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Representing the epistemic state of the robot and how that epistemic
state changes under action is one of the key tasks in CogX. In this report
we describe progress on this in the first period of the project, and set out a
typology of the representations of epistemic knowledge we use in the project.
We describe the specific representations we have developed for different do-
mains or modalities, or are planning to develop, and how those are related
to one another.
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Executive Summary

This report presents the work during the first 21 months in CogX on rep-
resentations of belief, of gaps and uncertainty. It also describes how those
representations have been used to build systems to test our approach during
the first reporting period. The task addressed was Task 1.1, of which we
said

Task 1.1 Beliefs and beliefs about knowledge producing
actions. We will examine how a system can represent, in a uni-
fied way, beliefs about incompleteness and uncertainty in knowl-
edge. This will start with work on their representation that will
feed into WPs 2, 3 & 4, and it will later unify the modality spe-
cific representations of incompleteness and uncertainty coming
up from these packages. Representations of knowledge produc-
ing actions will utilise these to represent the preconditions and
effects of knowledge producing actions. These knowledge action
effects will be used in WP4 for planning information gathering
and processing. This task will also support work on introspec-
tion.

Here we gather together in one place technical summaries of the rep-
resentations employed in different modalities, and describe the framework
we are exploring at the moment for unifying those at a high level (Markov
Logic). This approach augments our previous approach to binding my mak-
ing it probabilistic, and thus enabling us to integrate uncertain evidence
through the binder in a principled manner. We also relate them through a
initial typology of knowledge gaps and uncertainties.

Role of representations of beliefs in CogX

Representations of what an agent does and doesn’t know are central to
CogX, so it is important for the consortium that we reflect on the relation-
ships between these representations in different modalities. It is essential
in CogX that we employ different specialised representations for different
modalities and tasks. The challenge is how to unify these into abstract logi-
cal representations useful for planning and goal management. The approach
in CogX is representationally driven.

Contribution to the CogX scenarios and prototypes

In this report Annex 1 presents a journal paper that describes the overall
approach of CogX, the representations of gaps developed in the first year of
the project, and the first year Dora and George systems. The representations
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developed in Annex 2, and in the main body of the report are necessary for
the year 2 scenarios involving George, Dora and Dexter. The Markov Logic
approach to binding will be used in Dora and George, and various of the
modality specific representations will be employed in different demonstrators
for each of the scenarios.
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1 Tasks, objectives, results

1.1 Planned work

Work reported in this deliverable mainly concerns Task 1.1:

Beliefs and beliefs about knowledge producing actions. We will
examine how a system can represent, in a unified way, beliefs
about incompleteness and uncertainty in knowledge. This will
start with work on their representation that will feed into WPs
2, 3 & 4, and it will later unify the modality specific represen-
tations of incompleteness and uncertainty coming up from these
packages. Representations of knowledge producing actions will
utilise these to represent the preconditions and effects of knowl-
edge producing actions. These knowledge action effects will be
used in WP4 for planning information gathering and processing.
This task will also support work on introspection.

1.2 Actual work performed

We have developed a large number of representations of what the agent does
and doesn’t know. In the demonstrators Dora and George we employed these
to drive learning. We describe these different representations and how there
were used together in the overall architecture. In particular this describes
our approach to dealing with multiple representational formalisms in a sin-
gle system. Briefly put we produce abstractions of processing results within
each sub-architecture, and then convert these abstractions into logical repre-
sentations of the environmental state. This is then used to support activities
such as high-level activity planning and dialogue. A paper describing this
has been submitted to a special issue of IEEE Transactions on Autonomous
Mental Development on Architectures and Representations. In addition we
have now developed a probabilistic approach to the binding problem using
Markov Logic that is described in a paper submitted to IEEE RO-MAN.
We will be using this in future integrated systems. Both these papers are
included as annexes to this deliverable. Finally we have produced a report
which brings together the various representations of gaps and uncertainty,
and places them in a typology.

1.3 Relation to the state-of-the-art

In this report we describe representations for vision, spatial representation,
dialogue, planning and binding that capture uncertainty and gaps. In some
areas, such as vision, our approach is an extension of approaches such as
Bayesian recursive filtering, and our contribution has been in developing rep-
resentations that support incremental refinement of the space of hypotheses
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of what is in the visual scene. In our work on spatial representations we de-
velop a layered, hierachical spatial model that represents space at different
levels of abstractions and with different levels of granularity. The spatial
representation is designed with more than navigation in mind and supports
higher level tasks such as reasoning, planning and communication with hu-
mans. One of the design principles is that one should not use more details
and accuracy than what is needed. In this report we describe our design,
and show how gaps in the model are captured. While we employ low level
representations similar to traditional SLAM [36] we also represent qualita-
tive gaps in higher level aspects of the map, such the conceptual map, or in
the locations of objects in rooms. This explicit representation of gaps at a
number of different levels in the map is new. In dialogue we develop rich
belief models of the situated context that capture not only what the agent
believes privately, but also what other agents believe and what beliefs are
shared. Thus the epistemic state of multiple agents is captured. In planning
we have extended PDDL representations in several ways. We describe our
decision theoretic extension of PDDL, called DTPDDL, and also how we
represent epistemic effects of actions in continual planning. These represen-
tations build on our previous work in projects like CoSy, but with DTPDDL
we now have basis for representing uncertainty quantitatively in domain de-
scriptions. In binding we move beyond our previous work by employing
Markov Logic rather than feature comparisons, which is a well established
formalism for uncertain reasoning. Finally we have implemented these all
in systems that reason about their own epistemic state. Dora, in particular
plans how to achieve epistemic goals she sets herself. The work most closely
related to this is that of Kaelbling and Rosenschein on the Flakey project,
and the KWIK framework of Littman and co-workers. Dora goes beyond
these in that she employs a much wider range of representations, and is able
to synthesise plans on the fly that involve much more varied and complex
representations.
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2 Introduction

Central to the approach in CogX is the notion of self-understanding. We
define this as an agent being in possession of representations and algorithms
that explicitly represent and reason about what that agent does and doesn’t
know. This report gathers together the different types of representations
we employ in the project, and relates them together through a typology.
This is a first, but important step to providing a unified framework for
representations that support self-understanding. In the project we have
already written often about gaps and uncertainty in knowledge. These are
not the same, but what useful definitions of them can we arrive at, and
what different types of gaps and uncertainty are there? To help us, while it
is not an entirely satisfactory term, we use incompleteness as an umbrella
term to cover many different types of knowledge gaps and uncertainty about
knowledge. Broadly we think about uncertainty as being concerned with non-
determinism within an essentially closed world, whereas a gap we think about
as being concerned with an open world, where the hypotheses can include
previously unexperienced situations. From now on in the introduction to
the typology we will avoid using general terms like gap and uncertainty and
replace them with more specific terms. But as a simple example suppose a
human asks the robot the category of an object. There may be a number
of possible hypotheses, i.e. ones that are not entirely inconsistent with the
observed data. Perhaps the robot sees a cylinder like shape, and it has
categories for solid cylinder, pen and mug. In this case there is uncertainty
about which hypothesis is correct. Alternatively suppose the robot sees a
new shape which isn’t consistent with any known object category. In this
case there is a gap, the robot doesn’t know the category and knows that it
is not any of the pre-existing categories.

Having defined these basic ideas we can think about a typology of incom-
pleteness in knowledge based on several dimensions of variability. These are
the nature of the incompleteness, the type of knowledge that is incomplete,
the scope of the knowledge’s applicability in time and space, the scope of
the knowledge’s applicability with respect to multiple agents (i.e. whether the
agent models its own beliefs, those of another agent, or beliefs shared be-
tween it and others), and finally whether the incompleteness is represented
in a quantitative or qualitative manner. We illustrate these, together with
some examples for selected points in the typology (Figure 2). Clearly the
space of all possible points in our typology is too large to cover in a single
report, and we have far from exhausted the space here. The typology itself
will need adjusting over time.

With regard to the nature of the incompleteness, in the simplest case we
may have a variable or variables that have a defined set of possible values
or hypotheses from which the true value is known to be drawn. We refer
to this as variable value uncertainty. We can also have uncertainty about
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Nature of the
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Quantitative 
vs. Qualitative

Universal
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Novelty
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Effect

Cause

Quantitative

Qualitative

Private

Other agent

Shared

Multi-agent 
epistemic status

Scope of the 
knowledge

Variable value

Model complexity

Contingent

Figure 1: Dimensions of variation in gaps and uncertainty.

the number of variables needed in a model, i.e. about the model complexity.
Finally we can also have cases where the agent knows that a variable is
of an unexperienced class, i.e. that it is experiencing novelty. This can
include cases where the variables are continuous but where the observation
models for a class are quite confident and do not generalise well to some new
observation. The type of knowledge that is incomplete may vary enormously.
Four simple types that cover a variety of cases include contingent knowledge
about the current world state, structural knowledge about the relationships
that typically hold between variables, knowledge consisting of predictions of
action outcomes or events, and knowledge about their causes. Finally there
is a question about whether the representation is qualitative or quantitative.
In qualitative representations of gaps or uncertainty we have a set of possible
values for the variable, or it is simply known that the variable value is
unknown. In quantitative representations we will have probabilities attached
to hypotheses. Note that by a quantitative gap or quantitative uncertainty
we do not mean that the underlying space for the variable is continuous or
discrete, but instead that the way the incompleteness is represented involves
an expression of preference for one hypothesis versus another.

Based on these distinctions we can give some examples of specific types
of uncertainty and gaps that populate the space defined by the typology.
In the remaining sections we will relate the representations we have devel-
oped to these. It is very important to note that this set of examples and
indeed the whole typology is necessarily incomplete, and will be refined as
we understand better the representations employed.

1. State variable value uncertainty: here a possible set of values for a
variable describing part of the environment state (e.g. the identity of
an object) is known. But the specific value that holds for a specific
situation is unknown. If the uncertainty is qualitatively represented
the set will be all the information the agent has. If the uncertainty is
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quantitatively represented it will be the case that a probability density
is defined over that set.

2. Uncertainty about state model complexity: here it is uncertain how
many features there are of a particular type (e.g. how many objects
there are in the room). Again if the uncertainty is qualitative it will
the possible numbers of objects will be known. If it is quantitatively
captured there will be a probability distribution over that set. Other
examples include not knowing how many possible rooms there are in
building, or how many categories of rooms are possible, or how many
different equivalent configurations two objects might have.

3. State novelty: it is possible that the value of a variable is not drawn
from the set of normal experienced values for that variable type, e.g.
this is a colour of object I haven’t seen before. It could be that there
is some combination of this with state value uncertainty. In this case
there may be a likelihood that the variable value is novel or not. In
the case of continuous variables this would be a value that lies outside
the previously existing range of values.

4. Structural variable value: structural knowledge defines how the vari-
ables in an environmental model, i.e. a model of state, are related to
one another. Examples of this include the relationship between two
variables in an ontology. For example a kitchen is a sub-type of room,
and a particular kitchen is an instance of that type. Kitchens con-
tain objects such as mugs, cookers and sinks. Alternatively having
an association between variables is also a type of structural knowl-
edge. There is for example a particular subset of the hue space that
is conventionally labelled blue by most English speakers, or it may be
known that one location is directly linked to another. All these struc-
tures may have uncertainty as to whether relationships exist within a
set of variables, and if so what those relationships might be.

5. Structural model complexity: for some kinds of structural knowledge it
may be useful to express the uncertainty about the possible structural
complexity of an agent’s models. In map learning, for example there
may be some uncertainty about how many places in a building are
directly connected to one another.

6. Structural novelty: it may be the case that an ontology does not cap-
ture the current type of experience adequately, and that new types
need to be added to the ontology. So that for example, there may be
no notion that there is a kind of thing called a colour, but that after
learning an associative model of blue, red, green and yellow the learner
becomes aware that these labels all refer to portions of a similar space.
It may be that if the wrong representation is used, e.g. RGB is used
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to encode colour, that the space must be re-represented in order to
separate one kind of variation from another, e.g. the brightness of a
colour from the hue. Spotting structural novelty means spotting the
gap in an ontology, or spotting that the relationships between variables
is new.

7. Effect value uncertainty: this concerns cases where the effect of an
action is not determined, but drawn from a known set. Possibly the
likelihood of particular outcomes may be known. Later on we will
capture this sort of effect value uncertainty using DTPDDL.

8. Effect model complexity: it may simply be uncertain as to how many
effects of an action there are. We do not handle this case explicitly in
our current representations, but we can conceive of extensions to them
that can hypothesise explicitly that there may be more outcomes than
already observed. This is handled in stochastic processes for example
by employing a hierarchical prior that gives a distribution over the
number of possible (unseen) outcomes of an action.

9. Effect novelty: it may be that an action has been taken, and that its
just observed effect or outcome is novel. Again we do not yet capture
this.

10. Causal value uncertainty and causal model complexity: it may be that
an action has uncertain outcomes, but that this non-determinism can
be eliminated, or the uncertainty in the effects reduced. To do this
variables and values for them must be identified which tell us which
outcomes are more or less likely. In other words if we look in the history
of the process we may find additional variables (perhaps latent ones)
that improve predictive accuracy. This is statistically like looking for
new variables on which to condition action outcome likelihoods.

11. Causal novelty: here is it known that an action which normally has
a reliable effect has an unexpected outcome, i.e. there is a surprise,
and that there must therefore be a cause of that suprising outcome.
This is the case when the operator model of the action in planning is
confident about the outcome, but is wrong. In this again we have to
look for additional variables which are not currently be in the operator
model which explain the surprising outcome.

In the following sections we describe in detail the representations we use
in different aspects of the project. We also relate them to this typology.
This is the first step towards a unified account of representations for self-
understanding.
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3 Multi-modal representation of beliefs

Intelligent robots needs to be aware of their own surroundings. This aware-
ness is usually encoded in some implicit or explicit representation of the
situated context. Such representation must be grounded in multiple sensory
modalities and be capable of evolving dynamically over time. Moreover, it
must be able to capture both the rich relational structure of the environment
and the uncertainty arising from the noise and incompleteness of low-level
sensory data.

In this section, we present a new framework for constructing rich, multi-
modal belief models of the robot’s environment. These beliefs unify the
representations arising from the different modalities. We start by describing
the architecture in which our approach has been integrated, then detail the
formal representations used to specify multi-modal beliefs, and finally briefly
explain how such beliefs can be constructed from perceptual inputs.

Beliefs also incorporate various contextual information such as spatio-
temporal framing, multi-agent epistemic status, and saliency measures. Such
rich annotation scheme allows us to easily interface beliefs with high-level
cognitive functions such as action planning or communication. Beliefs can
therefore be easily referenced, controlled and extended “top-down” by ex-
ternal processes to reach beyond the current perceptual horizon and include
past, future or hypothetical knowledge.

The interested reader is invited to look at the extended report entitled
“Belief Modelling for Situation Awareness in Human-Robot Interaction” at-
tached to this document for more detailed information.

3.1 Architecture

Our approach to rich multi-modal belief modelling is implemented in a spe-
cific module called the “binder”. The binder is directly connected to all
subsystems in the architecture (i.e. vision, navigation, manipulation, etc.),
and serves as a central hub for the information gathered about the environ-
ment.

The core of the binder system is a shared working memory where beliefs
are formed and refined based on incoming perceptual inputs. Fig. 2 illus-
trates the connection between the binder and the rest of the architecture.

3.2 Representation of beliefs

Each unit of information manipulated by the binder is expressed as a prob-
ability distribution over a space of possible values. Such unit of information
is called a belief.

Beliefs are constrained both spatio-temporally and epistemically. They
include a frame stating where and when the information is assumed to be
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Binder

Working 
Memory

Processing components

... ...

Subsystem 1 Subsystem 2 Subsystem 3

Local 
WM

... ...

Local 
WM
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Local 
WM

... ...

refine

update

Figure 2: Schema of the cognitive architecture in relation with the binder

valid, and an epistemic status stating for which agent(s) the information
holds.

Formally, a belief is a tuple 〈i, e, σ, c, δ, h〉, where i is the belief identifier,
e is an epistemic status, σ a spatio-temporal frame, c an ontological category,
δ is the belief content (specified as a probability distribution), and h is the
history of the belief.

We describe below each of these components one by one.

3.2.1 Epistemic status e

Interactive robots must be able to distinguish between their own knowledge,
knowledge of others, and shared knowledge (common ground). We specify
such information in the epistemic status of the belief. For a given agent a,
the epistemic status e can be either:

• private, denoted K{a}: private beliefs come from within the agent
a. In other words, they are a direct or indirect result of agent a’s
perception of the environment;

• attributed, denoted K{a[b1, ..., bn]}: Attributed beliefs are beliefs which
are ascribed to other agents. They are a’s conjecture about the mental
states of other agents b1, ..., bn, usually as a result of a’s interpretations
of previous communicative acts performed by b1, ..., bn.

• shared, denoted K{a1, ..., am}: Shared beliefs contain information which
is part of the common ground for the group [11].
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3.2.2 Spatio-temporal frame σ

The spatio-temporal frame σ defines a contiguous spatio-temporal inter-
val, the nature of which depends on the application domain. In the simplest
case, the spatial dimension can be modelled by a discrete set of regions and
the temporal dimension via intervals defined on real-valued time points.

It is important to note that beliefs can express past or future knowledge
(i.e. memories and anticipations). That is, beliefs need not be directly
grounded in the “here-and-now” observations.

3.2.3 Ontological category c

The ontological category is used to sort the various belief types which
can be created. Various levels of beliefs are defined, from the lowest to the
highest abstraction level. Figure 5 illustrates the role of these categories in
the belief formation process.

1. The lowest-level type of beliefs is the percept (or perceptual belief ),
which is a uni-modal representation of a given entity1 or relation be-
tween entities in the environment. Perceptual beliefs are inserted onto
the binder by the various subsystems included in the architecture. The
epistemic status of a percept is private per default, and the spatio-
temporal frame is the robot’s present place and time-point.

2. If several percepts (from distinct modalities) are assumed to originate
from the same entity, they can be grouped into a percept union. A
percept union is just another belief, whose content is the combination
of all the features from the included percepts.

3. The features of a percept union can be abstracted using multi-modal
fusion and yield a multi-modal belief.

4. If the current multi-modal belief (which is constrained to the present
spatio-temporal frame) is combined with beliefs encoded in past or
future spatio-temporal frames, it forms a temporal union.

5. Finally, the temporal unions can be refined over time to improve the
estimations, leading to a stable belief, which is both multi-modal and
spans an extended spatio-temporal frame.

3.2.4 Belief content δ

The distribution δ defines the possible content values for the belief. In
general, each alternative value can be expressed as a (propositional) logical

1The term “entity” should be understood here in a very general sense. An entity can
be an object, a place, a landmark, a person, etc.
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formula. In most practical cases, such formula can be represented as a flat
list of features. The feature values can be either discrete (as for categorical
knowledge) or continuous (as for real-valued measures). A feature value can
also specify a pointer to another belief, allowing us to capture the relational
structure of the environment we want to model. The resulting relational
structure can be of arbitrary complexity.

Discrete probability distributions can be expressed as a set of pairs 〈ϕ, p〉
with ϕ a formula, and p a probability value, where the values of pmust satisfy
the usual constraints for probability values. For continuous distribution, we
generally assume a known distribution (for instance, a normal distribution)
combined with the required parameters (e.g. its mean and variance).

The distribution can usually be decomposed into a list of smaller distri-
butions over parts of the belief content. This can be done by breaking down
the formulae into elementary predications, and assuming conditional inde-
pendence between these elementary predicates. The probability distribution
δ can then be factored into smaller distributions δ1...δn.

3.2.5 Belief history h

Finally, via the belief history h, each belief contains bookkeeping infor-
mation detailing the history of its formation. This is expressed as two set
of pointers: one set of pointers to the belief ancestors (i.e. the beliefs which
contributed to the emergence of this particular belief) and one set of point-
ers to the belief offspring (the ones which themselves emerged out of this
particular belief).

3.2.6 Example of belief representation

Figure 3: A blue mug

Consider an environment with a blue mug such
as the one pictured in Figure 3. The mug is per-
ceived by the robot sensors (for instance, by one
binocular camera). Sensory data is extracted and
processed by the sensory subarchitecture(s). A
the end of the process, a perceptual belief is cre-
ated, with four features: object label, colour, lo-
cation, and height.

Due to the noise and uncertainty of sensory data, the perceived charac-
teristics of the object are uncertain. Let us assume two uncertainties:

• The colour value of the object is uncertain (the vision system hesitates
between blue with probability 0.77 and purple with probability 0.22),

• and the recognition of the object itself is also uncertain (the recognised
object might be a false positive with no corresponding entity in the
real world. The probability of a false positive is 0.1).
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Such perceptual belief i would be formally defined as:

〈i, {robot}, σ[here-and-now], percept, δ, h〉 (1)

with a probability distribution δ containing three alternative formulae ϕ1,
ϕ2 and ϕ3. A graphical illustration of the belief i is provided in Figure 4.

We can see in Figure 4 that the formula ϕ2 specifies the existence (with
probability 0.7) of a blue mug entity of size 11.2 cm, at location k, perceived
by the robot in the current spatio-temporal frame (“here-and-now”). Notice
that the location is described as a pointer to another belief k. Such pointers
are crucial to capture relational structures between entities.

Belief i

Epistemic status:
σ[here-and-now]

{robot}
percept

Spatio-temporal frame:

Ontological category:

k

...ϕ2Formula

Probability:

ϕ1Formula

Probability:

Exists ∧
〈Label〉 mug ∧
〈Colour〉 blue ∧
〈Location〉 k ∧
〈Height〉 11.2

Exists ∧
〈Label〉 mug ∧
〈Colour〉 purple ∧
〈Location〉 k ∧
〈Height〉 11.2

Probability distribution δ

¬Exists

Formula ϕ3

0.70.2

0.1Probability:

Belief 

Belief history:

Origin o

[
ancestors : [o]
offspring : [b1, b2]

]

Belief b1 Belief b2

Figure 4: Schematic view of a belief representation.

The belief i also specifies a belief history h. The belief i being a percept,
its history is defined as a pointer to a local data structure o in the subarchi-
tecture responsible for the belief’s creation. The belief history also contains
two pointers b1 and b2 to the belief’s offspring.

3.3 Bottom-up belief formation

We now turn our attention to the way a belief model can be constructed
bottom-up from the initial input provided by the perceptual beliefs. The
formation of belief models proceeds in four consecutive steps: (1) perceptual
grouping, (2) multi-modal fusion, (3) tracking and (4) temporal smoothing.
Figure 5 provides a graphical illustration of this process.
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The rules governing the construction process are specified using a first-
order probabilistic language, Markov Logic. Markov Logic is a combination
of first-order logic and probabilistic graphical models. Its expressive power
allows us to capture both the rich relational structure of the environment
and the uncertainty arising from the noise and incompleteness of low-level
sensory data. Due to space constraints, we cannot detail the formal prop-
erties of Markov Logic here, the interested reader is advised to look at the
extended report for further information.

...

...Time

Tracking

...

t - 1 t t + 1

Multi-modal fusion

Temporal smoothing

Perceptual 
grouping

Multi-modal belief

Percept

Percept union

Temporal union

Stable belief

Levels of beliefs

Figure 5: Bottom-up belief model formation.

3.3.1 Perceptual grouping

The first step is to decide which percepts from different modalities belong
to the same real-world entity, and should therefore be grouped into a belief.
For a pair of two percepts p1 and p2, we infer the likelihood of these two
percepts being generated from the same underlying entity in the real-world.
This is realised by checking whether their respective features correlate with
each other.

The probability of these correlations are encoded in a Markov Logic
Network. From a syntactic point of view, a Markov logic network L is
simply defined as a set of pairs (Fi, wi), where Fi is a first-order formula
and wi ∈ R is the associated weight of that formula (Markov Logic weights
can be directly translated into probability distributions).
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The details of such Markov Logic Network are provided in Annex 2. The
formulae might for instance express a high compatibility between the haptic
feature “shape: cylindrical” and the visual feature “object: mug” (since most
mugs are cylindrical), but a very low compatibility between the features
“shape: cylindrical” and “object: ball”. Eq. (2) illustrates the correlation
between the cylindrical shape (Cyl) and the object label “mug” (Mug).

wi Shape(P1, Cyl)
wj Label(P2, Mug)
wk Shape(x, Cyl) ∧ Label(y, Mug)→ Unify(x, y) (2)

Markov Logic formulae can also express incompatibility between fea-
tures, for instance between a spherical shape and a object labelled as a
mug:

wj Shape(x, Spherical) ∧ Label(y, Mug)→ ¬Unify(x, y) (3)

Additional formulae are used to specify generic requirements on the per-
ceptual grouping process, for instance that x and y must be distinct beliefs
and originate from distinct subarchitectures. The prior probability of a
grouping is also specified as a Markov Logic formula.

Metric spatial information is obviously also a crucial component in this
perceptual grouping process. Markov Logic being able to handle both dis-
crete and continuous values, one straightforward option would be to encode
traditional Bayesian filtering techniques such as Kalman filters into a Markov
Logic Network. We still need to investigate, however, what would be the ex-
act consequences of such re-encoding in terms of runtime efficiency. It might
be beneficial to perform some preprocessing outside the binder system via
fast, dedicated algorithms to speed up the grouping process.

A grouping of two percepts will be given a high probability if (1) one
or more feature pairs correlate with each other, and (2) there are no in-
compatible feature pairs. This perceptual grouping process is triggered at
each insertion or update of percepts on the binder (provided the number
of modalities in the system > 1). The outcome is a set of possible unions,
each of which has an existence probability describing the likelihood of the
grouping.

3.3.2 Multi-modal fusion

We want multi-modal beliefs to go beyond the simple superposition of iso-
lated modal contents. Multi-modal information should be fused. In other
words, the modalities should co-constrain and refine each other, yielding
new multi-modal estimations which are globally more accurate than the
uni-modal ones.
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Multi-modal fusion is also specified in a Markov Logic Network. As an
illustration, assume a multi-modal belief B with a predicate Position(B, loc)
expressing the positional coordinates of an entity, and assume the value loc
can be estimated via distinct modalities a and b by way of two predicates
Position(a)(U, loc) and Position(b)(U, loc) included in a percept union U.

wi Position(a)(U, loc)→ Position(B, loc) (4)
wj Position(b)(U, loc)→ Position(B, loc) (5)

The weights wi and wj specify the relative confidence of the measurements
for the modality a and b, respectively.

3.3.3 Tracking

Environments are dynamic and evolve over time – and so should beliefs.
Analogous to perceptual grouping which seeks to bind observations over
modalities, tracking seeks to bind beliefs over time. Both past beliefs (mem-
orisation) and future beliefs (anticipation) are considered. The outcome of
the tracking step is a distribution over temporal unions, which are combi-
nations of beliefs from different spatio-temporal frames.

The Markov Logic Network for tracking works as follows. First, the
newly created belief is compared to the already existing beliefs for similarity.
The similarity of a pair of beliefs is based on the correlation of their content
(and spatial frame), plus other parameters such as the time distance between
beliefs.

Eq. (6) illustrates a simple example where two beliefs are compared on
their shape feature to determine their potential similarity:

wi Shape(x, Cyl) ∧ Shape(y, Cyl)→ Unify(x, y) (6)

If two beliefs B1 and B2 turn out to be similar, they can be grouped in a
temporal union U whose temporal interval is defined as [start(B1), end(B2)].

3.3.4 Temporal smoothing

Finally, temporal smoothing is used to refine the estimates of the belief
content over time. Parameters such as recency have to be taken into account,
in order to discard outdated observations.

The Markov Logic Network for temporal smoothing is similar to the one
used for multi-modal fusion:

wi Position(t-1)(U, loc)→ Position(B, loc) (7)
wj Position(t)(U, loc)→ Position(B, loc) (8)

These four consecutive steps are currently being formalised and imple-
mented as part of the binder system.
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3.4 Modelling gaps and uncertainty

The framework we outlined here is able to represent various types of uncer-
tainty regarding the state and structure of the environment. Belief content is
expressed as a multivariate probability distribution which can capture both
quantitative variable value uncertainty (via probabilities attached to
individual features in a given belief) and model complexity uncertainty
(via existence probabilities attached to beliefs). State novelty can be taken
into account by including unknown values into the domain model. Values
can be quantitative (e.g. real-valued measures) or qualitative (categorical
knowledge). In terms of knowledge types, only state values are currently
modelled, but we are planning to extend our framework in the future to
include not only indexical knowledge, but also events, intentions and plans.
The belief modelling framework here is also largely concerned with contin-
gent knowledge, i.e. knowledge about the environment as it is now and how
it has been recently. It uses general long term semantic knowledge to assist
in its inferences, but doesn’t represent gaps in that knowledge, this the pur-
pose of cross-modal representations, which we deal with later on. Finally
belief modelling captures the epistemic state not just of the agent itself, but
also of other agents, of groups of agents, and of groups of agents that share
beliefs.

4 Beliefs about situated dialogue

4.1 Introduction

Representations are reflections. They are signs, of what an agent under-
stands – and therefore, of how an agent understands. Signs are processes.
This fundamental idea is familiar from semiotics. Its relevance for cognitive
systems that are (to be) capable of self-introspection and self-extension is
arguably this: Representations can only improve by improving the processes
and models that give rise to them. Development in a cognitive system is one
part acquiring more representational power, and the ability to interconnect
different modalities of meaning. For another part, it is the development of
the very ability to compose meaning, and attending to those modal aspects
that can drive that composition in context.

In this paper, we describe results and ongoing research in dealing with
self-introspection and self-extension in situated dialogue processing. Typi-
cally, a gap in dialogue is seen as a lack of understanding, that can lead to
a breakdown in communication. Clarification mechanisms can help resolve
this, for example through question/answer sub-dialogues. Several discourse
theories identify levels at which gaps arise, cf. Allwood [1] or Clark [10].
This can go all the way down to problems in situationally grounding dia-
logue. We explored the latter problem in more detail in [25]. Ultimately,
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though, clarification is just a means to an end. It helps a cognitive system
to improve on, or correct, behavior that went wrong. In this paper for WP1,
we focus on how gaps can be represented. (In Task 6.3 (DR 6.2, WP6 year
2) we deal with how these representations can then later on drive adaptation
at the processing levels.)

We start by looking at logical forms, in §4.2. Logical forms are the basic
level at which we represent linguistic meaning. Words and syntactic struc-
ture are in some sense all just “artifacts.” They are means we use to get
us to a first level of meaning for an audio signal. It is at this level that
we represent gaps in interpretation. We deal with the structural reflections
of typical dialogue phenomena such as ambiguity, incompleteness, even un-
grammaticality. But this is just linguistic meaning – meaning in as far as
expressed through linguistic means. We do construct meaning in context,
using contextually salient information to drive the processes that build up
logical forms. At the same time, we need to interpret meaning construed in
situated dialogue further, against the background of a collaborative activity.

In §4.3 we then elaborate on how beliefs are bound to the robot’s models
of the world. We discuss how gaps can be represented as missing information
on an open-world assumption, and how we can deal with the dynamics of
revising and extending beliefs in situated multi-agent belief models. These
models are grounded in the multi-modal belief models we discussed earlier,
in §3. This provides us with grounded meaning, which may have gaps in
how to understand what is being communicated. This grounding is subject
to the uncertainty and incompleteness inherent to a robot’s experience of
reality. In §3 we describe the probabilistic approach we use to deal with
estimation and inference in the context of belief content. Below, we “lift”
this to how we can logically reason with (uncertain) beliefs in processing
situated dialogue, to determine how to interpret and follow up on what is
being talked about.

4.2 Logic forms for representing meaning

We represent linguistic meaning as an ontologically richly sorted, relational
structure. This structure is a logical form [24, 5] in a decidable fragment of
modal logic [7, 2]. The modal-logical aspect of the logic makes it possible
to build up structures using named relations. A novel construct, called
a “nominal” [7] provides us with an explicit way to index and reference
individual structures in a logical form.

The following is an example of a logical form. It expresses a linguistic
meaning for the utterance “I want you to put the red mug to the right of
the ball.” Each node in the logical form has a nominal, acting as unique
identifier for that node. We associate the nominal with an ontological sort,
e.g. p1 : action −motion means that p1 is of sort action −motion, and a
proposition, e.g. put for p1. We connect nodes through named relations.
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These indicate how the content of a single node contributes to the meaning
of the whole expression. For example, ”you” (y1) both indicates the one
whom something is wanted of (Patient-relation from w1), and the one who
is to perform the put action (Actor-relation from p1). Nodes carry additional
features, e.g. i1 identifies a singular person.

@w1 :cognition(want ∧ 〈Mood〉 ind ∧ 〈Tense〉 pres ∧
〈Actor〉 (i1 : person ∧ I ∧ 〈Num〉 sg) ∧
〈Event〉 (p1 : action-motion ∧ put ∧

〈Actor〉 y1 : person ∧
〈Patient〉 (m1 : thing ∧ mug ∧

〈Delimitation〉 unique ∧ 〈Num〉 sg ∧ 〈Quantification〉 specific ∧
〈Modifier〉 (r1 : q-color ∧ red)) ∧

〈Result〉 (t1 : m-whereto ∧ to ∧
〈Anchor〉 (r2 : e-region ∧ right ∧
〈Delimitation〉 unique ∧
〈Num〉 sg ∧
〈Quantification〉 specific ∧
〈Owner〉 (b1 : thing ∧ ball ∧
〈Delimitation〉 unique ∧ 〈Num〉 sg ∧ 〈Quantification〉 specific)))) ∧

〈Patient〉 (y1 : person ∧ you ∧ 〈Num〉 sg) ∧
〈Subject〉 i1 : person)

Propositions and relations in such a representation are instances of con-
cepts. This makes it possible for us to interpret logical forms further using
ontological reasoning. We use this possibility in reference resolution, and
in relating meaning representations to interpretations formed outside the
dialogue system. Furthermore, the combination of sorting and propositional
information provides a basic way of representing gaps. Both can be under-
specified: An indicated sort may vary in specificity, and a lack of a propo-
sition indicates (under an open-world assumption) a gap in information.

