
EU FP7 CogX

ICT-215181

May 1 2008 (52months)

DR 1.3:

Architectures and representations for introspection

and motive management in a robot

The CogX Consortium

〈cogx@cs.bham.ac.uk〉
Due date of deliverable: July 31 2011
Actual submission date: July 31 2011
Lead partner: BHAM
Revision: final
Dissemination level: PU

This deliverable reports on our current work on architectural issues for gen-
erating robot behaviour, with a focus on motive management and the trade-
offs inherent in the choice of knowledge representations. On the former issue
we present our current work on goal activation, and discuss the problems of
creating mechanisms and metrics for deciding which subset of all possible
goals a system should pursue. On the issue of knowledge representation we
present results from a study into the trade-offs apparent between integrated
systems that use deterministic knowledge and systems that use probabilistic
knowledge.

1

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

1 Introduction 4

2 Motive Management 4
2.1 Goal Activation . 6
2.2 Proposed Approach . 7

3 Representations for Cognitive Systems 10

References 11

A Annexes 14
A.1 Exploiting Probabilistic Knowledge under Uncertain Sensing for Efficient

Robot Behaviour . 14
A.2 Episodic-Like Memory for Cognitive Robots 15

EU FP7 CogX 2

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

Executive Summary

In the reporting period we have developed a new approach to goal activation
(i.e. deciding which goals to actively pursue from a set of possible goals).
This forms part of our overall theory for motive management. The approach
treats the activation as a net-benefit planning problem, but also integrates a
preference system based on a hierarchy of drives. This addition is necessary
to allow the system to reason about the interactions of different types of
goals, particularly when no meaningful comparison metrics can be created
for these different types. For more information see Section 2.

We have also developed an Episodic-Like Memory system capable of rep-
resenting the experiences of a cognitive robot in space and time. This work
has been demonstrated on a Dora-like mobile robot. For more information
see Annex A.2.

Finally, we have been exploring the trade-offs apparent between differ-
ent architectural and representational approaches for generating robot be-
haviour. Specifically we have built and evaluated variations of the Dora sys-
tem that can use, or not use, structural knowledge about its environment,
and use, or not use probabilistic representations and algorithms to augment
this knowledge. This has allowed us to compare a range of different robot
systems on the task of finding an object in a real-world environment. For
more information see Section 3 and Annex A.1.

Role of Introspection and Motive Management in
CogX

Introspection and motive management are both necessary for any complex,
autonomous robot required to robustly perform tasks for humans in normal
environment. These abilities are also central to the proposed approach of
CogX where systems must introspect in order to understand and explain
their successes and failures when performing tasks, and must be capable of
management multiple competing drives and their associated goals.

Contribution to the CogX scenarios and prototypes

The motivation system developed in WP1 is currently deployed in both the
Dora and George demonstrators. The investigations into architectures and
representations for robots have been based on the current Dora demonstrator
system.

EU FP7 CogX 3

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

1 Introduction

The architecture and representations used to create a system define its capa-
bilities, and thus shape its strengths and weaknesses. Creating systems that
are able to autonomously self-extend during task-driven behaviour is requir-
ing us to investigate a range of mechanisms and formalisms for generating
behaviour, and for representing and reasoning about the knowledge used to
inform this behaviour. Our research is uncovering fundamental issues appar-
ent in the design of cognitive systems that must operate in the real world.
This deliverable reports on two of these issues. The first is related to motive
management, the problem of deciding which goals a system should tackle
next. We have found that designing mechanisms to choose which subset of
possible goals should be pursued holds a number of interesting challenges,
particularly with reference to finding metrics to support comparisons of dif-
ference types of goals. This work is summarised in Section 2. The second
issue is a fundamental one: the representation of knowledge in a cognitive
system. This is particularly relevant to CogX as we are approaching intro-
spection by tackling the issue of how what a system knows, and how this
is represented, affects its ability to perform tasks in the real world. We
have been exploring the advantages and disadvantages of using probabilis-
tic representations and reasoning methods in the majority of an integrated
system. Whilst our results show that in most circumstances systems that
leverage probabilities perform as well as, or better than, purely deterministic
systems, there are many challenges evident in building such systems (from
integrating the various parts to solving problems in the much larger state
spaces they present). Our work on this topic is summarised in Section 3.

2 Motive Management

One of the main responsibilities of WP1 is to research architectural mecha-
nisms for what we called in the proposal (and thus the title of this deliver-
able) motive management. In summary, this is the problem of generating and
managing goals for an integrated system. In the first year of the project we
surveyed the literature and produced the initial architecture design pictured
in Figure 1. This architecture features goal generators which are domain
or task specific components which generate goals describing desired future
states for the system. These goals are referred to as unsurfaced until they
pass (surface) through an attention filter to be considered by a collection
of management processes. These management processes are responsible for
deciding which of these surfaced goals should be actively pursued by the
system. We refer to the goals which are being pursued as activated.

Our literature survey and initial design was originally presented as DR.1.1
and recently published in AIJ [6]. We have implemented our architecture de-

EU FP7 CogX 4

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

G

G

attention filter

G

G
G

G

G

G

G

active goals

managed goals

unsurfaced goals

G

}ac
tiv

at
io

n

suspension

activation & suspension
managed by planning

uses importance &
urgency

} variable threshold
attention filter restricts
access to management

processes

uses importance &
urgency

} goals are generated/
updated independently

annotated with
importance & urgency

goal generators

m
et

a-
m

an
ag

em
en

t

goal expansion
(planning, scheduling, execution)

Figure 1: A visualisation of the design for a motive management framework.

sign and integrated the same system into both the Dora and George demon-
strators. This has resulted in both an experimental validation of the design
(see [11, 5], presented in DR.1.2 and DR.7.1 respectively) and contributions
to novel system behaviour (e.g. [7, 9], both presented in DR.7.2). This
year we have had limited time to spend on advancing the core theory for
the motivation framework, focusing instead on realisation and testing of the
existing framework within the demonstrator systems. What time we have
had has been spent considering one element of the motivation framework
in further detail. This element is goal activation, i.e. the process by which
surfaced goals are selected to be the target of execution.

EU FP7 CogX 5

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

2.1 Goal Activation

We are interested in systems that can pursue multiple goals at the same
time, i.e. have more than one active goal (and other surfaced, yet inactive
ones). For this to be possible goals must be passed to the system’s planner
as a conjunction so that the planner can determine the best way of satisfying
them all together. In fact it is only the planner that can determine whether
any two goals can actually be achieved together, or whether they conflict in
some way. This therefore implies that planning should be considered a core
element of goal activation, rather than just a component waiting to receive
active goals. This approach is considered explicitly when planning is posed
as a net-benefit problem. In this formulation, the planner is given a list of
goals, plus a cost for not achieving each one (referred to as cost-to-drop), and
must generate a plan to achieve the most valuable subset of the goals at the
lowest possible cost. Given this formulation, a näıve approach would be to
treat the entire goal management process as a net-benefit planning process.
This would imply passing a net-benefit planner the list of all surfaced goals
and defining the activated goals (implicitly) as those which the planner
generates a plan to achieve. This is an approach we experimented with in
the Year 2 Dora system, using the Temporal Fast Downward planner [3]
from WP4, which is capable of solving net-benefit problems. The remainder
of this section is built on the insights that this experience provided.

One reason why treating goal activation purely as a net-benefit problem
is an oversimplification is its reliance on a cost-to-drop value for goals. The
CogX systems are capable of achieving a wide range of types of goals. For all
goals to be treated fairly by a net-benefit planner, a system must be devised
for assigning every goal a cost-to-drop value that, when compared to the
value for other goals, reflects the relative importance of the system trying
to achieve either goal right now. In our experience, producing these cost-to-
drop values is a complex process and often values need to be redetermined
when the system changes or is deployed in a new environment. For an
example of this, consider the Dora year 1 system [7]. This system could
produce goals to fill gaps in its knowledge via the exploration a new areas
of space (one goal for every new bit of unexplored space) and via room
categorisation (one goal to for every room). The values of exploration goals
were directly determined by the amount of new known space that exploration
might yield. If Dora was only required to consider exploration goals then
this would be a fair metric to use for their comparison. However, Dora had
to decide whether to achieve exploration goals or room categorisation goals.
Room categorisation goals were assigned values based on the size of the
target room. As a room is almost always larger than a single place (real or
hypothetical), with all other things being equal Dora would always choose
to categorise a room rather than explore.

Whilst the comparison of exploration and categorisation goals looks su-

EU FP7 CogX 6

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

perficially valid as their values can at least be expressed in the same units
(metres squared), there is a deeper problem here. The reason a system de-
cides to pursue (activate) a goal should be based on the expected changes
in system state that achieving the goal might yield. In CogX we have been
considering this in terms of the information gain (in an informal sense) ex-
pected from a goal. This is an approach that aligns well with the idea
of filling knowledge gaps. Achieving a categorisation goal yields informa-
tion about the category of a room (or a distribution over all categories).
Achieving an exploration goal yields information about the extent of space,
including perhaps whether a previously unseen room exists. These are qual-
itatively different types of information, with both influencing possible future
behaviour in different ways. So, even though we consider both types of goals
similar as they allow Dora to fill gaps in its knowledge (they are arguably
derived from the same drive – to self-extend), there is no simple way of di-
rectly comparing them. This is the first challenge of goal activation: finding
approaches to support the comparison of goals of different types.

