions will utilise these to represent the preconditions and
effects of knowledge producing actions. These knowledge action
effects will be used in WP4 for planning information gathering
and processing. This task will also support work on introspec-
tion.
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Role of gaps in CogX

Representations of gaps and uncertainty in knowledge have been central to
CogX. The challenge was how to deal with these gaps in a general way useful
for planning and goal management. The approach in CogX is representa-
tionally driven. In this report we outline how the representations of gaps
we developed, and how the planning and motivation frameworks that we
developed are unified into an overall approach.

Contribution to the CogX scenarios and prototypes

In this report we have described our overall approach to representing and
filling different types of knowledge gaps. The relation to the CogX scenarios
is clear. We have used the George system as a way of exploring methods
for curiosity driven gap filling, and Dora as a platform for task driven gap
filling. Thus the methods described in this report relate very clearly to one
or other system.
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1 Tasks, objectives, results

1.1 Planned work

Work reported in this deliverable mainly concerns Task 1.1:

Beliefs and beliefs about knowledge producing actions. We will
examine how a system can represent, in a unified way, beliefs
about incompleteness and uncertainty in knowledge. This will
start with work on their representation that will feed into WPs
2, 3 & 4, and it will later unify the modality specific represen-
tations of incompleteness and uncertainty coming up from these
packages. Representations of knowledge producing actions will
utilise these to represent the preconditions and effects of knowl-
edge producing actions. These knowledge action effects will be
used in WP4 for planning information gathering and processing.
This task will also support work on introspection.

This deliverable also contributes to the following project objectives:

O1 A unified framework for representing beliefs about representations of
action effects, observation models, incomplete information and cate-
gorical knowledge.

O3 Representations of how actions will alter the belief state of the cogni-
tive system, and those of other agents, as represented in the first two
objectives, i.e. models of the effects of action on beliefs about space,
categorical knowledge, action effects, dialogue moves etc.

The main objective for us by this stage was to create unified represen-
tations of gaps. In fact, we achieved this rather early in the project (see
DR.1.2) and now we have tried to show how the reasoning process about
how the gaps are filled is linked to these representations of gaps. Thus we
have looked for a systems level theory of how gaps are represented, reasoned
about and filled that covers both curiosity driven and task driven activity.
Parts of this theory are architectural and parts are based on ideas about
how planning can be performed in open worlds that include beliefs in their
state description. This theory is therefore an important part of our overall
approach to self-understanding and self-extension.

1.2 Actual work performed

The report describes work on the George and Dora systems performed be-
tween years 2 and 4 of the project. It specifically covers the use of the
motivation and planning systems to represent and choose gaps to fill. We
have posed this problem separately for curiosity driven and task-driven gaps,
but here we also describe how a motive management system can be simply
used to allow both to be handled.
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2 Introduction

How should an agent reason about things it might learn about, or informa-
tion it might discover during performance of a task? This is a hard problem,
but one that is necessary to solve in order to build systems that are robust
to novelty, uncertainty and change. In this paper we outline the approach
taken in two robot systems to two different versions of the problem. We
refer to these two versions of our overall problem as curiosity driven and
task driven knowledge gathering respectively. In curiosity driven knowledge
gathering the robot must identify possible learning goals, choose one, and
then reason about how to achieve that learning goal. In task driven knowl-
edge gathering the robot must represent things it must know in order to be
able to perform its task, and if it doesn’t already know them, it must reason
about how they can be acquired. We show how each problem can be posed,
and how these two problems can in principle be handled by a single system.
There are several ideas that underpin our theory, and these are outlined
now. It is important to note that here we are not recapitulating in this
summary all of the details of the theory, but giving a qualitative overview
of the main ideas.

Gaps and uncertainties in knowledge. A robot that is to extend its
knowledge will benefit from representing what it knows and doesn’t know.
Specifically in our case that means representing items that are known to be
in the world, but also items that are not known to exist. These unknown
items could include concrete entities such as objects, places or rooms. But
they can also include abstract entities such as qualities, including colours,
shapes and appearances of objects, places or rooms. It may be necessary
for the robot to express the fact that it doesn’t know at the moment what
type of place somewhere is, or what a particular colour might look like. We
refer to these unknowns as uncertainties and gaps. Uncertainties refer to
closed worlds, i.e. where there are a fixed and known number of classes, but
where there is ambiguity about which class or category an entity belongs to.
This includes situations such as when the colour of an object is known to be
from one of several defined classes, but it is not known which. A knowledge
gap refers loosely to any situation which is not easily captured as a closed
world. For example a gap exists when an entity is not from a known set of
categories, such as when an object is of a novel visual category. Second it
can be when an instance of a known category is not known to exist in this
particular world, e.g. if a type of room is not in our map. Gaps require the
ability to reason about open worlds. These notions of gaps and uncertainties
are blurred: there is a boundary when there is some likelihood the entity is
from a known class, and some that it is from a novel class.
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Open worlds and epistemic action effects. In our approach the robot
plans its learning and information gathering actions. This requires that it is
able to reason about the effects of such actions on the knowledge gaps and
uncertainties it has. This in turn requires that we are able to solve several
problems in planning. First the robot must be able to reason about entities
it hasn’t seen or facts it doesn’t know as when operating under incomplete
knowledge it is often necessary to generate and use hypotheses about what
might be the case in order to be able to formulate a plan. This could include
the creation of symbols denoting hypothesised objects, rooms, relations or
properties. To do this our robot will require an ontology that includes pos-
sibilities. We broadly use approaches based either on probabilities or modal
logics. Second the robot must be able to represent, at plan time, the effects
of the actions in its plan on gaps its knowledge, i.e. the planner’s action
models must represent the epistemic effects of actions. Where the num-
ber of specific knowledge outcomes is very large, or where new information
might be acquired (such as learning the name of a new colour) this may be
best achieved by representing the type of knowledge accquired, rather than
the specific knowledge outcomes themselves. We have previously created an
extension to PDDL that allows this, and in particular allows us to represent
the likelihoods of different epistemic effects of actions.

Introspection and gap detection In our framework it is necessary that
for each type of knowledge there is a way to detect a gap where one is
not obvious. This requires that the robot has the ability to introspect on its
representations to spot gaps. The algorithms for introspection depend on the
underlying representations. This requires that modality and representation
specific procedures are often employed for gap detection, but there are some
general principles according to which these should work. It is useful to
be able to produce a measure of how well observations are explained by
each possible class of object or room, so that a judgement may be made
as to whether the observation is caused by some previously unexperienced
class of object, place or event. Alternatively the same kind of measure
can be used to quantify the degree of uncertainty about which of a known
set of class values (e.g. known colours) causes the observed data. Finally
introspection and abduction are useful to generate hypotheses to explain
otherwise unexplained data, or to better explain it. We will handle this last
type of introspection in a planning framework as described next.