The relational nature of our representations provides us with several
consequences. We build up our representations from elementary propositions
as we illustrated above – sorted identifiers and propositions, features, and
relations. An interpretation is thus simply a conjunction of such elementary
propositions, and the more we can connect those elementary propositions,
the more complete our interpretation becomes. This has several important
consequences. For one, it means that we can break up linguistic meaning
into small, interconnected parts. Each elementary proposition acts as a sign,
signifying a particular meaningful dimension of the whole it is connected to
(by virtue of interconnected identifiers). Second, elementary propositions
make it relatively straightforward to represent partial interpretations. For
example, for ”take the red ...” receives the following interpretation:
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@t1 :action-motion(take ∧ 〈Mood〉 imp ∧ 〈Tense〉 pres ∧
〈Actor〉(a1 : entity ∧ addressee) ∧
〈Patient〉 (m1 : thing ∧

〈Delimitation〉 unique ∧ 〈Num〉 sg ∧ 〈Quantification〉 specific ∧
〈Modifier〉 (r1 : q-color ∧ red))

〈Subject〉 a1 : entity)

The interpretation shows more than just the content for the three words.
It also shows that ”red” is expected to be the color of the ”thing” which is
supposed to be taken.

Third, characteristic for language is that it presents many ways in which
we can say things – and interpret them. This inevitably means that we will
usually get not just one, but multiple alternative interpretations for an utter-
ance. To keep ambiguity to a minimum, we should look at to what extent
these interpretations are indeed different. Where they show overlaps, we
should ideally have to deal with those identical parts only once. Using rela-
tional structure and elementary propositions enables us to do so. We repre-
sent alternative interpretations as alternative ways in which we can connect
content, whereas identical content across interpretations is represented once.
The procedure to create such ”condensed” representations is called packing,
after [31, 9]. Figure 6 illustrates the development of the packed packed
representation for ”here is the ball”. At the first step (”take”), 9 logical
forms are packed together, with two alternative roots, and several possible
ontological sorts for the word “here”. The second step reduces the number
of alternative interpretations to one single logical form, rooted on the verb
“be” with a “presentational” ontological sort. The possible meanings for the
determiner is expressed at the dependent node of the “Presented” relation.
At this point we have an overspecified meaning. Although the delimination
is unique, we cannot tell at this point whether we are dealing with a singular
object, or a non-singular (i.e. plural) object – all we know it has to be one or
the other. This becomes determined in the fourth step (”here is the ball”).

Detailed accounts of how contextual information can be used to guide
the construction of logical forms in situated dialogue are provided in [26, 27].

4.3 Grounding meaning in belief models

In the previous section we discussed how linguistic meaning can be seen as a
relational structure over small signs. We gradually build up such a structure,
using incremental processing that is guided by what is currently contextually
salient. A structure can indicate what information may be still lacking
(sortal or propositional), what further information is expected, and what
alternative ways there appear to be to connect signs. In the current section,
we present an approach to how situated beliefs are formed. We exploit the
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idea of small signs in grounding linguistic meaning in the cognitive system’s
models of the world, and forming relational belief structures.

A belief is a formula Ke/σ : φ that consists of three parts: a content
formula φ from a domain logic Ldom, the assignment e of the content formula
to agents, which we call an epistemic status and the spatio-temporal frame
σ in which this assignment is valid.

We distinguish three classes of epistemic statuses, that give rise to three
classes of beliefs:

• private belief of agent a, denoted {a}, comes from within the agent a,
i.e. it is an interpretation of sensor output or a result of deliberation.

• a belief attributed by agent a to other agents b1, ..., bn, denoted
{a[b1, ..., bn]}, is a result of a’s deliberation about the mental states
of b1, ..., bn (e.g. an interpretation of an action that they performed).

• a belief shared by the group of agents a1, ..., am, denoted {a1, ..., am},
is common ground among them.

A spatio-temporal frame is a contiguous spatio-temporal interval. The
belief is only valid in the spatio-temporal frame σ and frames that are sub-
sumed by σ. This way, spatio-temporal framing accounts for situatedness
and the dynamics of the world. The underlying spatio-temporal structure
may feature more complex spatial or temporal features.

Finally, the domain logic Ldom is a propositional modal logic. We do not
require Ldom to have any specific form, except for it to be sound, complete
and decidable.

Multiple beliefs form a belief model. A belief model is a tuple B =
(A,S ,K ,F ) where A is a set of agents, S is a set of spatio-temporal frames,
K is a set of beliefs formed using A and S and F ⊆ K is a set of activated
beliefs.

Belief models are assigned semantics based on a modal-logical transla-
tion of beliefs into a poly-modal logic that is formed as a fusion of KD45C

A

(doxastic logic with a common belief operator [15]) for epistemic statuses,
K4 for subsumption-based spatio-temporal reasoning and Ldom for content
formulas. This gives us a straightforward notion of belief model consistency:
a belief model is consistent if and only if its modal-logical translation has a
model.

The belief model keeps track of the beliefs’ evolution in a directed graph
called the history. The nodes of the history are beliefs and operations on the
belief model (such as retraction) with (labeled) edges denoting the opera-
tions’s arguments. The nodes that are beliefs and have no outcoming edges
form a consistent, most recent belief model.

The possibility for a belief to evolve is fundamental to attaining and
maintaining common ground. With this evolution comes an increase in
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logical implicational power. A shared belief of a group G that φ implies all
private beliefs and all possible attributed beliefs that φ within that group.
For example, if φ is common ground between the human user, h, and robot,
r, then (i) implies (ii):

B |= K{r, h}/σ : φ ⇒
B |= K{r}/σ : φ
B |= K{r[h]}/σ : φ
B |= K{h}/σ : φ *
B |= K{h[r]}/σ : φ *

(i) (ii)

Since (i) and (ii) are inferentially equivalent within belief models, the relation
is in fact equivalence. If (ii) holds in the belief model B, it also satisfies (i).

However, the agents’ private and attributed beliefs cannot be observed
by other agents, they are not ominiscient. The beliefs above marked by
asterisk (*) cannot be present in the robot’s belief model. The validity of
such beliefs can only be assumed. An invalidation of the assumptions then
invalidates the premise (ii) and thus the conclusion (i). As long as they are
not invalidated, agents may act upon them: they may assume that common
ground has been attained.

But how can these assumptions be in principle mandated or falsified?
Given a communication channel C, we consider a class of protocols PC that
supply the means for falsification of the assumptions. If these means are
provided, then the protocol is able to reach common ground. We assume
that the agents are faithful to Grice’s Maxim of Quality [19], i.e. that they
are truthful and only say what they believe to be true and for what they
have evidence.

4.4 Conclusions

Looking back at the discussions in §3 and §4, from the viewpoint of cogni-
tive systems, we can say simply this: Gaps can arise everywhere. Literally.
No aspect is too small for a system not to have a hole in it, to lack a cer-
tain degree of understanding. Representations can indicate this lack, and
processing can help overcome this lack by combining with other sources of
information (the multi-sensor fusion hypothesis), by filtering it out (the at-
tention hypothesis) – or by self-extension to ultimately achieve better inter-
pretations (the continual development hypothesis). Not just at representing
things better, but processing it better.

We presented here parts of the representational side of self-understanding
and self-extension, focusing on situated dialogue processing. Connecting our
representations to the typology presented in §2 (cf. also [25]), the gaps and
uncertainty we discussed here primarily concern state variable uncer-
tainty, and state model complexity. In the linguistic representations
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per se we handle uncertainty against a model, either in variable assignment
(e.g. ASR hypotheses) or in how to connect hypotheses (e.g. partial parses).
We do not yet deal with unknown words or syn-semantic constructions (but
see tasks later in CogX). At the same time, based on further interpretation of
a representation of linguistic meaning against a situated, multi-agent belief
model, we can see further gaps and uncertainties arise. Beliefs can express
uncertainty about how to ground references to observations of the envi-
ronment (structural variable values), or uncertainty about the truth of
statements attributed to other agents (i.e. multi-agent epistemic status
in Figure 2). Finally, dialogue has been used in e.g. George, and in precur-
sors to the Dora system, to express uncertainty about state observations,
and to sollicit information from a user to help resolve these uncertainties.

In WP6, we look at how we can take the self-understanding aspect in
linguistic representation then to the self-extending aspect in processing, to
yield adaptive dialogue processing.

5 Beliefs about Space

Spatial knowledge constitutes a fundamental component of the knowledge
base of a mobile agent, such as Dora, and many functionalities directly de-
pend on the structure of the spatial knowledge representation, ranging from
navigation, over spatial understanding and communication. This section
explains how different domains of spatial knowledge are represented in our
system. The representation structures and abstracts what is known, and it
also represents uncertainty and knowledge gaps explicitly.

The representation is designed for representing complex, cross-modal,
spatial knowledge that is inherently uncertain and dynamic. Therefore, it
is futile to represent the world as accurately as possible. A very accurate
representation must be complex, require a substantial effort to synchronize
with the dynamic world and still cannot guarantee that sound inferences will
lead to correct conclusions [13]. Our primary assumption is that the repre-
sentation should instead be minimal and inherently coarse and the spatial
knowledge should be represented only as accurately as it is required to pro-
vide all the necessary functionality of the system. Furthermore, redundancy
is avoided and whenever possible and affordable, new knowledge should be
inferred from the existing information.

In our system, spatial knowledge is represented in multiple layers, at
different levels of abstraction, from low-level sensory input to high level con-
ceptual symbols. Information is abstracted as much as possible in order to
make it robust to the dynamic changes in the world and representations
that are more abstract are used for longer-term storage. At the same time,
knowledge extracted from immediate observations can be much more accu-
rate (e.g. for the purpose of visual servoing). In other words, the agent uses
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the world as an accurate representation whenever possible. It is important
to mention that rich and detailed representations do not constitute a per-
manent base for more abstract ones (as is the case in [39]). Similarly to
abstraction levels, space is represented on different spatial scales from single
scenes to whole environments. Moreover, space is discretized into a finite
number of spatial units. Discretization drastically reduces the number of
states that have to be considered e.g. during the planning process [20] and
serves as a basis for higher level conceptualization [39].

5.1 Structure of the Representation

Figure 7 on the following page gives a general overview of the structure of
the representation. It is sub-divided into layers of specific representations.
We distinguish between four layers which focus on different aspects of the
world, abstraction levels of the spatial knowledge and different spatial scales.
Moreover, each layer defines its own spatial entities and the way the agent’s
position in the world is represented. At the lowest abstraction level we have
the sensory layer which maintains an accurate representation of the robot’s
immediate environment extracted directly from the robot’s sensory input.
Higher, we have the place and categorical layers. The place layer provides
fundamental discretisation of the continuous space explored by the robot
into a set of distinct places. The categorical layer focuses on low-level, long-
term categorical models of the robot’s sensory information. Finally, at the
top, we have the conceptual layer, which associates human concepts (e.g.,
object or room category) with the categorical models in the categorical layer
and groups places into human-compatible spatial segments such as rooms.

The following subsections provide additional details about each of the
layers and their instantiations within our system. For a detailed theoretical
discussion on those principles and optimal implementations, we refer the
reader to [34].

5.1.1 Sensory Layer

In the sensory layer, a detailed model of the robot’s immediate environment
is represented based on direct sensory input as well as data fusion over space
around the robot. The sensory layer stores low-level features and landmarks
extracted from the sensory input together with their exact position with
respect to the robot. The uncertainty associated with the pose of the robot
and the location of all landmarks in the local surrounding is explicitly repre-
sented using a multivariate Gaussian distribution [35, 17]. Landmarks that
move beyond a certain distance are forgotten and replaced by new infor-
mation. Thus, the representation in the sensory layer is akin to a sliding
window, with robot-centric and up-to-date direct perceptual information.
It is also essentially bottom-up only, though directives and criteria, such as
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Figure 7: The layered structure of the spatial representation. The position
of each layer within the representation corresponds to the level of abstraction
of the spatial knowledge.
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guiding the attentional process, may be imposed from upper layers. It can
contain data of both a 2D and 3D nature.

In addition to the landmark based representation, local gridmaps are
maintained, centered on each Place. Each cell in the grid map can be in one
of three possible states; occupied, free, unknown. Each cell is initialized
as being unknown. The grid maps thus represents the structural knowledge
with an explicit representation for the gap in spatial knowledge correspond-
ing to the what part of space is unexplored. Figure 8 on the next page shows
two examples of local grid maps of adjacent Places. The white area is free
space: open areas swept out by the robot’s laser scanner from within the
Place. The black regions represent obstacles, i.e. occupied, space and gray
denotes unexplored space (unknown), which constitutes a knowledge gap.

The visual object search routine maintains hypotheses about existence
of objects of specific categories at specific locations using a probabilistic grid
representation [3]. Each cell in the grid contains two peices of information, i)
the estimated probability of the center of a certain object being in that cell
given all the accumulated evidence, p(Ci,j |Z) , and ii) whether the object
recognition algorithm has been run looking at that cell, Si,j . Here Ci,j
denotes the event that object i has its center in cell j and Z denotes the
evidence received so far. Evidence comes both in the form of the outcome
of visual recognition routines performed from certain given positions and
structural knowledge such as certain cells being occupied or not and whether
it contains planar surfaces which afford placing objects on top. Besides the
high level gaps regarding the position or existence of the object the robot
is looking for, there are two types of gaps in knowledge that are explicitly
represented in the context of object search. The first one is unexplored
space, described above, representing a gap in knowledge about the structural
information of space which provides very strong clues in the search process.
The second gap relates to the part of space that the robot has not yet
visually searched.

5.1.2 Place Layer

The place layer is responsible for the fundamental, bottom-up discretisa-
tion of continuous space. In the place layer, the world is represented as a
collection of basic spatial entities, the Places, as well as their spatial rela-
tions. Each place is defined in terms of features that are represented in the
sensory layer, but also spatial relations to other places. The relations do
not have to be globally consistent as long as they are preserved locally with
sufficient accuracy. The representation of places in the place layer persists
over long term; however, knowledge that is not accessed or updated can be
compressed, generalized and finally forgotten. In more detail, consider a set
{fi}nfi=1 of features fi defined as

fi (x, t) : C × R→ Fi ∈ Rn (9)
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Figure 8: Example of exploration local gridmaps with white: free, black:
occupied and grey: unknown space. The position of teh robot is given by
the cirtlce in the center.

where C represents the configuration space of the agent, t ∈ R represents
time, and Fi is the range of values of the feature fi. The feature space is
defined as

F = F1 ×F2 × . . .×Fnf . (10)

Places are defined, in part, as non-overlapping collections of tuples of fea-
tures (ζ1, . . . , ζnf ). Intuitively, this leads to a division of metric space into
regions based on properties such as appearance. As such, two distant discon-
nected regions could share similar properties. Additional power to distin-
guish between such regions can be attained using relations between regions
such as the adjacency relation for which Ri = {1, 0}. By combining the fea-
tures with the spatial relations we can introduce the place descriptor space

D = F ×R1 ×R2 × . . .×Rnr , (11)

in which each tuple D = (ζ1, . . . , ζnf , ρ1, . . . , ρnr) of the feature values and
relation values ρi = ri(x, t) corresponds to a single point. The place map is
defined as a set

M =
{
P1,P2, . . . ,Pnp

}
(12)

of places Pi defined such that ∀iPi 6= ∅ and ∀i 6=jPi ∩ Pj = ∅. If features
and relations are time-invariant, the extents of places will be time-invariant
as well. Typically, the nature of relations will mean that they are time-
invariant as long as the features are. The extents of place is however subject
to uncertainty due to measurement noise. The closer to the border between
places the larger the uncertainty will typically be as to which place the robot
is currently in.

The place layer also defines paths between the places. The semantic
significance of a path between two places is the possibility of moving directly
between one and the other. This does not necessarily imply that the robot
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has traveled this path previously. A link might be created for unexplored
place e.g. based on top-down cues resulting from the dialogue with the user
(e.g. when the robot is guided and the user indicates part of the environment
that should be of interest to the robot, but not immediately).

In addition, the place layer explicitly represents gaps in knowledge about
explored space. Space that has not yet been explored by the robot has
no places in it. Therefore, tentative places are generated, which the robot
would probably uncover if it moved in a certain direction. These hypo-
thetical places allow for reasoning about unknown space, and for planning
and executing exploratory activities. They are annotated as placeholders
to keep them apart from ordinary, actual places, but are otherwise identi-
cally represented and interconnected. For an illustrative example of several
places and placeholders identified during spatial exploration, see Figure 7
on page 29. Placeholders are generated wherever there is a frontier between
explored and unexplored space near the current Place. The robot can then
explore that frontier by moving towards the placeholder, possibly giving rise
to a new Place there. Two quantitative measures are associated with each
placeholder providing an estimate of information gain related to each explo-
ration task. They are computed from the local grid map associated with the
current Place, and are used by the motivation system. The measures used
are the coverage estimate (CE) and the frontier length estimate (FLE), cf.
Figure 9 on the next page. The former is obtained by measuring the free
space visible from the current node and not near to any existing node, and
assigning it to the closest placeholder. This heuristically estimates the num-
ber of new places that would result from exploring that direction. The FLE
is analogously extracted from the length of the border to unknown space.
By prioritising these two measures differently, the motivation mechanism
can produce different exploratory behaviours.

5.1.3 Categorical Layer

The categorical layer contains long-term, low-level representations of cat-
egorical models of the robot’s sensory information. The knowledge repre-
sented in this layer is not specific to any particular location in the envi-
ronment. Instead, it represents a general long-term knowledge about the
world at the sensory level. For instance, this is the layer where multi-modal
models of landmarks, objects or appearance-based room category or other
properties of spatial segments such as shape, size or color are defined in
terms of low-level features. The position of this layer in the spatial repre-
sentation reflects the assumption that the ability to categorise and group
sensory observations is the most fundamental one and can be performed
in a feed-forward manner without any need for higher-level feedback from
cognitive processes.

The categorical models stored in this layer give rise to concepts utilised
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A
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D

Figure 9: Placeholder creation. Dashed circles are placeholders, each rep-
resenting one placeholder. A and B are frontier length estimates, C and D
are coverage estimates for the respective placeholders.
by higher-level layers. In many cases complex models are required that
can only be inferred from training data samples. In case of models that
correspond to human concepts, they can be learnt in a supervised fashion,
using a top-down supervision signal. Due to the high complexity of the
models, unused knowledge might be compressed and generalized.

More concretely, the categorical models are built in a disciriminative,
supervised fashion using Support Vector Machines [12]. For simplicity, let
as assume that we deal with two categories only, e.g. representing a room
and a corridor. In such case, we forumlate the problem of separating a set of
training data (x1, y1), (x2, y2), . . . , (xn, yn) into two classes, where xi ∈ <N
is a feature vector and yi ∈ {−1,+1} its class label. If we assume that the
two classes can be separated by a hyperplane in some Hilbert space H, then
the optimal separating hyperplane is the one which has maximum distance
to the closest points in the training set resulting in a discriminant function

f(x) =
n∑

i=1

αiyiK(xi,x) + b. (13)

The classification result is then given by the sign of f(x).
The extension of SVM to multi class problems can be done in several

ways. Here we employ the One-against-All (OaA) strategy. If M is the
number of classes, M SVMs are trained, each separating a single class from
all remaining classes. The decision is then based on the algebraic distance
of the classified sample to each hyperplane fh(x) and the final output is the
class corresponding to the hyperplane for which the distance is largest.

Discriminative classifiers do not provide any out-of-the-box solution for
estimating confidence of the decision; however, it is possible to derive con-
fidence information and hypotheses ranking from the distances between the
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samples and the hyperplanes [32]. It is straightforward to extend the OaA
multi-class strategy so that additional information about the decision be-
comes available. Let us define the score Vh(x) to be equal to the distance
from the average distance of the training samples to the hyperplane:

Vh(x) =
∣∣∣f̂h − fh(x)

∣∣∣ .

Thus, we do not measure how far the test sample is from the hyperplane,
but how close it is to the training data belonging to one of the classes. The
best hypothesis can be determined by the following rule:

h∗ = argmin
j=1...M

{Vh(x)} . (14)

If now we think of the confidence as a measure of unambiguity of the decision,
we can define it as follows

C(x) = min
h=1...M, h6=h∗

{Vh(x)} − Vh∗(x). (15)

The value C(x) can be thresholded for obtaining a binary confidence infor-
mation. Moreover, we can order the hypotheses using the values of Vh(x).

In our framework, the categorical models might be derived from mul-
tiple modalities (e.g. geometrical information extracted from laser range
scans and appearance-based information extracted from vision). In order
to integrate the different modalities, we used the SVM-DAS integration
scheme [33]. The basic idea is to accumulate the outputs of a multi-class
discriminative classier obtained for various cues with a complex, possibly
non-linear function. Specifically, the accumulation function is given as:

V ΣP
k (I) =

m∑

i=1

αki yiK(Vi,V ) + bk, k = 1, . . . ,K,

where V is a vector containing all the outputs for all cues:

V =
[
{V 1

h (T1(I))}h∈H1 , . . . , {V P
h (TP (I))}h∈HP

]
.

The final decision as well as confidence estimates can be obtained using the
same method as for a single-cue model.

Examples of gaps in categorical knowledge arises, for example, when the
user talks about an object yet uknown to the robot. This means that there
is no model for the object. Actively acquiring such a model is an example
of self-extension. Depending on what innate knowledge the robot is provide
with, there may also be gaps/uncertainty in the number of room categories
that are present and models for these.

There is a close connection between the integration of information from
multiple sensory modalities that goes on in the categorical layer and the
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more general multi-modal belief processing described in section 3 on page 12.
In principle the estimation of room categories could be done at that level
but it is kept within the spatial representation because, i) it is that the
nothing but the end result is used by any component outside the spatial
representation and ii) there is plenty of domain knowledge that would have
to be propagated to the more general processing levels to be able to perform
the fusion.

5.1.4 Conceptual Layer

The conceptual layer provides an ontology that represents taxonomy of the
spatial concepts and properties of spatial entities that are linked to the
low-level categorical models stored in the categorical layer. This associates
semantic interpretations with the low-level models and can be used to specify
which properties are meaningful e.g. from the point of view of human-robot
interaction. Moreover, the conceptual layer represents relations between
the concepts and instances of those concepts linked to the spatial entities
represented in the place layer. This makes the layer central for verbalization
of spatial knowledge and interpreting and disambiguating verbal expressions
referring to spatial entities.

The second important role of the conceptual layer is to provide definitions
of the spatial concepts related to the semantic segmentation of space based
on the properties of segments observed the environment. A building, floor,
room or area are examples of such concepts. The conceptual layer contains
information that floors are usually separated by staircases or elevators and
that rooms usually share the same general appearance and are separated by
doorways. Those definitions can be either given or learned based on asserted
knowledge about the structure of a training environment introduced to the
system.

Finally, the conceptual layer provides definitions of semantic categories
of segments of space (e.g. areas or rooms) in terms of the values of properties
of those segments. These properties can reflect the general appearance of a
segment as observed from a place, its geometrical features or objects that
are likely to be found in that place.

The representation underlying the conceptual map is an OWL-DL on-
tology2, consisting of a taxonomy of concepts (TBox ) and the knowledge
about individuals in the domain (ABox ), cf. Figure 7 on page 29, cf. [39].
Here is an example of a concept definition in the current implementation
which defines a kitchen as a room that contains at least two typical objects:

Kitchen ≡ Roomu ≥ 2contains.KitchenObject

Besides the usual inferences performed by the OWL-DL reasoner, namely
subsumption checking for concepts in the TBox (i.e., establishing subclass/-

2http://www.w3.org/TR/owl-guide/
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superclass relations between concepts) and instance checking for ABox mem-
bers (i.e., inferring which concepts an individual instantiates), an additional
rule engine is used to maintain a symbolic model of space under incomplete
and changing information.

The discrete places from the place layer and their adjacency are the
main pieces of knowledge that constitute the input for that reasoning. One,
it maintains a representation that groups places into rooms. Furthermore,
using observations (visually detected objects, appearance- and geometry-
based room categories) it can infer human-compatible concepts for a room,
and raise expectations about which other kinds of objects are proto-typically
likely to be present. The ongoing construction of the conceptual map is
potentially nonmonotonic. The overall room organisation may be revised
on the basis of new observations. The further association between room
concepts and salient, proto-typical object types is established through the
“locations” table of the OpenMind Indoor Common Sense3 database by
Honda Research Institute USA Inc.

In the current implementation, the conceptual layer can be used to de-
termine knowledge gaps in the categorisation of rooms. It is considered a
gap in knowledge if for a given room (i.e., an instance of PhysicalRoom) its
basic level category is unknown. This is assumed to be the case if no more
specific concept than PhysicalRoom (i.e., Office or Kitchen, cf. Figure 7 on
page 29) can be inferred for the individual. This knowledge gap persists
until the robot has gathered enough evidence (i.e., contained objects) for
inferring a subconcept.

5.1.5 Relation to typology

This section will illustrate the type of uncertainties and gaps that are present
in the spatial representation in a simple example. In the example the robot
is given a tour of the environment and then it is asked to find a certain
object.

Assuming that the robot starts with no prior specific information about
the environment the sensory layer would contain a grid map covering the re-
gion around the robot with all of space marked as unknown. There would be
no landmarks detected yet so the detailed local spatial representation would
only contain the robot’s pose. The robot then starts to gather information
from its sensors (laser scanner and cameras). Cells in the grid map repre-
senting what parts of space has been explored will gradually change state
from unexplored to free/occupied. Landmarks will be detected and their
pose estimated. The uncertain landmark and robot poses together with the
state of the cells in the exploration graphs are examples of state variable
uncertainty as defined in the typology in Section 2 on page 8. The robot

3http://openmind.hri-us.com/

EU FP7 CogX 36



DR 1.2: Unifying representations of beliefs

does not know in advance how large the environment is and how many
rooms and objects there are which is an example of uncertainty about
state model complexity. After some time the scene will change and the
robot will add a new Place to the place layer. More and more places will be
added and paths between them as well. The initially unknown connectivity
of places is an example of uncertainty in structural model complexity.
Navigating between places also include a level of effect value uncertainty.

Based on low-level information as well as for example the presence of
objects various properties will be associated with the Places. These proper-
ties will be uncertain (state variable uncertainty). In the current system
the number of categories is known in advance but extensions would allow to
incorporate uncertainty about state model complexity here as well.
Based on the properties of the places, the places are grouped into rooms on
the conceptual level in the spatial representation. A soon as a new room
instance is created a gap regarding the category of that room appear, ie
whether it is a kitchen, or an office, etc.

Assume now that the user asks the robot to find a certain object. At this
point we assume that a model of the object is given so there is no uncertainty
there. Also assume that the robot does not know where the object is already.
This will lead to a gap in knowledge regarding the position of the object.
Based on information regarding the statistical relation between objects and
other structures a prior for the location of the object can be calculated. This
is an example of uncertainty in the structural variable value. The search
process involves both uncertainty in the causal model complexity as
there are currently many unmodelled variables that effect the result such as
occlusions, ambient lighting conditions but also causal value uncertainty
since the uncertainty in the effects of running the object recognizer on images
from different view points can be reduced by gathering more information
about the location of the object.

6 Beliefs about vision

The purpose of vision in the context of an embodied, situated agent is to
purposefully interpret the visual scene. There will typically be a task or
tasks to pursue and embodiment will define certain constraints. Together
these form a dynamically changing context in which vision operates.

For the remainder of this section we will be concerned with locating,
identifying and tracking objects, though bear in mind that this is only one
of many things vision does. For tasks like identifying discourse referents
(“Get me the cup”) or fetch-and-carry (locate the cup and grasp it) objects
are the key ingredients.

Information obtainable by visual methods will often be incomplete (oc-
clusions, backsides of objects, objects missed all together) or inaccurate
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(uncertainties with regard to object identity or pose) and this uncertainty
will have to be represented.

Visual knowledge can be characterised by the question “What is this?”.
This actually involves two unknowns: what and this. Vision must first
segment the scene into things to reason about (where are objects?) and
then gather information about those things (what are they?). Note that of
course once we have learned object models, scene segmentation is no longer
necessary and where and what are answered simultaneously. But for a self-
extending, on-line learning system known object models can not be assumed
a priori but rather are the results of learning activities. Furthermore search
for known objects typically strongly benefits from knowledge where to con-
centrate search on.

So we have two questions to be answered regarding scene interpretation:

1. Where are objects?

2. What are the properties of objects (besides location)?

Where?

In the current architecture the first question “Where are objects?” or to
be more precise “Where is a high likelihood of objects?” is addressed by a
3D attentional mechanism (plane pop-out), detailed in Section 6.1, which
produces 3D spaces of interest (SOIs) that serve as object candidates. The
question of “where?” is also addressed by tracking of learned object models
detailed in Section 6.4.

Regarding the typology of incompleteness of Section 2 this is a quan-
titative incompleteness regarding the world state, with the nature of in-
completeness being with respect to variable value. Once we have located
a space of interest, the remaining incompleteness regards what is inside, as
given in the next section.

What?

The second question “What are the properties of objects?” is addressed
by (1) incremental learning and recognition of visual object properties as
detailed in Section 8 about cross-modal beliefs and (2) learning and recog-
nising identities detailed in Section 6.3, where we developed two approaches,
one which outputs a distribution over object identities and views for a given
image region (Section 6.3.1) and one which outputs single hypotheses of
identity together with 6D object pose (Section 6.3.2).

Regarding the typology of incompleteness of Section 2 this constitutes a
qualitative incompleteness over discrete world state (which of a number
of known objects is it?), again with the nature of incompleteness being
with respect to variable value. For the case of object recognition plus 6D
location we additionally have quantitative state knowledge.
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Observation Functions

Each method (detection, recognition, tracking) currently provides some form
of confidence measure c, where each one lies in a different range (though
often that range happens to be 0..1) and where each has a different actual
meaning. To support Bayesian inference over the results of different methods
we intend to transform these into actual probabilities by learning observation
functions for confidence values.

Let us take (SIFT based) object recognition as an example. During the
online recognition phase we can observe a confidence value (e.g. the relative
number of matched SIFT features) which gives some information, though
not always terribly accurate, about our confidence of having recognised the
respective object. Now that value might consistently hover around 0.4 even
for subjectively good results (note that half of the SIFT features will be
on the backside of the object, some smaller features will often be lost due
to scale changes). So the probability of a correct recognition is certainly
not 0.4 (and why should it be - the confidence value is in no way intended
to be a probability) but closer to 1.0. To obtain actual probabilities we
therefore label training data with ground truth (e.g. bounding boxes around
true object locations) and learn the probability of the confidence value c
given true positives:

P (c | object = true) (16)

This will typically produce a monomodal distribution (if not the confidence
measure is chosen badly) to be expressed e.g. as a Gaussian. Learning these
observation functions for each method then allows a consistent formulation of
the probabilities of success or failure for each and thus supports probabilistic
reasoning over all methods.

6.1 Bottom-up 3D Attention

Attention operators based on 2D image cues (such as colour, texture) are
well known and discussed extensively in the vision literature but are not
ideally suited for robotic applications. In such contexts it is the 3D structure
of scene elements that makes them interesting or not. So our attention
operator, plane pop-out, selects spaces of interest (SOIs) based on scene
elements that pop out from supporting planes using 3D stereo data, which is
detailed in Section 6.1.1 and 6.1.2 respectively. SOIs are then further refined
by back-projection onto the 2D image followed by colour-based segmentation
to produce what we call proto objects, detailed in 6.1.3.

6.1.1 Planes

Supporting planes are detected in the 3D point cloud reconstructed by
stereo. To detect multiple planes, we apply an iterative RANSAC scheme,
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where the consensus set of a detected plane is removed from the input points
and search is repeated until eventually no further planes can be found. Hy-
pothesis generation uses a bias where neighbouring points are selected in the
sample set with a higher probability. Furthermore plane hypotheses that are
not horizontal (note that we know the camera tilt angle) are rejected imme-
diately. To estimate the confidence of a plane hypothesis i independent of
the absolute number of inliers we use the point density

ρi =
ni
Ai

(17)

where ni is the number of inliers of plane i and Ai is the area of the convex
hull of the inliers projected onto the plane. High values of ρ indicate good
plane hypotheses. But ρ is of course no actual probability, so we will learn
an observation function

P (ρ | plane = true) (18)

6.1.2 SOIs

Points not belonging to a plane are clustered and form popping-out spaces
of interest (SOIs). SOIs are represented using the following data structure.

SOI

boundingSphere

foreGroundPoints

backGroundPoints

ambiguousPoints

The foreground points are those 3D points that stick out from the support-
ing plane and are enclosed by the bounding sphere. Background points are
points that also fall inside the bounding sphere but are part of the support-
ing plane. These points capture the appearance of the local background
around the objects. Finally ambiguous points form the boundary between
supporting plane and segmented points and could not be labelled as fore-
ground or background with certainty, i.e. they are near the RANSAC inlier
threshold.