An additional problem faced by a goal activation system is that goals
may also be valid for different time periods. When Dora is just exploring, the
order in which parts of space are explored or rooms are categorised makes
little difference to the final outcome. Different orderings may increase or de-
crease the time it takes to build a complete model of the environment, but
given enough time this will be achieved anyway [7]. However, when Dora
is given a task such as reporting the position of an object (as in the Year 2
and Year 3 systems), it is safe to assume that this task is not free of time
constraints (as a hungry human will usually only wait so long for their corn-
flakes). The easiest way to ensure that a goal given by a human is achieved
as quickly as possible is to make this the system’s only goal. However, this
prevents the system from being able to pursue more than one goal at once,
and rules out achieving goals provided by multiple humans (where plans
for each goal may have overlapping plans), or interleaving human-provided
goals with internally generated goals such as exploration (although if in-
ternal goals are task-related, they can be handled as subgoals – see [1],
included in DR.4.3, for an example). This latter combination is particularly
relevant to CogX, where we would like our systems to have the flexibility to
choose to self-extend even when operating under user-provided instructions.
However, a useful system should not self-extend to the exclusion of achiev-
ing human-provided goals. Thus the second challenge of goal activation is
to design a system capable of respecting the different constraints that may
apply to, or between goals, from time constraints to priority orderings.

2.2 Proposed Approach

We do not yet have a working system capable of meeting the two challenges
described above. However, we have produced the following proposal which

EU FP7 CogX 7

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

we aim to implement and evaluate in the coming year.
Based on our work on the integrated systems and our previous literature

review, we have decided to classify all of the underlying motivations of the
CogX systems into three different drives. These are, in order of decreasing
priority:

1. Keep resource levels within acceptable bounds (homeostasis), e.g. bat-
tery level. This allows the system to keep operating.

2. Do what humans ask, within an appropriate time.

3. Perform self-extension. We assume self-extension exists to improve the
system’s ability to satisfy the preceding two drives.

Each drive will be realised in a system as a collection of goal generators.
The system’s drives provide an ordering over the sets of goals produced by
the goal generators for each drive. We will treat this ordering as encoding
preferences for choices when conflicts occur: the system must not drop a goal
from a more preferred drive in order to achieve one from a less preferred
drive. In addition a drive can dictate the activation semantics of a goal
which it has given rise to. Some drives (human tasks, homeostasis) will
state that any goal derived from it must be activated if surfaced if this is
the highest preference drive. Other drives will state that their goals can be
active or not even when they are the highest preference (this is to deal with
self-extension cases).

A further assumption we must make is that all goals can have deadlines
attached. These may be provided at generation time, or inferred by other
mechanisms (e.g. default or learnt deadlines). This assumption is necessary
because without any constraints on when any goals must be achieved, there
is no need to choose some collection above some other collection. We allow
for goals that have no deadlines, but we must also allow for goals that do
(in particular to support the human-provided tasks).

Once we have deadlines we can consider the activation problem as a
decision about which other goals should be achieved in the gap between the
time it will take the system to actually achieve its highest priority goals
and the deadlines associated with them. When making this decision we
assume that the system has decided to achieve all the goals it can from
drive with the highest priority that has surfaced goals. It can now try to
(opportunistically) include as many goals as it can from the next highest
priority set of goals, provided that no deadlines are violated from previously
added goals. When doing this it must be able to select some subset of the
goals at this next priority level (assuming that there is not enough time to
achieve all of them). To do this we will assume that goals from the same
drive can be directly compared using some (dynamic, contextual) ordering
or reward scheme. As we saw above, it is not easy to generate such a scheme,

EU FP7 CogX 8

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

but it is at least more meaningful to compare goals from the same drive, than
comparing goals across drives. This proposed process of including goals from
lower priority drives can be repeated for all drives, provided no deadlines
are violated.

Following this approach, a complete set of activated goals can be built
up by solving a series of net-benefit planning problems. To ensure that goals
activated by a previous planning session are not rejected by a later session,
we propose that all previous goals are turned into hard goals when additional
(lower priority) goals are added to the goal conjunction. The algorithm
we envisage implementing to achieve this in our motivation framework is
presented below. In this we use Gp to refer to a set of goals with a drive-
derived priority p, where higher values of p represent higher priorities. Each
member of Gp is a tuple 〈g, d, c〉 where g is the goal state, d is the deadline
and c is the cost-to-drop for this goal (where the value of infinity is used to
represent a hard goal).

1. Take the highest preference drive goal set Gp, setting all c to infinity
(i.e hard goals), unless the drive states otherwise.

2. Find plan Pp which achieves all goals in Gp within their d values.

3. If no such plan exists, fail (or trigger conflict resolution mechanism).

4. Take the next highest drive-preference goal set Gp−1 (taking all c values
as provided).

5. Set all c values in Gp to infinity if they weren’t previously

6. Find a plan Pp−1 for the net-benefit problem Gp ∧Gp−1. Pp−1 should
achieve all goals in Gp and some planner-selected subset from Gp−1.

7. Repeat for remaining drives, each setting the c values in the preceding
goal set (i.e. Gp+1 for the current value of p) to infinity.

One problem with our approach is that a drive could specify that all its
goals should be treated as hard, but then no plan can be found to satisfy
all of them at once. At this point we have an interesting possibility for
reasoning. If the goals were provided by a human then the robot could ask
if it could violate certain constraints (e.g. a default deadline assumption),
or the human could just be told that the goal will not be possible given the
previously existing goals. Alternatively the system could loosen any self-
imposed constraints until a plan can be found (i.e. perform metareasoning).

A further problem is that the temporal, net-benefit, planner used in the
CogX systems, Temporal Fast Downward [3], does not support goals with
deadlines. We are currently investigating ways to make progress on this
issue.

EU FP7 CogX 9

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

In order to address the need to generate meaningful costs-to-drop for
goals within the same drive but from different goal generators (as in the pre-
vious Dora example), we propose to investigate a mechanism that explicitly
considers the range of possible future behaviours that could be facilitated
by the successful achievement of the goal in question. This approach would
use a collection of hypothetical future tasks that the robot might expect
to be given. Goals that allow a greater number of these future tasks to be
performed (or performed better in some way) should be preferred by the
goal activation mechanism.

Following [2] we would prefer to represent homeostatic drives as resource
constraints within the planning domain. This allows the planner to reason
about them in conjunction behaviours that consume these resources. We
will also allow the explicit generation of goals to achieve homeostatic drives.
This is to deal with the case where no other goal is active but the drive
needs to be satisfied (an identified weakness in [2]).

3 Representations for Cognitive Systems

Probabilistic approaches to representation and reasoning are core to the ca-
pabilities envisaged for the new generation of integrated systems we hope to
create. Many components of the CogX integrated systems (and other state-
of-the-art robots), such as localisation and vision, are founded on proba-
bilistic principles. However, we had not previously been able to design and
implement a system that took advantage of probabilistic knowledge for its
entire operation. This was mainly due to lack of support for such knowledge
in core decision-making systems. In Years 2 and 3, thanks to developments
such as the switching planner in WP4 (see DR.4.3), the conceptual map in
WP3 (see DR.3.2), and the belief models developed in WP1 (see DR.1.2),
we have been able to create an integrated system (Dora) which is able to
both represent its knowledge about the world probabilistically, and solve
planning problems in the large state spaces this entails.

Now we have this system, we have been investigating whether its is
actually an improvement on its non-probabilistic ancestors stretching back
from the Year 1 Dora system (see DR.7.1) to the CoSy Explorer systems [8].
We are performing this evaluation using the Dora Year 2 task of locating a
known object given an existing map of the environment. To find the object
Dora must decide first in which room to look, then where to look in this
room, and finally how to interpret the results of running its visual recogniser.
In the purely deterministic version of the problem, Dora knows exactly what
category of room the object appears in, can unambiguously determine the
category of a room, and interprets the results of its recogniser as always
reliable. In the case of being instructed to find the cornflakes, the behaviour
of deterministic Dora can be characterised as follows: head straight for the

EU FP7 CogX 10

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

kitchen, look in all places that can support an object, and if the recogniser
ever returns a positive result, then the cornflakes have been found (or vice
versa). In the probabilistic case Dora has a distribution over which rooms
the cornflakes can appear in, a distribution over the possible categories of
each room, and uses an observation model to interpret the results of its
recogniser. In this case Dora chooses to look in the room with the highest
likelihood of containing the cornflakes (i.e. the one that is mostly likely to
be the one that is most likely to contain the object) and treats the results of
the recogniser as influencing its belief about the presence of the object. This
behaviour continues until Dora’s certainty about the presence of the object
passes a given threshold. This will entail looking in all possible rooms, and
integrating the evidence provided by observations into its knowledge about
its current environment.

The details of our study are presented in Annex A.1. The overall be-
haviour of the different systems is closely linked to the structure of the envi-
ronment and the Dora’s sensing abilities. If the target object is not placed
in the room that Dora believes it should be in (the non-canonical case in the
annex), then the deterministic system will never find it, but the probabilistic
system should do eventually. If the object is placed in the room where it
is expected to be (the canonical case) then whether the deterministic sys-
tem reports its existence correctly is determined by vision: if the recogniser
correctly detects it then it is found. However this system cannot cope with
false positives or false negatives, and so might fail to report the object when
present (if occluded from the chosen view point) or report it to be present
when it is absent. In contrast, the probabilistic system is able to use the
observation model to choose how many views and recognition attempts to
use in order to reach a predetermined level of certainty in its belief about the
presence of the object. Thus a deterministic system will be as good as any
other system in the case where the object is clearly visible in its canonical
room, but will be outperformed by a probabilistic system in cases where
either the object location is non-canonical, or when the observation of the
object yields non-deterministic results (which is the norm).

References

[1] Alper Aydemir, Moritz Göbelbecker, Kristoffer Sjöö, Andrzej Prono-
bis, and Patric Jensfelt. Plan-based object search and exploration us-
ing semantic spatial knowledge in the real world. In Fifth European
Conference on Mobile Robots (EMCR’11), 2011.

[2] A. M. Coddington. Integrating motivations with planning. In Proceed-
ings of the 6th International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS07), pages 850–852, 2007.