Surprises, failures and background knowledge. When a plan is cre-
ated and then executed it may be the case that the plan does not execute
in the way expected. In such situations either positive or negative surprises
occur. A positive surprise is when an event or entity has additional features
that were unpredicted, e.g. when an item is found in a previously unex-
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pected place. Such a positive surprise provides a learning opportunity in
that possible explanations at different levels of generality may be applied,
and these hypotheses must be generated and tested. A negative surprise is
when an entity fails to appear as expected, e.g. the item looked for is not
present in the place expected, or the colour of an item is different from that
expected. This second case can lead to the need for unlearning of previously
learned knowledge. In a task driven case it can also lead to an execution fail-
ure, and if no alternative plan is to be found then this constitutes a planning
failure. We handle such a failure by a planning process in which additional
knowledge (which we call background knowledge) is brought to bear, and
where the agent again has the ability to plan in a limited open world, i.e. to
use this additional background knowledge to create hypothesised additional
objects and properties to allow a new plan to be formulated. Postulating
these additional entities is one way of explaining the surprise, and the plan
tests these explanations while achieving the original task. It can sensibly be
asked why we should not use the additional knowledge in the initial planning
process: for then there could be no surprises. The answer is simply that to
achieve scalability to a very large background knowledge base – as will be
needed in more general purpose robots – it is simply not possible to plan ef-
ficiently with all possible knowledge. Planning will need to use only a small
subset of foregrounded knowledge to achieve any particular plan. A difficult
open question is how a robot can efficiently decide what that foregrounded
knowledge should be.

Motivation and efficiency. If a learning robot can generate many dif-
ferent learning goals that it could pursue that it is not feasible to plan for all
of them. In addition, in a real-time system such as a robot operating in an
environment new learning opportunities will arise as existing ones are be-
ing pursued. In addition human generated tasks must be dealt with as they
arise. We have developed a theory where learning opportunities are raised as
motives (similar to desires), and are prioritised using fast and therefore sub-
optimal methods. This is implemented in our theory by a motive manager.
In principle a variety of algorithms could be used for motive management
and goal (intention) selection. Our claim is that curiosity driven knowledge
gathering must be handled via such a motive management architecture if it
is to be done in a way that is efficient when scaling to tens, hundreds, or
even thousands of possible learning opportunities.

2.1 Paper summary

The rest of this paper is organised as follows. In the next section we use the
George scenario to describe how we bring elements of our theory together to
perform curiosity driven learning. In particular the George system shows the
use of quantitative and qualitative representations of gaps and uncertainties;
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of introspection to detect knowledge gaps; of the motive system to sort
and prioritise different learning opportunities; and of the use of learning
and unlearning mechanisms. In the section following that we use the Dora
scenario to describe how we bring together elements of our theory to perform
task driven gap filling. In particular the Dora system shows the use of
assumptions and epistemic action effects to fill gaps during task planning;
of re-planning with background knowledge to explain negative surprises that
induce planning failures; and of the use of open worlds in both these cases.
We finish with some concluding remarks. It should be noted that this is a
paper giving an overview of the theory. Where the details of a particular
mechanism would require too much space we refer the reader back to our
relevant published work.

3 George: Representing and Detecting Gaps in a
Curiosity Driven System

In the George scenario the main purpose of the cognitive system is to ex-
pand and refine its knowledge. This means that (in contrast to the Dora
scenario) the system is driven by a generic motivation for detecting and
filling the knowledge gaps (rather than this being just a consequence or re-
quired step of a given task). To this purpose the system can exploit various
situations, which require various degrees of system initiative. Besides the
representations of the object properties, like color or shape, the system also
maintains measures of confidence in such representations, which allow the
system to actively pursue its knowledge expansion goals.

In general there are two main types of behaviors through which the
system strives to improve its representation. The first one is based exclu-
sively on the introspection of the existing property models. From a pool of
currently maintained property models the robot selects the one that he con-
siders the least adequate (e. g. the most inadequately sampled) and based
on that initiates an action that tries to obtain new samples to improve it
(e. g. makes a request to the tutor for an object with the properties in
question). We call the gap representations generated by this behavior the
introspective gap representations.

The second behavior type is based on the ability of the system to cor-
rectly recognize the properties of the perceived objects. The information
the system provides, when analyzing object properties, is twofold: beside the
recognition result itself and its confidence, the system also estimates the ben-
efit of the (reliable) additional information about the object properties for
the property models. Based on these estimates the system decides whether,
in what order and (combined with the recognition result confidence) how to
pursue reliable information about the perceived object properties. We call
the gap representations of this type the extrospective gap representations.
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Let me emphasize here one of the major differences between the two
behaviors described above that might not be immediately apparent. The
former is inherently non-situated, since it completely disregards the current
perceptions. Instead it analyzes each internal property model as a whole and
establishes how badly does it need new samples to improve it. In contrast,
the latter behavior estimates how a perceived sample benefits an internal
model. If the former behavior searches for gaps among several property
models, where the resulting gap is represented by a whole model (e. g.
an under-sampled model), the latter tries to find gaps withing the model
itself (e. g. an area that the system believes that is part of the model, but
is badly sampled or on model’s border, hence often contested by another
model). Thus, on the one hand we can have a case of an under-sampled
model, which can not benefit much from a perceived object, because its
sample falls to a relatively well sampled area of the model, and on the other
hand an object whose property fall to a poorly sampled or uncertain area
of a well sampled model.

The George system can be roughly divided in the modal and the cross-
modal part. The subsystems that make up the modal part (e.g. vision) are
typically in charge of processing one type of sensory information (or con-
trolling one piece of hardware equipment). The final result of the modal
processing are uni-modal representations of the robot’s environment. Uni-
modal representations are translated to private beliefs, which are input to
the cross-modal cognitive layer. Here the beliefs can be compared, associ-
ated and merged into new beliefs to form the a-modal representation of the
system environment. Gaps detected on the modal level (modal gaps) are re-
lated to the ability of interpretation of the sensory signals (while on the gaps
potentially detected on the cross-modal level would be related to the ability
of of association between different modal perceptions). Usually, the modal
gaps can not be resolved or acted upon within the modality, therefore their
representation have to transcend the modal level. In george, the situated
gap representations are simply attached to the beliefs about related objects,
while the introspective gaps have a special representation on their own on
the cross-modal level. In this way knowledge gap information is propagated
to the a-modal level where it can be used by motivation and planning sub-
systems to generate appropriate behavior. In fact in George scenario it is
the presence and type of the knowledge gaps that, besides the tasks given
by the tutor, motivate the robot behavior, which can be summarized by the
three general motivation tiers as follows: (i) attend the tutor’s requests, (ii)
attend the possible extrospective gaps related to the current situation and
(iii) attend the introspective gaps in the current models. The priority of the
generated specific motives descends in the same order.