SOIs are tracked in the sequence of stereo frames by simply comparing
their centres and sizes and a decision is made whether a new SOI was de-
tected or an existing SOI was re-detected. As a next step we will replace this
crisp decision with a confidence value c based on the overlap between SOI
hypotheses. Using libelled training data we can then learn an observation
function

P (c | soi = true) (19)
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6.1.3 Proto Objects

SOIs are object candidates which are segmented from their supporting planes.
The quality of the segmentation depends on texture available for stereo re-
construction and often this segmentation is not very precise, especially con-
cerning the above mentioned ambiguous points. To further move in the
direction of proper objects the segmentation therefore is refined. To this
end we back-project all 3D points into the image and perform 2D colour
based segmentation, where colour samples for foreground and background
are taken from the respective projected points. This leads to the definition
of proto objects.

ProtoObject

imagePatch

segmentationMask

foreGroundPoints

SOI

The image patch contains the 2D image of the back-projected SOI and
the segmentation mask the corresponding refined foreground/background
labelling. The list of foreground points is the refined list of 3D points corre-
sponding to the precise segmentation mask. Furthermore the proto object
contains a reference to its source SOI. Proto objects now are entities already
considered objects but with unknown attributes (apart from location). Fill-
ing in the attributes, answering the what question, is explained in the next
section.

Once a proto object is detected, properties like colour and shape are
filled in or object identity is recognised and the proto object is promoted to
a visual object.

VisualObject

// geometry

geometryModel

// identity

identityLabels

identityDistribution

// location

pose

// properties

propertyLabels

propertyDistribution

protoObject

A visual object is composed of several slots: geometry, identity and proper-
ties. Geometry encodes the 3D shape as a triangle mesh plus the 6D object
pose, where pose can also represent the uncertainty of pose estimation. Ob-
ject recognition will output various recognition hypotheses represented as
a discrete probability density distribution over identities. Similarly recog-
nition of properties outputs recognised properties as continuous probability
density distribution.
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6.2 Object shape: Detection

Detection of full 3D object shape is currently limited to basic geomet-
ric shapes such as cuboids (boxes) and cylinders. The approach detects
groups of image edges corresponding to projections of basic shapes in non-
degenerate views. Each grouping hypothesis has an associated significance
value σ, which is derived from properties such as parallelism, closeness or
completeness of Gestalt. Concretely we use the following for a cuboid (box):

σb =
1
6

∑

i=1..6

1− δi
π/2

(20)

where δi are the angular differences between the opposing edge pairs of the
three visible cuboid faces. These should be parallel (under orthographic
projection) resulting in a significance value of 1 but are typically not due to
effects of perspective as well as image noise. Similarly for cylinders:

σc =
1
2

∑

i=1..2

1− δi
π/2

(21)

where we sum the angular differences between the occluding edges and the
top and bottom ellipse major axes respectively.

These significance values are only meaningful however for ranking hy-
potheses of the same type of shape and are not simply comparable over
types. So again we learn observation functions

P (σb | cuboid = true) (22)
P (σc | cylinder = true) (23)

6.3 Object identity: Recognition

Regarding object recognition we employ two approaches. Both are based on
SIFT features. The first approach detailed in 6.3.1 uses a set of per-view
bag-of-features object model and reasons about the identity of a given image
(or image ROI) amongst several alternative hypotheses of object identity.
The second approach detailed in 6.3.2 uses a 3D SIFT point cloud model
and outputs only a single hypothesis of object identity together with full 6D
pose.

6.3.1 Reasoning about object identity amongst alternatives

For a classifier to be used in a Bayesian network, it has to give the results of
classification in a probabilistic form. For object recognition we use a general
probabilistic model that is described in section 8.1.1. The model yields a
probability distribution over all known classes, but also takes into account
the case when the object being classified doesn’t belong to any of the known
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classes. This is described with the probability of the ”unknown object” in
the probability distribution. Here we describe the internal representation of
a recognisable object and the calculation of the distance function d(Mi, z)
which is required by the probabilistic model.

Visual object model The object model Mi is represented with a set
of views of the object from different viewpoints, Mi = {V i

j }j=1:Ni . A
view V i

j is described with viewpoint angles (φ, λ) and a set of features
{F vk }k=1:Nv extracted from the image taken at this viewpoint. A feature
F vk = {xk, yk, σk, θk,Xk} is a SIFT feature described with its location in the
image (xk, yk), scale σk, orientation θk and a 128-dimensional vector Xk.

Similarly, an observation z = {F zk }k=1:Nz is represented with a set of
SIFT features extracted from an image.

Probabilistic form Let m ∈ {mk,mu} denote two possible events: (i)
the observation came from an existing internal model mk, and (ii) the ob-
servation came from an unknown model mu. The general knowledge model
is defined as a probability of observation z:

p(z) = p(z|mk)p(mk) + p(z|mu)p(mu). (24)

The function p(z|mk) is the probability of explaining z given that z comes
from one of the learnt models. The function p(z|mu) is the probability of z
corresponding to the unknown model.

If we assume that the robot has learnt K separate alternative internal
models M = {Mi}i=1:K from previous observations and we define the un-
known model as M0, the probability p(z) can then be further decomposed:

p(z|mk) =
K∑

i=1

p(z|Mi,mk)p(Mi|mk), (25)

p(z) = p(mk)
K∑

i=1

p(z|Mi,mk)p(Mi|mk)

+p(mu)p(z|M0,mu)p(M0|mu). (26)

The general model requires a likelihood function p(z|Mi) that gives the
probability of observation z given the model Mi. We first define a distance
function between the object model Mi and an observation z and use the
distance function to define the likelihood function.

The likelihood function The object model representation is appearance
based, so ”appearance distance” is used to calculate the similarity between
an observation z and a model Mi. When matching a view V j

i of an object
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model Mi to an observation z, the Euclidean distance between each pair of
feature descriptors is calculated:

df (k, l) = d(Xv
k,X

z
l ), k = 1 : Nv, l = 1 : Nz (27)

where Xv
k is a SIFT descriptor from the view V j

i and, Xz
l is a SIFT descriptor

from the observation z. Let lk,1 and lk,2 be the indices of the shortest and
second shortest distance between a descriptor from the model Xv

k and all
descriptors from the observation z. In subsequent calculations we use only
the shortest distances d(k, lk,1) but only when the shortest two distances are
far enough. Like Lowe [28] we use the threshold on the distance ratio to
keep or reject feature matches:

d(k) =

{
df (k, lk,1) df (k, lk,1)/df (k, lk,2) < 0.8,
−1 otherwise.

(28)

The distances between a single view V i
j and the observation z are con-

verted to a view score Di
j . The minimal distance d0 is used to set an upper

bound for the contribution of each matched SIFT feature to the final score.
In practise d0 can be either constant or estimated for each view separately
in the learning phase.

Di
j =

∑

k,d(k)>0

1
max(d0, d(k))

(29)

By taking the view with the highest score Di
b where b = arg maxj(Di

j)
we express the appearance distance d(Mi, z) as

d(Mi, z) =
1
Di
b

(30)

The a priori probability of observing the i-th model, p(Mi) can be set
to 1

K if all known models are equally probable, or can be estimated from
the number of times we have encountered the class Mi during learning.
The a priori probability p(mu) that the observations will correspond to an
unknown model can be set as in (31) and the PDF of the feature value z
given the ”unknown” model M0 is set to a uniform distribution as in (32).

p(mu) = e
−N∗s
λN

p(mk) = 1− p(mu). (31)

p(z|M0) = U(z). (32)

EU FP7 CogX 44



DR 1.2: Unifying representations of beliefs

The only distributions which remain to be estimated are the likelihood
functions of each i-th class, i.e., p(z|Mi,mk). These are in fact probabilistic
models that relate the likelihood of Mi being responsible for generating z,
given the distance function value is d(Mi, z). Formally,

p(z|Mi,mk) = p(yi|Θi), (33)

where yi = d(Mi, z) and Θi are the parameters of the probability density
function corresponding to the i-th model.

The functional form of p(yi|Θi) can be estimated experimentally. A
common approach is to use common parameters for all distributions, thus
Θi = Θ for all i. Under the assumption that low distances d(Mi, z) imply
high probability of z corresponding to the model Mi and large distances
imply low probability, a straightforward approach would be to define p(·|Θ)
as an exponential distribution, which requires estimating only a single pa-
rameter λd, e.g.,

p(yi|Θ) = λd
−1e−yi/λd . (34)

This parameter can be estimated experimentally by obtaining a large
number of typical values yi for each model Mi and taking the λ̂d that max-
imises the likelihood of these measurements under the model in (34).

Once the likelihood function p(z|Mi) is defined, the a posteriori proba-
bility of a class Mi is calculated as

p(Mi|z) =
p(z|Mi,m)p(Mi|m)

∑
m∈mu,mk

K∑
j=0

p(z|Mj ,m)p(Mj |m)
, (35)

where m = mk for i ∈ [1,K] and m = mu for i = 0. The index of the most
probable object model Mî given the observation z is

î = arg max
i

(p(Mi|z)). (36)

6.3.2 Locating 3D object instances

While the approach detailed in the previous section reasons about object
identity of a given image region and outputs a distribution over object iden-
tities, the following approach outputs a single object identity together with
6D pose. The approach is based on SIFT features, which are mapped onto
the 3D geometric surface of an object during a learning phase. SIFT de-
scriptors are then used to build a codebook, where descriptors are clustered
using an incremental mean-shift procedure and each 3D location on the
object surface is assigned to the according codebook entry.

In the recognition phase SIFT features are detected in the current image
and matched with the codebook. According to the codebook entry each
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matched feature has several corresponding 3D model locations. To robustly
estimate the 6D object pose we use the OpenCV pose estimation procedure
in a RANSAC scheme with a probabilistic termination criterion. Given an
acceptable failure rate η0, i.e. the accepted probability that no valid sample
set could be found we can derive the number of iterations k necessary to
achieve a desired detection probability (1 − η0) using an estimate of the
inlier ratio ε̂, which is taken to be the inlier ratio of the best hypothesis so
far:

while η = (1− ε̂m)k ≤ η0) do
...

end while
with m the size of the minimum sample set. So the number of RANSAC
iterations is adapted to the difficulty of the current situation and accordingly
easy cases quickly converge.

We define the confidence of detection

c =
ninlier
ndetected

(37)

as the ratio between the matched interest points ninlier and the number of
detected interest points ndetected located within the object boundary pro-
jected to the current image. This provides a good estimate independent of
the total number of features in the model and independent of current scale.

This confidence is no actual probability however so we will again learn
an observation function

P (c | object = true) (38)

6.4 Object location: Tracking

The following section deals with tracking of learned object models. Models
are given as 3D shape models (i.e. triangulated meshes) together with sur-
face texture and we estimate the probability distribution over full 6D object
pose.

To allow estimation of non-parametric and possibly multi-model PDFs,
our approach uses Monte Carlo particle filtering. Concretely we model a
moving object as a dynamic system with state x, system function f(.),
system noise wk, observation function h(.) and observation noise vk

xk+1 = f(xk) + wk (39)
yk = h(xk) + vk (40)

where x is 6D object pose, f(.) is a linear motion model and h(.) represents
the pinhole camera projection. wk and vk are zero mean Gaussian noise.
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The PDF over 6D object pose x is approximated using a set ofN samples,
or particles xi and associated importance weights wi.

x̂ =
N∑

i

wiδ(xi) (41)

where δ(xi) denotes the Dirac delta mass located at xi. In each tracking
step k, weights are evaluated by projecting the object into the image using
the respective pose and drawing contours as well as surface texture edges
and subsequently comparing these with edges extracted from the camera
image. The samples xi are resampled according to the importance weights
of the prior distribution and the linear motion model as well as Gaussian
system noise wk are applied, where higher noise levels allow tracking of faster
moving objects (by allowing particles to “explore a larger search space”).
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Figure 10: Probability density function of a translational degree of freedom
using different levels of observation noise (see text for details)

Observation noise vk corresponds to the amount of dilation applied to
image edges prior to matching with projected model edges. Fig. 6.4 presents
the probability density function of one of the 6 DOF of the tracking state x
and shows how higher levels of observation noise tend to smooth estimated
PDFs.

6.5 Conclusion

Visual knowledge as detailed in the previous sections is always related to
(some parts of) the world state. This is not surprising as vision on its own
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as we use it now is concerned with perceiving the world rather than ex-
plaining it (cause, effect knowledge). By combining visual information later
on with information from action we talk about causes and effects. Con-
cretely, in this section we were interested in object locations and identities.
The former constitutes quantitative knowledge (expressed e.g. as contin-
uous probability distributions in the tracker) while the latter constitutes
quantitative knowledge about qualitative entities (expressed e.g. as discrete
probability distributions in case of object recognition). Incompleteness of
knowledge then relates to variable values (e.g. the 6D pose of an object).

Not all visual methods can provide genuine probabilities of success or
failure, but do typically provide some measure of confidence. To support
consistent probabilistic reasoning over the results of different methods we
will learn observation functions for these confidence values.

7 Planning: how beliefs change under action

Planning is concerned with the synthesis of action strategies that bring about
the achievement of objectives. Planning procedures derive such strategies
given a model of the environment. That model describes the starting con-
ditions of the robot, along with the actions that it can execute, and the
objectives that it seeks to achieve. Essentially, the model corresponds to a
detailed description of an agent’s knowledge about its environment.

In the sequel we formally describe how we represent models of the en-
vironment for the purposes of planning. We give a description of what we
consider to be a propositional planning problem where action effects are de-
terministic. Equivalent to the STRIPS planning model [16], this formalism
corresponds to a coarse-grained solution to the: (1) frame problem —i.e.,
modelling what does not change in the environment when the robot acts
in the environment; (2) its dual, the ramification problem —i.e., modelling
what changes as the robot acts; and (3) the qualification problem —i.e.,
modelling what preconditions must be met in order for an operation to be
performed. Following our exposition of propositional planning we motivate
a relational formalism, called PDDL,4 that we use to represent planning
problems. Making all the above ideas concrete, we describe a simple version
of the CogX dora scenario using PDDL.

Of course, that is not sufficient to address the ongoing concerns we have in
CogX about beliefs, and in particular representations of a machine’s belief
about its environment. In particular, we cannot deal with situations where
the robot believes it could be in any one of a number of states, that it believes
an action can have one of a number of effects, and where it believes that
inference to the true world-state is based on a concrete probabilistic scheme

4Planning Domain Definition Language.
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for gathering perceptual evidence. In other words, using our deterministic
propositional formalism we cannot address:

• Uncertainty in state —e.g., The cornflakes could be in the kitchen, or
in the lounge room.

• Uncertainty in acting —e.g., When dora opens a door, it could be
locked and therefore might not open. A priori (before acting) dora
does not know the outcome of trying to open the door.

• Uncertainty in perception —e.g., Just because dora perceives corn-
flakes, how should that effect her belief that cornflakes are really in
her visual field?

In order to address those requirements, we appeal to much more powerful
representational mechanisms, in particular the MDP5 for modelling uncer-
tainty in action outcomes, and the POMDP6 for modelling uncertainty in
state and perception. In the sequel we review those in turn, and then mo-
tivate a more expressive variant of PDDL, called DTPDDL,7 a relational
formalism that is rich enough to describe stochastic domains with partial
observability. The details of that language are given in Appendix A. We
sketch the basic features of that language and our modelling formalism by
giving a richer example of a dora scenario that exhibits state-uncertainty
and partial observability.

Finally, CogX requirements motivate an explicit representation of (knowl-
edge) gaps . This is of particular importance when enumerations of possible
states or action outcomes are not available – e. g., when the name of a hu-
man is unknown and the robot plans to discover it. For our approaches to
planning in multiagent environments —e. g., Human-Robot Interaction—
we therefore use a planning representation that explicitly models knowledge
and how it can be affected by epistemic operator effects, MAPL8

Making those ideas concrete, we describe a simple version of the CogX
dora scenario using MAPL.

7.1 Classical Planning

Here we describe deterministic propositional planning formally. In the fol-
lowing section we motivate PDDL for CogX; That is the de facto planning
domain definition language for propositional planning. Subsequently we

5Markov Decision Process.
6Partially Observable Markov Decision Process.
7Decision-Theoretic PDDL.
8Multiagent Planning Language.
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make these ideas concrete with an example, before developing representa-
tional extensions to this material that we use in CogX.

A propositional planning problem is given in terms of a finite set of
objects O, first-order STRIPS-like planning operators of the form:

〈o, pre(o), add(o), del(o)〉
and predicates Π. Here, o is an expression of the form O(x1, . . . , xn) where
O is an operator name and xi are variable symbols, pre(o) are the operator
preconditions, add(o) are the add effects, and del(o) the delete effects. By
grounding Π over O we obtain the set of propositions P that characterise
problem states. For example, suppose we have a robot called dora who can
be in the Library or the Kitchen. Then we can have a binary predicate In,
one grounding of which is the proposition In(Dora, Library). A planning
problem is posed in terms of a starting state s0 ⊆ P , a goal G ⊆ P , and a
small set of domain operators.

An action a is a ground operator having a set of ground preconditions
pre(a), add effects add(a), and delete effects del(a). The contents of each
of those sets are made up of elements from P . An action a can be executed
at a state s ⊆ P when pre(a) ⊆ s. We denote A(s) the set of actions that
can be executed at state s. When a ∈ A(s) is executed at s the resultant
state is (s ∪ add(a))\del(a). Actions cannot both add and delete the same
proposition – i.e., add(a) ∩ del(a) ≡ ∅.

A state s is a goal state iff G ⊆ s. A plan is a prescription of non-
conflicting actions to each of n time steps. We say that a plan solves a
planning problem when executing all the actions at each step starting from
so achieves a goal state. A plan is optimal iff no other plan can achieve the
goal in a shorter number of time steps. The planning problem just described
is PSPACE-complete in general, and NP-Complete under fairly reasonable
restrictions to plan length.

7.2 PDDL

We have just describe planning in a propositional sense, and thus far only
alluded to the fact that in practice we employ a more sophisticated and gen-
eral formalism. This is required because in robotics applications, collections
of problems usually exhibit a strong relational structure and are therefore
best represented using first-order languages supporting the declaration of
objects and relations over them as well as the use of quantification over
objects [30]. The 3rd Planning Domain Definition Language (PDDL3.0 –
pronounced “pea-diddle”) is the language of choice of the planning commu-
nity [29, 18, 14]. This language and its predecessors have been developed
for and adopted at the International Planning Competitions since 1998.

A PDDL-based language forms the basis of domain and problem descrip-
tion in the planning subarchitecture of CogX. The details of that grammar
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are given in Appendix A. For the purposes of this document, we shall elab-
orate on the ideas of the previous section and Appendix A by given an
example from a familiar CogX scenario.

7.2.1 Example: Deterministic Representations

Suppose we have a robot, dora, that can be located in one of four places:

1. Kitchen

2. Library

3. Office

4. Hall

We suppose all of those places are connected via the hall. For example,
to traverse from the kitchen to the library, Dora must pass through the
hall. Now, suppose that dora has knowledge about the appearance of 4
types of object:

1. Bookshelves

2. Desktops

3. Chefs

4. Cornflakes

Here, cornflakes are a special type of object that she can interact with
– For our purposes, the object cornflakes is a member of a type called
widget. We typically have that the starting environment is characterised
by the set of facts that are true. In PDDL, dora’s starting environment is
given as follows.

First, we describe a problem, called “dora the explorer problem1”, that
is an instance of a domain, called “dora the explorer”. We then describe the
objects that occur for this problem, along with their type.

( d e f i n e ( problem dora the exp lo r e r p rob l em1 )

( : domain d o r a t h e e x p l o r e r )

( : o b j e c t s

Hal l R1 R2 R3 − p lace

Library Kitchen O f f i c e Hall−Label − l a b e l

Corn f lakes − widget

Bookshe l f Desktop Chef − f e a t u r e

)
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Following this, we describe the starting state, that corresponds to the
set of facts that are true in the initial configuration of dora.

( : i n i t ( connected Hal l R1) ( connected R1 Hal l )
( connected Hal l R2) ( connected R2 Hal l )
( connected Hal l R3) ( connected R3 Hal l )

( a s s i g n ( l a b e l l e d R1) Library )
( a s s i g n ( l a b e l l e d R2) Kitchen )
( a s s i g n ( l a b e l l e d R3) O f f i c e )

( widget−l o c a t i o n Corn f lakes R2)
( featured−at Bookshe l f R1)
( f eatured−at Chef R2)
( featured−at Desktop R3)

( a s s i g n ( l o ca t ed ) Hal l )
)

Above, we have put the cornflakes in the kitchen along with the chef, and
then a bookshelf in the library, and a desktop in the office. We have
also reflected the connectivity between the rooms in dora’s environment, and
placed her in the hall initially.

Lastly, we can describe what objectives/goals dora should act to achieve.
In this case, we suppose she wants to be in the same room as where the
cornflakes are located.

( : goa l (= ( l o ca t ed ) R2) )
)

Recapping, we have now described dora’s starting configuration, along
with the goal configuration. We have also described the objects in her world,
along with their respective types. In order to complete the model, it is left
to describe a type hierarchy (over object types), along with a description
of the relations that exists between objects in dora’s world, and the actions
that can affect changes in her world. These aspects of the model form part
of what we call the domain (resp. problem) description. In this case, the
domain is what we referred to earlier as “dora the explorer”. The prefix to
a domain description gives an identifying string, along with a list of classes
of descriptive elements we required, called the “:requirements string”.

( d e f i n e ( domain d o r a t h e e x p l o r e r )

( : requ i rements
: typing
: s t r i p s
: e q u a l i t y
: f l u e n t s )

Here, inclusion of :typing means that objects in our domain are typed and
that the domain description shall contain a type hierarchy. The string
“:strips” means that we want to use PDDLs syntactic elements for describ-
ing propositional planning problems. String “:equality” gives us access to
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equality – i.e., the “(= . . . )” predicate, that can take 2 object arguments
of any type, and evaluates to true if both arguments are equal. Finally,
“:fluents” allows us to use functional elements in our model – e.g., “(assign
(location) Hall)” in our starting state description.

The type hierarchy for dora occurs as follows:

( : types
p lace l a b e l widget f e a t u r e − ob j e c t
model − ( e i t h e r widget f e a t u r e )
)

Above, we suppose widgets, features, and places and their associated
labels are all objects. We also introduce a model type, instances of which
are either widgets or features.

Following a description of the types in the domain description, we can
give the relations and concepts that exists within the world. In particular,
we give the :predicates and state functions :s-functions. The symbols we
declare below were all used to describe dora’s starting configuration earlier.

( : p r e d i c a t e s

( connected ?p1 − p lace ?p2 − p lace )
( widget−l o c a t i o n ?o − widget ?p − p lace )
( f eatured−at ?model − f e a t u r e ? l o c a t i o n − p lace )

)

( : s−f u n c t i o n s

( l a b e l l e d ? r − p lace ) − l a b e l

( l o ca t ed ) − p lace
)

Above, symbols have a ? prefix if they correspond to a variable name. Strings
“- type-name” give the types of the proceeding variable symbols. For exam-
ple, above predicate connected is binary, taking arguments of type place.

Lastly, in the domain description we give the action-physics of dora’s
world. In this case, we describe how dora can move between connected
places using the action schema that follows.

( : a c t i on move−to−connected−p lace
: parameters (? to − p lace ? from − p lace )
: p r e cond i t i on
( and
(= ( l o ca t ed ) ? from )
( connected ? from ? to )
)

: e f f e c t
( and

( a s s i g n ( l o ca t ed ) ? to )
)

)
)
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Given our starting configuration, we have that a ground instance of this
action is:

move-to-connected-place(Hall, Kitchen)

This ground action is only executable when dora is located in the hall.
Recall, from our starting configuration, that the hall is connected to the
kitchen. The effect of executing this action is to have the function that
tracks dora’s location, i.e., located, changed to reflect that dora moved
from the hall to the kitchen.

7.3 Decision-Theoretic Planning

Here we examine the representations of beliefs in planning. First we examine
the case that there is quantified uncertainty about the effects of actions.
Then, we move on to the case where the state of the world is only partially
observable. In that case we have quantified uncertainty about the state of
the environment, and also the robot must gather evidence, via perception,
about the true environment – i.e., the true state of the world might not be
observable(/knowable).

7.3.1 Markov Decision Processes

The following notes describe the MDP formalism developed in [21]. A much
more detailed coverage of the material of this section can be found in [30]
and [6].

A Markov decision process (MDP) is defined in terms of a four-tuple
〈S,A,Pr,R〉. S is a finite set of states. We write S∗ for the set of finite
sequences of states over S. Also, Γ is a member of S∗, and where i is
a natural number, Γi is the state at index i in Γ, and Γ(i) is the prefix
〈Γ0, . . . ,Γi〉 ∈ S∗ of Γ. A is a finite set of actions. Where s, s′ ∈ S, a ∈ A
then Pr(s, a, s′) is the probability of a transition from state s to s′ given
action a is executed at state s. Naturally then, for any s and a we have the
following constraint:

∑

s′∈S
Pr(s, a, s′) = 1

Also present is a bounded real-valued reward function R : S ×A → <. R
is bounded if there is a positive constant c so that for all s ∈ S and a ∈ A,
|R(s, a)| < c.

The solution to an MDP is called a policy, which is a prescription of how
actions are chosen at a history. Popular classes of policy include:

• A stationary (deterministic) policy π : S → A as a total function
mapping states to actions,
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• A stochastic memoryless policy π : S → PA so that πa(s) is the prob-
ability that we execute a given we are in s, and

• A policy as a deterministic function of the state history π : S∗ → A.9

We typically suppose the robot will act in the MDP forever, thus an
optimal policy is one that maximises the discounted cumulative reward over
an infinite horizon. Writing Rπseq for the reward function that accumulates
R over some finite prefix Γi generated according to stationary policy π, the
value of a policy is as follows.

Vπ(s) = lim
n→∞

E

[ n∑

i=0

βiRπseq(Γi) | π,Γ0 = s

]
(42)

Where π is stationary and deterministic, as a matter of convenience we often
prefer to express the value function in terms of a Bellman equation:

Vπ(s) = R(s, π(s)) + β
∑

s′∈S
Pr(s, π(s), s′)Vπ(s′) (43)

In (Eqns 42 and 43) 0 < β < 1 is a discount factor expressing the relative
importance of imminent versus distant rewards. A policy π∗ is optimal if,
for all π of any type, we have ∀s ∈ S, Vπ∗(s) ≥ Vπ(s). There is always an
optimal policy π∗ that is stationary – I.e., π∗ : S → A. Thus, the solution
to a discounted infinite horizon fully-observable decision-theoretic planning
problem is a stationary policy.

Given MDP 〈S,A,Pr,R〉, we seek an ε-optimal policy π∗ for discount
factor 0 < β < 1.

Definition 1. The Bellman operator T is a mapping defined so that T (V ) =
V ′ if for every state s ∈ S

V ′(s) = max
a∈A

[R(s, a) + β
∑

s′∈S
Pr(s, a, s′)V (s′)]

We have that the value function associated with an optimal policy is the
unique fixed-point solution to this set of equations. I.e.,

Vπ∗ = T (Vπ∗) (44)

Existence and uniqueness follow from the fact that T is an infinity-norm con-
traction. Indeed, where ‖X‖∞ = maxx∈X |x| —writing |x| for the absolute
value of x— we have that for any two value functions V1 and V2

9We will see that the latter are not very interesting for the case of MDPs, however
are necessary for acting optimally in the n-horizon POMDP problem to be discussed in a
moment.
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‖T (V1)− T (V2)‖∞ ≤ β‖V1 − V2‖∞ (45)

From Banach’s fixed-point theorem, we have the following for any π∗.

lim
n→∞

Tn(V ) = Vπ∗ (46)

For any V , acting greedily according to limn→∞ Tn(V ) corresponds to acting
optimally.

7.3.2 Partially Observable Markov Decision Processes

The current de facto model for probabilistic decision-theoretic planning with
partial observability is the POMDP. For our purposes, a POMDP is a six-
tuple 〈S,A,Pr,R,O, v〉. Here, S, A, Pr, and R are states, actions, state-
transition function, and reward function, respectively – They provide an
MDP-based specification of the underlying world state, dynamics, and re-
ward. O is a set of observations. For each s ∈ S and action a ∈ A, an
observation o ∈ O is generated independently according to some probability
distribution v(s, a). We denote vo(s, a) the probability of getting observation
o in state s. For s and a we have the following constraint:

∑

o∈O
vo(s, a) = 1

The optimal solution to a finite-horizon POMDP problem can be ex-
pressed as a policy µ : O∗ → PA where µa(o0, .., ot) is the probability that
we execute action a given observation history o0, .., ot.10 A finite-state con-
troller (FSC) is a more useful policy representation mechanism in the case
that the robot has ongoing interactions with the environment modelled by
the POMDP at hand. This is a three-tuple 〈N , ψ, η〉 where: n ∈ N is a set
of nodes, ψn(a) = P (a|n), and ηn(a, o, n′) = P (n′|n, a, o). The value of state
s at node n of the FSC for a given POMDP is:

Vn(s) =
∑

a∈A
ψn(a)R(s, a) + β

∑

a,o,s′,n′

ηn(a, o, n′)Pr(s, a, s′)vo(s′, a)Vn′(s′)

(47)
If b is a POMDP belief state – i.e, b(s) gives the probability that the

robot is in state s – then the value of b according to the FSC is:

VFSC(b) = max
n∈N

∑

s∈S
b(s)Vn(s) (48)

10Such a policy can oftentimes be compactly represented as a tree or algebraic decision
diagram (ADD).
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7.4 DTPDDL

DTPDDL extends PDDL in four key respects. First, the effects of actions
can be stochastic, and therefore the language facilitates the specification
of action effects with quantified uncertainty. Second, a DTPDDL domain
description explicitly labels predicate and function symbols as being about
the underlying state (unobservable) or about the agents perceptions (ob-
servable). Thirdly, we introduce syntax for describing observation schemata.
This is used to specify how action executions in states generate observations.
Finally, the fragment of PDDL for problem definitions does not support
specification of a problem start state distribution – i.e., full observability is
assumed, and hence the starting state is supposed to be fully observable. For
DTPDDL we introduce syntax for compactly specifying the starting state
distribution.

7.4.1 Example: Representations of Quantified Uncertainty

Here we extend the dora scenario given earlier by adding a Bayesian-style
personal belief about the world, in the form of a starting-state distribution.
We also make the underlying task much more complicated, by adding partial
observability. Here dora is supposed to act in order that she can make a
solid commitment about the true location of the cornflakes. If she makes
the correct commitment in this regard, then she is rewarded strongly, and
otherwise she is punished terribly. Consequently, our dora has an interest in
disambiguating via perception to find the underlying world state, especially
where that state information pertains to the true location of cornflakes.

Suppose that dora can be a little bit forgetful, and thus keeps a photo-
graph of the models that occur in the world, including a photo of cornflakes.
Photos that she can refer to while searching occur in slots that she keeps in
a pouch around her tummy. Unfortunately, there is usually a very limited
number of slots, and therefore she has to be very careful what photos she
keeps in her slots when deliberating towards a particular disambiguation
objective.

For our new example, the problem description prefix defines the available
objects as follows:

( d e f i n e ( problem dora the explorer POMDP )

( : domain dora the explorer POMDP )

( : o b j e c t s

Hal l R1 R2 R3 − p lace

Library Kitchen O f f i c e Hall−Label − l a b e l

Corn f lakes − widget
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Bookshe l f Desktop Chef − f e a t u r e

S1 − model−s l o t

)

Here, we suppose dora has a single slot S1. The initial state is signifi-
cantly different from the deterministic case, because now we must detail the
set of states dora might be in, and the probability that she is in any partic-
ular state – i.e., describe her Bayesian belief-state about her environment.
Thus, we have a few deterministic state elements:

( : i n i t ( connected Hal l R1) ( connected R1 Hal l )
( connected Hal l R2) ( connected R2 Hal l )
( connected Hal l R3) ( connected R3 Hal l )

(= ( foregrounded−model S1 ) Empty)

(= ( reward ) 0)

( d e l e t a b l e S1 )

( a s s i g n ( l o ca t ed ) Hal l )

( l a b e l l e d Hal l Hall−Label )

And then, we have to describe the probability that : (1) places have par-
ticular labels, and (2) that places feature particular models. A partial
description of the starting state distribution follows:

( p r o b a b i l i s t i c 1/8 ( and ( a s s i g n ( l a b e l l e d R1) Library )
( a s s i g n ( l a b e l l e d R2) Kitchen )
( a s s i g n ( l a b e l l e d R3) O f f i c e )
( p r o b a b i l i s t i c 0 . 9 ( f eatured−at Bookshe l f R1) )
( p r o b a b i l i s t i c 0 . 3 ( f eatured−at Bookshe l f R3) )
( p r o b a b i l i s t i c 0 . 8 ( f eatured−at Chef R2)

0 .1 ( f eatured−at Chef R1)
0 .1 ( f eatured−at Chef R3) )

( p r o b a b i l i s t i c 0 . 9 ( f eatured−at Desktop R3) )
( p r o b a b i l i s t i c 0 . 3 ( f eatured−at Desktop R1) )
( p r o b a b i l i s t i c 0 . 1 ( f eatured−at Desktop R2) )
( p r o b a b i l i s t i c 0 . 8 ( widget−l o c a t i o n Corn f lakes R2)

0 .2 ( widget−l o c a t i o n Corn f lakes R3) )
)

1/8 ( and ( a s s i g n ( l a b e l l e d R1) Library )
( a s s i g n ( l a b e l l e d R2) O f f i c e )
( a s s i g n ( l a b e l l e d R3) Kitchen )
( p r o b a b i l i s t i c 0 . 9 ( f eatured−at Bookshe l f R1) )
( p r o b a b i l i s t i c 0 . 3 ( f eatured−at Bookshe l f R2) )
( p r o b a b i l i s t i c 0 . 8 ( f eatured−at Chef R3)

0 .1 ( f eatured−at Chef R1)
0 .1 ( f eatured−at Chef R2) )

( p r o b a b i l i s t i c 0 . 9 ( f eatured−at Desktop R2) )
( p r o b a b i l i s t i c 0 . 3 ( f eatured−at Desktop R1) )
( p r o b a b i l i s t i c 0 . 1 ( f eatured−at Desktop R3) )
( p r o b a b i l i s t i c 0 . 8 ( widget−l o c a t i o n Corn f lakes R3)

0 .2 ( widget−l o c a t i o n Corn f lakes R2) )
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)

. . . . .