EU FP7 CogX 11

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

[3] Patrick Eyerich, Robert Mattmüller, and Gabriele Röger. Using the
context-enhanced additive heuristic for temporal and numeric plan-
ning. In Proceedings of the 19th International Conference on Automated
Planning and Scheduling (ICAPS 2009), 2009.

[4] Marc Hanheide, Charles Gretton, Moritz Göbelbecker, Andrzej Prono-
bis, Alper Aydemir, Hendrik Zender, Richard Dearden, Nick Hawes,
Patric Jensfelt, Geert-Jan Kruijff, and Jeremy L. Wyatt. Exploiting
probabilistic knowledge under uncertain sensing for efficient robot be-
haviour. Technical report, CogX consortium, 2011.

[5] Marc Hanheide, Nick Hawes, Jeremy Wyatt, Moritz Göbelbecker,
Michael Brenner, Kristoffer Sjöö, Alper Aydemir, Patric Jens-
felt, Hendrik Zender, and Geert-Jan M. Kruijff. A frame-
work for goal generation and management. In Proceedings of
the AAAI ’10 Workshop on Goal Directed Autonomy, July 2010.
http://home.earthlink.net/ dwaha/research/meetings/aaai10-gda/.

[6] Nick Hawes. A survey of motivation frameworks for intelligent systems.
Artificial Intelligence, 175(5-6):1020–1036, 2011.

[7] Nick Hawes, Marc Hanheide, Jack Hargreaves, Ben Page, Hendrik Zen-
der, and Patric Jensfelt. Home alone: Autonomous extension and cor-
rection of spatial representations. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA ‘11), May 2011.

[8] Kristoffer Sjöö, Hendrik Zender, Patric Jensfelt, Geert-Jan M. Krui-
jff, Andrzej Pronobis, Nick Hawes, and Michael Brenner. The Ex-
plorer system. In Henrik I. Christensen, Geert-Jan M. Kruijff, and
Jeremy L. Wyatt, editors, Cognitive Systems, volume 8 of Cognitive
Systems Monographs, pages 395–421. Springer Berlin Heidelberg, April
2010.

[9] D. Skočaj, Matej Kristan, Alen Vrečko, Marko Mahnič, Miroslav Jan-
icek, Geert-Jan M. Kruijff, Marc Hanheide, Nick Hawes, Thomas Keller,
Michael Zillich, and Zai Zhou. A system for interactive learning in di-
alogue with a tutor. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2011.

[10] Dennis Stachowicz and Geert-Jan M. Kruijff. Episodic-like memory for
cognitive robots. Journal of Autonomous Mental Development, 2011.

[11] Jeremy L. Wyatt, Alper Aydemir, Michael Brenner, Marc Hanheide,
Nick Hawes, Patric Jensfelt, Matej Kristan, Geert-Jan M. Kruijff,
Pierre Lison, Andrzej Pronobis, Kristoffer Sjöö, Danijel Skočaj, Alen
Vrečko, Hendrik Zender, and Michael Zillich. Self-understanding and
self-extension: A systems and representational approach. Autonomous

EU FP7 CogX 12

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

Mental Development, IEEE Transactions on, 2(4):282 – 303, December
2010.

EU FP7 CogX 13

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

A Annexes

A.1 Exploiting Probabilistic Knowledge under Uncertain Sens-
ing for Efficient Robot Behaviour

Bibliography Marc Hanheide, Charles Gretton, Moritz Göbelbecker, An-
drzej Pronobis, Alper Aydemir, Hendrik Zender, Richard Dearden, Nick
Hawes, Patric Jensfelt, Geert-Jan Kruijff, and Jeremy L. Wyatt. Exploit-
ing probabilistic knowledge under uncertain sensing for efficient robot be-
haviour. Technical report, CogX consortium, 2011

Abstract Robots can made more robust by employing task level planning
that takes explicit, probabilistic account of uncertainty in state, action ef-
fects, and observations. To achieve this we need both good representations
and efficient algorithms for planning with them. Our general approach [11]
is to have the robot explicitly represent and reason about the informational
effects, as well as the physical effects of its actions. The main contribution
of this paper is to show how to reason efficiently about the informational
effects of unreliable sensing actions. The major contributions are a switch-
ing planner and a formulation of view planning and visual sensing actions
that allows us to pose the planning problem for visual search as a POMDP
(partially observable Markov decision process). The switching planner is
a continual planning system which is able to plan in large problems posed
by that model, by automatically switching between decision-theoretic and
classical procedures. The decision theoretic planner is a POMDP solver and
is able to reason precisely about both state uncertainty and the unreliability
of sensing. POMDP planning can only be applied to small problems (hun-
dreds or thousands of underlying states), whereas the task we tackle here
has of the order of 1027 states. Our switching planner therefore decides on
the fly how much of the problem the POMDP solver can handle, and how
much should be tackled by a fast but heuristic planner based on a contin-
ual planning framework. This switching approach allows us to handle much
larger problems than previously while retaining plan quality. Satisfying the
conditional independence assumption made by the POMDP framework is
not trivial, and so we show how to generate a set of possible views of a
scene which satisfy this requirement. We evaluate our contributions in a
robot that performs object search tasks in real-world indoor environments.
The results show that our approach of combining probabilistic and common-
sense knowledge improves on using common-sense knowledge alone, which
in turn improves on an uninformed search strategy.

Relation to WP WP1 ultimately aims to yield an architecture, or at least
advice on constructing architectures, for robots that can self-extend in order
to robustly operate in real-world environments. Acting under uncertainty,

EU FP7 CogX 14

DR 1.3: Architectures and representations for introspection and motive management CogX Consortium

whilst still being able to exploit the regularities present in the world, is a
key problem for any such robot. This article explores a range of options
open to system builders facing this problem. It thus contributes to WP1
by demonstrating the effects of different architectural and representational
options on a robot solving a problem in the real world.

A.2 Episodic-Like Memory for Cognitive Robots

Bibliography Dennis Stachowicz and Geert-Jan M. Kruijff. Episodic-like
memory for cognitive robots. Journal of Autonomous Mental Development,
2011

Abstract The article presents an approach to providing a cognitive robot
with a long-term memory of experiences a memory, inspired by the con-
cept of episodic memory (in humans) or episodic-like memory (in animals),
respectively. The memory provides means to store experiences, integrate
them into more abstract constructs, and recall such content. The article
presents an analysis of key characteristics of natural episodic memory sys-
tems. Based on this analysis, conceptual and technical requirements for an
episodic-like memory for cognitive robots are specified. The article provides
a formal design that meets these requirements, and discusses its full imple-
mentation in a cognitive architecture for mobile robots. It reports results of
simulation experiments which show that the approach can run efficiently in
robot applications involving several hours of experience.

Relation to WP Introspection for self-extension, one of the targets of
WP1, requires systems that are able to represent the past experiences of
a robot operating in the real world. Without such systems, this informa-
tion would not be available for introspection. This article demonstrates an
episodic-like memory design capable of collecting and storing symbolic infor-
mation about a robot’s experiences in time and space in a way that should
allow introspection in future systems.

EU FP7 CogX 15

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 2

Episodic-Like Memory for Cognitive Robots
Dennis Stachowicz & Geert-Jan M. Kruijff

Abstract—The article presents an approach to providing a
cognitive robot with a long-term memory of experiences –
a memory, inspired by the concept of episodic memory (in
humans) or episodic-like memory (in animals), respectively. The
memory provides means to store experiences, integrate them into
more abstract constructs, and recall such content. The article
presents an analysis of key characteristics of natural episodic
memory systems. Based on this analysis, conceptual and technical
requirements for an episodic-like memory for cognitive robots are
specified. The article provides a formal design that meets these
requirements, and discusses its full implementation in a cognitive
architecture for mobile robots. It reports results of simulation
experiments which show that the approach can run efficiently in
robot applications involving several hours of experience.

Index Terms—episodic-like memory, long-term memory, event
structure, experience, cognitive robot, human-robot interaction

I. INTRODUCTION

Robots do not just live for the moment, act and interact
for the moment. The general idea is for robots, for cognitive
systems, to operate over longer periods of time. Periods in
which the world may change, experience may be gathered,
and what is observed at one point may become useful later on.
That is the general idea. In this article we present an approach
to episodic-like “long-term” memory for cognitive robots that
tries to realize that idea. The approach is conceptually inspired
by what we know about how humans remember events but
also by related findings in research with animals. It moves be-
yond existing approaches for long-term memories for artificial
agents like robots in that it provides a flexible, scalable setting
for storing and efficiently retrieving experience.

When a human recalls what she experienced, her memo-
ries share many of the qualities of the original experience.
The amount of information which she stores is considerable.
Moreover, the addition of new information to memory appears
to be done automatically, without effort. Even when she does
not intend to memorize what she experiences, the information
is preserved. Afterwards it can be retrieved in new and unfore-
seen situations. She can connect the past to new experiences,
enabling an entirely different quality of their interpretation.

How could we make it possible for a robot to do the same?
Below, we discuss the background (§II), and formulate a

design for episodic-like memory for cognitive robots on the
basis of conceptual and technical requirements by biological
systems (§III). We then present an implementation of the

German Research Center for Artificial Intelligence, DFKI GmbH,
Saarbrücken Germany. The research reported in this paper was financially
supported by EU FP7 IP “Cognitive Systems that Self-Understand and
Self-Extend” (CogX, ICT-#215181) and EU FP7 IP “Natural Human-Robot
Cooperation in Dynamic Environments” (NIFTi, ICT-#247870), both in the
EU Cognitive Systems & Robotics Unit.
E-mail: dennis.stachowicz@gmx.de, gj@dfki.de

Manuscript submitted March 1, 2010; last revised February 10, 2011

approach (§IV), and its evaluation in a cognitive system for a
mobile robot (§VI). The evaluation is conducted on scenarios
recording up to 100.000 events. It shows the implementation to
be efficient (fast insertion and retrieval of events), and scalable
(at most linear increase of retrieval time, given memory size).