This behavior is exemplified in the section 3.3. The example illustrates,
through tutor-robot dialogue, how the tutor’s actions motivate robot reac-
tions. We will see how the tutor’s specific questions about the objects in
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the scene trigger the actions of the upper motivation tier — the robot tries
to answer the questions. If all the tutor requests are satisfied, the motives
of the second motivation tier emerge, generating planning goals that result
in robot questions to the tutor. With these questions the robot tries to fill
the extrospective gaps related to the objects in the scene. When all the ex-
trospective gaps in the current beliefs are attended and there are no tutor’s
tasks, it is time to fill the introspective gap in the current property mod-
els. Consequently the robot requests from the tutor an object with specific
properties. At any time a new request from the tutor or a new object on
the scene would make the system reconsider the current motives, surfacing
the possible new higher priority motives and unsurfacing the ones with the
lower priority.

3.1 Visual Gap Representations

This section presents details about the specific gaps the George is able to
detect and represent within its vision subarchitecture.

3.1.1 Representations for visual concepts

The visual concepts are represented as generative models, probability den-
sity functions ) over the feature space, and are constructed in online fashion
from new observations. In particular, we apply the online discriminative
Kernel Density Estimator (odKDE) [3] to construct these models. The od-
KDE estimates the probability density functions by a mixture of Gaussians,
is able to adapt using only a single data-point at a time, automatically ad-
justs its complexity and does not assume specific requirements on the target
distribution. A particularly important feature of the odKDE is that is allows
adaptation from the positive as well as negative examples [4]. The contin-
uous learning proceeds by extracting visual data in a form of a highdimen-
sional features (e.g., multiple 1D features relating to shape, texture, color
and intensity of the observed object) and odKDE is used to estimate the
in this high-dimensional feature space. However, concepts such as color red
reside only within lower dimensional subspace spanned only by features that
relate to color (and not texture or shape). Therefore, during online learn-
ing, this subspace has to be identified to provide best performance. This
is achieved by determining for a set of mutually exclusive concepts (e.g.,
colors green, blue, orange, etc.) the subspace which minimizes the overlap
of the corresponding distributions. The overlap between the distributions is
measured using the Hellinger distance as described in [5]. Therefore, during
online operation, a multivariate generative model is continually maintained
for each of the visual concepts and for mutually exclusive sets of concepts
the feature subspace is continually being determined. The set of mutually
exclusive concepts can then be used to construct a Bayesian classifier in the
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recognition phase, when the robot is generating a description of a particular
object in terms of its color, shape, etc. However, since the system is operat-
ing in an online manner, the closed-world assumption can not be assumed;
at every step the system should take into account also the probability of the
”unknown model” as described in the following.

3.1.2 Accounting for unknown model

While maintaining good models of the visual concepts and being able to
adapt those models is crucial for the robots online operation, the ability to
detect gaps in the knowledge presented by these models is equally important.
Generally speaking the robot collects the visual information about its envi-
ronment as follows. First it determines a region in an image which contains
the interesting information, then it ”segments” that region and extracts the
feature values z from which it later builds models of objects, concepts, etc.
The visual information may be ambiguous by itself, and segmentation may
not always be successful. We will assume that some measure of how well
the segmentation was carried out exists and we will denote it by s ∈ [0, 1].
High values of s (around one) mean high confidence that a good observation
z was obtained, while low values relate to low confidence.

Let m ∈ {mk,mu} denote two possible events: (i) the observation came
from an existing internal model mk, and (ii) the observation came from an
unknown model mu. We define the knowledge model as a probability of
observation z, given the confidence score s:

p(z|s) = p(z|mk, s)p(mk|s) + p(z|mu, s)p(mu|s). (1)

The function p(z|mk, s) is the probability of explaining z given that z comes
from one of the learnt models, p(mk|s) is the a priori probability of any
learnt model given the observer’s score s. The function p(z|mu, s) is the
probability of z corresponding to the unknown model, and p(mu|s) is the
probability of the model ”unknown” given the score s.

Assume that the robot has learnt K separate alternative internal models
M = {Mi}i=1:K from previous observations. The probability p(z|mk, s) can
then be further decomposed in terms of these K models,

p(z|mk, s) =

K∑
i=1

p(z|Mi,mk, s)p(Mi|mk, s). (2)

If we define the ”unknown” model byM0 and set p(z|mu, s) = p(z|M0,mu, s)p(M0|mu, s),
then (1) becomes

p(z|s) = p(mk|s)
K∑
i=1

p(z|Mi,mk, s)p(Mi|mk, s)

+p(mu|s)p(z|M0,mu, s)p(M0|mu, s). (3)
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Note that the ”unknown model”, M0, accounts for a poor classification, by
which we mean that none of the learnt models supports the observation z
strongly enough. We assume that the probability of this event is uniformly
distributed over the feature space, which means that we can define the like-
lihood of model M0, given observation z by a uniform distribution, i.e.,
p(z|M0,mu, s) = U(z). Note also, that the only possible unknown model
comes from the class M0, therefore p(M0|mu, s) = 1.

The observation z can be classified into the class Mi which maximizes
the a posteriori probability (AP). The a posteriori probability of a class Mi

is calculated as

p(Mi|z, s) =
p(z|Mi,m, s)p(Mi|m, s)p(m|s)

p(z|s)
, (4)

where m = mk for i ∈ [1,K] and m = mu for i = 0.
In our implementations, the distribution of each i-th alternative of the

known model p(z|Mi,mk, s) is continuously updated by the odKDE [3], while
the a priori probability p(Mi|mk, s) for each model is calculated from the
frequency at which each of the alternative classes Mi, i > 0, has been
observed. The a priori probability of an unknown model (and implicitly of
a known model), p(mu|s) is assumed non-stationary in that it changes with
time. The following function decreases the ”unknown” class probability with
increasing number of observations N :

p(mu|s) = e
−0.5( N

σN
)2
, (5)

where σN is a user specified parameter that specifies how the robot’s internal
confidence about learned models changes with time.

3.1.3 Detection of knowledge gaps

With above definitions, the knowledge model is completely defined and al-
lows discovery of knowledge gaps. They can be discovered through inspec-
tion of the probability distributions. As already mentioned above, we can
distinguish two general cases; situated and non-situated knowledge gap dis-
covery.

Extrospective knowledge gap detection In this case, the knowledge
gap detection is related to a particular object in the scene. Let us suppose,
that we have calculated the AP probability of all the models, including the
unknown model, for classification of the observed observation z (4). Let us
denote with Mmaxap the class with the maximum a posteriori probability,
therefore

Mmaxap = arg max
Mi

{p(Mi|z, s)}, i = 1 . . . k. (6)
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and analogously let us denote with Mmaxap2 the class with the second largest
a posteriori probability. Now we can detect the gap and the uncertainty in
the knowledge as follows:

• Knowledge gap:

p(Mmaxap|z, s) << p(M0|z, s).