Above, we have that there is a 1/8 chance that place R2 is a kitchen, and
a 1/8 that it is an office. In the first case it is very likely (90% chance)
that the library features a bookshelf, and so on. . .

We also should describe, for the starting configuration, the probability
that dora observes a feature at a place supposing that place has a partic-
ular label. In other words, we must give a model of her perception. That
model determines how dora can change her belief about the labels of places,
and the locations of features – i.e., by placing photos in her slot and then
exploring the world. In the starting state description we have:

( a s s i g n ( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l
i f t r u e R1 Bookshe l f L ibrary ) 0 .9 )

( a s s i g n ( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l
i f t r u e R1 Bookshe l f Kitchen ) 0 .1 )

( a s s i g n ( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l
i f t r u e R1 Bookshe l f O f f i c e ) 0 . 3 )

. . . . . . . . . . . .
( a s s i g n ( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f f e a t u r e f a l s e R3 Chef Library ) 0 .2 )
( a s s i g n ( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f f e a t u r e f a l s e R3 Chef Kitchen ) 0 .3 )
( a s s i g n ( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f f e a t u r e f a l s e R3 Chef O f f i c e ) 0 . 2 )
. . . . . . . . . . . .

From the first three assignments above, we have that if the true label of
R1 is library, then dora shall observe a bookshelf at R1 90% of the time
when she explores that place, provided a bookshelf is indeed present. From
the second three assignments, dora has a %20 chance of observing a chef
in R3 labelled library given the chef is not actually present – i.e., She
cannot trust her perception of the chef. The purpose of these observational
probabilities shall be further clarified when we give the observation schema
to describe dora’s perceptual model for our POMDP setting.

We also have to describe the probability of observing a widget in a place
given it has a particular label. Here, the “ T” suffix indicates that we are
expressing the probability when the widget is present, and “ F” is for the
case that it is not present.

( a s s i g n ( p r o b a b i l i t y o b s e r v e w i d g e t m o d e l a t l a b e l T Library
Corn f lakes )

. 7 )

( a s s i g n ( p r o b a b i l i t y o b s e r v e w i d g e t m o d e l a t l a b e l T Kitchen
Corn f lakes )

. 7 )
( a s s i g n ( p r o b a b i l i t y o b s e r v e w i d g e t m o d e l a t l a b e l T O f f i c e

Corn f lakes )
. 7 )

( a s s i g n ( p r o b a b i l i t y o b s e r v e w i d g e t m o d e l a t l a b e l F Library
Corn f lakes )
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. 1 )
( a s s i g n ( p r o b a b i l i t y o b s e r v e w i d g e t m o d e l a t l a b e l F Kitchen

Corn f lakes )
. 1 )

( a s s i g n ( p r o b a b i l i t y o b s e r v e w i d g e t m o d e l a t l a b e l F O f f i c e
Corn f lakes )

. 1 )

Finally, we have to give dora’s overall objective. In this case, we have:
( : metr ic maximize ( reward ) )

)

The above specifies that dora should try to maximise her reward. We shall
see how she might go about that in a moment, when we describe how dora
can act and perceive with stochastic actions and partial observability.

The domain description prefix is more detailed for our reworked example,
as our “:requirements” string must specify that we have stochastic actions
with probabilistic effects, and that we will give observation schemata – i.e.,
use “:observe” schemata to model dora’s perception.
( d e f i n e ( domain dora the explorer POMDP )

( : requ i rements
: typing
: s t r i p s
: e q u a l i t y
: f l u e n t s

: p r o b a b i l i s t i c−e f f e c t s

: un ive r sa l−e f f e c t s
: c ond i t i ona l−e f f e c t s

: p a r t i a l−o b s e r v a b i l i t y
)

The description of types in dora’s environment is only altered slightly from
our deterministic domain description. These modifications take into account
dora’s photo pouch (cf. model-slot).

( : types
p lace l a b e l widget f e a t u r e model−s l o t − ob j e c t
model − ( e i t h e r widget f e a t u r e )
)

In describing the predicates of dora’s world, we add one binary predicate
absolute belief widget location to those given for the deterministic sce-
nario. That expresses the commitments dora has made to the locations of
widgets. In particular, we have:

( : p r e d i c a t e s
( exp lored ?p − p lace )
( connected ?p1 − p lace ?p2 − p lace )
( widget−l o c a t i o n ?o − widget ?p − p lace )
( f eatured−at ?model − f e a t u r e ? l o c a t i o n − p lace )

; ; What commitments has Dora made to the l o c a t i o n ? l o c o f widget ?w
( a b s o l u t e b e l i e f w i d g e t l o c a t i o n ?w − widget ? l o c − p lace )
)
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We must also give the functions that we use to encapsulate dora’s environ-
ment.

( : s−f u n c t i o n s
( l a b e l l e d ? r − p lace ) − l a b e l ; ; The l a b e l o f a p lace
( l o ca t ed ) − p lace ; ; Where Dora i s l o ca t ed
( reward ) − double ; ; The reward Dora has accumulated

; ; What model/photo i s Dora s t o r i n g in s l o t ? s ?
( foregrounded−model ? s − model−s l o t ) − model

; ; P ro b a b i l i t y Dora s e e s ?m, and i t i s the re .
( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f t r u e
? l o c − p lace
?m − f e a t u r e
? l − l a b e l

) − double

; ; P ro b a b i l i t y Dora s e e s ?m, but i t i s not the re .
( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f f e a t u r e f a l s e
? l o c − p lace
?m − f e a t u r e
? l − l a b e l

) − double

; ; P ro b a b i l i t y Dora s e e s ?w, and i t i s the re .
( p r o b a b i l i t y o b s e r v e w i d g e t m o d e l a t l a b e l

T
? l − l a b e l
?w − widget

) − double

; ; P ro b a b i l i t y Dora s e e s ?w, but i t i s not the re .
( p r o b a b i l i t y o b s e r v e w i d g e t m o d e l a t l a b e l

F
? l − l a b e l
?w − widget

) − double

)

We also suppose there is a constant in this domain that we use to model the
notion that dora’s model-slot is Empty – i.e.,

( : cons tant s

Empty − f e a t u r e

)

For example, the condition that dora has no photos in model-slot S1 is
expressed in DTPDDL as:11

11The constant Empty is an artifact of the fact that we cannot specify partial object
valued fluents —i.e., functions with finite range— in PDDL.
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(= (foregrounded-model S1) Empty)

Whereas in our deterministic example dora was able to perceive the state
of her environment exactly, in this example she only has access to atoms
of observation called percepts. That is, dora cannot observe elements in
“s-functions” and “:predicates” description elements unless they are known
with certainty according to her belief-state distribution. However, she can
observe her “observation” state exactly. The propositions that make up
the observation state are given in a “:percepts” description fragment. In
particular, we suppose that dora is able to instantaneously perceive models
in places.

( : pe r c ept s

( obse rved mode l a t p l ace ?n − p lace ?m − model )

)

For example, we write:

(observed model at place Kitchen Cornflakes) (49)

to express the observational fact that dora has perceived Cornflakes in the
Kitchen.

We can now describe the action physics for our dora scenario. In the
first place, dora can move between connected places, and also explore a
place she is in. We suppose that when exploration is invoked that dora’s
visual abilities are employed to discern whether a photograph in her slot
occurs in the place she is exploring. The details of that perceptive inference
are modelled later in terms of an “:observe” schema.

( : a c t i on move−to−connected−p lace
: parameters (? to − p lace ? from − p lace )
: p r e cond i t i on
( and
(= ( l o ca t ed ) ? from )
( connected ? from ? to )
)

: e f f e c t
( and

( a s s i g n ( l o ca t ed ) ? to )
)

)
)

( : a c t i on explore−p lace
: parameters (? l o c − p lace )
: p r e cond i t i on ( and

(= ( l o ca t ed ) ? l o c )
)

: e f f e c t ( and ( exp lored ? l o c ) )
)

EU FP7 CogX 62



DR 1.2: Unifying representations of beliefs

We also give dora the ability to focus or change the photographs she keeps
in her slot. We suppose she can “foreground” a model by retrieving it from
her pouch and placing it in a free model-slot. Moreover, she can return
a “foregrounded” model to her pouch from an occupied model-slot, thus
freeing that slot for further use. The latter we suppose is a “backgrounding”
action. Those two actions, foregrounding and backgrounding, are represented
as follows.

( : a c t i on foreground model
: parameters (?m − model ? s − model−s l o t )
: p r e cond i t i on ( and

; ; Can only foreground a model to an empty model−s l o t .
(= ( foregrounded−model ? s ) Empty)
; ; Test that Dora has not a l r eady foregrounded the model
( f o r a l l (? s2 − model−s l o t )

( not (= ( foregrounded−model ? s2 ) ?m) ) )
)

: e f f e c t ( a s s i g n ( foregrounded−model ? s ) ?m)
)

( : a c t i on background model
: parameters (? s − model−s l o t )
: p r e cond i t i on ( )
: e f f e c t ( a s s i g n ( foregrounded−model ? s ) Empty)

)

Another action we allow dora to perform is that of making a commitment
to the location of a widget. Here, we suppose she achieves a large reward,
$1000, when she commits to the correct location, and is punished with a
$500 fine when she makes an incorrect commitment.

( : a c t i on commit w idge t l oca t i on
: parameters (?w − widget ? l o c − p lace )

: p r e cond i t i on ( f o r a l l (? l o c2 − p lace )
( not ( a b s o l u t e b e l i e f w i d g e t l o c a t i o n ?w ? lo c2 ) ) )

: e f f e c t ( and ( a b s o l u t e b e l i e f w i d g e t l o c a t i o n ?w ? l o c )
(when ( widget−l o c a t i o n ?w ? l o c )

( i n c r e a s e ( reward ) 1000 . 0 ) )
(when ( not ( widget−l o c a t i o n ?w ? l o c ) )

( dec r ea s e ( reward ) 5 0 0 . 0 ) ) )
)

We now provide the details of dora’s perceptual model. This is achieved
by giving “:observe” schemata whose preconditions are over state predicates
(and functions), and whose effects are over observational predicates. Such
schemata also contain an “:execution” precondition, that details what action
must have been executed for this perceptual schema to be invoked. Essen-
tially, these describe how a POMDP observation over perceptual proposi-
tions is generated after we execute an action and arrive at a successor state.

Giving an example, the following schema expresses that dora cannot
observe a model ?m at a place ?loc unless she has a photo of ?m in a
model-slot.

( : observe r e s e t m o d e l o b s e r v a t i o n s o n s t a t e
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: parameters
(? l o c − p lace ?m − model )

: execut ion
( )

: p r e cond i t i on
( and ( obse rved mode l a t p l ace ? l o c ?m)

( f o r a l l (? s − model−s l o t )
( not (= ( foregrounded−model ? s ) ?m) ) ) )

: e f f e c t
( and ( not ( obse rved mode l a t p l ace ? l o c ?m) ) )
)

The next schema expresses that dora cannot have perceptions about
the models that are present in a place unless she has just executed an
explore-place action.

( : observe r e s e t m o d e l o b s e r v a t i o n s o n e x e c u t i o n
: parameters
(? l o c − p lace ?m − model )

: execut ion
( not ( explore−p lace ? l o c ) )

: p r e cond i t i on
( and ( obse rved mode l a t p l ace ? l o c ?m) )

: e f f e c t
( and ( not ( obse rved mode l a t p l ace ? l o c ?m) ) )
)

Finally, when dora does execute an explore-place action, we give schemata
that describe the likelihood of her observing a feature or widget at the
place she explored. In the case of a feature we have.

( : observe mode l f ea ture
: parameters
(? l o c a t i o n − p lace ? l − l a b e l ?model − f e a t u r e )

: execut ion
( e x p l o r e p l a c e ? l o c a t i o n )

: p r e cond i t i on
( and

( e x i s t s (? s − s l o t ) (= ( foregrounded−model ? s ) ?model ) )

)
: e f f e c t
( and

(when ( and ( featured−at ?model ? l o c a t i o n )
(= ( l a b e l l e d ? l o c a t i o n ) ? l ) )

( p r o b a b i l i s t i c
( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f t r u e ? l o c a t i o n ?model ? l )
( obse rved mode l a t p l ace ? l o c a t i o n ?model )
)

)
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(when ( and ( not ( f eatured−at ?model ? l o c a t i o n ) )
(= ( l a b e l l e d ? l o c a t i o n ) ? l ) )

( p r o b a b i l i s t i c
( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f f e a t u r e f a l s e ? l o c a t i o n ?model ? l )
( obse rved mode l a t p l ace ? l o c a t i o n ?model )
)

)
)
)

)

Here, we have that when dora has explored the place ?location, she can
observe features at ?location according to the ...observe feature at place...
entries. For example, if there is some feature ?model at the explored
?location with label ?l , then with probability:

probability observe feature at place with
label if true ?location ?model ?l)

dora makes the observation that ?model is at place ?location.
Finishing our example, in the case of perception with regards to a widget

we have the following schema.
( : observe model widget

: parameters
(? l o c a t i o n − p lace ? l − l a b e l ?model − widget )

: execut ion
( explore−p lace ? l o c a t i o n )

: p r e cond i t i on
( and

( e x i s t s (? s − s l o t ) (= ( foregrounded−model ? s ) ?model ) )

(= ( l a b e l l e d ? l o c a t i o n ) ? l )
)

: e f f e c t
( and

(when ( widget−l o c a t i o n ?model ? l o c a t i o n )
( p r o b a b i l i s t i c

( p r o b a b i l i t y o b s e r v e w i d g e t m o d e l a t l a b e l
i f t r u e ? l ?model )

( obse rved mode l a t p l ace ? l o c a t i o n ?model )
)

)

(when ( not ( widget−l o c a t i o n ?model ? l o c a t i o n ) )
( p r o b a b i l i s t i c

( p r o b a b i l i t y o b s e r v e w i d g e t m o d e l a t l a b e l
i f f a l s e ? l ?model )

( obse rved mode l a t p l ace ? l o c a t i o n ?model )
)

)
)

)

EU FP7 CogX 65



DR 1.2: Unifying representations of beliefs

7.5 Representations for Continual Planning

POMPDs, as introduced and modelled in DTPDDL in the previous sections,
model uncertainty and how to reduce it using probability distributions over
real world states and action outcomes. Reasoning about POMDPS is com-
putationally quite complex. Therefore, as a complementary representation,
we also try to represent gaps in knowledge explicitly in a single planner
state, rather than a probability distribution. This representation is used in
the Continual Planner. It is based on the SAS+ formalism [4]. Here, in-
stead of propositions, we use multi-valued state variables (MVSVs) v, each
with an associated domain vdom(v) describing the set of possible values
x ∈ vdom(v) that v may assume.

A state is defined as a function s associating variables v with values from
their domain vdom(v). If, for a given set of variables V, s is not defined for
all v ∈ V, then s is called a partial state over V.

There are several motivations for our using an SAS+-based representa-
tion:

1. In recent years, SAS+ has been shown to enable powerful reasoning
techniques in planning algorithms, which has lead to systems based on
this representation now dominating the International Planning Com-
petition. Using a similar representation, we can exploit this develop-
ment.

2. One of the explanations for the success of SAS+ is the fact that it di-
rectly models natural mutual-exclusivity invariants between the values
of MVSVs. For example, modelling the position of an object o using
an MVSV pos(o) explicitly states that this object is at one and only
one position in any given state. This is not true for representations
based on propositional logic, like STRIPS or PDDL, where any num-
ber of propositions (posoloc1 ), (posoloc2 ), .., (posolocn) could be true
in the same state.

3. In the context of our robotic architecture, the functional state repre-
sentation of SAS+ is also closer to the feature/value model used by
other subarchitectures, in particular the representation uses by the Be-
lief Model, from which planning states are generated. Roughly, each
feature f of a belief b in a belief model is mapped onto a state variable
f(b). For example, if the belief model describes that a room has been
categorised as a kitchen by attributing the areaclass : kitchen to a be-
lief b, this would correspond to an assignment areaclass(b) = kitchen
in a planning state.

4. The main reason for using an SAS+-based representation is that we
can employ it to explicitly model knowledge and gaps in knowledge,
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so that the planner can efficiently reason about them. The rest of this
section is dedicated to this aspect of our representation.

For the modelling needs of CogX, we have defined a specific formal lan-
guage based on SAS+ the multiagent planning language MAPL [8]. In
MAPL, as in other planning formalisms, the general rules of the world are
specified in a planning domain whereas a specific problem to be planned for
in that domain in specified by a planning task.

A planning domain is a tuple D = (A,V, C, E) consisting of agents A,
state variables V, constants C, and events E .

MAPL states s are allowed to be partially defined, i. e., some MVSV
values may be “unknown”.

If, for some variable v currently unknown, possible candidate values are
known, those can nevertheless be reasoned about in the planning state. The
domain vdom(v) is explicitly represented and can be changed by planning
operators. For example, after unsuccessfully searching for an object o in a
room r, o may be removed from vdom(pos(o)). If vdom(v) is a singleton set
{x}, then v will be set to x.

To enable reasoning about knowledge gaps and their filling explicitly, we
introduce specific so-called Kval variables Kvalv with vdom(Kvalv) = >,⊥.
The correspondence between a variable v and its Kval variable Kvalv is
defined as follows: If s(v) is defined with some value x then s(Kvalv) = >.
This, of course, implies that if s(Kvalv) = ⊥ then s(v) must be undefined.

The converse, however, is not true: We may want to describe a future
state in which the value of variable v will be known, i. e., in which Kvalv =
>, without being able to name that value, yet. While it is the nature of
knowledge gaps that an agent cannot know in advance how exactly it will be
filled, it is nevertheless crucial that the agent can reason about how to bring
this about. To this end, MAPL uses Kval variables as epistemic effects of
sensing actions.

In MAPL, a sensor model is an action that has an epistemic effects on
the agent executing it.

For example, the action of running a room categorisation algorithm in a
room is modelled in MAPL as follows:

(:sensor categorise_room

:agent (?a - agent)

:parameters (?r - room ?loc - place)

:precondition (and

(= (pos ?a) ?loc)

(contains ?r ?loc))

:sense (areaclass ?r)

)

In words, this sensor model describes that an agent can sense the area
class of a room, i.e. its being a kitchen, office or hallway, once the agent
is at a place that belongs to the room in question. At planning time, the
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outcome of observing areaclass(r) is yet unknown, therefore the effect of
categorise room(r,loc) is formally described as Kvalareaclass(r) = >.

We distinguish two possible kinds of epistemic effects of a sensor model:
(full) recognition and (binary) disambiguation. When, as in the above ex-
ample, an agent is able to determine the value of a state variable v as soon
as the preconditions of the sensor model categorise room are satisfied and
regardless of the value of v, we say that categorise room fully recognises v.

Sometimes, however, sensing can only help to confirm or rule out a cer-
tain value x ∈ vdom(v). This, we call binary disambiguation. Consider,
e. g., a sensor model that models localisation of objects in rooms.

(:sensor localise_object

:agent (?a - agent)

:parameters (?o - object ?loc - place)

:precondition

(= (pos ?a) ?loc)

:sense (= (pos ?o) ?l)

)

Binary sensor models do not guarantee that a value will be known after
a sensing action. Yet, they guarantee that the domain of the corresponding
MVSV will be smaller after the perception. Thus, binary sensor models can
be used by the planner to generate exploratory behaviour in which the set of
candidate values for a knowledge gaps is reduced repeatedly, until the true
value is sensed or inferred.

Kval variables can appear in goal formulae as well, so that we can conve-
niently express epistemic goals, i.e. goals concerned with closing knowledge
gap. Goal formulae can contain expressions in first-order logic, in particular
conditionals and quantifiers. For example, the robot could have an epistemic
goal to find out the categories for all rooms. This would be expressed by
the following formula:
∀room.Kvalareaclass(room) = >
A more complex epistemic goal like “explore all places belonging to

rooms yet uncategorised” would be expressed as:
∀place.(∃room.contains(place, room)∧Kvalareaclass(room) = ⊥)→ explored(place).
MAPL is designed to be used by a continual planner, i. e., a planner

that interleaves planning and execution deliberately and adapts its plans to
a changing world state.

Interestingly, when planning for an epistemic goal that uses a quantified
formula, goal the planner will also re-evaluate this goal when new instanta-
tions become possible. For example, for the last goal shown the planner will
autonomously adapt its plan whenever new places and rooms are discovered.

A (slightly simplified) example of a plan using sensing actions that satisfy
epistemic goals is given in Figure 11 on the following page.

In the George scenario and in our next instantiation of Dora, information
will not only be obtained by sensing, but also through interaction with
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Figure 11: A plan using sensory actions to satisfy epistemic goals

humans. To plan for such multiagent interactions the robot must also reason
about the knowledge of the other agents. We can express nested beliefs using
MVSVs as well, e.g., “the robot R believes that human H believes that object
o is a pen” is modelled as K[/R :, H]type(o) = pen.

Knowledge gaps may arise in several variants when nested beliefs are
used, depending on which agent is ignorant of the other’s belief. Again, with
MVSVs we can represent the differences succinctly using agent-specific “un-
known” symbols. Consider, e.g., the difference between the statements “R
knows that H does not know the location of the cornflakes” (KvalR,Hpos(cornflakes) =
⊥H) and “R does not know if H knows the location of the cornflakes”
((KvalR,Hpos(cornflakes) = ⊥H).

Note that in contrast to classical epistemic logics, the MAPL repre-
sentation explicitly represents the facts that both statements are mutually
exclusive.

Just like sensing actions are modelled using standard Kval variables, we
can use nested Kval variables to describe speech acts. In particular, we can
describe wh-questions and answers to them (“where”, “what colour”, etc.)
by modelling the appropriate nested belief effects. (Note: the planner was
not used for dialogue planning in the George system as presented in this
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paper, but will be in its next instantiation).

7.6 Summary: Representing and reasoning about knowledge
gaps in planning

The representations introduced in this chapter relate to several aspects of
the “typology of incompleteness” discussed in Section 2.

When possible values for an MVSV are known or a probabilistic be-
lief state provides several alternatives propositions that may be true in the
world, this is a case of state variable value uncertainty. In a POMDP,
this uncertainty will be represented quantitatively, in the SAS+-based rep-
resentation used by the continual planner it is qualitative.

If no information is available about possible values of the unknown vari-
able yet, we have a case of state novelty. This knowledge gap can be
made explicit in MAPL, by setting the corresponding Kval variable to ⊥,
i. e., unknown.

We can also use the categories introduced in Section 2 to characterise
the two different sensor models of MAPL: Binary sensor models have effect
value uncertainty. It confirms or rules out a specific value from the known
set of possible values of a state variable v. Sensor models for recognition
do not need to refer to vdom(v) because they abstract from the possible
specific outcomes completely, only asserting Kvalv = >. Therefore they also
provide a way to deal with effect novelty.

The axis multi-agent epistemic status of the typology is covered by
MAPL’s capability to distinguish knowledge and knowledge gaps according
to the agent they refer to. As exemplified in Section 7.5, we can distinguish
whether an information is unknown to the robot or known to be unknown
to another agent. Epistemic goals can refer to yet unattained shared beliefs
and formal representations of speech acts model how such shared beliefs can
be reached.

8 Representations of Cross-Modal Beliefs

Cross-modal beliefs rely on the particular representations used for learning
in a cross-modal setting. These representations along with the cross-modal
learning enable the robot to, based on interaction with the environment and
people, extends its current knowledge by learning about the relationships
between symbols and features that arise from the interpretation of different
modalities. This involves processing of information from multiple modali-
ties, which have to be adequately represented. One modality may exploit
information from another to update its current representations, or several
modalities together may be used to form representations of a certain con-
cept. We focus here on the representations for encoding visual properties
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and concepts that allow cross-modal learning through a dialogue with a
human.

8.1 Representations for visual concepts

To efficiently store and generalize the observed information, the visual con-
cepts are represented as generative models. These generative models take
the form of probability density functions (pdf) over the feature space, and
are constructed in online fashion from new observations. In particular, we
apply the online Kernel Density Estimator (oKDE) [22] to construct these
models. The oKDE estimates the probability density functions by a mix-
ture of Gaussians, is able to adapt using only a single data-point at a time,
automatically adjusts its complexity and does not assume specific require-
ments on the target distribution. A particularly important feature of the
oKDE is that is allows adaptation from the positive as well as negative ex-
amples [23]. Specifically, the oKDE is defined by the so-called model of the
observed samples Smodel,

Smodel = {ps(x), {qi(x)}i=1:N}, (50)

which is composed of the sample distribution, a compressed model of the ob-
served samples, ps(x) and of a detailed model qi(x), a necessary information
for efficient adaptation of the compressed model12. The sample distribution
is modelled by a mixture of Gaussians

ps(x) =
N∑

i=1

αiφΣsi(x− xi), (51)

where
φΣ(x− µ) = (2π)−

d
2 |Σ|− 1

2 e(− 1
2

(x−µ)TΣ−1(x−µ)) (52)

is a Gaussian kernel centered at µ with covariance matrix Σ. The kernel
density estimate (KDE) is then defined as a convolution of ps(x) by a kernel
with a covariance matrix (bandwidth) H (see Figure 12):

pKDE(x) = φH(x) ∗ ps(x) =
N∑

i=1

αiφH+Σsi(x− xi). (53)

Note that the online KDE from (53) is the representation by which we op-
erate when encoding and calculating beliefs of the observed data. Figure 13
demonstrates the power of the oKDE in estimating complex distributions
from sequences of data.

12we will not go into details about the detailed model here, since it exceeds the scope
of this document and we refer to [22] for more details.
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Figure 12: Calculation of the KDE pKDE(x) through a convolution of the
sample distribution ps(x) with a kernel. The upward arrows depict compo-
nents in the sample distribution with zero covariance – Dirac-delta functions.

Figure 13: First row shows the sinusoidal distribution and the second row
shows the spiral distribution. Left column shows the reference distributions
and the right column shows the estimated distribution using oKDE after
observing a 1000 samples.

The continuous learning proceeds by extracting the visual data in a form
of a highdimensional features (e.g., multiple 1D features relating to shape,
texture, color and intensity of the observed object) and oKDE is used to
estimate the pdf in this high-dimensional feature space. In this respect,
the distributions model the knowledge incompleteness in terms of the state
value uncertainty as described in Section 2. However, concepts such as
color red reside only within lower dimensional subspace spanned only by
features that relate to color (and not texture or shape). Therefore, during
online learning, this unknown subspace constitutes a structural novelty
and has to be identified to provide best performance. This is achieved by
determining for a set of mutually exclusive concepts (e.g., colors green, blue,
orange, etc.). We assume that this corresponds to the subspace which min-
imizes the overlap of the corresponding distributions. The overlap between
the distributions is measured using the multivariate Hellinger distance [22].

Therefore, during online operation, a multivariate generative model is
continually maintained for each of the visual concepts and for mutually ex-
clusive sets of concepts the feature subspace is continually being determined.
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The set of mutually exclusive concepts can then be used to construct a
Bayesian classifier in the recognition phase, when the robot is generating a
description of a particular object in terms of its color, shape, etc. An exam-
ple of the learnt models from a real-life experiment are shown in Figure 14a
and an example of classification of an observed object by the constructed
Bayes classifier is shown in Figure 14b.

(a)

(b)

Figure 14: (a) Example of the models estimated using the oKDE and the
feature selection algorithm. Note that some concepts are modelled by 3D
distributions (e.g., ”blue” which is denoted by ”Bl”), while others (e.g.,
compact which is denoted by ”Co”) is modelled by 1D distributions. (b)
From left to right: example of a segmented toy car, the extracted range
data, and the results from the Bayes classifier constructed from the models
in (a). The object is classified as ”compact” and ”orange”.

Note that, since the system is operating in an online manner, the closed-
world assumption can not be assumed. At every step of learning, the system
should also take into the account that there might exist a yet ”unknown
model”, which might better explain the robot’s observation – the system
should thus be aware of the uncertainty about state model complex-
ity. In the following we describe how the the ”unknown model” is proba-
bilistically integrated into the system.
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8.1.1 Accounting for unknown model

While maintaining good models of the visual concepts and being able to
adapt those models is crucial for the robots online operation, the ability to
detect gaps in the knowledge presented by these models is equally important.
Generally speaking the robot collects the visual information about its envi-
ronment as follows. First it determines a region in an image which contains
the interesting information, then it ”segments” that region and extracts the
feature values z from which it later builds models of objects, concepts, etc.
The visual information may be ambiguous by itself, and segmentation may
not always be successful. We will assume that some measure of how well
the segmentation was carried out exists and we will denote it by s ∈ [0, 1].
High values of s (around one) mean high confidence that a good observation
z was obtained, while low values relate to low confidence.

Let m ∈ {mk,mu} denote two possible events: (i) the observation came
from a existing internal model mk, and (ii) the observation came from an
unknown model mu. We define the knowledge model as a probability of
observation z, given the confidence score s:

p(z|s) = p(z|mk, s)p(mk|s) + p(z|mu, s)p(mu|s). (54)

The function p(z|mk, s) is the probability of explaining z given that z comes
from one of the learnt models, p(mk|s) is the a priori probability of any
learnt model given the observer’s score s. The function p(z|mu, s) is the
probability of z corresponding to the unknown model, and p(mu|s) is the
probability of the model ”unknown” given the score s.

Assume that the robot has learnt K separate alternative internal models
M = {Mi}i=1:K from previous observations. The probability p(z|mk, s) can
then be further decomposed in terms of these K models,

p(z|mk, s) =
K∑

i=1

p(z|Mi,mk, s)p(Mi|mk, s). (55)

If we define the ”unknown” model byM0 and set p(z|mu, s) = p(z|M0,mu, s)p(M0|mu, s),
then (54) becomes

p(z|s) = p(mk|s)
K∑

i=1

p(z|Mi,mk, s)p(Mi|mk, s)

+p(mu|s)p(z|M0,mu, s)p(M0|mu, s). (56)

Note that the ”unknown model”, M0, accounts for a poor classification, by
which we mean that none of the learnt models supports the observation z
strongly enough. We assume that the probability of this event is uniformly
distributed over the feature space, which means that we can define the like-
lihood of model M0, given observation z by a uniform distribution, i.e.,
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p(z|M0,mu, s) = U(z). Note also, that the only possible unknown model
comes from the class M0, therefore p(M0|mu, s) = 1.

The observation z can be classified into the class Mi which maximizes
the a posteriori probability (AP). The a posteriori probability of a class Mi

is calculated as

p(Mi|z, s) ∝ p(z|Mi,m, s)p(Mi|m, s)p(m|s), (57)

where m = mk for i ∈ [1,K] and m = mu for i = 0.
The gap in knowledge can be discovered through inspection of the AP

distribution, which effectively reflects the uncertainty about the state
model complexity. In particular, if the AP distribution exhibits an am-
biguous classification of the observation z, or classifies it as an ”unknown”
(or unaccounted), then this is a good indication that we are dealing with a
gap in knowledge.

In our implementations, the distribution of each i-th alternative of the
known model p(z|Mi,mk, s) is continually updated by the oKDE [22], while
the a priori probability p(Mi|mk, s) for each model is calculated from the
frequency at which each of the alternative classes Mi, i > 0, has been
observed. The a priori probability of an unknown model (and implicitly
of a known model), p(mu|s) is assumed non-stationary in that it changes
with time. The following function decreases the ”unknown” class probability
with increasing number of observations N and increases this probability if
the observer’s certainty score s is low13:

p(mu|s) = e
−0.5( N

σN
)2
. (58)

With above definitions, the knowledge model is completely defined and al-
lows discovery of knowledge gaps.

8.1.2 Example of a probabilistic knowledge model

For a better visualization of the knowledge update and gap discovery we will
restrict our example to a one-dimensional case. We will also use this example
to better relate the types of knowledge incompleteness to the definitions from
Section 2. Fig. 15 illustrates detection and filling of knowledge gaps for three
cases (feature values) denoted by the circle, the diamond, and the square.
The plots in the left column depict the models, the posteriori pdfs, and the
recognition at a particular step in the learning process. The right column
depicts the situation after the system has updated these models considering
the detected knowledge gaps and the answers from the tutor. Note that the
pdfs over the feature values account for the state value uncertainty in

13For example, in visual learning, the observer’s certainty score s might reflect the
quality of the visual data from which the visual features are extracted.
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the models, while the a posteriori pdfs account for the uncertainty about
the state model complexity.

The circle represents a yellow object. Since the yellow colour has not
been presented to the robot before, the corresponding model has not yet
been learned and the feature value fails in a not yet modelled area, therefore
this value is best explained by the ”unknown model”, which has the highest
a posteriori probability. The robot asks the tutor ”What colour is this
object?”, and after the tutor provides the correct information, the robot
initializes a model for yellow colour. We say that a state novelty has been
detected by the robot, and after the human’s explanation, the structural
novelty has also been registered. Note, however, that since only a single
sample does not suffice to build a reliable representation, the yellow colour
will only be able to be recognized after some additional yellow object is
observed.