We contribute an approach, conceptually inspired by biolog-
ical insights, which makes it possible for a robot to remember
things, connect experiences over space and time, and recall
them in different ways. And do so over a longer period of
time. When viewed as a structure, the memory system we
propose provides a non-intrusive, integrated representation of
events and their spatio-temporal contexts. It allows events to
overlap or to be nested, and more generally to form partonomic
hierarchies. Different levels on this hierarchy represent differ-
ent levels of granularity in stored experience. Across all levels
a homogenous notion of spatio-temporal context of events and
events themselves is retained. This offers several advantages
for processing events, by enabling parsimonious interfaces and
processing principles. Viewed as a mechanism, the memory
allows new experiences to be acquired “in one shot.” It pro-
vides a flexible and modular architecture for the recognition of
complex events and the construction of partonomic hierarchies.
Cued retrieval mechanisms allow integrated event structures to
be retrieved using underspecified events as cues.

II. BACKGROUND

We provide a brief survey of the development of different
notions of episodic memory in psychology and cognitive
neuroscience. We particularly focus on the recent notion of
episodic-like memory introduced by Clayton et al. This notion
forms the conceptual basis for this article. We then review
relevant approaches in cognitive robotics and related fields.
(For a much more detailed discussion we refer the reader to
[1].)

A. Psychology and neuroscience

Until the middle of the twentieth century memory was
largely thought of as a singular faculty. Although scientists
already expressed doubts that this might not be the case in
the 19th century, there was neither a generally agreed view
of different memory systems nor any compelling evidence
of their existence [2], [3]. This situation began to change
significantly around the middle the 20th century. At this time
a distinction between a short-term memory (STM) and a long-
term memory (LTM) was put forward [4]. It received part of its
empirical support from case reports of the amnesic syndrome,
e.g. in the famous case of H.M. [5]. H.M. who had both
of his medial temporal lobes surgically removed seemed to
be unable to store new memories for periods of time longer
than minutes. On closer observation, however, not all forms

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 3

of learning on longer timescales were affected. Although he
was severely impaired with respect to remembering events or
facts [6], [7] he was still able to learn and retain new skills
like mirror drawing [8].

Other abilities found to be preserved in amnesics of-
ten include artificial grammar learning, category learning,
perceptual and conceptual priming [9]. Several terms have
been proposed to summarise these kinds of memory, and to
contrast them with the memory for facts and events which
is mostly affected in amnesic patients. Explicit/implicit and
declarative/non-declarative are the terminological pairs which
remain most influential and are still being used. Declarative
memories can be described as those memories which are
consciously accessible. They are more easily verbalised and
match the concept of memory in everyday language. Squire
[2] characterises declarative memories as representational, as
models of the external world to which truth values can be
assigned. Non-declarative memories are neither true nor false.
They are “dispositional and [...] expressed through perfor-
mance rather than recollection” [2, p. 173]. Figure 1 shows the
grouping of declarative and non-declarative memory systems
in a widely used taxonomy.

In 1972 Tulving proposed to discern two subsystems of
declarative based on the type of their contents [10]. Semantic
memory was supposed to hold general, abstract facts about
the world without the context in which they were learned,
whereas episodic memory was thought to contain personally
experienced events embedded in their original spatio-temporal
context. Thus, episodic memory is about what happens when
and where. It is a memory systems which allows us to
“mentally travel back in time” to re-experience a past situation.
Furthermore, Tulving suggested that re-experienced episodes
are not just flat with respect to their structure but that they can
also be nested or overlap [11][p. 37ff].

Later, Tulving changed his definition of episodic memory
significantly [12]. His newer definition strongly emphasised
the role of autonoetic awareness together with two other
concepts needed for mentally travelling in time: a traveller,
i.e. the self, and time, or more precisely, subjectively sensed
time. Their conjunction was then suggested to be the essence
of episodic memory.

Demonstrating episodic memory in any non-human species
based on such a definition is obviously more than problematic.
This has led Clayton et al to distinguish between phenomeno-
logical and behavioural criteria for episodic memory. They
propose the term episodic-like memory [13], [14] for a memory
system which meets the following criteria:
• Content: Based on a specific experience information

about what happened when and where is stored.
• Structure: What- where- and when-information forms an

integrated representation, i.e. “retrieving any one feature
automatically retrieves the other features”.

• Flexibility: The information stored is declarative in nature
and can be flexibly deployed. In particular, it can interact
with semantic knowledge even if the latter was gained
after the episode was encoded.

Hence, episodic(-like) memory is a form of one-shot learning.
A single exposure is enough to form a unique representation

of a situation. In Clayton et al ’s view this uniqueness and
the integrated representation rule out that pieces of episodic
information of different episodes (like the ‘what’ information
of one and the where information of another episode) are
mixed or become indistinguishable [15].

Furthermore, Clayton and Russell [16] point out that the
knowledge of what happened when and where does not
necessarily imply the engagement of an episodic-like memory
system. For an instance of episodic-like memory these pieces
of information must be present but they must also reflect
the “perceptual relation” or “perspective” of the original
experience. By means of this clarification Clayton and Russell
refine the notion of episodic-like memory such that it also
encompasses ideas underlying Tulving’s newer definition of
episodic memory. However, they do so by restricting the
representation of memory contents instead of introducing a
dependency on introspection as is the case with Tulving’s
newer definition.

B. Cognitive robotics and related fields

Episodic memory in ISAC: ISAC, short for Intelligent Soft
Arm Control, is a humanoid robot [17]. It runs a cognitive sys-
tem which comprises several sub-systems, multiple memory
systems and a module simulating emotions. Among its mem-
ory systems is an episodic memory system which constantly
records contents of the working memories with timestamps
and combines all contents appearing between two goal changes
into an episode. Later on, these episodes are retrieved again
to support a planner based on the assumption that there is
a “correct episode for a given situation”. Candidate episodes
are those which are highly similar to the current situation.
A few additional heuristics (e.g. “prefer recent episodes”)
are used to rank candidates. The highest-ranked candidates
are written to a small working memory for access by the
planner. ISAC’s episodic memory system thus clearly shows
a form of one-shot learning of relevant data. The data stored
cover the ‘what’, ‘when’ and ‘where’ components required by
Clayton’s content criterion. In that respect, ISAC’s episodic
memory system appears to be a sound approach to a case-
memory for planning problems in a robotic system. However,
it does not provide the flexibility expected of an episodic-like
memory system. It is purely single-purpose. It defines episode
boundaries exclusively in terms of changes of the robot’s
overall planning goal, and it does not allow for overlapping or
nesting of event representations. Finally, it is unclear whether
it is efficient and scalable enough to run at the timescales of
a long-term memory system.

Episodic memory in EPIROME: TASER is a service robot
targeted at dynamic, real-world office environments [18].
Sample tasks proposed for such an environment include de-
livering messages to project group members. Jockel et al
argue that an episodic memory module which continuously
stores experience could help in solving such tasks or in
avoiding unnecessary overhead in task execution. For example,
if experience indicated that usually there is nobody in the
server room to whom a message could be delivered, this room
would be excluded from places where the robot would look.

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 4

Fig. 1. A taxonomy of long term memory systems with selected neurobiological correlates. Adapted from [2].

To this end, Jockel et al propose the EPIROME framework
[18], [19]. It provides a software module developed in an
object-oriented programming language in which event objects
can be generated and further processed. Events generated dur-
ing a robot run can be visualised. It is planned for EPIROME
to add long-term storage and retrieval functionality to it. Two
different possible approaches are mentioned in [18], [19].

EPIROME differs from other approaches in that events are
typed, and arranged in a hierarchy. This hierarchy is modeled
as a hierarchy of interfaces and classes in an object-oriented
programming language. It consists of two layers. One is the
domain-independent layer which is a static part of EPIROME
and contains four interfaces: A (root) Event interface and
and three sub-interfaces of the latter (CommandEvent,
PerceptionalEvent, ExecutiveEvent). The domain-
dependent layer contains interfaces and classes derived from
one of these three types.

In its current state [18], [19], EPIROME clearly does
not fulfil requirements for an episodic-like memory system.
Neither have long-term storage or retrieval mechanisms been
detailed yet, nor representations of stored events or episodes.
Nevertheless, it is interesting to note EPIROME’s event type
hierarchy as a new approach towards a conceptual understand-
ing of experience generated during robot runs. This could
potentially be useful in several respects (if integrated with
corresponding modules): To allow deliberate reasoning about
events, to engage in dialogue about events, or simply for more

focused retrieval strategies from a memory store. A major
drawback of this approach, however, results from the fact that
the hierarchy must be specified in terms of interfaces and
classes in an object-oriented programming language. Further-
more, the hierarchy must be defined a priori, and will thus
always be static.

A few other memory systems developed for agents in
simulated worlds or non-robotic cognitive architectures are
outlined below. Most of these have been designed with the
same purpose as ISAC’s episodic memory, and thus often have
the same flaws. In addition the systems are often not usable
for the design of new cognitive robot systems because they
are tied to a particular system context.

Episodic memory in SOAR: [20] introduce SOAR-EM,
an episodic memory extension to the SOAR cognitive ar-
chitecture, which focuses on case-based reasoning tasks (cf.
[21]), similar to the corresponding system in ISAC. In a later
publication [22], they described extensions to their system
and broadened the range of considered applications. These
include: Noticing novel situations, detecting repetition, virtual
sensing (retrieving past sensory input to aid in a new situ-
ation), predicting effects of own actions or other perceived
events, management of long-term goals, retroactive learning
(re-analysis of experiences acquired under time pressure, at a
time of low system load), and re-analysis of knowledge.