The response of all learned models is very low, the ”unknown model”
clearly wins. Since the observation can not be modelled by any previ-
ously learned model this indicates that it should probably be modelled
with a new model.

• Model uncertainty:

p(Mmaxap|z, s) ∼ p(M0|z, s)
∨
p(Mmaxap|z, s) ∼ p(Mmaxap2|z, s)

In this case at least one of the learned models responds quite well,
however its response is quite similar to the response of the unknown
model or to the model with the second best response. In the first
case the observation should probably be classified in the class Mmaxap,
however, since the corresponding model is weak, this classification
can not be performed reliably. In the second case the models can not
distinguish between two classes reliably, which indicates that they are
ambiguous.

Introspective knowledge gap detection In this case, the knowledge
gap detection is not related to a particular object in the scene and it is
determined by the inspection of the current models. We formulate the in-
trospection by estimating the expected uncertainty of each concept model
in light if all remaining models. In particular, we estimate the uncertainty
numerically by sampling a number of samples from a concept model and
calculate a measure of classification uncertainty for each sample. The model
uncertainty is calculated as the average uncertainty over all the samples. For
each sample, the classification uncertainty is estimated as the entropy calcu-
lated over the a posteriori probability distribution over all concept models.
Formally, the classification uncertainty ε(Mi) of the i-th concept model, Mi,
is calculated as follows

ε(Mi) =
1

N

N∑
n=1

H(zn), (7)

where {zn}n=1:N is the set of points sampled from the concept model, i.e.,
zn ∼ p(z|Mi), and H(zn) is the Bayes entropy calculated from the posterior
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distribution over the alternative models p(Mi|z),

H(zn) = 1−
k∑

i=1

p(Mi|zn, s). (8)

Note that taking the average uncertainty (7) is only one way of providing
a measure of model uncertainty. For example, we also might measure the
model uncertainty by the maximum over all sample entropies, i.e.,

ε2(Mi) = max({H(zn)}n=1:N ). (9)

However, there is a significant difference in the information content that
ε(Mi) delivers in comparison to ε2(Mi). While ε2(Mi) will in fact deter-
mine the model that contains the largest gap, the robot will not be able to
communicate this particular gap beyond asking the user to provide a sample
corresponding to some concept. This presents a drawback in situations when
the sample that the robot internally sampled comes from a low probability
region of the feature space. Without any other prior information, the user
will mostly provide more or less typical examples of the concepts and these
will not likely come from the low-probability feature space. This makes the
probability that the user will present a sample, similar to the one that the
robot internally generated, quite low. Therefore a much better strategy is
to aim at filling a gap in the model whose average uncertainty is highest (7),
since there is a higher probability that the tutor-provided sample will cor-
respond to an internally generated sample with a large uncertainty. This is
the main reason for a practical preference of expectation-based uncertainties
such as (7) over the maximum-based uncertainties such as (9).

3.1.4 Illustrative example

For a better visualization of the knowledge update and gap discovery we will
restrict our example to a one-dimensional case. Fig. 1 illustrates detection
and filling of knowledge gaps for three cases (feature values) denoted by the
circle, the diamond, and the square. The plots in the left column depict
the models and the recognition at a particular step in the learning process,
while the right column depicts the situation after the system has updated
these models considering the detected knowledge gaps and the answers from
the tutor.

Let us assume that the circle in Fig. 1 represents the yellow object and
that the yellow colour has not been presented to the robot before. Therefore,
the corresponding model for colour yellow has not yet been learned and the
feature value obtained from the segmented yellow object fails in a not yet
modeled area. This value is thus best explained by the ”unknown model”,
which has the highest a posteriori probability. The robot detects this gap in
his knowledge and asks the tutor ”Which colour is this object?”, and after
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U R G B U R G B U R G B U R G B U R G B U R G B

Figure 1: Example of detecting the knowledge gaps and updating the 1D
KDE representations. Top row: probability distributions for three colours
(red, green, blue lines) and unknown model (gray line) in 1D feature space.
Bottom row: a posteriori probabilities for the unknown model (U) and three
colours (R, G, B) for three feature values denoted by the circle, the diamond
and the square. Left column: before updates, right column: after updates.

the tutor provides the requested information, the robot initializes a model
for yellow colour. However, since only one sample does not suffice to build a
reliable representation, the yellow colour will only be able to be recognized
after some additional yellow objects are observed.

The feature value denoted by a diamond in Fig. 1 is best explained by
a green model, however this recognition is not very reliable, therefore the
robot asks the tutor: ”Is this object green?” to verify its belief. After the
tutor replies ”No. It is blue.”, the robot first unlearns the representation
of green and updates the representation of blue. The corrected representa-
tions, depicted in thes in the right column in Fig. 1, then enable the correct
recognition as indicated by the second bar plot in the right column of the
Fig. 1.

The last case denoted by the square shows another example of non-
reliable recognition, which triggers the additional clarification question to
the tutor: ”Is this object blue?” After the robot gets a positive answer, it
updates the representation of blue, which increases the probability of the
recognition.

3.2 From Gaps to Motives

In George, the Motivation SA is responsible for transforming the knowledge
gaps presented in belief structures into goals for the Planning SA, and man-
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Visual SA

Belief Mediation

Motivation

Beliefs
VisualObject vo1

colour red 0.9
shape compact 0.2

...

ModelStatus ms1
class. unc. colour 1.3
class. unc. shape 0.2

...

(shape-learned vo1) (object-of-desired-

colour-available red)

VisualObject

Model 
Status

Figure 2: An illustration of information flow for gap representation, detec-
tion and goal generation.
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aging which goals are pursued when. As this approach works on the belief
level our approach requires that the gap-representing structures described
in the previous sections are mediated correctly to the belief level. As il-
lustrated in Figure 2, the Motivation SA listens for changes to the belief
types produced by these processes. On receiving a change it retrieves the
beliefs and inspects them for predefined conditions. For belief features (e.g.
colour, shape, identity) it checks the VisualObject belief for the presence of
these features. If a feature is missing, or is present with a confidence below
a predetermined threshold, this results in a gap being detected. Gaps of
this type are directly transformed into planning goals by the Motivation SA
by instantiating the template (〈feature〉-learned 〈belief〉). For example, a
belief with id vo1 missing a shape feature would yield a goal of the form
(shape-learned vo1). For model introspection, VisualConceptModelStatus
beliefs are inspected for the information gains described above. If this gain
is above a predetermined threshold, then a goal is generated by instantiating
the template (object-of-desired-〈feature〉-available 〈value〉). For example,
a gap related to the robot’s model of white would produce the goal (object-
of-desired-colour-available white).