The feature value denoted by a diamond is best explained by a green
model, however this recognition is not very reliable, therefore the robot
asks the tutor: ”Is this object green?” to verify its belief. This question is
triggered by a high state value uncertainty. After the tutor replies ”No.
It is blue.”, the robot first unlearns the representation of green and updates
the representation of blue. The corrected representations, depicted in the
pdfs in the right column , then enable the correct recognition as indicated
by the second bar plot in the right column of the Fig. 15.

The last case denoted by the square shows another example of non-
reliable recognition, which triggers the additional clarification question to
the tutor: ”Is this object blue?” After the robot gets a positive answer, it
updates the representation of blue, which increases the probability of the
recognition. In this case, the question is triggered by a high state value
uncertainty, which borders on possibility of a state novelty. However,
after the tutor’s answer, the state value uncertainty is decreased with-
out creating a novel state as in the case of the feature value denoted by a
diamond.

9 Conclusion

In this report we have given a detailed formal account of the representations
we employ in different modalities, including models of spatial knowledge,
dialogue state, multi-agent beliefs, action effects, visual information, and
the relationships between features in different modalities. In each case we
have given the basic representational forms, and then described how these
naturally incorporate uncertainty and/or gaps, or how they be extended to
do so. In particular we have developed a way of posing the binding problem
as one of probabilistic inference. This allows us to represent quantitative
uncertainty in the way information may be related between modalities. We

EU FP7 CogX 76



DR 1.2: Unifying representations of beliefs

U R G B U R G B U R G B U R G B U R G B U R G B

Figure 15: Example of detecting the knowledge gaps and updating the 1D
KDE representations. Top row: probability distributions for three colours
(red, green, blue lines) and unknown model (gray line) in 1D feature space.
Bottom row: a posteriori probabilities for the unknown model (U) and three
colours (R, G, B) for three feature values denoted by the circle, the diamond
and the square. Left column: before updates, right column: after updates.

refer to these representations as multi-modal beliefs, but they are essen-
tially amodal, logical representations of the environment, suitable for use in
creating state descriptions needed by high level planning.

There are two common themes running through this story. We use quali-
tative representations of epistemic state in the multi-modal representations,
in models of action effects in continual planning and in dialogue. Thus in
these representations we can represent explicitly certain kinds of gaps, and
how they change under action. In other modalities (vision, cross-modal rep-
resentations, DT planning) we have employed a formalism that is essentially
probabilistic, and which allows us to integrate evidence gradually from dif-
ferent modalities to reduce uncertainty. The representations in cross-modal
learning are able to capture some open worldness, such as the presence of
sensory data unmodelled by existing classes.

Finally we have also shown how these different types of uncertainty and
gaps are broadly related in a typology. This typology is useful, because aside
from anything else it assists in enabling us to spot gaps in our thinking about
gaps. It is quite clear to us that several areas require considerably more work.
Our approach to planning, for example, circumvents rather than addresses
head on the issue of open-worldness. It may transpire that this is the best
we can do, but we will work in the future on finding representations of action
effects that model the effects of learning, which are inherently open-ended.
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We are currently working on probabilistic models of manipulative effects
(to be detailed in DR2.2), and on the use of POMDP models of dialogue
management. So this document will be updated significantly by the end of
the project. It is in this sense a living document that provides a basis for
internal discussion on our representations, as well as a snapshot of where we
are now in terms of modelling beliefs, gaps and uncertainty.
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A Grammar for CogX Decision-Theoretic Plan-
ning Domain Definition Language (DTPDDL0.9β)

The 3rd Planning Domain Definition Language (PDDL3.0 – pronounced
“pea-diddle”) is the language of choice of the symbolic planning community.
This language and its predecessors have been developed for and adopted at
the International Planning Competitions since 1998. Moreover, a PDDL-
based language formed the basis of domain and problem description in the
planning subarchitecture of CoSy.

This section gives the Extended Backus Normal Form (EBNF) grammar
for defining decision-theoretic domains and problems called DTPDDL0.9β
– pronounced “deeteepee-diddle”. In particular, we extend PPDDL1.0 pro-
nounced “pea-two-diddle” – a language for describing probabilistic planning
problems that has been used since 2004 in International Planning Com-
petitions [38] – to contain syntactic elements for describing domains and
corresponding problems that feature partial observability. Our work draws
heavily on the work of [37] that sought extensions of PDDL for modelling
stochastic decision processes.

A.1 Domain Definition

<domain> ::= (define (domain <name>)

[<require-def>]

[<types-def>]:typing

[<constants-def>]

[<s-functions-def>]:fluents

[<o-functions-def>]:fluents

[<predicates-def>]

[<observations-def>]

<structure-def>∗)
<require-def> ::= (:requirements <require-key>+)

<require-key> ::= :strips

<require-key> ::= :fluents

<require-key> ::= :typing

<require-key> ::= :equality

<require-key> ::= :existential-preconditions

<require-key> ::= :universal-preconditions

<require-key> ::= :quantified-preconditions

Sugar for including :existential-preconditions and :universal-preconditions

<require-key> ::= :universal-effects

<require-key> ::= :conditional-effects

<require-key> ::= :probabilistic-effects

<require-key> ::= :partial-observability

<require-key> ::= :universal-unwinding

<s-functions-def> ::=:fluents

(:s-functions <function typed list (atomic s-function skeleton)>)

<o-functions-def> ::=:fluents

(:o-functions <function typed list (atomic o-function skeleton)>)

<atomic s-function skeleton>

::= (<s-function-symbol> <typed list (variable)>)

<atomic o-function skeleton>

::= (<o-function-symbol> <typed list (variable)>)

<function typed list (x)>

::= x∗
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<function typed list (x)>

::= :typing x+- <function-type> <function typed list (x)>

<typed list (x)> ::= x∗

<typed list (x)> ::= :typing x+- <type> <typed list (x)>

<function-type> ::= int|float|double

<emptyOr (x)> ::= ()

<emptyOr (x)> ::= x

<type> ::= (either <primitive-type>+)

<type> ::= <primitive-type>

<types-def> ::= (:types <typed list (name)>)

<constants-def> ::= (:constants <typed list (name)>)

<predicates-def> ::= (:predicates <atomic s-formula skeleton>+)

<observations-def> ::= (:percepts <atomic o-formula skeleton>+)

<atomic s-formula skeleton>

::= (<predicate> <typed list (variable)>)

<atomic o-formula skeleton>

::= (<observation> <typed list (variable)>)

<predicate> ::= <name>

<observation> ::= <name>

<o-function-symbol> ::= <name>

<s-function-symbol> ::= <name>

<variable> ::= ?<name>

<structure-def> ::= <action-def>

<structure-def> ::= :partial−observability <observation-def>

A.1.1 Actions

<action-def> ::= (:action <action-symbol>

:parameters (<typed list (variable)>)

<action-def body>)

<action-def body> ::= [:precondition <emptyOr (pre-GD)>]

[:effect <emptyOr (s-effect)>]

<action-symbol> ::= <name>

<pre-GD> ::= (and <pre-GD>∗)
<pre-GD> ::= :universal−preconditions

(forall (<typed list (var)>) <pre-GD>)

<pre-GD> ::= :existential−preconditions

(exists (<typed list (var)>) <pre-GD>)

<pre-GD> ::= <GD>

<GD> ::= <atomic s-formula (term)>

<GD> ::= (and <GD>∗)
<GD> ::= :fluents <s-f-comp>

<atomic s-formula(t)> ::= (<predicate> t∗)
<term> ::= <name>

<term> ::= <variable>

<s-f-comp> ::= (<binary-comp> <s-f-exp> <s-f-exp>)

<s-f-exp> ::= <number>

<s-f-exp> ::= (<binary-op> <s-f-exp> <s-f-exp>)

<s-f-exp> ::= (<multi-op> <s-f-exp> <s-f-exp>+)

<s-f-exp> ::= (- <s-f-exp>)

<s-f-exp> ::= <s-f-head>

<s-f-head> ::= (<s-function-symbol> <term>∗)
<s-f-head> ::= <s-function-symbol>

<binary-op> ::= <multi-op>

<binary-op> ::= -

<binary-op> ::= /

<multi-op> ::= *

<multi-op> ::= +

<binary-comp> ::= >

<binary-comp> ::= <
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<binary-comp> ::= =

<binary-comp> ::= >=

<binary-comp> ::= <=

<number> ::= int|float|double

<prob> ::= float|double (≥ 0,≤ 1)
<s-effect> ::= (and <c-s-effect>∗)
<s-effect> ::= <c-s-effect>

<s-effect> ::= <q-s-effect>

<c-s-effect> ::= :conditional−effects (when <GD> <s-effect>)

<c-s-effect> ::= :universal−effects (forall (<typed list (var)>) <s-effect>)

<c-s-effect> ::= :probabilistic−effects (probabilistic <prob> <s-effect>)

<c-s-effect> ::= :probabilistic−effects:universal−unwinding

(probabilistic (for-each (<typed list (x)>) <s-f-head> <s-effect> ))

<c-s-effect> ::= <p-s-effect>

<p-s-effect> ::= <atomic s-formula(term)>

<p-s-effect> ::= (not <atomic s-formula(term)>)

<p-s-effect> ::= :fluents(<assign-op> <s-f-head> <s-f-exp>)

<assign-op> ::= assign

<assign-op> ::= scale-up

<assign-op> ::= scale-down

<assign-op> ::= increase

<assign-op> ::= decrease

A.1.2 Observations

In classical and probabilistic planning all predicates are fully observable. In
CogX we are concerned with decision-theoretic planning domains where the
truth value of perceptual propositions are all the agent has in order to deter-
mine its beliefs about the world. Here we give the grammar for observation
schema that determine the truth values of perceptual propositions.

<observation-def> ::= (:observe <o-symbol>

:parameters (<typed list (variable)>)

<o-def body>)

<o-def body> ::= [:state <emptyOr (pre-GD)>]

[:action <atomic action(term)> ]

[:effect <emptyOr (o-effect)>]

<o-symbol> ::= <name>

<atomic action(t)> ::= (<action-symbol> t∗)
<o-effect> ::= (and <c-o-effect>∗)
<o-effect> ::= <c-o-effect>

<c-o-effect> ::= :conditional−effects (when <GD> <o-effect>)

<c-o-effect> ::= :universal−effects (forall (<typed list (var)>) <o-effect>)

<c-o-effect> ::= :probabilistic−effects (probabilistic <prob> <o-effect>)

<c-o-effect> ::= :probabilistic−effects:universal−unwinding

(probabilistic (for-each (<typed list (x)>) <s-f-head> <o-effect> ))

<c-o-effect> ::= <p-o-effect>

<atomic o-formula(t)> ::= (<observation> t∗)
<p-o-effect> ::= <atomic o-formula(term)>

<p-o-effect> ::= (not <atomic o-formula(term)>)

<p-o-effect> ::= :fluents(<assign-op> <o-f-head> <o-f-exp>)

<o-f-comp> ::= (<binary-comp> <o-f-exp> <o-f-exp>)

<o-f-exp> ::= <number>

<o-f-exp> ::= (<binary-op> <o-f-exp> <o-f-exp>)

<o-f-exp> ::= (<multi-op> <o-f-exp> <o-f-exp>+)

<o-f-exp> ::= (- <o-f-exp>)

<o-f-exp> ::= <o-f-head>

<o-f-head> ::= (<o-function-symbol> <term>∗)
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<o-f-head> ::= <o-function-symbol>

A.2 Problem Definition

<problem> ::= (define (problem <name>)

(:domain <name>)

[ <object declaration> ]

<init>

<goal>

[ <metric-spec> ] )

<object declaration> ::= (:objects <typed list (name)>)

<init> ::= (:init <init-el>∗)
<init-el> ::= <literal (name)>

<init-el> ::= :probabilistic−effects (probabilistic <prob> <init-el>∗)
<init-el> ::= (= <s-f-head> <number>)

<goal> ::= (:goal <pre-GD>)

<literal (t)> ::= <atomic s-formula (t)>

<literal (t)> ::= (not <atomic s-formula (t)>)

<metric-spec> ::= (:metric <optimization> <metric-f-exp>)

<optimization> ::= minimize

<optimization> ::= maximize

<metric-f-exp> ::= (<binary-op> <metric-f-exp> <metric-f-exp>)

<metric-f-exp> ::= (<multi-op> <metric-f-exp> <metric-f-exp>+)

<metric-f-exp> ::= (- <metric-f-exp>)

<metric-f-exp> ::= <number>

<metric-f-exp> ::= (<s-function-symbol> <name>∗)
<metric-f-exp> ::= <s-function-symbol>

A.2.1 Example from IPC-5 Tireworld

Here we demonstrate our POMDP domain definition language by giving an
example of a tireworld problem from IPC-5 that has some partial observ-
ability.
; ; ; O r i g i na l Authors : Michael Littman and David Weissman ; ; ;
; ; ; Modi f ied : B la i Bonet f o r IPC 2006 ; ; ;
; ; ; Modi f ied : Char les Gretton f o r CogX 2009 ; ; ;

( d e f i n e ( domain t i r e )
( : requ i rements

: p a r t i a l−o b s e r v a b i l i t y ; ; Not in IPC−5 t i r e w o r l d
: f l u e n t s ; ; Not in IPC−5 t i r e w o r l d
: un ive r sa l−e f f e c t s ; ; Not in IPC−5 t i r e w o r l d
: cond i t i ona l−e f f e c t s ; ; Not in IPC−5 t i r e w o r l d

: typing
: s t r i p s
: e q u a l i t y
: p r o b a b i l i s t i c−e f f e c t s )

( : types l o c a t i o n )

( : p r e d i c a t e s
( v eh i c l e−at ? l o c − l o c a t i o n )

( spare−in ? l o c − l o c a t i o n )

( road ? from − l o c a t i o n ? to − l o c a t i o n )
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( goal−l o c a t i o n ? l o c ) ; ; Not in IPC−5 t i r e w o r l d

( not− f l a t t i r e )

( hasspare )
)

; ; Note , here a l l the s tate−p r e d i c a t e s are repeated except f o r
; ; ”( not− f l a t t i r e ) ” . A repeated s t a t e p r e d i c a t e in ” : pe r cept s ” i s
; ; f u l l y obse rvab l e .
( : pe r c ept s

; ; Do we know i f we have a f l a t t i r e ?
( observe−not− f l a t t i r e ) ; ; Not in IPC−5 t i r e w o r l d

; ; Ful ly obse rvab l e −− i . e . f o l l o w s s t a t e v a r i a b l e .
( v eh i c l e−at ? l o c − l o c a t i o n )

; ; Ful ly obse rvab l e −− i . e . f o l l o w s s t a t e v a r i a b l e .
( spare−in ? l o c − l o c a t i o n )

; ; Ful ly obse rvab l e −− i . e . f o l l o w s s t a t e v a r i a b l e .
( road ? from − l o c a t i o n ? to − l o c a t i o n )

; ; Ful ly obse rvab l e −− i . e . f o l l o w s s t a t e v a r i a b l e .
( goal−l o c a t i o n ? l o c )

; ; Ful ly obse rvab l e −− i . e . f o l l o w s s t a t e v a r i a b l e .
( hasspare )
)

( : a c t i on move−car
: parameters
(? from − l o c a t i o n ? to − l o c a t i o n )

: p r e cond i t i on
( and

( veh i c l e−at ? from )
( road ? from ? to )
( not− f l a t t i r e ) )

: e f f e c t
( and

( veh i c l e−at ? to )
( not ( veh i c l e−at ? from ) )
( p r o b a b i l i s t i c 2/5 ( not ( not− f l a t t i r e ) ) )

; ; Fol lowing was not in IPC−5 t i r e w o r l d
( f o r a l l

(? l o c − l o c a t i o n )
(when ( and ( goal−l o c a t i o n ? l o c )

(= ? to ? l o c ) )
( i n c r e a s e ( reward ) 1000) ) )

)
)
( : a c t i on l o a d t i r e

: parameters (? l o c − l o c a t i o n )
: p r e cond i t i on ( and ( veh i c l e−at ? l o c )

( spare−in ? l o c ) )
: e f f e c t ( and ( hasspare ) ( not ( spare−in ? l o c ) ) )

)
( : a c t i on change t i r e
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: p r e cond i t i on ( hasspare )
: e f f e c t ( p r o b a b i l i s t i c 1/2 ( and ( not ( hasspare ) )

( not− f l a t t i r e ) ) )
)

; ; Fol lowing pe rcept i on was not in IPC−5 t i r e w o r l d
( : observe t i r e−s tatus−a f t e r−move

: parameters
(? from − l o c a t i o n ? to − l o c a t i o n )

: execut ion
(move−car ? from ? to )

: p r e cond i t i on
( )

: e f f e c t
( and (when ( not− f l a t t i r e )

( p r o b a b i l i s t i c 7/8 ( observe−not− f l a t t i r e )
1/8 ( not ( observe−not− f l a t t i r e ) ) ) )

(when ( not ( not− f l a t t i r e ) )
( p r o b a b i l i s t i c 7/8 ( not ( observe−not− f l a t t i r e ) )

1/8 ( observe−not− f l a t t i r e ) ) ) )

)
)

( d e f i n e ( problem t i r e 1 7 0 2 8 4 6 0 )
( : domain t i r e )
( : o b j e c t s n0 n1 n2 n3 n4 n5 n6 n7 n8

n9 n10 n11 n12 n13 n14 n15 n16 − l o c a t i o n )
( : i n i t ( v eh i c l e−at n2 )

( road n0 n12 ) ( road n12 n0 )
( road n0 n16 ) ( road n16 n0 )
( road n1 n2 ) ( road n2 n1 )
( road n1 n3 ) ( road n3 n1 )
( road n3 n4 ) ( road n4 n3 )
( road n3 n13 ) ( road n13 n3 )
( road n3 n14 ) ( road n14 n3 )
( road n5 n8 ) ( road n8 n5 )
( road n5 n10 ) ( road n10 n5 )
( road n5 n16 ) ( road n16 n5 )
( road n6 n14 ) ( road n14 n6 )
( road n7 n9 ) ( road n9 n7 )
( road n7 n13 ) ( road n13 n7 )
( road n8 n9 ) ( road n9 n8 )
( road n9 n12 ) ( road n12 n9 )
( road n9 n16 ) ( road n16 n9 )
( road n10 n12 ) ( road n12 n10 )
( road n10 n13 ) ( road n13 n10 )
( road n11 n16 ) ( road n16 n11 )
( road n12 n16 ) ( road n16 n12 )
( road n13 n15 ) ( road n15 n13 )
( road n14 n16 ) ( road n16 n14 )
( spare−in n4 )
( spare−in n5 )
( spare−in n7 )
( spare−in n8 )
( spare−in n10 )
( spare−in n12 )
( spare−in n16 )
( p r o b a b i l i s t i c 8/9 ( not− f l a t t i r e ) )
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( goal−l o c a t i o n n0 )
)

( : metr ic maximize ( reward ) )
)
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B Annexes

B.1 Wyatt et al. “Self-Understanding and Self-Extension: A
Systems and Representational Approach

Bibliography Jeremy L. Wyatt, Alper Aydemir, Michael Brenner, Marc
Hanheide, Nick Hawes, Patric Jensfelt, Matej Kristan, Geert-Jan M. Kruijff,
Pierre Lison, Andrzej Pronobis, Kristoffer Sjöö, Danijel Skočaj, Alen Vrečko,
Hendrik Zender, Michael Zillich: Self-Understanding and Self-Extension: A
Systems and Representational Approach, submitted to IEEE Transactions
on Autonomous Mental Development, Special Issue on Architectures and
Representations.

Abstract There are many different approaches to building a system that
can engage in autonomous mental development. In this paper we present an
approach based on what we term self- understanding, by which we mean the
use of explicit representa- tion of and reasoning about what a system does
and doesnt know, and how that understanding changes under action. We
present a coherent architecture and a set of representations used in two robot
systems that exhibit a limited degree of autonomous mental development,
what we term self-extension. The contributions include: representations of
gaps and uncertainty for specic kinds of knowledge, and a motivational and
planning system for setting and achieving learning goals.

Relation to WP This paper describes the representations of beliefs about
uncertainty and gaps in spatial information, planning, cross-modal informa-
tion, and multi-modal information. It shows how these were used in the
George and Dora systems during year 1. In particular it shows how to build
a system that uses representations of beliefs several different modalities and
how those change under action in a unified way.
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B.2 Lison et al. “Belief Modelling for Situation Awareness
in Human-Robot Interaction

Bibliography Pierre Lison, Carsten Ehrler and Geert-Jan M. Kruijff: Be-
lief Modelling for Situation Awareness in Human-Robot Interaction. Ex-
tended report.

Abstract To interact naturally with humans, robots needs to be aware of
their own surroundings. This awareness is usually encoded in some implicit
or explicit representation of the situated context. In this research report, we
present a new framework for constructing rich belief models of the robot’s
environment.

Key to our approach is the use of Markov Logic as a unified represen-
tation formalism. Markov Logic is a combination of first-order logic and
probabilistic graphical models. Its expressive power allows us to capture
both the rich relational structure of the environment and the uncertainty
arising from the noise and incompleteness of low-level sensory data. Beliefs
evolve dynamically over time, and are constructed by a three-fold iterative
process of information fusion, refinement and abstraction. This process is re-
flected in distinct ontological categories. Links across these categories define
the construction history by relating a belief to its ancestors. Beliefs are thus
organised in a complex two-dimensional structure, with horizontal relations
between belief dependents and vertical relations between belief relatives.

Beliefs also incorporate various contextual information such as spatio-
temporal framing, multi-agent epistemic status, and saliency measures. Such
rich annotation scheme allows us to easily interface beliefs with high-level
cognitive functions such as action planning or communication. Beliefs can
therefore be easily referenced, controlled and extended “top-down” by ex-
ternal processes to reach beyond the current perceptual horizon and include
past, future or hypothetical knowledge.

Relation to WP This report describes the formal representations used
to model multi-modal beliefs (and how they can be build). The approach
extends the probabilistic binding approach developed for year 1.

A shorter version of the report has been submitted to RO-MAN 2010
(19th IEEE International Symposium on Robot and Human Interactive
Communication), under the same title.
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WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 1

Self-Understanding & Self-Extension:
A Systems and Representational Approach

Jeremy L. Wyatt, Alper Aydemir, Michael Brenner, Marc Hanheide, Nick Hawes,
Patric Jensfelt, Matej Kristan, Geert-Jan M. Kruijff, Pierre Lison, Andrzej Pronobis,

Kristoffer Sjöö, Danijel Skočaj, Alen Vrečko, Hendrik Zender, Michael Zillich

Abstract—There are many different approaches to building a
system that can engage in autonomous mental development. In
this paper we present an approach based on what we term self-
understanding, by which we mean the use of explicit representa-
tion of and reasoning about what a system does and doesn’t know,
and how that understanding changes under action. We present
a coherent architecture and a set of representations used in two
robot systems that exhibit a limited degree of autonomous mental
development, what we term self-extension. The contributions
include: representations of gaps and uncertainty for specific kinds
of knowledge, and a motivational and planning system for setting
and achieving learning goals.

Index Terms—robotics, robot learning, architectures, represen-
tations

I. INTRODUCTION

WHAT is needed for an agent to learn in a truly
autonomous fashion? One way is to give that agent

knowledge of what it knows and doesn’t know, and to make
it reason with these representations to set its own epistemic
goals. An epistemic goal is a goal to be in a certain knowledge
state. In this paper we describe this representation and systems
approach to autonomous mental development. We present
an architecture, together with a set of representations that
explicitly capture what the robot and other agents do and don’t
know at any one time, i.e. representations of their epistemic
state. We also describe representations of how this epistemic
state will change under action. Such representations with
algorithms for reasoning about them we refer to as conferring
a degree of self-understanding, and allow the construction of
systems that are able to plan how to extend the knowledge
they have of the environment, i.e. knowledge self-extension.
We also describe a goal management system that allows the
robot to choose quickly between different epistemic goals. We
argue that such an approach will be necessary in the long
term as robot systems become able to generate many goals
for filling gaps in and reducing uncertainty in knowledge.
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It is important to understand a little of the different types
of incompleteness in knowledge. We use incompleteness as
an umbrella term to cover many different types of knowl-
edge gaps and uncertainty about knowledge. We can think
about a typology of incompleteness in knowledge based on
three dimensions of variability. These are the nature of the
incompleteness, the type of knowledge that is incomplete, and
whether the incompleteness is represented in a quantitative or
qualitative manner.

With regard to the nature of the incompleteness, in the
simplest case we may have a variable or variables that have
a defined set of possible values or hypotheses from which the
true value is known to be drawn. We refer to this as simple
uncertainty. We can also have uncertainty about the number of
variables needed in a model, i.e. about the model complexity.
Finally we can also have cases where the agent knows that
a variable is of an unexperienced class, i.e. there is novelty.
This can include cases where the variables are continuous but
where the observation models for a class are quite confident
and do not generalise well to some new observation. The type
of knowledge that is incomplete may vary enormously. Four
simple types that cover a variety of cases include contingent
knowledge about the current world state, structural knowledge
about the universal relationships between variables, knowledge
consisting of predictions of action outcomes or events, and
knowledge about their causes. Finally there is a question about
whether the representation is qualitative or quantitative. In
qualitative representations of gaps or uncertainty we have a set
of possible values for the variable, or a statement that the vari-
able value is unknown, or knowledge that there may be many
variables that are unmodelled. In quantitative representations
we will have some kind of scalar values attached to hypotheses
(e.g. is this a cup or mug) or statements (such as whether
there is novelty or not), and in our case these will typically be
probabilities. Note that by a quantitative gap or quantitative
uncertainty we do not mean that the underlying space for the
variable is continuous or discrete, but instead that the way
the incompleteness is represented involves an expression of
preference for one hypothesis or statement versus another.

In this paper we deal with filling qualitative gaps, qualitative
uncertainty in state, quantitative uncertainty about structural
knowledge, and novel states. We provide empirical proof
that our approach works and illustrate different aspects of
it through two robot systems we have implemented. We call
these Dora, and George (Figs. 1 and 2). We provide links to
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(a) The Dora plat-
form: a P3 mobile
robot base with a
custom-built super-
structure and dif-
ferent sensors.

(b) Visualisation of Dora’s map of a partially ex-
plored environment. Coloured disks denote place nodes
(colour indicates segmentation into different rooms,
area0,1,2). Small green circles represent opportu-
nities for spatial exploration (placeholders). Red nodes
indicate places where doorways are located.

Fig. 1. Dora the Explorer: a robot system for goal-driven spatial exploration.

(a) Scenario setup. (b) Observed scene.
Fig. 2. George scenario: continuous interactive learning of visual properties.

videos of these systems running in the real world1, and analyse
their behaviour on larger amounts of data using simulations.
We now describe Dora and George in more detail to give
concrete examples that will run through the paper.

Dora is able to explore an office environment, choosing
between filling different types of incompleteness in her maps
of the environment. Dora illustrates the architecture, the rep-
resentations of gaps in spatial knowledge, the use of epistemic
states in goal setting and action planning, and in the use of
our motivation system. In Dora’s case the current incomplete
knowledge she can model and fill can be seen by reference
to Fig. 1(b). Here we can see a visualisation of a map that
Dora has built after a partial tour of an office environment.
The map consists of a graph where the nodes (which we call
places) are partitioned into areas by landmarks, such as doors.
Dora has representations of two kinds of incompleteness. She
represents unexplored regions of space, by maintaining a set
of hypothesised places, which we call placeholders. These are
depicted in Fig. 1(b) as small unfilled circles with numeric
labels. This is uncertainty about how many variables are
needed to model the space. Second, Dora has the ability to
categorise areas into categories such as office, kitchen, coffee
room and corridor. In Fig. 1(b) it can be seen that none of
the areas currently have known categories. This is simple
state uncertainty, as Dora knows a certain number of types of

1Available at http://cogx.eu/

area, and cannot represent or reason about novel area types.
During the autonomous part of the mapping process Dora will
choose the order in which to reduce these different kinds of
incompleteness. To map unexplored areas by adding nodes
to the topological map she will conduct laser based mapping
while visiting the hypothesised placeholders. To categorise a
room she will search for objects that indicate its category, e.g.
kitchens typically contain objects such as milk cartons and
cups, and offices objects such as bookshelves and journals.

George is a system that converses with a human to reduce
incompleteness it has about the properties of objects on a table
top. George illustrates the way we represent uncertainty and
incompleteness in models of the structural relationships be-
tween visual information and linguistic descriptions of objects.
What visual properties, for example, make an object round or
square, vs. red or yellow? George has representations of the
uncertainty it has as to which sub-spaces of a set of visual
features are associated with particular adjectives. This is a
type of structural uncertainty. George can learn from a tutor,
but crucially he can also decide which questions to ask in order
to fill a particular gap he has identified. A typical scene during
George’s learning is depicted in Fig. 2. A typical dialogue
snippet might be:

G: Which colour is the elongated object?
H: The elongated object is yellow.
G: OK.
G: Is the square object blue?
H: No it is not blue. It is red.
G: OK.

During this dialogue the robot and the human reason about
each others beliefs, what they know and don’t know, and
how to establish common understanding. This is type of state
uncertainty, since the robot can only model the human as
having one of a known set of beliefs. In the dialogue each
agent makes references to objects that they understand will
be distinguishing to the other agent, such as referring to the
elongated object. More importantly George asks questions
which are prompted by detection of gaps such as state novelty.
He asks: “Which colour is ..?” when he realises that the
colour is one he hasn’t experienced before. When he is simply
uncertain about which of a number of colour classes is present
he asks instead whether the object has the most likely colour
class: Is the object blue?. Both George and Dora also have
mechanisms for doing non-monotonic inference or learning.
George can unlearn erroneous representations of colour and
shape, and in Dora’s case she can withdraw support for
inferences about room category, or the partition of her map.

The rest of the paper is structured as follows. In Section II
we describe the architectural model. Section III describes the
model that connects information from multiple modalities, and
how we have engineered those representations to explicitly
capture uncertainty and incompleteness in the amodal model.
In Section IV covers representations of space, cross-modal
relations, epistemic goals, and epistemic action effects, all as
used in Dora and/or George. In Section V we describe our
approach to goal management, and finally in Sections VI and
VII we describe the Dora and George systems and present an
experimental analysis their behaviour.
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(a) In CAS, there are components, which run in parallel, asynchronously updating shared
structures on a common working memory. They can also take input from sensors or give
output to actuators. Subarchitectures are coupled to make an overall system.
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(b) A simplified illustration of the interaction patterns mediated
through the working memories focusing on information flow
from sources to sinks.

Fig. 3. Building systems with CAS. The form on the right is used as a short hand in the later system diagram for Dora.

II. AN ARCHITECTURE FOR MULTI-MODAL PROCESSING

In this section we describe the basic architecture we employ,
which we call CAS (CoSy Architecture Schema) [1]. We refer
to it as a schema because it actually defines a space of specific
architectures, we refer to the schema when talk about this
space, and to an architecture when we mean a specific archi-
tecture employed in a particular robot system. The schema is
essentially a distributed working memory model, where repre-
sentations are linked within and across the working memories,
and are updated asynchronously and in parallel. The key idea is
that it replaces a single world model (still prevalent in robotics)
with multiple, linked world models, enabling it to work in
the face of inconsistent evidence, uncertainty and change.
The decomposition into working memories groups processes
that commonly share information, and is typically by sensory
modality. So that in Dora and George we build separate sub-
systems (called subarchitectures) for vision, communication
and spatial understanding. As we shall see in Sections III
and IV each subarchitecture contains representations which
explicitly capture uncertainty and incompleteness. The system
overall can reason about this uncertainty or incompleteness and
plan how to act so as to fill that knoweldge gap, perhaps by
employing information in another modality. We now describe
the key aspects of CAS relevant to this paper.

A. Subarchitecture Design

1) Components: Our schema starts on the level of a collec-
tion of processing components (Fig. 3(a)). Every component is
concurrently active, allowing them to process in parallel. We
do not specify any constraints on the contents of components:
they could have behave like a node in a connectionist network,
an activity in a behaviour-based system, or an entire function
in a functionally-composed system. Components can take
input either directly from sensors, or from working mem-
ory. They can also directly control actuators in the manner
of closed loop controllers, or initiate fixed action patterns.
Components can have processing triggered by the appearance
of certain information on the shared working memory, and
can modify structures on that memory. Components may
also have their own private (i.e. component-internal) memory.

Components are typically designed around two archetypes:
managed and unmanaged. Unmanaged components are low-
latency processes that run all the time, regardless of overall
system state. Managed components by contrast are typically
computationally expensive processes, which only run when
there is a demand for their services. These components are
only run when a particular configuration of information is
present on working memory.

2) Shared Working Memories: Rather than exchange in-
formation directly, processing components are connected to
a shared working memory (Fig. 3(a)). The contents of the
working memory are solely composed of the outputs of
processing components. Each working memory is connected
to all other working memories in the system. This allows
components to exchange information across subarchitectures.
In our implementation of CAS the communication method
between the working memory and the components determines
the efficiency of the model. But for now let us consider simply
that the schema itself allows reading and writing to working
memories, and transfer of information between them.

This use of shared working memories is particularly well
suited to the collaborative refinement of shared structures.
In this approach to information processing, a number of
components use the data available to them to incrementally
update an entry on working memory. In this manner the
results of processing done by one component can restrict the
processing options available to the others in an informed way.
As all components are active in parallel, the collective total
processing effort (i.e. the amount of work done by all the
components in solving a problem) may be reduced by sharing
information in this way. This feature turns out to be a very
powerful aspect of the schema.