For three of these functions, Nuxoll and Laird tested
whether their system could provide the necessary support. As

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 5

a test environment they used a simple simulation (TankSOAR)
in which a tank can attack, or can be attacked by, other
tanks. It also needs to maintain a certain energy level by
regularly recharging its batteries. As it cannot perceive the
whole simulated world at once, it is not always able to sense
the nearest charging station. Nuxoll and Laird showed that
their memory system can support virtual sensing, and that a
tank able to use it can find the charging station more quickly
than a tank which has to rely on random search. Similar cases
studies involving the simulated tank have been conducted for
two other tasks related to the prediction of action effects.

The memory system uses a SOAR-specific representation
format for its episodes. Each time the SOAR agent takes an
action an episode is formed which contains data from the
architecture’s working memory. Hence, episodes are much
shorter than, for example, in ISAC’s episodic memory but the
same criticisms of episode structures hold here, too.

SOAR-EM’s retrieval mechanism is more flexible than that
of ISAC’s episodic memory: SOAR-EM does not automati-
cally and exclusively retrieve memories similar to the current
situation. Instead it allows deliberate retrieval by placement of
a retrieval cue onto the working memory. Its retrieval mecha-
nism, however, was reported to be inefficient and difficult to
optimise further [22].

Other approaches to episodic memory: The overview
above is by no means exhaustive. There exist several ap-
proaches for equipping virtual characters with episodic or
autobiographic memories, e.g. Rity [23], Homer [24], and
story-telling characters [25] or [26]. The latter two are sophis-
ticated in their capability for inserting and retrieving complex
event content. The approach in [25] is however closely tied to
planning, raising similar concerns as voiced above for ISAC
and EPIROME.

III. DESIGN

A. Design requirements

§II surveyed naturally occurring episodic-like memory sys-
tems and the development of the concepts of episodic and
episodic-like memory. These concepts have inspired the ar-
tificial system (ELM) we describe below. Before we turn to
the description of our system, we present a short summary
of requirements (R1 - R11) which we consider important for
the development of artificial episodic-like memory systems.
We start with characteristics of natural episodic-like memory
systems, reinterpreted as requirements, and extend these with
properties desirable from a technical point of view.

The first three requirements are given by the criteria of
Clayton and colleagues [14]:
• Content (R1) Previously experienced events are recol-

lected within their spatiotemporal context.
• Structure (R2) Each event together with its spatial and

temporal context form a single integrated representa-
tion which is retrieved as a whole upon retrieval of any
one feature of the event.

• Flexibility (R3) Flexible deployment of this information
in novel situations is possible because episodic-like mem-
ory is set within a declarative framework.

But there are more points to be taken into account: Acquir-
ing new episodic-like memories is a particularly fast form of
learning, even one-shot learning (R4). Unlike most learning
scenarios there are no repeated presentations of training exam-
ples from which to infer generalizations. Instead episodic-like
memory has to deal with the specifics of a situation.

Episodic(-like) memory is a form of long term memory
(R5). Memories can be stored for seconds, minutes, or even
months or years. It is also a form of declarative (or explicit)
memory (cf. R3). We can talk about events and that our
memories of events are accessible to introspection.

Although episodic-like memory shares this explicitness with
semantic memory, the two are different. An episodic-like
memory deals with situation specifics , which also implies
a certain perspective (R6). That is, re-experienced events
incorporate the same perspective as in the original experience
[16]. Semantic memories, on the other hand, generally abstract
away from both perspective and situational specifics.

Finally, events stored on an episodic-like memory can vary
considerably in their length. They can even be nested (R7) or
overlap (R8).

The characteristics listed above already restrict the design
space for an artificial episodic-like memory. If such a memory
is to be used in a cognitive robotics environment a few
more properties are desirable. As the ‘what’ field can contain
very diverse information which can be provided from very
different software modules the system designed must be “non-
intrusive” (R9), cf. [27]. It should not require software mod-
ules to use specific representations or algorithms internally.
At the same time the system cannot rely on other software
modules not to change representations and algorithms. Further-
more, the system should be efficient (R10) enough to handle
the high throughput of events occurring in a running cognitive
robot system. This also implies it should scale well (R11) to
provide for efficient storing and retrieving even as the amount
of collected data in an episodic-like memory grows over time.

B. Intuitions Behind the Formal design

We provide a detailed discussion of the formal basis for
the the artificial episodic-like memory system ELM in Ap-
pendix A. Here, we discuss the basic intuitions behind the
formal details. The formalisation provides the basis for the
implementation we discuss in the next section.

The formal design is based on a notion of an event or
episodic-like memory item, with respect to perceptual pro-
cesses of the respective observer. According to the content and
structure criteria, an episodic-like memory stores information
about what happened when and where in an integrated form.
Thus the information about an event takes the form e = (c, l, t)
where c denotes the event in the narrow sense (i.e. its content),
l its location and t its time.

Imagine you are in your office. You turn to your desk
and see a specific book on it. Then you turn away and lose
sight of it again. There was an event e of you seeing this
book during a certain interval of time, say t = [tstart, tend],
which is defined to be the time (or temporal context) of e.
Similarly, you have been standing in a certain place while

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 6

seeing the book. This place, more precisely the space your
body occupied at this time, is defined to be the location l (or
spatial context) of e. Think of it as a three dimensional “box”
P3 approximating this space, or just a simple two-dimensional
area that approximates the projection to the ground. In this
example, c contains visual information. In other cases it may
stem from any other modality with information in a completely
different representation. That is why non-intrusiveness must be
taken into account when further specifying c. To this end any
kind of content (or binary string b) is allowed here, which
we extend with type information and features to enable fast
retrieval of the event.

Our formal design specifies how we can define relations
between events, for example in terms of sub- and super-events,
or types of events. This makes it possible to consider complex
events, built up from smaller events. The spatial and temporal
extent of a complex event can be derived from the spatial
and temporal extents of its parts. In this formal framework an
episodic-like memory then basically is a set of such events,
complex or otherwise, together with a set of operations that
we can use to insert and retrieve events. Retrieval can be along
any dimension of an event – its content, its type and features,
its temporal and spatial extent, or its inclusion in a complex
event structure. Crucial here is that we are completely free in
designing the content of an event, and the way we decide to
structure events. This makes the ELM (fairly) independent of
the uses it might be put to in a specific cognitive system.

IV. IMPLEMENTATION OF ELM

A. From requirements to index data structures

In the last section a more formal but still abstract representa-
tion for events was constructed following characteristics from
empirical research. Among the various requirements which
influenced the definitions was the structure criterion. This
criterion does not only inform the immediate representation
of events but also the storage and retrieval processes as
“retrieving any one feature automatically retrieves the other
features” [14]. Together with the fact that this must happen
efficiently and scalable to enable the usage of the system as
a long-term memory, this suggests the use of indices on each
of the principal components of the integrated memory item.
Indices are data structures which allow the storage and fast
retrieval of stored data.

B. Index data structures for one- and multidimensional data

For one-dimensional data (like the start time of an event)
there are many index data structures. Most widely known are
B-trees [28] and hash tables. Indices based on hash tables are
not suitable here because they do not support range queries.
B-trees and similar data structures can serve this purpose
well with only logarithmic worst-case complexity for insertion,
search and deletion of entries. For a classic review of B-trees
and related data structures see [29].

More interesting is the case of multidimensional data such
as areas representing the location of events. Guttman intro-
duced R-trees [30], tree structures which progressively divide
an n-dimensional space into smaller and smaller bounding

Fig. 2. R-tree for two-dimensional data. Adapted from [30].

boxes. Figure 2 shows an illustration of an R-tree for the two-
dimensional case.

Its root node contains pointers to two child nodes, each
representing a large portion of the plane (rectangles R1 and
R2). Each child node further splits the rectangle it represents
into smaller ones, e.g. R1 into R3, R4, R5, until a leaf node
is reached which contains a pointer to the actual data tuples
containing the indexed shapes. When looking up an entry the
algorithm starts at the root node, checks if the sought region
lies within one of the rectangles pointing to child nodes and
further descends until a leaf node is reached or there no child
node representing the sought region. Note that the rectangles
can overlap. Whenever they do the retrieval algorithm has to
descend into more than one sub-tree. This and the fact that
R-trees do not have a balancing mechanism rule out a strict
worst-case complexity bound. In spite of that R-trees have
been reported to perform well on many real world data sets.

Several variants of the R-tree structure have been proposed
with the aim of ameliorating one or both of these poten-
tial problems: R+-trees [31], for example, avoid overlapping
rectangles by including objects in multiple leaves if needed
(thereby increasing disk usage and insertion time for the ben-
efit of shorter query times). R*-Trees [32] and Hilbert R-Trees
[33] are related modifications. [34] introduce the Priority R-
tree (or PR-Tree), the first R-Tree variant with asymptotically
optimal worst-case performance for window queries (queries
for all objects intersecting a given (hyper-)rectangle). To
answers such queries it requires no more than O((NB)1−

1
d + T

B)
I/O operations where N is the number of d-dimensional hyper-
rectangles stored, B is the disk block size and T is the output
size. In experiments Arge and colleagues showed that the PR-
Tree performs comparable to other R-Tree variants on real-
world data and are superior on synthetic data with extreme
distributions. All in all the performance differences between

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 7

R-tree variants applied to real-world data are small enough to
allow for greater consideration of other factors like availability
or complexity of implementation.

C. Index data structures and database management systems

Several of the index structures outlined above have been im-
plemented in current database management systems (DBMS).
In particular B-trees are “ubiquitous” [29] and R-trees are
available in some DBMS or can be added as extensions. This
is the case with the PostgreSQL1 DBMS and the PostGIS2 ex-
tensions. PostGIS is a software package which was originally
created to support geographical information systems (GIS). It
uses PostgreSQL’s Generalized Search Tree (GiST) interface
[35] to add R-tree indices3 and other functionality needed
for GIS to PostgreSQL. This comprises a polygon data type
and conversion functionality between different formats, e.g.
the well-known text (WKT) and well-known binary (WKB)
formats of the OpenGIS Simple Features Specification [36].
In summary, PostgreSQL and PostGIS provide the basic
functionality to represent events (including their locations) and
to index the principal components of each event.