In all cases a motive structure is created to contain the resulting goal
which can be annotated with additional management information including
the importance of the goal, and the expected planning and execution times
for it. All of these motive structures are entered into the lowest level of the
motivation management framework (as described in DR 1.4), where they
are initially unsurfaced (i.e. not considered for management, planning or
execution). In George we use a drive hierarchy to decide which of the many
types of motives should be addressed by the system. This hierarchy can be
roughly characterised by three priority levels (lower number means higher
priority):

1. Respond to the human.

2. Fill extrospective gaps in knowledge.

3. Fill introspective gaps in knowledge.

Each of these levels is explained in more detail in DR 7.5, but in summary
level 1 involves responding to questions and learning instructions, level 2
involves filling gaps in beliefs about the objects that are currently visible or
part of the situation, and level 3 involves filling gaps in beliefs about the
robot’s own models. Motives to fill gaps in beliefs about currently visible
objects (Scenario 1) are part of level 2. Motives to improve George’s internal
models by viewing more examples are part of level 3.

Motive activation (i.e. selection for planning and execution) is governed
by these levels: if a motive of a higher priority level is present in the system,
all lower level motives are suppressed. This allows the robot to be responsive
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to human interactions, but also allows it to act autonomously to fill gaps
when no interaction is taking place. When multiple motives are present at
the same level (only possible at levels 2 and 3), all motives are passed to
the planner which then produces a plan to achieve a subset of them which
maximise knowledge gain whilst minimising cost. Costs are incurred by
moving the robot (the head and arm) and by asking questions. Knowledge
gain is encoded by an importance associated with each motive by its gen-
erator. For the belief features, importance is derived from the confidence
of the recognised feature value (a low confidence yields a high importance).
For the model introspection, importance is derived from the information
gain for each feature. This approach allows principled trade-offs to be made
between motives within a level (where important values are directly com-
parable), whilst inter-level suppression generates appropriate system-level
behaviour with respect to interaction.

3.3 An example scenario for extrospective and introspective
gaps

The George scenario assumes a robot and a human tutor by a desktop,
where the human manipulates with various objects and makes conversation
to robot about the situation on the desktop. The robot is equipped with
a pan-tilt unit with two sets of visual sensors mounted: (i) the sensors for
coarse vision (kinect) have a wider field of view and are used for object
detection, (ii) the sensors for precise vision sensors have narrower field of
view, but better resolution. The precise vision is used for the object analysis
that can recognize the object color and shape.

The tutor places an object on the desktop.

The quantitative visual layer (coarse vision with wider field of view) detects
a new space of interest. Its representation is propagated as belief to the
a-modal level, where it is used to update the planning status. To satisfy its
goals, which are currently generated by the extrospective motivation tier,
the planner issues actions to move the pan-tilt device with the cameras to-
wards the space of interest and to analyze the object in the center of the
view. The visual subsystem, which can now view the object with its pre-
cise vision, tries to recognize its shape and color. While it completely fails
to recognize the color, the shape recognition is somewhat unreliable. The
qualitative analysis of the object also results in the measures of benefit the
external (tutor’s) information could have for the color and shape models.
This information is then, as part of the object belief, propagated to the
motivation and planner. Continuing to satisfy its curiosity goals, generated
by the extrospective motivation tier, the planner considers the benefits of
obtaining additional information about the shape and color and based on
that makes a plan related to that object. Since the benefit of obtaining
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color information or the referred object is greater the plan opts for a ques-
tion about the color first. Since the color recognition result is completely
unreliable the planner decides to ask the tutor an open question.

Robot:‘‘What color is this object?’’

Tutor:‘‘Is is red.’’

The dialogue subsystem analyzes the tutor’s answer. The information
the answer contains is split in two parts: the restrictive part (“it”) is used
to identify the referent object, the assertive part (“red”) carries new infor-
mation about the object. Based on the restrictive information the system
resolves the reference to the belief about the object on the desktop. In
general, after a successful reference resolution the restrictive information is
merged with the information in the object belief, while the assertive infor-
mation is temporarily kept separate. The dialogue issues an intention to use
the color information for learning, which results in learning action in the
visual subsystem that improves the color model for red. After the successful
learning action, the assertive information is considered verified and is conse-
quently merged in the object belief. The introspective gap representations
are updated, too.

Robot:‘‘OK.’’

The planner now moves to the next step of the plan. This time the
recognition result more reliable (but still not reliable enough) and biased
towards the compactness. Hence the planner decides to use a polar question.

Robot:‘‘Is it also compact?’’

Tutor:‘‘Yes.’’

The shape information is used for a learning action in a very similar fashion
as the color information before. This ends the plan related to the object.

The tutor puts another object on the desktop.

Tutor: ‘‘What color is the elongated object?’’

The system detects another space of interest, which triggers a very similar
process as was the case for the first object. The analysis results in a belief
about the second object where both color and shape are reliably recognized.

The tutor’s request is analyzed by the dialogue subsystem. The dialogue
subsystem uses the restrictive information (“elongated”) to trigger the ref-
erence resolution. Since the shape is correctly and reliably recognized, the
reference resolution succeeds. This results in an intention about tutor’s re-
quest pointing to the object belief. The motivation acts upon this intention
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and generates a first tier motive, which makes the extrospective motives
unsurface. The resulting planning goal makes the robot attend the tutor’s
request.

Robot: ‘‘It is blue.’’

Tutor: ‘‘Correct.’’

As soon as the action attending tutor’s request is completed, the extrospec-
tive motives resurface. Since the color and the shape are both correctly and
reliably recognized, the planer, based on extrospective gap representations
in the object belief, decides not to pursue any action. All the goals generated
by the extrospective tier succeed.

After an amount of time of inactivity, in absence of extrospective mo-
tives, the motive for introspective behavior surfaces. This makes the planner
consider the introspective gap representation in its state. This results in an
action that tries to gain new samples for the red color model.

Robot:‘‘Show me something red.’’

3.4 Planning to Fill Gaps

The Planning SA is responsible to generate a plan, i.e., a sequence of actions,
that achieves the goal generated by Motivation SA. We can categorize the
planning tasks analogously to the priority levels described in Section 3.2 and
describe them accordingly in the following.

Respond to the human. Answering questions asked by the tutor is in
general no task related to filling gaps, but rather to share the accomplished
knowledge. There are, nevertheless, situations where a common ground with
respect to reference resolution is missing, and where the planner needs to
find a way to fill this gap. The goal is, regardless of the scenerie, always
given to the planner as

(exists (?v - visualobject)

(and (is-object-in-question ?v)

(global-color-question-answered ?v))),

where global-color-question-answered is the predicate that encodes the
kind of question that was asked – in this example, the query had the form

Tutor:‘‘What color is...?’’