B. System Design Practices with CAS

While a system could be composed of a single subar-
chitecture, we intend that there should typically be several
subarchitectures in operation. In the integrated systems we
describe in this paper we have about four subarchitectures. The
architecture makes no assumptions about whether system de-
composition should be predominantly according to behaviour
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or information processing function. What is important is
that the decomposition groups components that commonly
exchange information via shared structures. One of the main
benefits of having distributed working memories is that the
working memory can act as a filter for its local components,
only letting them become aware of events elsewhere in the
system when necessary.

In the systems described here (Dora and George) we have
separate subarchitectures for vision, linguistic communication,
and spatial understanding. To have coherent global action,
however, the system benefits from linking these separate mod-
els. In other words there are data structures, or symbols on one
blackboard, that are related to those on another. For example
the visual system might have a symbol corresponding to a blue
cup sitting on a table, and the communication system might
have a symbol corresponding to a mention of a blue thing
by a human. To make sense of the human’s words the robot
has to decide whether these two symbols are connected, or
whether the human is referring to some other object (perhaps
another blue object in the scene). An important question is
what mechanisms can be used to link these efficiently? We
call this symbol linking problem the binding problem and
we describe it in the next section. In particular we will talk
about how we can solve the binding problem in a way that
allows us to represent uncertainty in which symbols should be
bound to which, and also gaps in the robot’s overall picture
of the world right now. Binding essentially involves creating
new symbols that refer back to each of the modality specific
symbols. We refer to the representations that are created by
binding as multi-modal representations. At the highest level of
abstraction, however, binding produces an essentially amodal
model of the robot’s world.

III. MODELLING MULTI-MODAL BELIEFS

So far we have described an architecture capable of support-
ing processing on groups of modality specific representations.
High-level cognitive capabilities must generally operate on
high level (i.e. abstract) representations that collect informa-
tion from multiple modalities. This requirement raises the
double issue of (1) how these high-level representations can
be reliably generated from low-level sensory data, and (2)
how information arising from different subsystems can be
efficiently fused into unified multi-modal structures.

We present here a new approach to multi-modal information
binding [2], [3], based on a Bayesian framework. The approach
is implemented in a specific subarchitecture in our systems
called the binder [4]. The binder is directly connected to all
subsystems in the architecture. It serves as a central hub for
the information gathered about entities currently perceived in
the environment. The data structures included in the binder
are inherently probabilistic. Each property or information bit
pertaining to an entity is given a probability value, reflecting
the confidence level of the subsystem. This enables the system
to deal with varying levels of noise and uncertainty, which are
unavoidable for most sensory-motor processes.

Based on the data structures made available in this repos-
itory, the binding algorithm seeks to ”merge” or unify the

perceptual inputs arising from the various subsystems, by
checking whether their respective features correlate with each
other. The probability of these correlations are encoded in
a Bayesian network. This Bayesian network might for in-
stance express a high compatibility between the haptic feature
“shape: cylindrical” and the visual feature “object: mug” (since
most mugs are cylindrical), but a very low compatibility
between the features “shape: cylindrical” and “object: ball”.

The resulting multi-modal information structure is called a
belief in our terminology. The task of the binder is to decide
which proxies from different modalities belong to the same
real-world entity, and should therefore be merged into a belief.
The outcome of this process is a joint probability distribution
over possible beliefs. These beliefs integrate in a compact
representation of all the information included in the perceptual
inputs. They can therefore be directly used by the deliberative
processes for planning, reasoning and learning.

A. Representations

The three central data structures manipulated by the binder
are proxies, unions and beliefs (also see Fig. 4(a)).

1) Proxies: A mid-level, uni-modal representation of a
given entity in the environment. Proxies are inserted onto the
binder by the various subsystems included in the architecture.

A proxy is essentially defined as a multivariate probabilistic
distribution over a set of features. The distributions included in
the proxy can be either discrete (as for categorical knowledge)
or continuous (as for real-valued measures).

2) Unions: A mid-level, multi-modal representation of an
entity, constructed by merging one or more proxies. Just
like proxies, unions are also represented as a multivariate
probabilistic distribution over possible features. Unions are
essentially a transitional layer between proxies and beliefs.

3) Beliefs: A high-level, amodal representation of an entity
in the environment. Beliefs are generally build on top of
unions, but they are expressed in an amodal format and encode
additional information related to the specific situation and
perspective in which the belief was formed, such as its spatio-
temporal frame, its epistemic status and its saliency value:

• The spatio-temporal frame is defined according to a
spatial model (set of possible “places” in the environ-
ment), a temporal model (points on a continuous temporal
interval), and possibly a perspective on these two models
from the viewpoint of a particular agent.

• The epistemic status of a belief (or subpart of a belief)
can be either private, attributed or shared. Private beliefs
are beliefs which are internal to the agent, while attributed
beliefs are beliefs an agent ascribes to another agent (e.g.
A believes that B believes X). Shared beliefs are beliefs
which are part of the common ground for all agents.

• Finally, the salience is a multivariate density function
!n → [0, 1], where each variable defines a particular,
real-valued saliency measure. It provides an estimate of
the “importance” or quality of standing out of a particular
entity relative to neighboring ones [5]. The salience is
used to drive the attentional behaviour of the agent by
specifying which entitites are currently in focus.
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(a) Construction of multi-modal beliefs.
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(b) Reference resolution for the expression “the yellow object”.

Fig. 4. Multi-modal information binding: belief construction (left) and application in a reference resolution task (right).

Beliefs are indexed via an unique identifier, which allows us
to keep track of the whole development history of a particular
belief. Beliefs can also be connected with each other using
relational structures of arbitrary complexity.

To account for this rich representation, beliefs are for-
malised according to a belief model, which is a mathematical
structure defining a space of possible belief instances.

B. Binding algorithm

To be able to create beliefs out of proxies, the binder
must decide for each pair of proxies arising from distinct
subsystems, whether they should be bound into a single union,
or fork in two separate unions. The decision algorithm for this
task is based on a well-known technique from probabilistic
data fusion, called the Independent Likelihood Pool (ILP) [6].
Using the ILP, we are able to compute the likelihood of
every possible binding of proxies, and use this estimate as
a basis for constructing the beliefs. The multivariate proba-
bility distribution contained in the belief is a linear function
of the feature distributions included in the proxies and the
correlations between these.

A Bayesian network encodes all possible feature correla-
tions as conditional dependencies. The encoded features may
be discrete or continuous. The (normalised) product of these
correlations over the complete feature set provides an useful
estimate of the “internal consistency” of the constructed belief
– a belief with incompatible features will have a near-zero
probability, while a belief with highly correlated features will
be associated with a high probability.

C. Referencing and updating beliefs

The beliefs are high-level symbolic representations available
for the whole cognitive architecture. As such, they provide
an unified model of the environment which can be efficiently
used when interacting with the human user. An important
aspect of this is reference resolution: how to connect linguistic
expressions such as “this box” or “the ball on the floor” to the
corresponding beliefs about entities in the environment.

Reference resolution is performed using the same core
mechanisms as for binding – a Bayesian network specifies the

correlations between the linguistic constraints of the referring
expressions and the belief features (in particular, the entity
saliency and associated categorical knowledge). The resolu-
tion process yields a probability distribution over alternative
referents (see Fig. 4(b) for an example), which is then retrieved
by the communication subsystem for further interpretation.

In addition to simple reference, the interaction with a human
user can also provide new content to the beliefs, as in cross-
modal learning scenarios. Via (linguistic) communication, the
human user can thus directly extend or modify the robot’s
current beliefs, in a top-down manner, without altering the
incoming proxies. If this new information conflicts with ex-
isting perceptual knowledge, the agent can decide to trigger a
clarification request to resolve the conflict.

An utterance such as “This is yellow” illustrates these two
complementary mechanisms. First, the linguistic expression
“this” must be resolved to a particular entity in the environ-
ment. Since “this” is a (proximal) deictic, the resolution is
performed on basis of the saliency measures. In the absence of
any other constraint, the most salient entity is simply selected
and retrieved. Second, the utterance not only refers to an
existing entity in the environment, but it also provides new
information about it – namely that is is yellow. This asserted
content must therefore inserted into the robot’s beliefs. This
is realised by selecting the belief pertaining to the referred-to
entity and incorporating the new, attributed information into
its content representation.

D. Implementation

The outlined approach has been fully implemented as a
separate subsystem in the cognitive architecture. It includes
a central working memory where proxies can be inserted,
modified or deleted. The belief set is automatically updated
to reflect the incoming information. A GUI allows the user to
monitor at runtime the binder behaviour.

The Bayesian network encoding the feature correlations can
be either manually specified, or learned using various machine
learning techniques (see section VII).
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IV. REPRESENTATIONS TO SUPPORT SELF-EXTENSION

This section explains how different domains of knowledge
are represented in our system. We present three types of
representations: representations of space, primarily related to
the Dora scenario; cross-modal representations used in the
George scenario; and representations of epistemic state and
action effects used by planning. Each representation focuses
on structuring and abstracting what is known, but also on
representing uncertainty and knowledge gaps explicitly.

A. Representations of space

Spatial knowledge constitutes a fundamental component of
the knowledge base of a mobile agent, such as Dora, and many
functionalities directly depend on the structure of the spatial
knowledge representation. These include spatial localisation,
navigation, wayfinding and autonomous exploration, but also
understanding and exploiting semantics associated with space,
human-like conceptualisation and categorisation of and rea-
soning about spatial units and their relations, human-robot
communication, action planning, object finding and visual
servoing, and finally storing and recalling episodic memories.

In our system, spatial knowledge is represented in multiple
layers, at different levels of abstraction, from low-level sensory
input to high level conceptual symbols. Moreover, continuous
space is discretised into a finite number of spatial units. The
abstraction and discretisation processes is one of the most
important abstracting steps in representing spatial knowledge
as it allows to make the representation compact, tractable
and robust to changes that occur in the world. Discretisation
drastically reduces the number of states that have to be
considered, e.g., during the planning process and serves as
a basis for higher level conceptualisation.

The representation is designed for representing complex,
cross-modal, spatial knowledge that is inherently uncertain and
dynamic. Our primary assumption is that spatial knowledge
should be represented only as accurately as it is required to
provide all the necessary functionality of the system. This
keeps the complexity of the representation under control,
makes the knowledge more robust to dynamic changes and
substantially reduces the effort required to synchronise the
representation with the environment. Additionally, uncertain-
ties are associated with the represented symbols and gaps in
spatial knowledge are explicitly modelled.

Fig. 5 gives a general overview of the structure of the
representation. It is sub-divided into layers of specific repre-
sentations. We distinguish between four layers which focus
on different aspects of the world, abstraction levels of the
spatial knowledge and different spatial scales. Moreover, each
layer defines its own spatial entities and the way the agent’s
position in the world is represented. At the lowest abstraction
level we have the sensory layer which maintains an accurate
representation of the robot’s immediate environment extracted
directly from the robot’s sensory input. Higher, we have
the place and categorical layers. The place layer provides
fundamental discretisation of the continuous space explored
by the robot into a set of distinct places. The categorical
layer focuses on low-level, long-term categorical models of

Fig. 5. The layered structure of the spatial representation. The position of
each layer within the representation corresponds to the level of abstraction of
the spatial knowledge. The ABox in the conceptual layer corresponds to the
example in Fig. 1(b) on page 2.

the robot’s sensory information. Finally, at the top, we have
the conceptual layer, which associates human concepts (e.g.,
object or room category) with the categorical models in the
categorical layer and groups places into human-compatible
spatial segments such as rooms.

The following paragraphs provide additional details about
each of the layers and their instantiations within our system.
The system provides only an initial instantiation of the rep-
resentation that validates correctness and usefulness of the
knowledge structure within an integrated cognitive system. At
the same time, as it will be mentioned below, some of the
underlying algorithms do not adhere fully to the principles
behind the representation. For a detailed theoretical discussion
on those principles and optimal implementations, we refer the
reader to [7].

1) Sensory Layer: In the sensory layer, a detailed model
of the robot’s immediate environment is represented based
on direct sensory input as well as data fusion over space
around the robot. The sensory layer stores low-level features
and landmarks extracted from the sensory input together with
their exact position. Measures of uncertainty are also included
in this representation. Landmarks beyond a certain distance
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are forgotten and replaced by new information. Thus, the
representation in the sensory layer is akin to a sliding window
with robocentric and up-to-date direct perceptual information.

The representation in the sensory layer helps to maintain
stable and accurate information about the robot’s relative
movements. Moreover, it allows for maintaining and tracking
the position of various features while they are nearby. Finally,
the sensory layer provides the low level robotic movement
systems with data for deriving basic control laws, e.g., for
obstacle avoidance or visual servoing.

In the current implementation, the sensory layer is main-
tained by two subsystems: a metric SLAM algorithm [8] that
builds a global metric map of the environment and an Active
Visual Search (AVS) component which represents hypotheses
about objects found in the environment using a local grid map.
The SLAM algorithm explicitly represents the uncertainty
associated with the pose of the robot and the location of all
landmarks using a multivariate Gaussian distribution encoded
using a state vector and a covariance matrix [9], [8]. At the
same time, the AVS component maintains hypotheses about
existence of an object of a specific category at a specific
location using a probabilistic grid representation [10]. The
probabilistic grid representation is shaped based on multiple
cues about object location one of which is the presence of
obstacles in the SLAM map. This is the prior on which the
AVS algorithm determines the next best viewpoint based on a
randomized art-gallery algorithm [11].

The existence of the global metric map violates some of
the assumptions behind the proposed representation; however,
it is only used internally. In the future instantiations, the
allocentric SLAM algorithm will be replaced by a robocentric
method [12], [13], [14]. Here, in order to verify the correctness
of such concept, we constrain access to the metric map from
other components of the system, exposing only local and
relative (with respect to the robot) metric information – with
the exception of the navigation system that still uses the
allocentric SLAM algorithm.

2) Place Layer: The place layer is responsible for the
fundamental, bottom-up discretisation of continuous space. In
the place layer, the world is represented as a collection of basic
spatial entities called places as well as their spatial relations.
The aim of this representation is not to represent the world as
accurately as possible, but at the level of accuracy sufficient
for performing required actions and robust localisation despite
uncertainty and dynamic variations.

Besides places, the place layer also defines paths between
them. The semantic significance of a path between two places
is the possibility of moving directly between one and the
other. In addition, the place layer explicitly represents gaps in
knowledge about explored space. Space that has not yet been
explored by the robot has no places in it. Therefore, tentative
places are generated, which the robot would probably uncover
if it moved in a certain direction. These hypothetical places
allow for reasoning about unknown space, and for planning
and executing exploratory activities. They are annotated as
placeholders to keep them apart from ordinary, actual places,
but are otherwise identically represented and interconnected.
For an illustrative example of several places and placeholders

A

B

C

D

Fig. 6. Placeholder creation. Dashed circles are hypotheses, each representing
one placeholder. A and B are frontier length estimates, C and D are coverage
estimates for the respective placeholders.

identified during spatial exploration, see Fig. 1(b) on page 2.
Two quantitative measures are associated with each place-

holder providing an estimate of information gain related to
each exploration task. These are used by the motivation
system, described later in Section V on page 11. The measures
used are the coverage estimate (CE) and the frontier length es-
timate (FLE), cf. Fig. 6. The former is obtained by measuring
the free space visible from the current node and not near to any
existing node, and assigning it to the closest hypothesis. This
heuristically estimates the number of new places that would
result from exploring that direction. The FLE is analogously
extracted from the length of the border to unknown space.
By prioritising these two measures differently, the motivation
mechanism can produce different exploratory behaviours.

3) Categorical Layer: The categorical layer contains long-
term, low-level representations of categorical models of the
robot’s sensory information. The knowledge represented in
this layer is not specific to any particular location in the
environment. Instead, it represents a general long-term knowl-
edge about the world at the sensory level. For instance,
this is the layer where models of landmarks or objects are
defined in terms of low-level features. The position of this
layer in the spatial representation reflects the assumption that
the ability to categorise and group sensory observations is
the most fundamental one and can be performed in a feed-
forward manner without any need for higher-level feedback
from cognitive processes.

The categorical models stored in this layer give rise to con-
cepts utilised by higher-level layers. In many cases complex
models are required that can only be inferred from training
data samples. In case of models that correspond to human
concepts, they can be learnt in a supervised fashion, using a
top-down supervision signal.

In our system, the categorical layer was realised through
visual categorical models of objects employed by the AVS
component and a simple door detection algorithm used as
a landmark model. The AVS component uses the object
recognition method proposed in [15] and the models associated
with object classes reside in the categorical layer. However,
using only this algorithm does not provide object pose with
the uncertainty associated with it and is not robust to cases
where two objects appears similar from a certain viewpoint.
Therefore, a natural extension to this procedure which esti-
mates the pose and class of objects is also implemented [10] .
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Additionally, in our experiments, we employed appearance and
geometry-based models of place categories [16]. Although,
currently not being used in the Dora scenario, those models
constitute a part of the categorical layer.

4) Conceptual Layer: The conceptual layer provides a
symbolic ontological representation of space that makes use
of human-compatible concepts. The taxonomy of the spatial
concepts and properties of spatial entities, as well as the
instances of these concepts are linked to the lower levels
of the spatial model. This associates semantic interpretations
with the low-level models and can be used to specify which
properties are meaningful, e.g., from the point of view of
human-robot interaction. The main purpose of the conceptual
layer is to represent a segmentation of the environment into
rooms. Moreover it provides human-compatible concepts for
these rooms based on the objects they contain, and it can
supply default assumptions about which kinds of objects are
likely to be found in which kinds of rooms.

The representation underlying the conceptual map is an
OWL-DL ontology2, consisting of a taxonomy of concepts
(TBox) and the knowledge about individuals in the domain
(ABox), cf. Fig. 5 on page 6, cf. [17]. Here is an example of a
concept definition in the current implementation which defines
a kitchen as a room that contains at least two typical objects:

Kitchen ≡ Room$ ≥ 2contains.KitchenObject

Besides the usual inferences performed by the OWL-DL
reasoner, namely subsumption checking for concepts in the
TBox (i.e., establishing subclass/superclass relations between
concepts) and instance checking for ABox members (i.e., infer-
ring which concepts an individual instantiates), an additional
rule engine is used to maintain a symbolic model of space
under incomplete and changing information.

The discrete places from the place layer and their adjacency
are the main pieces of knowledge that constitute the input for
that reasoning. One, it maintains a representation that groups
places into rooms. Furthermore, using observations (visually
detected objects, appearance- and geometry-based room cat-
egories) it can infer human-compatible concepts for a room,
and raise expectations about which other kinds of objects are
proto-typically likely to be present. The ongoing construction
of the conceptual map is potentially nonmonotonic. The over-
all room organisation may be revised on the basis of new
observations. The further association between room concepts
and salient, proto-typical object types is established through
the “locations” table of the OpenMind Indoor Common Sense3

database by Honda Research Institute USA Inc.
In the current implementation, the conceptual layer can be

used to determine knowledge gaps in the categorisation of
rooms. It is considered a gap in knowledge if for a given room
(i.e., an instance of PhysicalRoom) its basic level category is
unknown. This is assumed to be the case if no more specific
concept than PhysicalRoom (i.e., Office or Kitchen, cf. Fig. 5
on page 6) can be inferred for the individual. This knowledge
gap persists until the robot has gathered enough evidence (i.e.,
contained objects) for inferring a subconcept.

2http://www.w3.org/TR/owl-guide/
3http://openmind.hri-us.com/

B. Representations of epistemic state and action effects

Decisions about what actions to perform next are not pre-
programmed in our robot, but are made by the planning
subarchitecture. In this section, we describe how knowledge
and knowledge-producing actions are modelled such that the
planner can reason about how knowledge gaps can be filled.
Planning systems traditionally use representations based on
propositional logic. Most notably, the classic STRIPS formal-
ism and its modern descendent PDDL are based on such a
propositional representation. The representation we use for
the planning system on our robot, however, is based on
the SAS+ formalism [18]. Here, instead of propositions, we
use multi-valued state variables (MVSVs) v, each with an
associated domain vdom(v) describing the set of possible
values x ∈ vdom(v) that v may assume. A state is a function s
associating variables with values from their domain. In recent
years, SAS+ has been shown to enable powerful reasoning
techniques in planning algorithms and systems based on SAS+

now dominate the International Planning Competition. For the
modelling needs of our robot applications, we have developed
the SAS+-based modelling language MAPL [19].

For robotic planning, MAPL provides, in addition to
the computational advantages, several representational ones.
Firstly, it stays close to the feature/value model used by
other subarchitectures of our robot. In particular, the mapping
between binder states and planning states is greatly simplified:
Roughly, each feature f of a union u in a belief model is
mapped onto a state variable f(u). For example, if the belief
model describes that a room has been categorised as a kitchen
by attributing the feature areaclass : kitchen to a union u, this
would correspond to an assignment areaclass(u) = kitchen in
a planning state.

The main reason for using an SAS+-based representation
is that we can employ it to explicitly model knowledge and
gaps in knowledge, so that the planner can efficiently reason
about them. To this end, we must relax the assumption that
in a state s all variables v have a value x. Instead, we
accept states that are only partially defined, i.e., where some
variables are undefined or “unknown”. Conversely, we also
need to represent future states in which gaps will have been
filled. By nature, we can not know in advance which value a
variable v will assume then, but we can nevertheless exploit
the knowledge that, e.g., after executing a sensing action
the value of v will be “known”. To this end, we use so-
called Kval variables Kvalv with vdom(Kvalv) = ',⊥. With
Kval variables we can also model the epistemic effects of
sensing actions. For example, the action of running a room
categorisation algorithm in a room is modelled in MAPL as
follows:

(:sensor categorise_room
:agent (?a - agent)
:parameters (?r - room ?loc - place)
:precondition

(= (pos ?a) ?loc)
(contains ?r ?loc)

:effect (Kval ?a (areaclass ?r))
)

In words, this action model describes that an agent can
sense the area class of a room, i.e. its being a kitchen,
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Fig. 7. A plan using sensory actions to satisfy epistemic goals.

office or hallway, once the agent is at a place that belongs
to the room in question. At planning time, the outcome of
observing areaclass(r) is yet unknown, therefore the effect
of categorise_room(r,loc) is formally described as
Kvalareaclass(r) = '.

Of course, Kval variables can appear in goal formulae as
well, so that we can conveniently express epistemic goals, i.e.
goals concerned with closing knowledge gap. Goal formulae
can contain expressions in first-order logic, in particular con-
ditionals and quantifiers, so that we can give the robot goals
like “categorise all rooms and explore all currently known
places” , which would correspond to ∀loc.Kvalareaclass(loc) =
' ∧ ∀place.explored(place).

Interestingly, due to the use of a quantified formula the goal
will be re-evaluated repeatedly during the continual planning
process, i.e. the planner will autonomously adapt its plan to
explore and categorise newly discovered places and rooms. A
(slightly simplified) example of a plan using sensing actions
that satisfy epistemic goals is given in Fig. 7.

In the George scenario and in our next instantiation of Dora,
information will not only be obtained by sensing, but also
through interaction with humans. To plan for such multiagent
interactions the robot must also reason about the knowledge of
the other agents. We can express nested beliefs using MVSVs
as well, e.g., “the robot R believes that human H believes
that object o is a pen” is modelled as BR,H

type(o) = pen.
Knowledge gaps may arise in several variants when nested
beliefs are used, depending on which agent is ignorant of
the other’s belief. Again, with MVSVs we can represent the
differences succinctly using agent-specific “unknown” sym-
bols. Consider, e.g., the difference between the statements “R
knows that H does not know the location of the cornflakes”
(KvalR,H

pos(cornflakes) = ⊥H ) and “R does not know if H

knows the location of the cornflakes” ((KvalR,H

pos(cornflakes) =

⊥H ). Just as sensing actions are modelled using standard
Kval variables, we can use nested Kval variables to describe
speech acts. In particular, we can describe wh-questions and
answers to them (“where”, “what colour”, etc.) by modelling

the appropriate nested belief effects. (Note: the planner was not
used for dialogue planning in the George system as presented
in this paper, but will be in its next instantiation).

C. Representations for cross-modal learning
Cross-modal learning plays an important role in a self-

extending system. It enables the system to, based on inter-
action with the environment and people, extend its current
knowledge by learning about the relationships between sym-
bols and features that arise from the interpretation of different
modalities. It involves processing of information from multiple
modalities, which have to be adequately represented. One
modality may exploit information from another to update its
current representations, or several modalities together may
be used to form representations of a certain concept. In this
subsection we focus on the former type of interaction between
modalities and present the representations that are used for
continuous learning of basic visual concepts in a dialogue with
a human. While Section III describes the formation of belief
models, which supervise the learning in the visual domain, this
subsection focuses on representations that are being updated
in this continuous learning process. All these principles are
integrated and demonstrated in the George scenario described
in Section VII.

1) Representations for visual concepts: The visual con-
cepts are represented as generative models, probability density
functions (pdf) over the feature space, and are constructed
in online fashion from new observations. In particular, we
apply the online Kernel Density Estimator (oKDE) [20] to
construct these models. The oKDE estimates the probability
density functions by a mixture of Gaussians, is able to adapt
using only a single data-point at a time, automatically adjusts
its complexity and does not assume specific requirements on
the target distribution. A particularly important feature of the
oKDE is that is allows adaptation from the positive as well as
negative examples [21]. The continuous learning proceeds by
extracting visual data in a form of a highdimensional features
(e.g., multiple 1D features relating to shape, texture, color and
intensity of the observed object) and oKDE is used to estimate
the pdf in this high-dimensional feature space. However, con-
cepts such as color red reside only within lower dimensional
subspace spanned only by features that relate to color (and
not texture or shape). Therefore, during online learning, this
subspace has to be identified to provide best performance. This
is achieved by determining for a set of mutually exclusive
concepts (e.g., colors green, blue, orange, etc.) the subspace
which minimizes the overlap of the corresponding distribu-
tions. The overlap between the distributions is measured using
the Hellinger distance as described in [22]. Therefore, during
online operation, a multivariate generative model is continually
maintained for each of the visual concepts and for mutually
exclusive sets of concepts the feature subspace is continually
being determined. The set of mutually exclusive concepts
can then be used to construct a Bayesian classifier in the
recognition phase, when the robot is generating a description
of a particular object in terms of its color, shape, etc. However,
since the system is operating in an online manner, the closed-
world assumption can not be assumed; at every step the system
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should take into account also the probability of the ”unknown
model” as described in the following.

2) Accounting for unknown model: While maintaining
good models of the visual concepts and being able to adapt
those models is crucial for the robots online operation, the abil-
ity to detect gaps in the knowledge presented by these models
is equally important. Generally speaking the robot collects the
visual information about its environment as follows. First it
determines a region in an image which contains the interesting
information, then it ”segments” that region and extracts the
feature values z from which it later builds models of objects,
concepts, etc. The visual information may be ambiguous by
itself, and segmentation may not always be successful. We will
assume that some measure of how well the segmentation was
carried out exists and we will denote it by s ∈ [0, 1]. High
values of s (around one) mean high confidence that a good
observation z was obtained, while low values relate to low
confidence.

Let m ∈ {mk, mu} denote two possible events: (i) the
observation came from an existing internal model mk, and
(ii) the observation came from an unknown model mu. We
define the knowledge model as a probability of observation z,
given the confidence score s:

p(z|s) = p(z|mk, s)p(mk|s) + p(z|mu, s)p(mu|s). (1)

The function p(z|mk, s) is the probability of explaining z
given that z comes from one of the learnt models, p(mk|s)
is the a priori probability of any learnt model given the
observer’s score s. The function p(z|mu, s) is the probability
of z corresponding to the unknown model, and p(mu|s) is the
probability of the model ”unknown” given the score s.

Assume that the robot has learnt K separate alternative
internal models M = {Mi}i=1:K from previous observations.
The probability p(z|mk, s) can then be further decomposed in
terms of these K models,

p(z|mk, s) =
K∑

i=1

p(z|Mi, mk, s)p(Mi|mk, s). (2)

If we define the ”unknown” model by M0 and set
p(z|mu, s) = p(z|M0, mu, s)p(M0|mu, s), then (1) becomes

p(z|s) = p(mk|s)
K∑

i=1

p(z|Mi, mk, s)p(Mi|mk, s)

+p(mu|s)p(z|M0, mu, s)p(M0|mu, s). (3)

Note that the ”unknown model”, M0, accounts for a poor
classification, by which we mean that none of the learnt
models supports the observation z strongly enough. We as-
sume that the probability of this event is uniformly distributed
over the feature space, which means that we can define the
likelihood of model M0, given observation z by a uniform
distribution, i.e., p(z|M0, mu, s) = U(z). Note also, that
the only possible unknown model comes from the class M0,
therefore p(M0|mu, s) = 1.

The observation z can be classified into the class Mi which
maximizes the a posteriori probability (AP). The a posteriori

U R G B U R G B U R G B U R G B U R G B U R G B

Fig. 8. Example of detecting the knowledge gaps and updating the 1D
KDE representations. Top row: probability distributions for three colours (red,
green, blue lines) and unknown model (gray line) in 1D feature space. Bottom
row: a posteriori probabilities for the unknown model (U) and three colours
(R, G, B) for three feature values denoted by the circle, the diamond and the
square. Left column: before updates, right column: after updates.

probability of a class Mi is calculated as

p(Mi|z, s) =
p(z|Mi, m, s)p(Mi|m, s)p(m|s)

p(z|s) , (4)

where m = mk for i ∈ [1, K] and m = mu for i = 0.
In our implementations, the distribution of each i-th alter-

native of the known model p(z|Mi, mk, s) is continuously
updated by the oKDE [20], while the a priori probability
p(Mi|mk, s) for each model is calculated from the frequency
at which each of the alternative classes Mi, i > 0, has
been observed. The a priori probability of an unknown model
(and implicitly of a known model), p(mu|s) is assumed non-
stationary in that it changes with time. The following function
decreases the ”unknown” class probability with increasing
number of observations N :

p(mu|s) = e
−0.5( N

σN
)2

, (5)

where σN is a user specified parameter that specifies how the
robot’s internal confidence about learned models changes with
time.

With above definitions, the knowledge model is completely
defined and allows discovery of knowledge gaps. They can
be discovered through inspection of the AP distribution. In
particular, we can distinguish two general cases:

• The observation z can be best explained by the unkown
model, which indicates the gap in the knowledge; the
observation should most probably be modeled with a
model, which has not yet been learned.

• The a priori probability of the model that best explains the
observation is low, which indicates that the classification
is very uncertain and that the current model can not
provide a reliable result.

3) Illustrative example: For a better visualization of the
knowledge update and gap discovery we will restrict our
example to a one-dimensional case. Fig. 8 illustrates detection
and filling of knowledge gaps for three cases (feature values)
denoted by the circle, the diamond, and the square. The plots
in the left column depict the models and the recognition at a
particular step in the learning process, while the right column
depicts the situation after the system has updated these models
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considering the detected knowledge gaps and the answers from
the tutor.

Consider a scene similar to that presented in Fig. 2. Let us
assume that the circle in Fig. 8 represents the yellow object
and that the yellow colour has not been presented to the
robot before. Therefore, the corresponding model for colour
yellow has not yet been learned and the feature value obtained
from the segmented yellow object fails in a not yet modeled
area. This value is thus best explained by the ”unknown
model”, which has the highest a posteriori probability. The
robot detects this gap in his knowledge and asks the tutor
”Which colour is this object?”, and after the tutor provides the
requested information, the robot initializes a model for yellow
colour. However, since only one sample does not suffice to
build a reliable representation, the yellow colour will only be
able to be recognized after some additional yellow objects are
observed.

The feature value denoted by a diamond in Fig. 8 is
best explained by a green model, however this recognition
is not very reliable, therefore the robot asks the tutor: ”Is
this object green?” to verify its belief. After the tutor replies
”No. It is blue.”, the robot first unlearns the representation of
green and updates the representation of blue. The corrected
representations, depicted in the pdfs in the right column in
Fig. 8, then enable the correct recognition as indicated by the
second bar plot in the right column of the Fig. 8.

The last case denoted by the square shows another exam-
ple of non-reliable recognition, which triggers the additional
clarification question to the tutor: ”Is this object blue?” After
the robot gets a positive answer, it updates the representation
of blue, which increases the probability of the recognition.

V. GOAL MANAGEMENT: CHOOSING BETWEEN DIFFERENT
EPISTEMIC GOALS

In the previous sections the focus was very much on the
representation of knowledge gaps and on the understanding
of knowledge limitations. In this section we discuss a generic
framework to generate and manage epistemic goals that cor-
repsond to knowledge gaps in these representation. We propose
a goal generation and management framework (GGM) that
enables the robot to decide which gaps in its representation
to eliminate when and generate appropriate behaviour to self-
extend its knowlegde.

We have built on the work of [23], to produce the design
illustrated in Figure 9. This design is a general framework,
or schema, for an architecture for goal generation and man-
agement that tackles the mentioned issues. It specifies a
collection of interacting elements which must be included in
any instantiation of the framework, although the precise details
of the instantiation will inevitably vary between instances. The
elements of the framework are described in more detail below.