In comparison to many other design and implementation
approaches relying on other software or even implementing
software from scratch a design and implementation based
on the combination of PostgreSQL and PostGIS offers many
advantages. It is stable and mature open source software, it is
reasonably fast, it implements various additional optimisation
techniques as well as data persistence functionality. It allows
for flexible usage and enhancement, especially its standardised
representations are beneficial for information interchange with
other software in the future. Due to these numerous gains this
approach was taken. It is described now in more detail.

D. Database design

Fig. 3 shows an entity-relationship diagram [37] based on
the formal framework in section III. The most central entity
‘Event’ is depicted with its attributes time, consisting of a start
and an end time, location and event-specific binary data. It is
uniquely identifiable by an ‘EventID’. This identifier is used
in the construction of several relations. One of them is the
relation determining of which events a given complex event
consists. In this relation events can have multiple immediate
sub-events. Furthermore every event is of a specific type
and those event types form a hierarchy in which multiple
inheritance is allowed. Finally, events can also have certain
named, event-specific features against which matching is also
possible.

Based on this ER diagram a table design for the object-
relational PostgreSQL DBMS was developed. The table de-
sign, however, is not a direct one-to-one mapping from the
ER diagram but includes a few minor optimisations and
extensions. The most notable extension concerns the type

1http://www.postgresql.org
2http://postgis.refractions.net
3Strictly speaking a plain PostgreSQL system already contains R-tree

indices. PostGIS adds more capable ones which can also handle null values
etc. and run with comparable efficiency.

Fig. 3. Entity relationship diagram for the most basic ELM concepts

Fig. 4. Information flow in ELM (core components only)

hierarchy. Cues for retrieval do not necessarily include the
exact type of an event but may include only a super-type.
To avoid expensive traversal of the type hierarchy for each
query its transitive closure can be computed in advance. The
transitive closure is represented in a separate table.

E. Processing events - interfaces and information flow

Above we outlined the basic representations of data in the
ELM system or, more precisely, their data base storage format.
We now proceed with a broad outline of the implementation
of the basic operations on episodic-like memories, and of
their interfaces. Figure 4 presents a high level view of the
components and information flow in the ELM system which
are described individually below.

Adding new events to the memory store: Assume that the
ELM system outlined in this chapter runs as part of a larger
cognitive robot system and that another software module, e.g.
a vision module, detected an event. The event is reported to
ELM in an integrated form deduced from the event definition,
i.e. as one Event object comprising all required information.

The receiving instance on the side of ELM is the
ELMWriter. It encapsulates all communication with the
underlying database related to the addition of new events to
the memory store, supporting an abstract view of the memory
store. It holds a permanent connection to the underlying
database. Upon retrieval of newly reported events it transmits
the event information to the corresponding database tables.
To ensure full consistency of the memory store at any time
the insertion of each event is treated as one transaction. After
committing the changes to the database and reception of a

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 8

unique event ID each event together with its ID is passed on
to the complex event recognition component.

Recognition of complex events: The recognition compo-
nent’s task is to find sequences of events which form a complex
event and to report the newly found event with information
about its sub-events back to the ELMWriter.

At its core the recognition component has a
RecognitionManager class with which instances of
classes implementing the ComplexEventRecogniser
interface can be registered. Upon reception of an event with its
ID it stores it in its internal queue, a circular buffer, and returns
immediately. A separate thread blocks until the the queue is no
longer empty. Then it passes the new events to the registered
ComplexEventRecogniser for processing and deletes
them from the queue. The ComplexEventRecognisers
perform the actual recognition task, each for one or more
complex event types. There is a huge design space for their
implementations ranging from the simulation of automata
with events as the alphabet of their formal language to
machine learning algorithms with the ability to classify event
sequences to arbitrary Java methods satisfying the interface.
After a ComplexEventRecogniser found a sequence
of events constituting a complex event the complex event
is constructed from these sub-events. It is reported back to
the ELMWriter and enters the recognition process itself
then. This cycle enables the efficient formation of an event
partonomy encompassing events on very different levels of
granularity. At each level the complex event recognition
process can follow the same principles, use the same interface
and abstract from processing on other levels. This simplifies
the design and implementation of the recognisers to a great
extent as it unburdens them from constructing complete or
partial hierarchies. Further simplification and flexibility in
design are achieved by the fact that, even on the same level
of granularity, recognisers for different event types can work
independently of each other. This means that, in summary, all
recognisers, irrespective of the level, run in parallel and keep
on processing each others results until saturation is reached.

Recollection : Besides the ELMWriter there is a second
component in ELM which holds a connection to the underlying
database, the Recollector. It implements cued retrieval of
events.

In order to initiate retrieval of events an object of type
EventCue is passed to the Recollector. The EventCue
class mirrors the structure of the event cue in definition 14.
It contains all fields of the Event class and a field for the
set of super-events. In addition it contains fields specifying
how the previously mentioned fields with event information are
to be matched against events in the memory store. Based on
the respective cue the recollector dynamically composes and
issues the corresponding queries, receives matching events and
returns these to the caller - at any time hiding the underlying
database representation.

V. INTEGRATION WITH A COGNITIVE ROBOT PLATFORM

Our artificial episodic-like memory system ELM was in-
tegrated with a cognitive robot architecture which combines

Fig. 5. The CAS Subarchitecture Design Schema (Adapted from [39])

various functional modules. We describe these modules and
their composition in the following section. Before we can
do so we need to introduce the conceptual framework and
middleware which was used to compose the system.

A. The Cognitive System Architecture Schema Toolkit

The middleware we use is a result of research carried out
by Hawes and colleagues [38] in the context of the EU FP 6
project Cognitive Systems for Cognitive Assistants (CoSy).4

Hawes and colleagues analysed requirements for cognitive
architectures Based on these requirements they formulated
design principles and combined them into a theoretical frame-
work called CAS (Cognitive systems Architecture Schema).
Furthermore, a software toolkit called CAST (CoSy Architec-
ture Schema Toolkit) was developed which provides a sample
implementation of the schema [39].

a) Components: An architecture instantiating the Cog-
nitive systems Architecture Schema consists of one or more
loosely coupled sub-architectures (SAs). An SA is an archi-
tectural unit comprising a working memory (WM), a task
manager and a varying number of processes. Processes run
in parallel and can be either managed or unmanaged. Man-
aged processes are assumed to perform potentially expen-
sive operations. For the latter they can request permission
from the task manager which ensures that the amount of
expensive concurrent operation remains within an acceptable
range. Unmanaged processes, on the other hand, are low-
latency processes running all the time, independently of the
task manager. Fig. 5 illustrates the general design of an SA
following CAS.

b) Information interchange: Processes use the WM to
share information. In CAST, processes can add new entries to
the working memory, and overwrite or delete existing entries.
WM entries are persistent, i.e. once an entry is added to
a WM it remains in place until it is explicitly deleted. All
WM entries are typed and each type is associated with a
specific data format defined in an interface definition language
(IDL). When WM contents are modified, information about
the change is broadcasted. Managed processes can subscribe

4http://www.cognitivesystems.org

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 9

to receive a subset of this change information. They can, for
example, subscribe to changes to a particular WM entry, or
to changes where the WM entry instantiates a specific type.
Moreover, the received changes can be restricted according to
access type (addition, modification, deletion). After receiving
the information that a WM entry has changed a managed
process can retrieve the changed item and use it to perform
further computations. Unlike managed processes, unmanaged
processes are only allowed to modify WM entries, but not to
retrieve them.

By default it is assumed that processes only access their
local WMs (i.e. WMs within the same SA as the process).
Nevertheless, it is also possible to modify external WMs or
receive change information for these.

c) High-level system design : The Cognitive systems
Architecture Schema does not prescribe a way in which
processes need to be composed to form SAs. It is suggested,
however, that components working on shared information are
grouped together, i.e. only very few WM operations should
be non-local. In CAST, local operations are typically much
cheaper than non-local ones. They usually incur lower costs
for broadcasting changes and for filtering broadcast change
information. That means that even though many architectural
designs can often be found which lead to the same observable
behaviour of a system, some are preferable over others as they
lead to a lower communication overhead. The effects of such
architectural choices and methods to evaluate the same have
been investigated by Hawes and colleagues in [40], [41], [42].

B. The Explorer scenario

The Explorer is a mobile robot system which was originally
developed in the CoSy project [43] and whose development is
continued in the CogX project.

As a hardware platform it uses RobOne, a MobileRobots5

Pioneer 3 PeopleBot (cf. fig. 6) equipped with a SICK LMS
291 laser scanner. It also comprises a pan-tilt unit with a
Videre stereo vision camera. RobOne moves using two drive
wheels (tires are visible on the left and right sides of RobOne
in fig. 6) and one caster wheel (at its back; not visible in fig. 6).
A Toshiba Satellite Pro notebook mounted on RobOne is used
to run the Player robot interface. It is also used to operate
a CAST instance running a few of the CAST components
introduced below. Other CAST components including the
ELM module can be run on other machines. For our tests
we used an IBM T42 notebook as a second computer. The
mounted notebook communicates with other computers using
a wireless local area network.

The Explorer explores previously unknown, large-scale
space in a dynamically changing environment. It explores
space about which it had only partial or no information and
which cannot all be perceived at once. Within this space,
the robot is not the only actor, humans can be present as
bystanders, passers-by or as users.

Exploration can happen in one of two basic modes. One is
autonomous exploration. In this mode the robot moves around
on its own with the aim of reducing the amount of unknown

5formerly ActivMedia

Fig. 6. Our hardware platform: An ActivMedia Robotics Pioneer 3 PeopleBot

space. While moving it builds up spatial representations on
different levels, from low-level, metric representations to high-
level, conceptual representations, e.g. room categories [44],
[45]. Using the cameras it can detect and classify objects
in visited rooms. A common sense ontology and a powerful
reasoner allow the robot to draw inferences about the category
of a room based on the objects it found there.