The reason we cannot use a simpler kind of goal, where an instance of an
object present in the scene is used rather than the existential quantification,
is that we might not always have common ground with the tutor on what
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object we are actually referencing to. For this reason, the reference resolu-
tion process marks all objects that are potentially the correct reference with
a marker is-potential-object-in-question. The planning domain contains an
axiom predicate is-object-in-question for each visual object, which is set if
only a single object is left that is marked as the potential object in question,
i.e.

(:derived (is-object-in-question ?v - VisualObject)

(and

(is-potential-object-in-question ?v)

(not (exists (?v1 - VisualObject)

(and (not (= ?v ?v1))

(is-potential-object-in-question ?v1)))))

)

Given the action to answer a global color question,

(:action answer-global-color-question

:parameters (?v - VisualObject ?c - ColorName)

:precondition

(and

(is-object-in-question ?v)

(= (color ?v) ?c)

)

:effect

(and

(global-color-question-answered ?v)

...

)

)

this leads to the desired behaviour: If there is only one object left that
is marked, the axiom will enable is-object-in-question of that object, and
the precondition to answer a global color question is thus fullfilled (for the
correct color only). Executing that action then sets the global-color-question-
answered predicate used in the goal string to true, and a plan can thereby
be found. If there is no common ground between the tutor and George
established yet, things are a bit trickier, and we need to additionally consider
the actions that

• pointing to an object,

• verify if the object currently pointed at is the object the tutor referred
to, and
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• a set of actions to verify if an object decsribed by some unique property
if the one the tutor referred to.

With these kinds of actions, George is able to establish common ground
with the tutor regarding the referred object. It will choose to describe the
object if there is a property that only applies to one of the potential objects,
as describing is considered the cheaper way. In a case where, for instance, the
tutor asks about some objects shape, the robot might decide to describe an
object by its color using the action verify-reference-by-describing-its-color,
which will, for example, result in the question

Robot:‘‘Do you mean the red one?’’

In PDDL, this action is modelled as:

(:action verify-reference-by-describing-its-color

:parameters (?v - VisualObject ?c - ColorName)

:precondition

(and

(= (color ?v) ?c)

(forall (?v1 - VisualObject)

(or

(= ?v ?v1)

(not (is-potential-object-in-question ?v1))

(not (= ?c (color ?v1)))))

...)

:effect

(and

(not (is-potential-object-in-question ?v))

(increase (total-cost) 1)

)

)

Alternatively, if there is no way to distinguish one object from all others
verbally, George might to choose to point to an object (setting the object
fluent currently-points-at to the corresponding visual object), and then use
the action verify-reference:

(:action verify-reference

:parameters (?v - VisualObject)

:precondition (= (currently-points-at) ?v)

:effect

(and

(not (is-potential-object-in-question ?v))

(increase (total-cost) 2)

)

)
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Fill extrospective gaps in knowledge. The second kind of task refers
to the filling of gaps. The first kind of gaps are unresolved ProtoObjects,
which are created from SOIs. These are resolved by turning the head to
the SOI and starting to analyze the proto object. The planner therefore
uses a goal that requires that each proto object has a visual object assigned.
When all proto objects are resolved in this way, motivation might decide
to fill extrospective gaps on these objects. Such knowledge gaps can only
be filled by asking questions to the tutor. If multiple objects are in the
scene, the planner tries to describe or point to the object in the same way
reference resolution was performed in the first kind of task. It will decide
to ask polar questions if the probabilitiy distribution on the feature already
points strongly to one value, and will use a global kind of question otherwise.

Fill introspective gaps in knowledge. For the sake of completeness,
we also describe the planners role when filling introspective gaps in the
knowledge, even though it is rather small. In a scenario where Motivation
SA decides that Geroge could learn the most from seeing a red object, it
uses the goal string

(ask-for-an-object-of-color-goal color_red)

to query Plannig SA. This goal can be reached by a plan that contains the
single action ask-for-an-object-of-color color red.

4 Dora: dealing with gaps in a task driven frame-
work

Dora is a mobile robot, acting in an unexplored, partially observable en-
vironment. Dora can perform a variety of tasks that require gathering of
information and therefore reasoning about knowledge gaps.

Dora contains several subarchitectures that all provide the planner with
knowledge about the world. The spatial subarchitecture provides us with
information about the topological structure of the environment, the cate-
gorical subarchitecture tries to classify rooms based on observations. From
the conceptual and default knowledge architectures, the planner receives in-
formation on how room categories and object existence relate to each other.

The environment in which Dora operates is initially largely unknown.
Even the structure of the environment (the number of rooms and places
as well as adjacency information) may only be known to a small extent
in the beginning. Gaps in the spatial knowledge are represented in several
ways: The possibility of encountering empty space is represented as special
placeholder nodes in addition to the places that represent known space.
The possibility of finding a new room of a certain type is represented as a
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Figure 3: Space in the Dora system is represented by a topological map.
Placeholders (in grey) represent unexplored regions, coloured disks show
the probability distributions of room categories.

probability distribution attached to each placeholder. The same is true for
room categories.

Object co-occurrences are by default provided by the default subarchitec-
ture as 〈room category , object type, probability〉 triples, specifying the likeli-
hood of finding a certain object in a room of a given type. Once Dora starts
to search for that object in a specific instance of a room, this prior and the
observations must be integrated into a posterior distribution. The concep-
tual subarchitecture provides the planner with these posteriors for rooms in
which object search was started.

In order to achieve either goal-directed or curiosity-driven behaviour in
the presence of knowledge gaps, we need planning mechanisms that can
reason about these gaps. This means that the planner needs to be able to
identify gaps in the system’s knowledge as well as reason about the effects
that actions have on the gaps.

A well known approach to this is found in probabilistic planning: The
problem is modelled as a partially observable Markov Decision Process
(POMDP) and planning is performed directly on this representation. In this
model, gaps are modelled by providing a probabilistic belief state and effects
on gaps are given by observation models, that describe what the robot will
perceive if the world has a certain state. For our system this approach has
two drawbacks: Firstly, reasoning about POMDPs is computationally much
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harder than classical planning. Especially when the environment is large,
solving POMDPs even approximately quickly becomes unfeasible. Secondly,
it requires us to assign a probability value to each possible worlds. This is
a problem if the robot starts in an unexplored environment (as we would
need to model the distribution of all possible environments) and if comput-
ing some of these distributions is an expensive operation on its own (such
as determining the most likely locations for some object inside a room).

This is why we use a continual planning approach: the planner creates
a plan that will lead to the goal for some possible world, and replanning if
that plan fails at some point. In our model, gaps are implicitly modelled
by not assigning values to variables and changes in knowledge are tracked
via additional predicates. We use a special kind of epistemic action called
assumption to model which worlds are possible and to distinguish between
likely and unlikely possibilities.