At the bottom of the framework, a system’s drives are
encoded as multiple goal generators. These are concurrently
active processes which monitor the system’s state (both the
external world and internal representations) and produce goals
to satisfy the system’s drives. Generators can also remove
previously generated goals if they are judged to no longer
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Fig. 9. The goal generation and management framework.

be appropriate. In this manner we can say that the system’s
drives are encoded in the goal generators (either explicitly or
implicitly). We work from the assumption that as a goal passes
up through the framework from a generator and influences a
system’s behaviour, it is inspected by processes of greater and
greater computational complexity. Therefore the lower strata of
the framework exist to protect these processes (and thus overall
system resources) from having to consider more goals than
is necessary (where this could be a contingent judgement).
The main mechanism in the framework for protecting the
management processes is the attention filter. This is a coarse
barrier which uses simple, fast processing to let some some
goals through to the management mechanisms whilst blocking
others. Goals which make it through this filter are described
as surfaced, thus the goals which fail to pass the filter
are referred to as unsurfaced. A collection of management
processes determine which of the surfaced goals should be
combined to serve as the goals being actively pursued by the
system. If a goal is selected in this way we describe it as
activated. If a goal is removed from the set of goals being
pursued by the system we refer to it as suspended.

In order to fulfil their roles, the filtering and management
processes require information on which to base their decisions.
Following the original work [23], the framework requires that
goal generators annotate each goal with a description of the
goal’s importance and urgency, and keep these descriptions up
to date as long as the goal exists. Importance should reflect
the significance of the goal to the agent (as motivated by
the related drive). Urgency should reflect the necessity of
achieving the goal sooner rather than later. As we shall see
later, producing importance and urgency descriptions for use
in such a framework is a problem in itself. In addition to these
descriptions, the framework allows the management processes
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Fig. 10. Dora system architecture. For clarity, all memory interactions are not depicted as information flow mediated through working memories in the
subarchitectures but as directed dotted connections of sources and sinks. The dashed lines represent synchronous request-reply calls to components by mutually
modifying memory structures.

to use whatever approaches are required to select and maintain
a set of active goals. Perhaps the minimum requirements on
these processes is the ability to check whether a goal, or
collection of goals, can be achieved (thus positing planning
as a goal activation, as well as achievement, mechanism).

The GGM is currently implemented as one of the core
concepts in our exploring robot Dora (cf. Sec. VI). In this
system we derive the importance of a goal from an estimated
information gain computed for the epistemic goals. In brief,
the information gain for achieving the goal of exploring a
yet unexplored place is derived from the measures shown
in Fig. 6. The information gain of categorizing a room is
similarly designed, assuming that a categorising bigger rooms
yields more information. The GGM continuously monitors
these measures of information gain and relates it to the costs
to actually achieve this goal acquired by asking the planner.
We are currently not employing a notion of urgency in our
implementation as the robot’s drives are not prioritised so far.

The GGM in cooperation with planning implements action
selection and execution in our systems, allowing the robots to
expose effective and efficient self-extending behaviour.

VI. DORA THE EXPLORER

The current implementation of Dora is focused on spatial
representations and two types of knowledge gaps that give
rise to epistemic goals to fill these gaps: explore a place and
categorise a room. Dora’s system architecture is composed
of five of the subarchitectures discussed earlier in this paper
running all on one Laptop computer on the autonomous robot,
cf. Fig. 1(a). The composition is sketched in Fig. 10. The
diagram is adopted from UML 2.0 specification and illustrates

the information flow between components, and also across
subarchitectures. Most of the flow is realised by interactions
with the working memories in an event-driven manner as
proposed by CAS in Sec. II. For clarity and readability the
interactions are not shown as connections to the respective
memories but linking sources and sinks of information directly
following the schema pictured in Fig. 3(b). The diagram does
however not include all components. We focus here on those
that are required to understand the architecture facilitating self-
understanding and -extension, disregarding those that can be
seen only as support services and sensor abstraction.

The application domain of Dora is also reflected in this
architecture when we compare it to the architecture of George:
spatial.sa is only relevant for a mobile robot and the reasoning
about spatial concepts implemented in coma.sa is likewise
specific to the scenario (cf. Sec. IV-A4). Furthermore, Dora
is studied as our first system that employs goal management
and planning to choose and pursue epistemic goals.

vision.sa only plays a minor role in this system. The
ObjectRecogniser component (based on the FERNS detector
[24]) detects objects visually when triggered by AVS. The
ProxyMarshalling is a mediator component selecting spatial
information to be presented as Proxy to the binder. The
PlaceMonitor in coma.sa fulfills a similar purpose. As can
be seen in the figure, binding.sa in Dora as in George is
working on a unified representation of beliefs and proxies
only, allowing a simple transformation of information in the
planning domain required by the Planner. As can been seen as
well, the goal management scheme of motivation in Dora is
implemented as part of planner.sa. Epistemic goals are created
from observing knowledge gaps in the specific representations
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(a) Dora has found 2 bookshelves.

Bookshelf(object1)
Bookshelf(object2)
in(object1,area1)
in(object2,area1)

→ Office(area1)
(b) New facts stored in the ABox.

Fig. 11. Continuing the example in Fig. 1(b) on page 2: based on the presence
of 2 OfficeObject instances the DL reasoner infers that area1 instantiates Office.

in other SA’s working memories as discussed in Sec. IV-A2
and IV-A4. These goals are filtered, scheduled, and planned
for following the principles introduced in Sec. V. The Executor
eventually executes and monitors actions by triggering either
the navigation to explore a place or the AVS component (cf.
Sec. IV-A1) which autonomously interacts with other compo-
nents to visually search for objects that allow the OwlReasoner
to derive conceptual knowledge about rooms (cf. Sec. IV-A4).

Fig. 10 on the previous page also illustrates our decom-
position strategy. The only representations that are currently
exchanged across borders of subarchitecture are information
related to binding (cf. Sec. III) and the epistemic goals
corresponding to the knowledge gaps.

A. Dora running

A prototypical run with the current Dora implementation
unfolds as follows:

1) Dora starts from scratch without any knowledge about
the specific environment she is operating in.

2) Optionally, Dora can be given a short tour by a human
instructor to create an initial representations already
containing some knowledge gaps. Fig. 1(b) on page 2
shows such a partially known environment.

3) Dora autonomously explores her environment having
drives to self-extend with respect to two types of knowl-
edge gaps: unexplored places as they have been defined
in the place layer and yet uncategorised rooms as defined
in conceptual layer of the spatial representations. In the
example in Fig. 1(b) on page 2, the rooms area0, area1,
area2 give rise to room categorisation drives, whereas
the different placeholders lead to exploration goals. Note
that a number of placeholders (notably the ones labelled
“8(7)”, “7(16)”, and “20(19)”) are in space that will later
be segmented into new rooms, which then, in turn, will
also need to be categorised.

4) A room categorization goal is considered satisfied when
a more specific concept can be inferred for a Physical-
Room instance in the ABox of the conceptual map layer,
cf. Fig. 11. An exploration goal is satisfied if the robot
either turns the placeholder into a real place or discards
it, because it turned out as a false hypothesis.

The two types of gaps are created and monitored by
the components PlaceManager@spatial.sa and PlaceMoni-
tor@coma.sa, respectively. Fig. 10 illustrates how these com-
ponents submit hypotheses about ComaRoom (a detected but

Fig. 12. Exemplary course of action for filling knowledge gaps in a real run.

not yet categorised room) and Place (a detected but not yet
explored place) to their working memories. From these gaps
epistemic goals are generated by the goal generators Explore-
PlaceGenerator and CategoriseRoomGenerator, respectively.
Thus, a number of goals is always present in the system
corresponding to these gaps. Dora’s behaviour is driven by
the selection of a subset of these goals by goal generation and
management (GGM, cf. Sec. V) and the execution of actions
according to generated plans to achieve these goals.

Fig. 12 visualises an exemplary run of Dora illustrating
the course of action she takes with respect to self-extending
for the two types of knowledge gaps. The x-axis shows the
time in seconds since the beginning of the run. The figure
thus indicates the time when a new gaps are detected (upper
line) and the time, when a particular epistemic goal has been
accomplished to fill a gap in the knowledge. This particular
run comprised an initial tour taking Dora from the corridor
(the long room in the centre of Fig. 1(b) on page 2) to the
room in the upper-right corner in that figure. It can be seen in
Fig. 12 that she is passively detecting gaps in her knowledge in
the phase labelled “Tour”, but not yet autonomously extending
it. Only after the tour Dora interleaves categorisation of rooms
to fill gaps with the exploration of new places. A video4 of
the real robot operating in an office environment can support
comprehension of this illustration and provide the reader with
a better understanding of Dora’s generated behaviour.

Taking a closer look on the actual processes in the system,
we can see how the interaction between component works.
Fig. 13 on the following page pictures the activity that the
robot goes through from the detection of a knowledge gap
to its filling. The example illustrated in the figure is corre-
sponding to “explore place” only, but the structure is similar
for “categorise room”. It starts with spatial.sa hypothesising a
new place and thus generating a Place in the working memory
that is marked as being hypothetical. This generation triggers
binding and ExplorePlaceGenerator to create a Belief about
this place and an epistemic Goal to explore this place. After
the motivation-related components have filtered and scheduled
the generated goal, the planner is triggered to generate a
plan to actually achieve it. The Executor then executes the
actions of the plan. One action will be to navigate towards the
placeholder which will – in this example – make it explored.
This update is again propagated through the working memory,
resulting in the goal to be removed and the belief being
updated asynchronously.

4http://cogx.eu/results/dora/
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Fig. 13. Activity diagram illustrating the “path” of a knowledge gap from
its generation to its filling.

In this paper we present two experiments, each studying
slightly different aspects of the Dora scenario. The first exper-
iment focuses on the spatial representation with an emphasis
on the nonmonotonic reasoning about space in the conceptual
layer. The second one focuses on the goal management and
the benefits of having such a management framework in the
system. For sake of reproducibility and focus on specific
aspects these experiments are carried out in simulation. Our
simulation framework transparently substitutes the sensors and
actuators, still allowing to run the core system unmodified
and in a situated way with sensing-actuation loops closed.
The simulator operates using the floor plan of one of the real
environments in which Dora operates (cf. Fig. 14).

B. Experiment 1: Spatial Representation
One consequence of the uncertainty and partiality of the ob-

servations Dora is dealing with is that the map building process
is nonmonotonic. Structural and conceptual abstractions may
need to be reconsidered in the light of new evidence acquired
during the active exploration. In this experiment we assess the
accuracy and appropriateness of our nonmonotonically built
spatial representation as the robot keeps exploring.

Fig. 14. Stage simulation model used in the experiments (l) and screenshots
of the visualisation tool acquired during one of the three experiments (r).

Setup: The map consisted of eight rooms: a corridor, a
terminal room, a lab, two offices, two restrooms, and a printer
room, cf. Fig. 14. This constitutes the ground truth for our
tests of the accuracy of the room maintenance. The robot
was ordered to perform an autonomous exploration, which
means that only placeholder exploration goals were considered
by the motivation system. To evaluate the coverage that this
exploration yields, we determined a gold standard of 60
Place nodes to be generated in order to fully, densely and
optimally cover the simulated environment. We achieved this
by manually steering the robot to yield an optimal coverage,
staying close to walls and move in narrow, parallel lanes.
We performed three runs with the robot in different starting
positions, each time with an empty map. Each run was cut-off
after 30 minutes. The robot was then manually controlled to
take the shortest route back to its starting position.

For the evaluation, the system logged the state of its
ABox each time a new room was created, or an existing
one was deleted. This subsumes cases in which rooms are
split or merged. At each such step, the generated map was
compared to the ground truth for the room representation
and to the gold standard for Place node coverage. The first
room instance to cover part of a ground-truth room is counted
as true positive (TP). If that room instance extends into a
second room, it is counted as TP only once, and once as
a false positive (FP). Each additional room instance inside
a ground-truth room is also counted as FP. False negatives
(FN) are ground-truth rooms for which no room instance
exists. Using these measures, precision P , recall R and the
balanced f-score F for the room maintenance are as follows:
P = | TP |/(| TP |+| FP |), R = | TP |/(| TP |+| FN |),
R = 2× ((P ×R)/(P +R)). We compute a normalised value
for coverage using coverage = | nodes |/60.

Results: Fig. 15 on the next page shows the development of
the relevant measures during the three experimental runs. As
can be seen, the accuracy (balanced f-score) of the representa-
tion is monotonically increasing towards a high end result (0.8,
0.79 and 0.93, resp.). The increases and decreases in precision
during the individual runs are due to the introduction and
retraction of false room instances. Recall can be interpreted
as coverage in terms of room instances. After 30 minutes the
exploration algorithm yielded a relatively high recall value
(0.75, 0.75 and 0.875, resp.), i.e., most of the rooms had
been visited. A recurring problem here was that the two
smallest rooms were often only entered by a few decimetres.
This was enough to consider the corresponding Placeholder
to be explored, but not enough to create an additional Place
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Fig. 15. Plots for precision, recall, balanced f-score and coverage of each of the three experimental runs. The Y-axis shows the normalised values for
precision, recall, balanced f-score, and coverage (0–1). The X-axis is time, in milliseconds.

node beyond the doorway – which would have been the
prerequisite for room instance creation. The node coverage
that the algorithm achieved after 30 minutes (33, 34, 32 out
of 60, respectively) can be attributed partly to the 30-minutes
cut-off of the experiment, and partly to the exploration strategy
which goes for high information gain Placeholder first. These
tend to be in the middle of a room rather than close to its
walls.

C. Experiment 2: Goal Management

As discussed in Sec. IV-B and V, we have two alternatives
to express Dora’s drives. First, we can explicitly use quantifiers
to create on conjunctive goal for the overall system to explore
all places and categorise all rooms and rely on the replanning
ability of the continual planning (cf. Sec. IV-B). We term
this system setup Conjunct Goal Set (CGS). The proposed
alternative is to make use of the goal generation and manage-
ment approach and let it select and schedule the individual
goals. Our hypothesis is that (i) the effort for planning is
reduced as we chunk the problem into smaller pieces, making
it tractable if it comes to more complex problems, and (ii)
goal management is a powerful and simple means to encode
domain knowledge into the behaviour generation in Dora. We
refer to this second setup as Managed Goal Set (MGS).

Setup: For this study we restricted the space to be explored
five rooms and the corridor (being the right part of Fig. 1(b) on
page 2 without the large room). The ultimate goal in this setup
for the robot is to categorise all rooms using the two typical
objects placed in each of the five rooms. The objects describe
one of three categories according to the OpenMind Indoor
Common Sense Database (room, office, and kitchen), allowing
the conceptual mapping SA to categorise these rooms.

A single run starts with a short tour through the corridor.
Then Dora is switched to autonomous mode and starts acting
in response to her goals. Fig. 12 on page 13 is generated from
one of these runs including the tour and the categorisation of
five rooms. In total we ran the system 15 times: 8 in MGS con-
figuration and 7 in CGS. A run for the CGS configuration was
defined as complete when the conjunctive goal was achieved
(i.e., no places left unexplored and no rooms uncategorised).
The MGS configuration was said to be complete when no more
surfaced goals remained.

Results: As part of our experiments that are fully detailed
in [25] we were interested in the effect the GGM approach has
on the complexity of problems to be solved by planning. So me
measured the time Dora spend planning in the runs for the two
different setups. These measures are summarised in Table I.

TABLE I
PLANNING TIME MEASURES (ALL IN SECONDS).

CGS MGS
avg. time per planning call 0.621 s 0.292 s

avg. time spent on planning 48.843 s 8.858 s
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Fig. 16. Averaged planning time during a system run.

The differences between the averaged timings taken for the
two configurations are statistically significant with p < 0.0001
in Mann-Whitney testing for all measures shown in the table.

As the first row of the table indicates, there is a significant
difference between the average time taken by a single call to
the planner. A call occurs either when the goal management
activates a new goal or when replanning is triggered by a state
change. Planning calls in CGS take more than twice the time
compared to MGS. This is due to the higher complexity of
the planning problems in the CGS configuration (it is planning
for the conjunction of all epistemic goals rather than a single
goal). If we look at the average time spent on planning in
total per run (second row in Table I) the difference is more
prominent. This is due to the fact that in the CGS configuration
the planner is triggered more often: 79.0 times on average,
compared to 31.1 times for the MGS configuration. This is
because the longer plan lengths required in CGS are more
likely to be affected by state changes and thus require more
frequent replanning.

Figure 16 shows how the complexity of planning problems
evolves as the system is running. It depicts the length of
single planner calls against the runtime of the system. For
comparability, this plot has been created from a partial set
of all runs (five of each configuration) containing only those
in which Dora successfully categorised all five rooms. The
planning time is averaged at discrete time steps across all the
runs of each setup. The error bars indicate the standard error
in averaging. From this figure it is apparent that, in agreement
with the data in Table I, less planning effort is required in MGS
compared to CGS. It can also be seen that the progression over
runtime is different in the two cases. While the trend, indicated
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by a linear fitting shown as a dotted line in Fig. 16, is a
shallowly included line for MGS, a steeper increase in average
planning time can be seen for CGS. This steeper increase can
be associated with the increasing size of the planning problems
the CGS configuration faces as Dora’s knowledge increases:
planning for all possible goals over a larger and larger state
becomes increasingly difficult. This underpins our hypothesis
that with a suitable mechanism for goal selection we can
tackled the challenge of increasingly complex environments
and correspondingly high numbers of knowledge gaps in our
representations.

VII. GEORGE: CURIOSITY DRIVEN CROSS MODAL
LEARNING

The George scenario has been designed to demonstrate,
monitor, and show progress on the development of the in-
tegrated system for learning the association between visual
features of an object and its linguistically expressed properties.
The main goal is, therefore, to integrate the developed vision
routines, learning and recognition competencies, dialogue ca-
pabilities, as well as different kinds of representations and
belief models in an overall system.

A. Scenario setup and example script

The robot operates in a table-top scenario, which involves
a robot and a human tutor (see Fig. 2(a)). The robot is
asked to recognize and describe the objects in the scene (in
terms of their properties like colour and shape). There are
a single or several objects (i.e., up to five) in the scene
(but still, with limited occlusion). The human positions new
objects on the table and removes the objects from the table
while being involved in a dialogue with the robot. At the
beginning the robot does not have any representation of object
properties, therefore he fails to recognize the objects and has
to learn. To begin with, the tutor guides the learning and
teaches the robot about the objects. After a while, the robot
takes the initiative and tries to detect the ignorance and to
learn autonomously, or asks the tutor for assistance when
necessary. The tutor can supervise the learning and correct the
robot when necessary; the robot is able to correct erroneously
learned representations. The robot establishes the transparency
and verbalizes its knowledge and knowledge gaps, as well
as intended actions. In a dialogue with the tutor, the robot
keeps extending and improving the knowledge. The tutor can
also ask questions about the scene, and the robot is able to
answer (and keeps answering better and better). At the end,
the representations are rich enough to accomplish the task -
to correctly describe the initial scene.

Two main types of learning are present in the George
scenario, which differ on where the motivation for learning
update comes from. In tutor driven learning the learning
process is initiated by the human teacher, while in the tutor
assisted learning, the learning step is triggered by the robot.

Tutor driven learning is suitable during the initial stages,
when the robot has to be given information, which is used to
reliably initiate (and extend) visual concepts. Consider a scene
with a single object present:
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Fig. 17. Architecture of the George system.

H: Do you know what this is?
G: No.
H: This is a red object.
G: Let me see. OK.

Since at the beginning George doesn’t have any representation
of visual concepts, he can’t answer the question. After he
gets the information, he can first initiate and later sequentially
update the corresponding information.

After a number of such learning steps, the acquired models
become more reliable and can be used to reference the objects.
Therefore, there can be several objects in the scene, as in
Fig. 2, and George can talk about them:

H: What colour is the elongated object?
G: It is yellow.

When the models are reliable enough, George can take
initiative and try to learn without being told to. In this curiosity
driven learning George can pose the question to the tutor, when
he is able to detect the object in the scene, but he is not certain
about his recognition. As described in Section IV-C in such
tutor assisted learning there are two general cases of detecting
uncertainty and knowledge gaps. If the robot can not associate
the detected object with any of the previously learned models,
it considers this as a gap in his knowledge and asks the tutor
to provide information:

R: Which colour is this object?
H: It is yellow.
R. OK.

The robot is now able to initialize the model for yellow and,
after the robot observes a few additional yellow objects, which
make the model of yellow reliable enough, he will be able to
recognize the yellow colour.

In the second case, the robot is able to associate the object
with a particular model, however the recognition is not very
reliable. Therefore, the robot asks the tutor for clarification:

R: Is this red?
H: No. This is yellow.
R. OK.
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After the robot receives the answer from the tutor, he corrects
(unlearns) the representation of the concept of red and updates
the representation of yellow and makes these two representa-
tions more reliable.

In such mixed initiative dialogue George continuously im-
proves the representations and learns the reliable models of
basic visual concepts. After a while George can successfully
recognize the acquired concepts and provide reliable answers:

H: Do you know what this is?
G: It is a blue object.
H: What shape is the red object?
G: It is elongated.

B. System architecture and processing pipeline

The George system is composed of three subarchitectures:
Binder SA, Communications SA and Visual SA, as depicted
in Fig. 17. The components of visual subsystem (SA) can
be divided in three distinct layers: the quantitative layer, the
qualitative layer and the mediative layer.

The quantitative layer processes the visual scene as a whole
and implements one or more bottom-up visual attention mech-
anisms. A bottom-up attention mechanism tries to identify
regions in the scene that might be interesting for further
visual processing. George has currently one such mechanism,
which uses the stereo 3D point cloud provided by stereo
reconstruction component to extract the dominant planes and
the things sticking out from those planes. Those sticking-
out parts form spherical 3D spaces of interest (SOIs). The
SOI Analizer component validates the SOIs and, if deemed
interesting (SOI persistence, stability, size, etc.), upgrades
them to proto-objects adding information that is needed for
the qualitative processing (e. g. segmentation mask).

The qualitative layer processes each interesting scene part
(object) individually, focusing on qualitative properties. Af-
ter the extraction of the visual attributes (Visual Learner-
recognizer), like color and shape, the Object Analyzer up-
grades the proto-objects to visual objects. Visual objects
encapsulate all the information available within Visual SA and
are the final modal representations of the perceived entities in
the scene. Also, the learning of visual attributes is performed
on this layer.

The main purpose of the mediative layer is to exchange
information about the perceived entities with other modal-
ities. This is usually not done directly, but via specialised
a-modal subarchitectures like the Binder SA (Section III).
The Visual Mediator component adapts and forwards the
modal information about objects to the binder (each visual
object is represented by a dedicated proxy in the binder).
The component also monitors beliefs for possible learning
opportunities, which result in modal learning actions. Another
important functionality of the mediator is to formulate and
forward clarification motivations in the case of missing or am-
biguous modal information. Currently, these motivations are
directly intercepted by Communication SA, which synthesizes
a question about the certain object property.

Now, let us describe the processing pipeline on one illustra-
tive example. We will describe in more detail what happens
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Fig. 18. Example of processing pipeline. The green color represents
restrictive information, while the violet color denotes asssertive information.
Only the beliefs and other data structures pertaining to the yellow tea box are
shown.

after the human places several objects in the scene (see Fig. 2)
and refers to the only elongated object in the scene (the yellow
tea box) by asserting ”H: The elongated object is yellow.”.

In Visual SA the tea box is represented by a SOI on the
quantitative layer, a proto-object on the qualitative layer and
a visual object on the mediative layer. Let us assume that
the Visual Learner-recognizer has recognized the object as of
elongated shape, but has completely failed to recognize the
color. In the binder this results in a one-proxy union with the
binding features giving the highest probability to the elongated
shape, while the color is considered unknown. This union is
referenced by the single robot’s private belief in the belief
model (Fig. 18, step 1).

The tutor’s utterance ’The elongated object is yellow.’ is
processed by the Communication SA, resulting in a new
belief attributed to the tutor. This belief restricts the shape to
elongated and asserts the color to be yellow. Before the belief
is actually added to the belief model, the binder translates it
to a binding proxy (phantom proxy) with the shape restriction
as a binding feature. In the most probable configuration, the
phantom proxy is bound to the existing union, which already
includes the visual proxy representing the tea box (Fig. 18,
step 2). The union is promptly referenced by the attributed
belief and the phantom proxy is deleted soon after.

In Visual SA, the mediator intercepts the event of adding
the attributed belief. The color assertion and the absence of
the color restriction in the robot’s belief is deemed as a
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learning opportunity (the mediator knows that both beliefs
reference the same binding union, hence the same object). The
mediator translates the asserted color information to equivalent
modal color label and compiles a learning task. The learner-
recognizer uses the label and the lower level visual features of
the tea box to update its yellow color model. After the learning
task is complete, the mediator verifies the attributed belief,
which changes its epistemic status to shared (Fig. 18, step 3).
The learning action re-triggers the recognition. If the updated
yellow color model is good enough, the color information in
the binder and belief model is updated (Fig. 18, step 4).

A similar process also takes place in tutor assisted learning,
when the robot initiates, based on an unreliable recognition,
the learning process, e.g., by asking ”R: Is this red?”. In
this case, the need for assistance reflects in a robot’s private
belief that contains the assertion about the red color and
references the union representing the object. Based on this
belief the Communication SA synthesizes the above question.
When the robot receives the positive answer, he updates the
representation of red, using a very similar mechanism as in
the case of tutor driven learning.

C. Experimental results
The system was primarily developed to work in an interac-

tion with a user. However, to comprehensively analyse the
proposed learning strategies, such interactive work is time
consuming and impractical. Therefore, we instead performed
quantitative evaluation in simulation. The simulation envi-
ronment uses stored images, which were previously captured
and automatically segmented. We used a number of everyday
objects, similar to those presented in Fig. 2. Each image,
containing a detected and segmented object, was then man-
ually labeled. In the learning process the tutor is replaced
by an omniscient oracle, which has the ground truth data
available. In this way the extensive tests could be automatically
performed and a reliable evaluation of the proposed methods
were obtained.

Six visual attributes were considered; four colours (red,
green, blue, yellow) and two shapes (elongated, compact). The
database that we used for learning contains 500 images. 400
images were used to incrementally learn the representations
of six visual properties, while the rest 100 of them were used
as test images. We repeated the experiment for 100 runs by
randomly splitting the set of images into the training and test
set and averaged the results across all runs.

During the experiment, we kept incrementally updating
the representations with the training images using the Tutor
driven (denoted as TD) and the Tutor assisted (denoted as
TA) learning strategies. Note that in both cases the first 15
images were added in a tutor driven mode to form the initial
models. At each step, we evaluated the current knowledge
by recognising the visual properties of all test images. The
learning performance was evaluated using two performance
measures: recognition score, which rewards successful recog-
nition (true positives and true negatives) and penalises incor-
rectly recognised visual properties (false positives and false
negatives), and tutoring costs, which measure the level of the
tutor’s involvement, as defined in [26].
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Fig. 19. Experimental results. TD: Tutor driven learning, TA: Tutor assisted
learning, solid line: Recognition score, dashed line: Tutoring cost.

Fig. 19 shows the evolution of the learning performance
over time for both learning strategies. The first thing to note
is that the overall results improve through time. The growth of
the recognition score is very rapid at the beginning when new
models of newly introduced concepts are being added, and
still remains positive even after all models are formed due to
refinement of the corresponding representations.

Tutor-driven approach performs better, since the correct
information is always given by the tutor. The inherent problem
of any continuous learning framework, which involves au-
tonomous updating of the knowledge, is propagation of errors.
This is also reflected in the lower performance of the Tutor
assisted approach. However, we also have to take into account
the tutoring costs that occur during the learning. In Tutor-
driven learning mode they are almost constant; the tutor always
gives all the information about the current object, which is
available. The costs of Tutor-assisted learning are significantly
lower. The robot keeps asking the tutor only at the beginning
of the learning process; after its knowledge gets improved the
number of questions drops and most of the costs relate to
the fact that the tutor has to listen to the robot and await for
its questions. There is, as expected, a trade off between the
quality of the results and cognitive load the tutor has to invest
in the learning process. The best option would therefore be to
first invoke the tutor driven approach and later on, when the
models are reliable enough, switch to the tutor assisted mode.

VIII. CONCLUSION

In this paper we have presented a way of thinking about
autonomous learning that is focussed on architectures and
representations. The representational component of our theory
is two-fold: on the one hand we employ representations of
uncertainty and gaps in different modalities; on the other
we represent how that lack of knowledge may change under
action. The architectural theory is coupled: representations are
shared within working memories and linked across them, again
in a way that explicitly represents the different ways they
might be linked. In other words our systems reason explic-
itly about the multiple and uncertain ways that information
from different modalities might be related. We also represent
novelty in the structural rules that represent the universal
relationships across modalities. Finally the architectural part
of the theory also describes a way that possible learning goals
can be quickly ranked, so that as systems are scaled that only
a feasibly small subset are actually planned for.
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We have shown that this approach works, by implementing
two robot systems. Each illustrates different aspects of our
approach. Dora illustrates the architecture, representations
of gaps and uncertainty in spatial representations, the goal
management system, and the use of planning with epistemic
goals. George illustrates how we explicitly represent uncer-
tainty in multi-modal representations of a specific situation,
and uncertainty and novelty in the long term model of how
different modalities are related.

What are the open research issues? First of all our approach
to novelty is limited. The work on KDE models provides a
particular approach to this, in a particular domain, but it is far
from complete. There is also a question about how constrained
the tacit design knowledge makes the self-extension. At the
moment Dora, and to a lesser extent George extend their
models within knowledge spaces that are quite well defined.
The Dora design tacitly assumes that placeholders will become
places, and George has the visual features necessary to learn
the correct associations with words describing colour and
shape. In addition the typology we have described for different
types of incompleteness is only a beginning. Most challeng-
ingly, however, we have not yet dealt with the representation
of different kinds of outcome or causal incompleteness. It
is in general very difficult to model and reason about these
in worlds with noisy observations and noisy actions. This is
because an unexpected outcome could be due to observation
noise, action noise, or true novelty. Variations on latent vari-
able models such as factored POMDPs provide a probabilistic
approach, but these are notoriously difficult to learn and reason
with. To identify hidden causes in models of actions is also
difficult. Suppose an action of a robot fails, such as a grasping
action? This could be because of picking a poor grasp position,
failing to grip strongly enough, or estimating wrongly where
the obejct was. These possible causes can be distinguished if
the robot has the a priori notion that they are possible causes
of grasp failure, but in general we want the robot to be able
to discover for itself that they are possible causes. This degree
of open-endedness will take many years to tackle.

In summary if an approach to self-extension based on self-
understanding is to be promising as a long term approach, then
we need to find ways of representing and reasoning about
much more difficult knowledge gaps. We believe we have
developed the first part of such an approach, and that these
are indeed challenging, but achieveable goals.
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Abstract

To interact naturally with humans, robots needs to be aware of their own sur-
roundings. This awareness is usually encoded in some implicit or explicit represen-
tation of the situated context. In this research report, we present a new framework
for constructing rich belief models of the robot’s environment.

Key to our approach is the use of Markov Logic as a unified representation formal-
ism. Markov Logic is a combination of first-order logic and probabilistic graphical
models. Its expressive power allows us to capture both the rich relational structure
of the environment and the uncertainty arising from the noise and incompleteness
of low-level sensory data. Beliefs evolve dynamically over time, and are constructed
by a three-fold iterative process of information fusion, refinement and abstraction.
This process is reflected in distinct ontological categories. Links across these cate-
gories define the construction history by relating a belief to its ancestors. Beliefs are
thus organised in a complex two-dimensional structure, with horizontal relations
between belief dependents and vertical relations between belief relatives.

Beliefs also incorporate various contextual information such as spatio-temporal
framing, multi-agent epistemic status, and saliency measures. Such rich annotation
scheme allows us to easily interface beliefs with high-level cognitive functions such
as action planning or communication. Beliefs can therefore be easily referenced,
controlled and extended “top-down” by external processes to reach beyond the
current perceptual horizon and include past, future or hypothetical knowledge.
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1 Introduction

The situated context plays a central role in human-robot interaction (HRI).
To be able to interact naturally with humans, robots needs to be aware of their
own environment. This situation awareness is generally expressed in some sort
of belief models in which various aspects of the external reality are encoded.
Such belief models provide an explicit or implicit representation for the cur-
rent state of the world, from the robot’s viewpoint. They therefore serve as a
representational backbone for a wide range of high-level cognitive capabilities
related to reasoning, planning and learning in complex and dynamic environ-
ments. In particular, they can be used as a knowledge base by the robot to
verbalise its own knowledge. Such ability is crucial to establish transparency in
situated dialogue between the robot and one or more human interlocutor(s),
for instance in socially guided learning tasks [32,30,26].

In speech-based HRI, critical tasks in dialogue understanding, management
and production are directly dependent on such belief models to prime or guide
their internal processing operations. Examples are context-sensitive speech
recognition [20], reference resolution and generation in small- [16] and large-
scale space [36], parsing of spoken dialogue [19], pragmatic interpretation [31],
action selection in dialogue management [35], user-tailored response generation
[34], and contextually appropriate intonation patterns in speech synthesis [18].
Contextual knowledge is also a prerequisite for the dynamic adaptation of the
robot’s behaviour to different environments and interlocutors [4].

Belief models are usually expressed as high level symbolic representations
merging and abstracting information over multiple modalities. For human-
robot interaction, the incorporated knowledge might include (inter alia):

• description of physical entities in the visual scene (what is around me);
• small- and large-scale organisation of space (what is where, where am I);
• user models (intentional and attentional state of other agents, attributed

knowledge, personal profile, preferences);
• structured history of the interaction (what was said before);
• and task models (what is to be done, which actions are available).