Another mode of exploration is Human Augmented Mapping
(HAM) [46], [47], [48]. HAM takes place in a home tour-
like scenario. The user commands the robot to follow him
and shows the robot around. The robot has the capability to
detect and track people via its laser sensor. In this scenario
it uses it to follow the user [49]. When the user comments
on the environment, e.g. on rooms or objects, the robot uses
this information to update its knowledge base. It is, however,
not only the user who can initiate dialogue. When pieces
of information are found to be ambiguous or contradictory
the robot can also initiate a clarification dialogue [50]. The
style of spoken dialogue with the user can, more generally, be
described as situated, mixed initiative dialogue [48].

After an exploration phase, be it autonomous or in HAM
mode, the robot can talk about the spatial entities it came
to know about. It can, for example, answer questions about
objects or rooms or it can go to a specific room when
commanded. When it does not know where an object is, it
can search for it, and once it is found, come back to the user
to report the object’s location.

For the sake of simplicity, the two modes of exploration
and the functioning thereafter have been described above as
if they were three strictly separate modes of functioning.
That, however, is not true. Functionality from all modes
can be used in turns. The robot can answer questions in

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 10

between exploration. And the teaching of new facts can happen
incrementally with autonomous exploration phases in between.

As a CAS architecture the Explorer consists of several
SAs which group processes according to major fields of
functionality.6 The Explorer consists of the following SAs:
• the Spatial SA which computes the lower levels of the

spatial model, i.e. the metric, navigational, and topolog-
ical information,

• the Conceptual Mapping SA which augments the spatial
model with a conceptual level and allows reasoning with
objects and regions of space,

• the Vision SA which performs object recognition based
sensor data from the cameras, and

• the ComSys SA which provides the dialogue system.
Besides these already mentioned modules the Explorer also
contains two SAs with more integrative functions:
• the Motivation & Planning SA which contains a general

purpose planner, capable of continual collaborative plan-
ning (CCP) (cf. [51], [52], [53]), and

• the Binding SA which combines modal representations
from other SAs into amodal ones (cf. [27]).

C. Integration with CAST and the Explorer

d) The CAST-ELM layer: ELM’s design and imple-
mentation have been developed independently of a specific
robotic platform or middleware. It was integrated with our
robotic system through the addition of the CAST integra-
tion layer (C-ELM). The integration layer contains the main
modules (ELMWriter, ComplexEventRecognition,
Recollector, cf. section IV-E) wrapped into CAST pro-
cesses and a wrapping of the main data structures (e.g. Event,
EventCue) into CAST data structures. A conversion module
supports the mapping of one representation to another.

This setup would already be sufficient for other subarchi-
tectures to report events by writing event structures to the C-
ELM working memory, to use complex event recognition and
to retrieve stored events via WM interactions. But in order to
achieve improvements in usage C-ELM was extended in two
respects.

The first extension is related to the fact that SAs other
than the navigation SA usually do not collect information
about event locations. A dialogue system, for example, is
usually not concerned with robot positions and it would
introduce considerable overhead both in programming and
information interchange between software modules if every
other module reporting events would need to collect this
information. To avoid these problems a CAST process called
LocationMonitor was developed. Its design is outlined
below.

Another class of additions to the wrapped core modules, a
collection of event monitor processes, serves the purpose of

6The exact grouping of processes into subarchitectures changed several
times with the ongoing development of the Explorer system. E.g. some
instantiations merged a few SAs and their processes. But as the detailed
partitioning of processes into SAs is not important for the presentation of
ELM’s integration we present only one of these Explorer instantiations here
as an example.

reducing code dependencies due to detection and reporting of
events and to encapsulate the corresponding code in very few
places. Their design is outlined in section V-C0f.

e) Automatic fusion with position information: SAs re-
porting events for storage by ELM are effectively relieved
from the burden of knowing about event locations by a process
called LocationMonitor. This process allows incomplete
event data structures to be written to the C-ELM WM where
they are complemented efficiently for further processing.

In more detail, the LocationMonitor process works as
follows. It listens for changes related to RobotPose data
structures on the Spatial SA WM. RobotPose structures
contain information about the robot’s position and orientation
together with a timestamp indicating when the corresponding
measurements and computations took place. When a new
RobotPose is found or a previously existing one is updated,
its timestamp and coordinates are extracted and added to
a buffer, internal to the LocationMonitor. This buffer
is a circular buffer into which elements are inserted in the
order of their timestamps. The design as a circular buffer
allows the insertion in time O(1). The LocationMonitor
process also listens for newly appearing PartialEvents.
These are event data structures in which a few fields are not
specified. In particular, information about the location of an
event is missing. At least the information about the event
type and the event time, however, must be present. When
the LocationMonitor receives a new PartialEvent
it tries to determine the appropriate event location based
on the data stored in its buffer. To this end it retrieves all
positions with timestamps within the event time interval. The
fact that positions are stored in the buffer in chronological
order enables the usage of a binary search method to find
the relevant first and last elements in the buffer within time
O(log n) where n is the size of the buffer. The sequence of
matching elements is then used to construct an appropriate
event location polygon. Finally, the previously incomplete
event data structure is augmented with the reconstructed event
location and written back to the C-ELM WM for further
processing by the CELMWriter.

f) Event monitor processes: Many processes in several
SAs running in the Explorer system compute information
which can be regarded as experience in the sense of ELM. One
possible way to integrate ELM with the Explorer is to make
these processes write (possibly partial) event data structures
to ELM’s WM which would then be handled further by the
LocationMonitor or CELMWriter.

This approach, however, has a few disadvantages: Although
the changes required in the reporting processes are tiny (at
most a few lines) relatively many program locations are
affected. And changes in these locations would usually require
good knowledge of the altered code. Changing code in so
many places would also mean that the whole system would
become dependent on C-ELM’s presence. Running or even
compiling without C-ELM could become complicated quickly.

Our approach avoids these potential problems by exploiting
design properties of the CAST-based Explorer system and of
CAST itself, in particular the default data persistence and its
support for loose coupling [54]. We developed a set of monitor

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 11

processes called event monitors which use data already shared
between components. For each WM on which data relevant
to ELM is expected (at least) one event monitor process is
defined. These processes register for change notifications for
certain WM items. Most often this means that the processes
register for additions of items which match a specific data type.
When the awaited WM change occurs (e.g. when a new item
of the type is added) the event monitor process is invoked. It
retrieves the changed data structure. Using the new information
it constructs an event structure and sends it to the C-ELM WM
for insertion into the memory store.

This approach allows us to keep changes related to event
detection separate from the underlying computations. The
processes in other SAs do not need to be changed. Nor do their
internal mechanisms need to be known. The event detection
code can thus be considered maximally non-intrusive. It is easy
to maintain and allows for simple and quick reconfiguration of
the system. By changing a few lines in the CAST configuration
file the system can be run with full ELM support, with ELM
receiving only from a subset of the available SAs, or with
ELM’s event detection completely deactivated.

VI. EFFICIENCY AND SCALABILITY

In order to evaluate the performance of the ELM system
a set of experiments in real and simulated environments
have been conducted. In a pilot experiment we ran ELM
in combination with the Explorer system (cf. V-B) to verify
that ELM runs efficiently enough for the purposes of our
system. The pilot experiment will be shortly described in
section VI-A. In a series of further experiments we set out
for a more systematic evaluation of ELM’s performance using
simulation methods. These will be outlined in section VI-B.
Due to space limitations we will describe the experiments in
a very condensed form, only.

A. Running ELM with the Explorer system

In a pilot experiment the event monitor processes approach
was used to store a number of events which occur in our
Explorer system while it explores space as described above.
These include, for example, events of the robot entering or
leaving rooms, learning a category for a given room, or
detecting a person using its laser scanners. The thus enhanced
Explorer system was run four times where each run lasted
between 10 minutes and one hour. On average around 15
events were recorded per minute.

Approximately once every minute queries for subsets of
the stored events were issued. The retrieved sets of events
corresponded, for example, to the events which occurred
within the last ten minutes, or to people detection events in a
specific room.

Measuring the insertion and retrieval times it was possible
to establish that both are within acceptable ranges (below one
second for retrieval, in the range of milliseconds for insertion).
Because of interaction with concurrently running software it
was, however, not possible to acquire precise measurements.
Moreover, the amounts of events recorded were too small to
draw conclusions about the growth of processing times as the

memory store fills with events. Similarly, not all variants of
queries for stored events were tested in this experiment. For
these reasons a series of simulation experiment have been
conducted.

B. Simulation experiments

1) Experimental setup and methods: We constructed an
event simulator and a query simulator to systematically test
for ELM’s efficiency limits, given a specific (moderate) hard-
ware platform (see below). With these we conducted three
experiments. Before we detail the differences between those
in section VI-B1d we first outline the general setup common
to all experiments.

a) Simulation software: The event simulator was con-
structed so as to provide a high amount of events with
properties (e.g. size, number of features, etc.) observed in
our service robot platform or expected for its future devel-
opment. It simulates both atomic and complex events. More
specifically, we use a hierarchy defining over 11k event types.
Each event generated by the simulator is assigned a type taken
at random from this hierarchy. The type hierarchy has the
form of a directed acyclic graph with ten source nodes. All
nodes excluding leaf nodes have ten children. Each event has
five event-specific features, i.e. (feature name, feature value)-
pairs, and carries a binary payload corresponding to a small
serialised Java object (approximately 200 bytes). Simulated
robot movement in randomly changing directions forms the
basis for event locations and event times are based on time
passing during the simulation. Every tenth event is a complex
event to which the preceding nine events are sub-events.