4.1 Object fluents and knowledge level predicates

The representation of classical STRIPS-like planning problems employs the
closed world assumption: The planning state is specified as a set of ground
atoms and all atoms that are not known to be true are assumed to be false.
PDDL 3.2 introduced the concept of object fluents. Object fluents represent
multi state variables and by default, every object fluent has a undefined
value. Thus, knowledge gaps are encoded implicitly: Any object fluent
that is not defined in the system’s initial planning state is a potential gap
in the robot’s knowledge. This allows us to distinguish between knowing
whether a fluents has a value v and not knowing the value of a fluent, but
no other epistemic states. In particular, we cannot reason about changes in
knowledge without specifying exactly what we will know (i.e. the value v).

For this reason, we use modal predicates to explicitly represent the fact
that the planner knows the value of a given fluent without having to actually
set the fluent. For an object fluent X, the knowledge predicate KX is true
whenever it is explicitly set to true by an action or if X has a value differ-
ent from undefined. A second modal predicate is the assumption predicate
AX = v. It is true when the planner assumes that fluent X has value v. All
assumption predicates for a specific fluent X are mutually exclusive, and if
X has a value v, AX = v holds. These two sets of modal predicates allow
us to model four separate knowledge states:

• X is undefined an no modal predicates about X are true: We make
no assumptions about X and do not know its value.

• KX: We know that we know the value of X, without specifying that
value.
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• AX = v: We assume a value for X, without knowing whether it is
true.

• AX = v ∧ KX: We know X has the value v, which is equivalent to
the assignment X = v. In particular, X = v ⇒ AX = v ∧ KX holds
for all planning states.

The implicit representation of gaps as undefined fluents means that the
number of gaps the planner may have to reason about can become very large
or that a large number of gaps must be explicitly closed in the initial state
(everything that is known to be false must be specified in the state descrip-
tion). For example, the connectivity between N places in an environment
as shown in Figure 4 can be encoded by a N2 connected fluents. As the
connectivity graph is planar, this would require us to specify O(N2) false
connected fluents. It turns out that this can usually be avoided if those
“false” gaps do not influence the planning process. For example, we could
restrict the planner to reason only about gaps in connectivity knowledge
between close places.

4.2 Assumptions and epistemic actions

Assumptions in our planning system have several uses. They

• restrict the planner to reason about a set of “sensible” gaps,

• allow us to reason in a limited way about probabilistic states while
using a classical planner [2], and

• are a way to compactly represent the large probability distributions
that occur when planning in uncertain, open worlds.

An assumptive action has one or more effects on assumption predicates
and may depend on zero or more assumptions. Additionally, once an as-
sumption for a fluent X, AX = v has been made, no other assumption that
has AX = v′, v 6= v′ as an effect is allowed anymore, enforcing the mutex
condition on the assumption predicates. So once we made the assumption
that a room is a kitchen (A(category room0) = kitchen), we cannot, in
the same plan, make an assumption that it is an office. Assumptive actions
are purely virtual for the planner and are not executed by the rest of the
system. However, they can have costs in the sense that some assumptions
may be more likely than others. These costs are taken into account by the
planner and it will try to find plans that contain only likely (i.e. cheap)
assumptions while keeping the plan duration short.

Assumptions are mainly derived from two sources: if an object feature X
has a probability distribution over a number of features, P (X = vi) = pi, we
create an assumption for each vi. For example, if a room has a probability of
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0.4 of being a kitchen this would be represented by a grounded assumption
like the following:

(:action assume-category-room0-kitchen

:effect (A (category room0) kitchen)

:probability (0.4))

Executing this assumption at the start of a plan will setA(category room0) =
kitchen to true.

The second type of assumptions is those that are explicitly defined as
part of the planning domain. They allow the domain designer to specify
relations between facts [1]. The co-occurrence between object types and
room categories (e.g. that cereals are likely to be found in kitchens) is
modelled in Dora as follows:

(:action assume-default-object-in-room

:parameters (?l - label ?r - room ?c - category)

:precondition (and (A (category ?r) ?c)

(not (K (p-obj-in-room ?l ?r))))

:effect (A (obj-exists ?l in ?r) true)

:probability (p-obj-in-category ?l ?c))

This assumption uses default knowledge which is stored in the numeric
fluents (p-obj-in-category ?l ?c) to assume the existence of an object of
type ?l in a room, if the assumption that the room is of category ?c holds,
which is ensured by the first line of the precondition. Of interest is also
the second precondition: It makes sure that we can only make the default
assumption, if we have no more specific knowledge about co-occurrences
in this room. If we had started to search the room for an object (say, a
cereal box), the conceptual subarchitecture would assign a value to the fact
(p-obj-in-room cereal-box room0). As this value is more accurate than
the default knowledge (as it includes the observations the robot made), we
are no longer allowed to make assumptions using default knowledge. Instead,
we can make the assumption directly:

(:action object-in-room

:parameters (?l - label ?r - room)

:effect (A (obj-exists ?l in ?r) true)

:probability (p-obj-in-room ?l ?r))

Note that we can represent the fact that we know the probability of a
relation. This allows us to use the more general default-object-in-room
assumption in absence of more specific knowledge.

Knowledge gathering is modelled by actions that have knowledge effects.
These knowledge effects may be the primary effect of an action (i.e. sensing
actions) or a secondary effect. The following operator shows how we model
that moving to a place will always tell us in which room this place is:
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(:action move

:parameters (?from ?to - place)

:precondition (and (or (connected ?from ?to)

(connected ?to ?from))

(= (is-in dora) ?from))

:effect (and (= (is-in dora) ?to)

(= (placestatus ?to) trueplace)

(K (in-room ?to))))

Sensing actions can be distinguished further into conditional and uncon-
ditional sensing actions. The former depend on an assumption being true
to be successful (e.g. object detection will only result in the object being
found if it is in the place the robot looks), the latter will always succeed (e.g.
asking a human what kind of room the robot is in). The search-for-object
action is a conditional sensing action:

(:action search-for-object

:parameters (?l - label ?r - room ?p - place ?o - visualobject)

:precondition (and (= (is-in dora) ?p)

(viewcones-exist ?l in ?r)

(A (in-room ?p) ?r)

(= (label ?o) ?l))

:effect (when (A (related-to ?o) ?r)

(K (related-to ?o))))

The effect (K (related-to ?o) is only realised if we made the assump-
tion (A (related-to ?o) ?r) that the object is actually in that room. We
also require the assumption that the position of the robot is in the room we
want to search. Had we made this a normal precondition, (= (in-room ?p)

?r), we could never plan for searching in unexplored space, as the in-room

fluent is only set upon moving to a place.