The construction of such belief models raises two important issues for the
system developer. The first question to address is how these high-level repre-
sentations can be reliably abstracted from low-level sensory data [1,27]. To be
meaningful, most symbolic representations must be grounded in (subsymbolic)
sensory inputs [28]. This is a difficult problem, partly because of the noise and
uncertainty contained in sensory data (partial observability), and partly be-
cause the connection between low-level perception and high-level symbols is
typically difficult to formalise in a general way [8].
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The second issue relates to how information arising from different modalities
and time points can be efficiently merged into unified multi-modal structures
[17], and how these inputs can refine and constrain each other to yield im-
proved estimations, over time. This is the well-known engineering problem of
multi-target, multi-sensor data fusion [7].

Belief models are thus the final product of a three-fold iterative process of
information fusion, refinement and abstraction defined over multiple modal-
ities and time spans. Information fusion refers to the operation of merging
data from distinct knowledge sources into one single representation. Following
the fusion operation, beliefs are then gradually refined – new, improved esti-
mations are derived for each belief feature, given the collection of knowledge
sources which have been merged. And finally, in complement to information
refinement, beliefs are also abstracted by constructing high-level, amodal sym-
bolic representations from low-level perceptual (i.e. modal) data.

1.1 Requirements for belief models in HRI

Typical HRI environments are challenging to model explicitly, as they bear
the characteristics of being simultaneously complex, stimuli-rich, multi-agent,
dynamic and uncertain. These five characteristics impose particular require-
ments on the nature and expressivity of the belief representations we wish to
construct. Five central requirements can be formulated:

(1) HRI environments are characteristically complex, and their observation
reveals a large amount of internal structure (for instance, spatial relations
between physical entities, or possible groupings of objects according to
specific properties). As a consequence, the formal representations used
to specify belief models must possess the expressive power to reflect this
rich relational structure in a general way, and reason over it.

(2) Physical environments are not only complex, but are also overloaded with
perceptual stimuli. The robotic agent is constantly bombarbed by data
coming from its sensors. Left unfiltered, the quantity of sensory informa-
tion to process is sure to exhaust its computational resources. The robot
must therefore be capable of actively focusing on the important, rele-
vant areas while ignoring the rest. The cognitive process underlying this
ability is called the attention system. Its role is to sort the foregrounded
information from the background “clutter”, on the basis of (multi-modal)
saliency measures. The belief models must therefore incorporate mecha-
nisms for computing and adapting these saliency measures over time.

(3) By definition, interactive robots are made for multi-agent settings. Mak-
ing sense of communicative acts between agents requires the ability to
distinguish between one’s own knowledge (what I believe), knowledge at-
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tributed to others (what I think the others believe), and shared common
ground knowledge (what we believe as a group). Such epistemic distinc-
tions need to be explicitly encoded in the belief representations.

(4) Situated interactions are always dynamic and evolve over time. This in-
cludes both the evolution of the physical environment, and the evolution
of the interaction itself. The incorporation of spatio-temporal framing is
thus necessary to express when and where a particular belief is supposed
to hold. Spatio-temporal framing also allows us to go beyond the percep-
tual horizon of the “here-and-now”, and link the present situation with
(episodic) memories of the past, anticipation of future expected events,
and hypothetical knowledge – including knowledge about distant places
currently outside the reach of the robot’s sensors.

(5) And last but not least, due to the partial observability of the environment
(due to e.g. noise, biased measurements, occlusions), it is crucial that
belief models incorporate an explicit account of uncertainties in order to
incorporate various levels of confidence in the observed measures.

Orthogonal to these “representational” requirements, crucial performance re-
quirements must also be adressed. To keep up with a continuously changing
environment, all operations performed on the belief models (content updates,
queries, etc.) must be computable under soft real-time constraints. Given the
problem complexity we just outlined, this rules out the possibility of perform-
ing exact inference. An alternative, more appropriate solution is the use of
anytime algorithms combined with various approximation methods for prob-
abilistic inference. This constitutes our sixth and final requirement.

1.2 Gist of the approach

This report presents ongoing work on a new approach to multi-modal situation
awareness which attempts to address these requirements. Key to our approach
is the use of a first-order probabilistic language, Markov Logic [24], as a uni-
fied representation formalism to construct rich, multi-modal models of context.
Markov Logic is a combination of first-order logic and probabilistic modelling.
As such, it provides an elegant account of both the uncertainty and complex-
ity of situated human-robot interactions. Our approach departs from previous
work such as [13] or [27] by introducing a much richer modelling of multi-
modal beliefs. Multivariate probability distributions over possible values are
used to account for the partial observability of the data, while the first-order
expressivity of Markov Logic allows us to consisely describe and reason over
complex relational structures. As we shall see, these relational structures are
annotated with various contextual information such as spatio-temporal fram-
ing (where and when is the belief valid), epistemic status (for which agents
does this belief hold), and saliency (how prominent is the entity relative to
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others). Furthermore, performance requirements can be addressed with ap-
proximation algorithms for probabilistic inference optimised for Markov Logic
[24,23]. Such algorithms are crucial to provide an upper bound on the system
latency and thus preserve its efficiency and tractability.

The rest of this report is structured as follows. Section 2 provides a brief intro-
duction to Markov Logic, the framework used for belief modelling. Once the
theoretical foundations of our work is laid out, we describe the approach itself
in the sections 3 to 7. Section 3 starts by describing the software architecture
in which our approach is being integrated. Section 4 details the representa-
tions which have been used to formalise the concept of “belief”. Section 5
then explains step-by-step how such beliefs can be constructed bottom-up,
iteratively, from perceptual inputs. Section 6 provides additional details on
the attention and filtering systems. Section 7 connects beliefs to language, by
showing how beliefs can be linguistically referenced, and how interaction can
be used to extend beliefs with new information. Finally, Section 8 concludes
this report, and provides directions for future work.

2 Markov Logic Networks

Markov logic combines first-order logic and probabilistic graphical models in
a unified representation [24]. From a syntactic point of view, a Markov logic
network L is simply defined as a set of pairs (Fi, wi), where Fi is a first-order
formula and wi ∈ R is the associated weight of that formula.

A Markov logic network can be interpreted as a template for constructing
Markov networks. The structure and parameters of the constructed network
will vary depending on the set of constants provided to ground the predicates
of the Markov Logic formulae. Such Markov network represents a probability
distribution over possible words. As such, it can be used to perform proba-
bilistic inference over the relational structure defined by the formulas Fi.

In the following, we briefly review the definition of Markov networks, and then
show how they can be generated from a Markov logic network L.

2.1 Markov Network

A Markov network G, also known as a Markov random field, is an undirected
graphical model [15] for the joint probability distribution of a set of random
variables X = (X1, . . . , Xn) ∈ X . The network G contains a node for each
random variable Xi. The nodes in the network can be grouped in a set of

5



cliques. In graph theory, a clique is a fully connected subgraph – that is,
a subset of nodes where each node is connected with each other. The joint
probability distribution of the Markov network can then be factorised over
the cliques of G:

P (X = x) =
1

Z

∏

k

φk(x{k}) (1)

where φk(x{k}) is a potential function mapping the state of a clique k to a
non-negative real value. Z is a normalization constant, known as partition
function, and is defined as Z =

∑
x∈X

∏
k φk(x{k}).

Alternatively, the potential function φk in (1) can be replaced by an exponen-
tiated weighted sum over real-valued feature functions fj:

P (X = x) =
1

Z
e

(∑
j

wjfj(x)

)
(2)

The representation in (2) is called a log-linear model.

2.2 Constructing a Markov Network from a Markov Logic Network

Recall that a Markov logic network L is a set of pairs (Fi, wi). If in addition
to L we also specify a set of constants C = {c1, c2, ..., c|C|}, one can generate
a ground Markov network ML,C as follows [24]:

(1) For each possible predicate grounding over the set C, there is a binary
node in ML,C . The value of the node is true iff the ground predicate is
true.

(2) For every formula Fi, there is a feature fj for each possible grounding
of Fi over C. The value of the feature fi(x) is 1 if Fi is true given x
and 0 otherwise. The weight of the feature corresponds to the weight wi

associated with Fi.

The graphical representation of ML,C contains a node for each ground pred-
icate. Furthermore, each formula Fi defines a set of cliques j with feature fj

over the set of distinct predicates occurring in Fi.

Following (1) and (2), the joint probability distribution of a ground Markov
network ML,C is then given by:

P (X = x) =
1

Z

∏

i

φi(x{k})
ni(x) =

1

Z
e(
∑

i
wini(x)) (3)

The function ni(x) in (3) counts the number of true groundings of the formula
Fi in ML,C given x.
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2.3 Example of Markov Logic Network

Consider a simple Markov Logic network L made of three unary predicates,
Professor(x), Teaches(x), and Undergrad(x), and two formulae:

w1 Professor(x)→ Teaches(x) (4)

w2 Undergrad(x)→ ¬Teaches(x) (5)

The formulae encode the fact that most professors teach, while most under-
graduate students don’t. Since these two rules admit a few exceptions (profes-
sors can be on sabbatical, and some undergraduates can teach as assistants),
they are specified as soft constraints with finite weights w1 and w2.

Assuming a particular person A, we can construct a ground Markov network
ML,{A} over this single constant following the procedure we just outlined. The
resulting network is illustrated in the Figure 1. The network ML,{A} defines a
probability distribution over a set of 23 possible worlds (since we have three
unary predicates which can be true or false, and one constant).

The probability of the world x = (Professor(A),¬Teaches(A),¬Undergrad(A))
can then be directly computed using (3). The ground Markov Network coun-
tains two features (one for each formula). In the case of world x, the first
formula is violated, while the second is not. This means that n1(x) = 0 and
n2(x) = 1. This gives us the probability P (X = x) = 1

Z
e(w1×0+w2×1) = 1

Z
ew2 ,

where the partition function Z = 4ew1+w2 +2ew1 +2ew2 . Notice that the parti-
tion function Z grows exponentially with the weights, and will tend to infinity
for large values of w1 or w2. If we increase the value of w1 while keeping the
value of w2 constant, the probability P (X = x) will thus approach 0.

Professor(A) Teaches(A)

Undergrad(A)

Fig. 1. Example of ground Markov Network ML,C given the Markov logic network
L = 〈(Professor(x)→ Teaches(x), w1), (Undergrad(x)→ ¬Teaches(x), w2)〉 and
the constants C = {A}. An edge between two nodes signifies that the corresponding
ground atoms appear together in at least one grounding of one formula in L.
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2.4 Inference

Once a Markov network ML,C is constructed, it can be exploited to perform
conditional or MPE inference over the relational structure defined by L. A
Markov Logic Network can be used to answer arbitrary queries such as “What
is the probability that formula F1 holds given that formula F2 does?” Such
query can be translated as:

P (F1|F2, L, C) =P (F1|F2,ML,C) (6)

=
P (F1 ∧ F2|ML,C)

P (F2|ML,C)
(7)

=

∑
x∈XP1

∩XP2
P (X = x|ML,C)

∑
x∈XP2

P (X = x|ML,C)
(8)

where XPi
represent the set of worlds where the formula Fi holds.

Exact inference in Markov Networks is a #P-complete problem [15] and is
thus untractable. However, several efficient algorithms for probabilistic in-
ference such as weighted MAX-SAT, Markov Chain Monte Carlo (MCMC)
or lifted belief propagation can then be used to yield approximate solutions
[23,25,29]. Given the requirements of our application domain (see Section 1),
and particularly the need to operate under soft real-time constraints, such
approximation methods are an absolute necessity.

2.5 Learning

The weight wi in a Markov logic network encode the “strength” of its asso-
ciated formula Fi. In the limiting case, where limwi→∞, the probability of a
world violating Fi has zero probability. For smaller values of the weight, worlds
violating the formula will have a low, but non-zero probability.

But how are these weights specified? In most cases, weights are learned based
on training samples extracted from a relational database. Several machine
learning algorithms for parameter learning can be applied to this end, from
classical gradient-based techniques to more sophisticated algorithms specifi-
cally designed for statistical relational learning [21,12].

In addition to weights learning, it is also possible to learn the structure of
a Markov Logic problem, either partially (by adding additional clauses to
the network or refining the existing ones), or completely (by learning a full
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network from scratch). Structure learning is usually performed with algorithms
borrowed from Inductive Logic Programming [14,22].

3 Architecture

3.1 Global schema

Our approach is being developed as part of a distributed cognitive architecture
for autonomous robots in open-ended environments [9].

The architectural schema is based on a distributed set of subarchitectures.
Each subarchitecture encapsulates a number of processing components run-
ning in parallel. The components can access sensors, effectors, as well as a
blackboard (working memory) available for the whole subarchitecture. Via
this central working memory, each component is able to asynchronously read
and update shared information within the subarchitecture. The information
flow between components is thus based on the idea of parallel refinement of
shared representations, eschewing the standard point-to-point connectivity of
traditional message-based frameworks.

The components can be either unmanaged (data-driven) or managed (goal-
driven). Goal-driven components can be controlled explicitly at runtime by a
task manager specifying which component is allowed to run at a given time.
This explicit control of information and processing is crucial to dynamically
balance and constrain the computational load among components.

Finally, subarchitectures can also communicate with each other by accessing
(reading, inserting, updating) their respective working memories.

3.2 Implementation of the schema

This architectural schema has been fully implemented in a software toolkit
called CAST [9], which has been developed to support the construction and
exploration of information-processing architectures for intelligent systems such
as robots. Components can be implemented in Java, C++, or Python, while
the shared data structures in the working memory are specified in a language-
neutral specification using ICE 2 [11].

2 Internet Communications Engine, an object-oriented middleware developed by
ZeroC: http://www.zeroc.com/ice.html
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The architecture and its associated toolkit have been applied to various sce-
narios such as visual learning and object manipulation in a tabletop scene [33]
and exploration of indoor environments for human-augmented mapping [10].

3.3 Binder subarchitecture

Our approach to multi-modal belief modelling is implemented in a specific
subarchitecture developed under the CAST framework. This subarchitecture
is called the “binder”. The binder is directly connected to the other subarchi-
tectures (i.e. vision, navigation, manipulation, etc.), and serves as a central
hub for the information gathered about the environment. The core of the
binder is its working memory, where beliefs are formed from incoming per-
ceptual inputs, and are then iteratively fused, refined and abstracted to yield
stable, high-level beliefs.

The resulting beliefs can also be easily accessed and retrieved by the other
subarchitectures. Such retrieval operation allows each subarchitecture to use
the binder as a system-wide information repository about the world state. The
beliefs can then be directly exploited by high-level cognitive functions such as
planning, cross-modal learning or communication. They can also be used by
perceptual components to adapt their internal processing operations to the
current situated context (contextual priming, anticipation, etc.)

Fig. 2 schematically illustrates the interface between the binder system and
the rest of the software architecture.

Binder

Working 
Memory

Processing components

... ...

Subsystem 1 Subsystem 2 Subsystem 3

Local 
WM

... ...

Local 
WM

... ...

Local 
WM

... ...

refine

update

Fig. 2. Schema of the cognitive architecture in relation with the binder
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The data structures included in the binder are inherently probabilistic – each
feature or information bit pertaining to an entity can be associated to a prob-
ability value, reflecting the confidence level of the subsystem. This enables
the system to deal with varying levels of noice and uncertainty, which are
pervasive and unavoidable for most sensory-motric processes.

Now that the software architecture of our approach has been described, the
next section proceeds by detailing how beliefs are represented in the binder,
and how this representation is precisely formalised.

4 Representation of beliefs

Each unit of information manipulated by the binder is expressed as a proba-
bility distribution over a space of possible values. Such unit of information is
called a belief.

Beliefs are constrained both spatio-temporally and epistemically. They include
a frame stating where and when the information is assumed to be valid, and
an epistemic status stating for which agent(s) the information holds.

Formally, a belief is a tuple 〈i, e, σ, c, δ, h〉, where i is the belief identifier, e
is an epistemic status, σ a spatio-temporal frame, c an ontological category,
δ is the belief content (specified as a probability distribution), and h is the
history of the belief.

We describe below each of these components one by one.

4.1 Epistemic status e

Interactive robots must be able to distinguish between their own knowledge,
knowledge of others, and shared knowledge (common ground). We specify
such information in the epistemic status of the belief. For a given agent a, the
epistemic status e can be either:

• private, denoted K{a}: private beliefs come from within the agent a. In
other words, they are a direct or indirect result of agent a’s perception of
the environment;
• attributed, denoted K{a[b1, ..., bn]}: Attributed beliefs are beliefs which are

ascribed to other agents. They are a’s conjecture about the mental states of
other agents b1, ..., bn, usually as a result of a’s interpretations of previous
communicative acts performed by b1, ..., bn.
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• shared, denoted K{a1, ..., am}: Shared beliefs contain information which is
part of the common ground for the group [3].

Shared epistemic status subsumes both private and attribute epistemic status.
A shared belief K{a, b} therefore also implies the two private beliefs K{a} and
K{b} and the two attributed beliefs K{a[b]} and K{b[a]}.

4.2 Spatio-temporal frame σ

The spatio-temporal frame σ defines a contiguous spatio-temporal inter-
val, the nature of which depends on the application domain. In the simplest
case, the spatial dimension can be modelled by a discrete set of regions and
the temporal dimension via intervals defined on real-valued time points. Of
course, more complex spatio-temporal modelling can be designed. The regions
in the spatial dimension can be hierarchically organised (e.g. based on a spatial
ontology) instead of being defined as flat list of possible regions. The temporal
dimension can be adapted in a similar way.

Moreover, the spatio-temporal frame can be extended with the notion of per-
spective, where spatial and temporal constraints are defined as being relative
to a particular agent a. Using the notion of perspective, we can capture the
fact that each agent view the environment in its own specific way (i.e. the
object which is on my left might be to the right of the robot).

It is important to note that beliefs can express past or future knowledge (i.e.
memories and anticipations). That is, beliefs need not be directly grounded in
the “here-and-now” observations.

4.3 Ontological category c

The ontological category is used to sort the various belief types which can
be created. Various levels of beliefs are defined, from the lowest to the highest
abstraction level. Figure 5 illustrates the role of these categories in the belief
formation process.

(1) The lowest-level type of beliefs is the percept (or perceptual belief ), which
is a uni-modal representation of a given entity 3 or relation between en-
tities in the environment. Perceptual beliefs are inserted onto the binder
by the various subsystems included in the architecture. The epistemic

3 The term “entity” should be understood here in a very general sense. An entity
can be an object, a place, a landmark, a person, etc.
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status of a percept is private per default, and the spatio-temporal frame
is the robot’s present place and time-point.

(2) If several percepts (from distinct modalities) are assumed to originate
from the same entity, they can be grouped into a percept union. A percept
union is just another belief, whose content is the combination of all the
features from the included percepts.

(3) The features of a percept union can be abstracted using multi-modal
fusion and yield a multi-modal belief.

(4) If the current multi-modal belief (which is constrained to the present
spatio-temporal frame) is combined with beliefs encoded in past or future
spatio-temporal frames, it forms a temporal union.

(5) Finally, the temporal unions can be refined over time to improve the
estimations, leading to a stable belief, which is both multi-modal and
spans an extended spatio-temporal frame.

4.4 Belief content δ

The distribution δ defines the possible content values for the belief. In gen-
eral, each alternative value can be expressed as a (propositional) logical for-
mula. In most practical cases, such formula can be represented as a flat list of
features. The feature values can be either discrete (as for categorical knowl-
edge) or continuous (as for real-valued measures).

A feature value can also specify a pointer to another belief, allowing us to
capture the relational structure of the environment we want to model. The
resulting relational structure can be of arbitrary complexity.

Discrete probability distributions can be expressed as a set of pairs 〈ϕ, p〉
with ϕ a formula, and p a probability value, where the values of p must satisfy
the usual constraints for probability values. For continuous distribution, we
generally assume a known distribution (for instance, a normal distribution)
combined with the required parameters (e.g. its mean and variance).

In practice, maintaining a single big distribution over all possible values of
the belief is both computationally expensive and unecessary. The distribution
can usually be decomposed into a list of smaller distributions over parts of
the belief content. This can be done by breaking down the formulae into ele-
mentary predications, and assuming conditional independence between these
elementary predicates. The probability distribution δ can then be factored
into smaller distributions δ1...δn.
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4.5 Belief history h

Finally, via the belief history h, each belief contains bookkeeping information
detailing the history of its formation. This is expressed as two set of pointers:
one set of pointers to the belief ancestors (i.e. the beliefs which contributed
to the emergence of this particular belief) and one set of pointers to the belief
offspring (the ones which themselves emerged out of this particular belief).

Beliefs are thus organised in a complex two-dimensional structure, with hori-
zontal relations between beliefs of same category (representing the relational
structure of the world), and vertical relations between a belief and its par-
ents/offpsring (representing the historical evolution of a given belief as they
are processed by the system).

Perceptual beliefs have by construction no belief parent. Instead, they include
in their belief history a pointer to the local data structure in the subarchitec-
ture which was at the origin of the belief.

4.6 Example of belief representation

Fig. 3. A blue mug

Consider an environment with a blue mug such as the
one pictured in Figure 3. The mug is perceived by the
robot sensors (for instance, by one binocular camera,
or by a haptic sensor mounted on a robotic arm). Sen-
sory data is extracted and processed by the sensory
subarchitecture(s). A the end of the process, a percep-
tual belief is created, with four features: object label,
colour, location, and height.

Due to the noise and uncertainty of sensory data, the perceived characteristics
of the object are uncertain. Let us assume for our example two uncertainties:

• The colour value of the object is uncertain (the vision system hesitates
between blue with probability 0.77 and purple with probability 0.22),
• and the recognition of the object itself is also uncertain (the recognised

object might be a false positive with no corresponding entity in the real
world. The probability of a false positive is 0.1).

Such perceptual belief i would be formally defined as:

〈i, {robot}, σ[here-and-now], percept, δ, h〉 (9)

with a probability distribution δ containing three alternative formulae ϕ1, ϕ2

and ϕ3. A graphical illustration of the belief i is provided in Figure 4.
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Belief i

Epistemic status:
σ[here-and-now]

{robot}
percept

Spatio-temporal frame:

Ontological category:

k

...ϕ2Formula

Probability:

ϕ1Formula

Probability:

Exists ∧
〈Label〉 mug ∧
〈Colour〉 blue ∧
〈Location〉 k ∧
〈Height〉 11.2

Exists ∧
〈Label〉 mug ∧
〈Colour〉 purple ∧
〈Location〉 k ∧
〈Height〉 11.2

Probability distribution δ

¬Exists

Formula ϕ3

0.70.2

0.1Probability:

Belief 

Belief history:

Origin o

[
ancestors : [o]
offspring : [b1, b2]

]

Belief b1 Belief b2

Fig. 4. Schematic view of a belief representation.

We can see in Figure 4 that the formula ϕ2 specifies the existence (with prob-
ability 0.7) of a blue mug entity of size 11.2 cm, at location k, perceived by
the robot in the current spatio-temporal frame (“here-and-now”). Notice that
the location is described as a pointer to another belief k. Such pointers are
crucial to capture relational structures between entities.

The belief i also specifies a belief history h. The belief i being a percept, its
history is defined as a pointer to a local data structure o in the subarchitec-
ture responsible for the belief’s creation. The belief history also contains two
pointers b1 and b2 to the belief’s offspring.

4.7 Alternative formalisation

The logically inclined reader might notice that the belief representation we out-
lined can also be equivalently formalised with a hybrid logic [2] complemented
by a probability language [5]. The belief 〈i, e, σ, c, δ, h〉 is then expressed as:

Ke/σ :
∧

〈ϕ,p〉∈δ
(P (@{i:c}ϕ) = p) ∧ ∃! 〈ϕ, p〉 ∈ δ : (@{i:c}ϕ) (10)
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where @ is the satisfiability operator from hybrid logic. The advantage of using
such representation is the possibility of using logical inference mechanisms to
reason over such structure and automatically derive new beliefs. We leave this
question as an interesting area of future research.

4.8 Conversion into Markov Logic

The conversion of the probability distribution δ into Markov Logic formulae
is relatively straightforward. Modal operators are translated into first-order
predicates and nominals into contants. A (sub-)formula such as:

〈Colour〉 blue (11)

which is declared true with probability p1 within a belief i is therefore ex-
pressed as the following Markov Logic formula:

w1 Colour(I, Blue) (12)

where the weight w1 = log
p1

1− p1

.

5 Bottom-up belief construction

We now turn our attention to the way a belief model can be constructed
bottom-up from the initial input provided by the perceptual beliefs. The for-
mation of belief models proceeds in four consecutive steps: (1) perceptual
grouping, (2) multi-modal fusion, (3) tracking and (4) temporal smoothing.
Figure 5 provides a graphical illustration of this process.

5.1 Perceptual grouping

The first step is to decide which percepts from different modalities belong
to the same real-world entity, and should therefore be grouped into a belief.
For a pair of two percepts p1 and p2, we infer the likelihood of these two
percepts being generated from the same underlying entity in the real-world.
This is realised by checking whether their respective features correlate with
each other.

The probability of these correlations are encoded in a Markov Logic Network.
The formulae might for instance express a high compatibility between the

16



haptic feature “shape: cylindrical” and the visual feature “object: mug” (since
most mugs are cylindrical), but a very low compatibility between the features
“shape: cylindrical” and “object: ball”. Eq. (13) illustrates the correlation between
the cylindrical shape (Cyl) and the object label “mug” (Mug).

wi Shape(x, Cyl) ∧ Label(y, Mug)→ Unify(x, y) (13)

Markov Logic formulae can also express incompatibility between features, for
instance between a spherical shape and a object labelled as a mug:

wj Shape(x, Spherical) ∧ Label(y, Mug)→ ¬Unify(x, y) (14)

Additional formulae are used to specify generic requirements on the percep-
tual grouping process, for instance that x and y must be distinct beliefs and
originate from distinct subarchitectures. The prior probability of a grouping
is also specified as a Markov Logic formula.

A grouping of two percepts will be given a high probability if (1) one or more
feature pairs correlate with each other, and (2) there are no incompatible
feature pairs. This perceptual grouping process is triggered at each insertion
or update of percepts on the binder (provided the number of modalities in the

...

...Time

Tracking

...

t - 1 t t + 1

Multi-modal fusion

Temporal smoothing

Perceptual 
grouping

Multi-modal belief

Percept

Percept union

Temporal union

Stable belief

Levels of beliefs

Fig. 5. Bottom-up belief model formation.
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system > 1). The outcome is a set of possible unions, each of which has an
existence probability describing the likelihood of the grouping.

5.2 Multi-modal fusion

We want multi-modal beliefs to go beyond the simple superposition of isolated
modal contents. Multi-modal information should be fused. In other words, the
modalities should co-constrain and refine each other, yielding new multi-modal
estimations which are globally more accurate than the uni-modal ones.

Multi-modal fusion is also specified in a Markov Logic Network. As an il-
lustration, assume a multi-modal belief B with a predicate Position(B, loc)
expressing the positional coordinates of an entity, and assume the value loc

can be estimated via distinct modalities a and b by way of two predicates
Position(a)(U, loc) and Position(b)(U, loc) included in a percept union U.

wi Position(a)(U, loc)→ Position(B, loc) (15)

wj Position(b)(U, loc)→ Position(B, loc) (16)

The weights wi and wj specify the relative confidence of the measurements for
the modality a and b, respectively.

5.3 Tracking

Environments are dynamic and evolve over time – and so should beliefs. Anal-
ogous to perceptual grouping which seeks to bind observations over modalities,
tracking seeks to bind beliefs over time. Both past beliefs (memorisation) and
future beliefs (anticipation) are considered. The outcome of the tracking step
is a distribution over temporal unions, which are combinations of beliefs from
different spatio-temporal frames.

The Markov Logic Network for tracking works as follows. First, the newly
created belief is compared to the already existing beliefs for similarity. The
similarity of a pair of beliefs is based on the correlation of their content (and
spatial frame), plus other parameters such as the time distance between beliefs.

Eq. (17) illustrates a simple example where two beliefs are compared on their
shape feature to determine their potential similarity:

wi Shape(x, Cyl) ∧ Shape(y, Cyl)→ Unify(x, y) (17)
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If two beliefs B1 and B2 turn out to be similar, they can be grouped in a
temporal union U whose temporal interval is defined as [start(B1), end(B2)].

5.4 Temporal smoothing

Finally, temporal smoothing is used to refine the estimates of the belief content
over time. Parameters such as recency have to be taken into account, in order
to discard outdated observations.

The Markov Logic Network for temporal smoothing is similar to the one used
for multi-modal fusion:

wi Position(t-1)(U, loc)→ Position(B, loc) (18)

wj Position(t)(U, loc)→ Position(B, loc) (19)

6 Attention and filtering

As we mentioned in the introduction, an active perception of the environment
relies on the ability to focus the robot’s sensing activities to the relevant
entities in its surroundings, while ignoring the rest. Moreover, it is crucial for
performance reasons to perform aggressive filtering on the beliefs manipulated
by the binder, in order to retain only the most likely ones, and pruning the
others. This section explores these two issues.

6.1 Salience modelling

The attention system is driven in our approach by saliency measures. These
measures are represented in the binder as a specific feature included in the
belief content. The salience value gives an estimate of the “prominence” or
quality of standing out of a particular entity relative to neighboring ones.
It allows us to guide the attentional behaviour of the agent by specifying
which entities are currently in focus. The resolution of referring expressions
containing deictic demonstratives such as “this” and “that” is for instance
directly dependent on the salience levels of related entities.

In our model, the salience is defined as a real-valued measure which combines
several perceptual measures such as the object size and its linear and angular
distances relative to the robot. During linguistic interaction, these perceptual
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measures can be completed by measures of linguistic saliency, such as the
recency of the last reference to the object.

The salience being defined as a real-valued scalar, its probability is defined as
a density function < → [0, 1].

6.2 Belief filtering

Techniques for belief filtering are essential to keep the system tractable. Given
the probabilistic nature of the framework, the number of beliefs is likely to
grow exponentially over time. Most of these beliefs will have a near-zero prob-
ability. A filtering system can effectively prune such unecessary beliefs, either
by applying a minimal probability threshold on them, or by maintaining a
fixed maximal number of beliefs in the system at a given time. Naturally, a
combination of both mechanisms is also possible.

In addition to filtering techniques, forgetting techniques could also improve
the system efficiency [6].

7 Referencing and top-down extension

7.1 Referencing beliefs

Beliefs are high-level symbolic representations available for the whole cogni-
tive architecture. As such, they provide an unified model of the environment
which can be used during interaction. An important aspect of this is reference
resolution, which connects linguistic expressions such as “this box” or “the ball

on the floor” to the corresponding beliefs about entities in the environment.

Reference resolution is performed via a Markov Logic Network specifying the
correlations between the linguistic constraints of the referring expression and
the belief features – in particular, the entity saliency and its associated cate-
gorical knowledge.

Eq. (20) illustrates the resolution of a referring expression R with the linguistic
label “mug” to a belief B which includes a label feature with value Mug:

wi (Label(B, Mug) ∧ RefLabel(R, Mug)) → Resolve(R, B) (20)

The resolution process yields a distribution over alternative referents, which
is then retrieved by the communication subsystem for further interpretation.
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Percept p2 Percept p3Percept p1

Belief b2 Belief b3Belief b1

Reference r1

P=0.01

P=0.92

P=0.02

Asserted 
formula a1

link

“ this is yellow ” 
this yellow

Fig. 6. An utterance such as “this is yellow” illustrates the two mechanisms of ref-
erencing and belief extension. First, the expression “this” is resolved to a particular
entity. Since “this” is a deictic, the resolution is performed on basis of saliency mea-
sures. The belief B2 is selected as most likely referent. Second, the utterance also
provides new information – namely that the object is yellow. This asserted content
must be incorporated into the robot’s beliefs. This is done by constructing a new
belief which is linked (via a pointer) to the one of the referred-to entity.

7.2 Asserting new information

In Section 5, we described how beliefs can be formed from percepts, bottom-
up. When dealing with cognitive robots able to reflect on their own expe-
rience, anticipate possible events, and communicate with humans to improve
their understanding, beliefs can also be manipulated “top-down” via high-level
cognitive functions such as reasoning, planning, learning and interacting.

We concentrate here on the question of belief extension via interaction. In
addition to simple reference, interacting with a human user can also provide
new content to the beliefs. Using communication, the human user can directly
extend the robot’s current beliefs, in a top-down manner, without altering the
incoming percepts. The epistemic status of this information is attributed. If
this new information conflicts with existing knowledge, the agent can decide
to trigger a clarification request to resolve the conflict.

Fig. 6 provides an example of reference resolution coupled with a belief exten-
sion, based on the utterance “this is yellow”.

21



8 Conclusion

In this report, we presented a new approach to the construction of rich belief
models for situation awareness. These beliefs models are spatio-temporally
framed and include epistemic information for multi-agent settings. Markov
Logic is used as a unified representation formalism, allowing us to capture both
the complexity (relational structure) and uncertainty (partial observability) of
typical HRI application domains.

The implementation of the approach outlined in this report is ongoing. We
are using the Alchemy software 4 for efficient probabilistic inference. The binder
system revolves around a central working memory where percepts can be in-
serted, modified or deleted. The beliefs are automatically updated to reflect
the incoming information. A GUI can be used to monitor and control at run-
time the binder behaviour.

Besides the implementation, future work will focus on three aspects. The first
aspect pertains to the use of machine learning techniques to learn the model
parameters. Using statistical relational learning techniques and a set of train-
ing examples, it is possible to learn the weights of a given Markov Logic
Network [24]. The second aspect concerns the extension of our approach to
non-indexical epistemic knowledge – i.e. the representation of events, inten-
tions, and plans. Finally, we want to evaluate the empirical performance and
scalability of our approach under a set of controlled experiments.
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