4.3 An example scenario for task-driven information gath-
ering

We illustrate how the mechanisms we previously described contribute to
Dora solving an object search task in an unknown environment. The robot
is given a task of finding a specific object in an initially unexplored en-
vironment. This translates to a goal formula in PDDL: (K (related-to

visualobject0)), which is the epistemic goal of determining the value of
(related-to visualobject0).

The resulting plan might look this:

(assume-leads-to-room placeholder0 room0 kitchen)

(assume-default-object-in-room cereal-box room0 kitchen)
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(assume-object-location visualobject0 cereal-box room0)

(move dora placeholder0)

(create-viewcones cereal-box room0 placeholder0)

(search-for-object cereal-box room0 visualobject0 placeholder0)

Each of these action either creates or requires an epistemic effect.
The first action creates the assumption that placeholder0 leads to an

until know unknown kitchen which is given the temporary name room0.
The action makes to assumptions true: That the place is in the new room,
A(in-room placeholder0) = room0, and that the new room is a kitchen
A(category room0) = kitchen.

As we have no specific instance knowledge about the likelihood of find-
ing a cereal box in room0 (K(p-obj-in-room cereal-box room0) is false),
second action uses the previous assumption that room0 is a kitchen and de-
fault knowledge to make the assumption that there exists cereal-box in that
room (A (obj-exists cereal-box room0) true). In order to have a con-
crete cereal-box object to plan with, the next assumption uses the abstract
obj-exists assumption an makes the assumption that a new visualobject0

is in room0: A(related-to visualobject0) = room0.
The move-action is the first physical action the planner executes. As such

it has a physical effect (Dora will be at the new place) but also the epistemic
effect K(in-room placeholder0): After we have moved to a place, we will
know for sure in which room it is.

Before Dora can search for an object, we must create a set of viewcones,
which represent locations and orientations from which we expect most likely
see the cereal box if it exists. The create-viewcones-action has no immedi-
ately obvious epistemic preconditions. Its only condition is that Dora needs
to be at a place in the room in which we want to create the viewcones. But
similarly to the search action, the condition that placeholder0 is in room0

is not part of the planning state at this point, so the create-viewcones

action depends on the assumption we made that this is true in the first
action. Finally, after the viewcones are created, we search for the object.
As described above, the action has a conditional knowledge effect: assuming
the visualobject0 is in the room, we will know its location afterwards.
As the assumption is satisfied by the assume-object-location action, the
effect K(related-to visualobject0) is realised, satisfying the goal.

Let us now look at the same task after the move action has been executed,
and an new room has actually been found. If the planner replans at this
point, the plan will look as follows:

(assume-category-room0-kitchen)

(assume-default-object-in-room cereal-box room0 kitchen)

(assume-object-location visualobject0 cereal-box room0)

(create-viewcones cereal-box room0 placeholder0)
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(search-for-object cereal-box room0 visualobject0 placeholder0)

Now that the planner knows that room0 exists, the first assumption is
replaced by a ground assumption that is created from the category proba-
bilities provided by the categorising process. The other assumptions and
the actions after the move action remain the same. The (A (in-room

placeholder0) room0) precondition of the viewcones and search actions
is no longer satisfied by the leads-to-room assumption, but by the ini-
tial state: As placeholder0 is in room0, (in-room placeholder0) is set
to room0, which by our definitions implies A(in-room placeholder0) =
room0.

If the planner has to replan during the search action (e.g. because an
action fails randomly), the (p-obj-in-room cereal-box room0) will have
a value from the conceptual subarchitecture. So the planner is no longer
allowed to use default knowledge to make assumptions about cereal boxes
in room0. If the existence probability is still high enough, this will lead to
the following plan, where the instance-specific probability is used to make
the obj-exists assumption:

(assume-object-in-room cereal-box room0)

(assume-object-location visualobject0 cereal-box room0)

(search-for-object cereal-box room0 visualobject0 placeholder0)

If the plan succeeds and the object is found, (related-to visualobject0)

will be set to a value and the goal will be reached. Otherwise, the planner
will either try to reach the goal in a different way or fail if no other way
could be found.

4.4 Explaining surprises using assumptions

Making assumptions explicit can be helpful if we want to reason about the
sources of planning failures or other observations that were not predicted
by the planner. A more exhaustive description on how we use planning
technologies to explain “surprises” can be found in DR 7.3, here we want
to briefly outline how our representation of gaps facilitates reasoning about
unexpected behaviour.

Explaining surprises involves finding a probable set of assumptions, that
if they were true, would cause the observations the robot made during
the execution of its plan. In our object search example, the task may
fail because search-for-object actions do not result in the desired ef-
fect, K(related-to visualobject0). We are therefore looking for a set
of likely assumptions that would cause that behaviour. The explanation for
violated assumptions may be quite mundane: If we do not find a cereal box
in the kitchen, despite looking everywhere, a possible explanation for that
could be that cereals are simply not there.
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While finding explanations with a high likelihood is the best case sce-
nario, this is often not the case. If we know, for example, that the probability
of cereals being in kitchens is very high, the previous explanation is not very
convincing. In cases where we cannot find a likely explanation, we prefer to
find those that we have no information at all about – it is preferable to find
explanations for which we do not know whether they are likely than to find
those we know to be unlikely. In our example, we could assume that the
cereals are inside another container, therefore being invisible to the robot’s
camera.

The explanations that are generated by these processes can then be
picked up again by the motivation subsystem to generate new goals to try
to verify whether the explanations was correct. In our previous examples,
this may involve entering into dialogue with a human, asking them if there
are any cereals in the room, or trying to detect the assumed container.
Especially if the explanations we find are those with unknown likelihood,
this allows the robot to use its failures to identify knowledge gaps to fill in
the anticipation that the new information may prove to be useful for future
tasks.

5 Conclusion

In this paper we have given an overview of how the elements of our theory
of how gaps may be identified and filled fit together to constitute a coherent
whole. To illustrate this we have organised the paper around two systems
that we describe in some detail. These are the George robot system which
performs curiosity driven gap detection and learning; and the Dora robot
system, which performs task driven gap filling and explanation. We de-
scribed how in a curiosity driven system the robot raises motives to learn
once gaps are detected, and these are prioritised via a motive management
system. This also allows us to set non-learning motives as having priorities.
In the George system for example questions from the human generate the
highest priority motives. In Dora there is only ever one motive, which is
to perform the task set by the human operator. But it is clearly the case
that such systems can be trivially combined using the motive management
system by setting the priorities of the tasks set by the human (for Dora)
along with the questions (asked of George) and the learning motives that
are set by the robot (George). Such a system would be inefficient in that it
would not intelligently interleave curiosity driven and task driven activity.
This final piece of the puzzle we will describe in DR.1.4. In that paper we
show how ideas from planning with deadlines can allow the robot to more
efficiently interleave task driven to curiosity driven activity.
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