The main objective of the query simulator is to test the
speed of retrieval functionality provided by ELM. In order
to know sensible values to construct cues from, copies of
events generated by the event simulator are buffered and drawn
randomly (with equal probability for all events generated and
stored). Cues are then constructed based on one or more fields
of the drawn event, e.g. the event type or the set of event-
specific features. The relations between the specified fields
and sought events are also drawn randomly. Combining the
available fields and their associated relations (as specified in
definition 14 on page 15) leads to 27 basic classes of one-
dimensional queries (queries based only on one field).

b) Experimental runs: Each simulation experiment was
repeated ten times under equal conditions. By equal conditions
we understand an empty memory store and simulation with
the exact same parameters. Random number generators used
in the simulation have, however, been initialised differently
each time. Each repetition (also called experimental run below)
consisted of alternating event generation/insertion periods and
query generation/execution periods. Insertion periods com-
prised 100 event insertions each. Query periods consisted of
25 queries. Per run 100k events were inserted and 25k queries
(on average 1k per basic type) were issued.

c) Platform: The experiments were performed on an
IBM Thinkpad notebook (Intel Pentium M 1.7 GHz CPU,
768 MB of physical memory) running Ubuntu Linux 9.04 and
PostgreSQL 8.3 with PostGIS 1.3.3.

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 12

d) Differences between experiments: Three structurally
very similar experiments were conducted with the simulation
software outlined above. The main difference between the
three regarded the number of fields of the event structures
which were used to construct cues. In the first experiment
event cues specifying one field were used. In the second and
third two or three fields were specified, respectively.

2) Results:

Fig. 7. Insertion of events

a) Insertion: Fig. 7 shows the measured processing times
for event insertion. The size of the memory store in events at
the time of a new event insertion is plotted against the x-
axis. Processing time in seconds is plotted against the y-axis.
Each data point indicates the mean processing time for 1k
consecutive event insertions, averaged over ten runs. (I.e. each
data point in the plot is based on 10k measurements.) Error
bars indicate sample standard deviations for these insertions.

Over the course of the experimental runs mean processing
times showed only a very mild increase with general levels
relatively stable around the global average of 19 ms. However,
the time for single insertions varies to a greater extent. The
error bars in fig. 7 show that sample standard deviations were
mostly above 100 ms (global average 110 ms). The maximum
processing time for an individual insertion operation was 8.2
s.

b) Retrieval based on one component: Averaged across
all query conditions, retrieval took 145 ms with 412 ms sample
standard deviation. For the different classes of retrieval cues
averages ranged from 14 ms (matching on the exact event-
type) to 589 ms (event type incl. sub-types). Sample standard
deviations ranged from 78 ms (matching on the exact event
type) to 776 ms (matching event locations in intersection
mode). The longest processing time of a query amounted to
13.5 s and was for measured matching an event location.

Because of the limited space we present a plot only for
one of the classes of event cues, namely for retrieval based
on type or subtype (fig. 8). Similar to the case of insertion
this plot shows memory store sizes (measured in events,
rounded up to the nearest multiple of 1k) at the time of an
operation plotted against the x-axis. Plotted against the y-axis
are now averaged processing times for retrieval operations.
More precisely, each data point indicates the mean processing
time for 100 queries on average (as the result of random query

generation in ten runs, see above). Error bars indicate sample
standard deviations for these chunks of processing times.

As mentioned above this kind of query is the most expen-
sive on average. Its approximately linear growth is, however,
typical of most of the query classes. (Some location-based
queries show slightly milder increases.)

Fig. 8. Retrieval based on event type (including subtypes)

c) Retrieval based on two components: Retrieval time
averaged over all queries was 109 ms, with a sample standard
deviation of 301 ms. For the different classes of retrieval cues
averages ranged from 60 ms to 221 ms. Sample standard
deviations ranged from 196 ms to 405 ms. The longest
processing time for an individual query was 18.1 s. We refrain
from a detailed presentation of data for each query class,
here. Nevertheless, we like to mention that, as above, the
development of the runtimes as the memory fills with events
approximates linear functions.

d) Retrieval based on three components: Retrieval time
averaged over all queries was 129 ms, with a sample standard
deviation of 315 ms. For the different classes of retrieval cues
averages ranged from 83 ms to 219 ms. Sample standard
deviations ranged from 256 ms to 422 ms. The longest
processing time for an individual query was 8.8 s. As above
run times showed linear increases.

3) Discussion: As stated above the prime reason for con-
ducting the simulation experiments was to assess growth of
processing times with increasingly filled memory stores. A
second aim of the experiments was to determine orders of
magnitude of processing times under the different conditions.
Precise processing times, which can vary considerably with
hardware platform or parameter choices, are of much less
importance for our purposes.

a) Insertion: With average execution times around 19 ms
and only very little growth of the latter, ELM can account for
the throughput generated by our robotic systems even when
run on very moderate hardware. The fact that processing times
varied even including some outliers as the global maximum
can be tolerated for our applications.

b) Retrieval: With global averages around 130 ms and at
most linear growth the processing times of retrieval operations
are in general promising as well. There are, however, large
differences between the processing times of the different
query classes as well as within query classes (cf. fig. 8).

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 13

The comparison of processing times of queries using cues
with one field or two fields specified shows one way to
ameliorate retrieval times on average. Specifying more than
one component in an event cue allows the query planner of
the underlying DBMS to arrange sub-queries in a favourable
way. But more components do also incur higher costs for
parsing and planning query execution which explains the
difference between the corresponding values for two and three
components.

4) Conclusion: In summary, we can conclude that ELM
can be used to support robotic applications with episodic-like
memory over longer time spans even when run on moderate
hardware.

C. Scaling ELM to larger scenarios

Above we have shown how ELM can be used to store
experience in robotic applications running over longer periods
of time. But what if the scenarios become more demanding?
Probably the simplest but also a rather limited approach to
scale the system is to scale up the hardware running ELM.
More advanced approaches involve, e.g., multi-tier architec-
tures of server systems in which nodes in one or more tiers can
be scaled out. Hard- and software in support of such multi-tier
architectures are available from many of the large commercial
DBMS vendors. Especially for researchers interested in the
construction of inexpensive prototype systems it is interesting
to note that there are also freely available alternatives which
are not restricted to the use with a specific DBMS. [55]
describe C-JDBC, a database clustering middleware, which
allows several database systems to be combined into a virtual
database. The performance of C-JDBC clusters was reported to
approximate a linear function of the number of nodes included
in the cluster (under the TPC-W benchmark). Systems like
these could be applied to scale ELM when neccessary.

VII. CONCLUSIONS

In this article we presented the development of an episodic-
like memory system for cognitive robots. The system is
conceptually inspired by its natural counterparts. At the same
time, it also takes technical requirements in cognitive robotics
into account. We discussed essential aspects of the scientific
background in psychology and neuroscience. We pointed out
central characteristics of episodic-like memory which served
as useful guidelines of the assessment of memory systems
in robotics and related fields. Moreover, these characteris-
tics formed the basis for the design and implementation of
our episodic-like memory system ELM. The characteristics
were interpreted as requirements for our memory system.
They were supplemented with requirements related to the
intended use as a long-term memory in complex cognitive
robot systems. Based on this set of requirements a formal
framework was developed, which served as a basis for the
lower-level design and implementation in a relational database
with extensions for spatial data types. The resulting system
reconciles requirements from different fields. Viewed as a
structure, the memory provides a non-intrusive, integrated
representation of events and their spatio-temporal contexts.

It allows events to overlap or be nested, and, more gener-
ally, to form partonomic hierarchies. Different levels in a
partonomic hierarchy represent different levels of granularity
in the stored experience. Across all levels the framework
retains a homogeneous notion of the spatio-temporal context
of events and of events themselves. This homogeneity offers
many advantages with respect to the processing of events as
it enables parsimonious interfaces and processing principles.
Viewed as a mechanism, the memory allows new memories
to be acquired “in one shot”. It also includes a flexible and
modular framework for the recognition of complex events
and the construction of partonomic hierarchies. The included
retrieval mechanism allows integrated event structures to be
retrieved using underspecified events as cues. Throughout the
design and implementation of the memory, efficiency and
scalability were taken into consideration to enable its use as a
long-term memory. In comparison to the approaches discussed
in section II our approach thus overcomes the problems with
domain- or purpose-dependency noted for other approaches,
the rigidity of their event (content) type systems, and their
limited scalability.

We described the integration of the memory system with
a cognitive robot architecture called Explorer which was
developed in the CoSy and CogX projects. We demonstrated
how properties of CAST and the Spatial subarchitecture were
used to develop C-ELM, an additional integration layer for
ELM, which is non-intrusive, easy to use and allows a flexible
reconfiguration of the resulting extended Explorer system.

While the fulfillment of most requirements for episodic-like
memory systems can be immediately verified from ELM’s
design, the same is not possible for performance-related re-
quirements. For this reason we ran several experiments in real
and in simulated environments. In these experiments ELM’s
performance was tested under various conditions and with
memory stores filled with up to 100k events. The results
showed that, even on hardware as moderate as a notebook,
ELM runs efficient enough for robotic applications involv-
ing hours of consecutive experience. Finally, we outlined
approaches to scale the system to much larger scenarios.

APPENDIX A
FORMAL DESIGN

In this appendix we describe the formal aspects of our
design in more detail. This formalisation provides the basis
for the implementation discussed above.

a) General representation of events:

Definition 1. Set of event types, event type, (direct) sub-
type. Let Θ be a strict partially ordered set with strict partial
ordering relation ≺. Θ is called the set of event types and any
element θ ∈ Θ is called an event type. Let θ1, θ2 ∈ Θ be
event types. θ1 is called a direct sub-type of θ2 if θ1 ≺ θ2. θ1
is called a sub-type of θ2 if θ1 ≺∗ θ2 where ≺∗ denotes the
transitive closure of ≺.

Definition 2. Set of all event-specific features, feature
names, feature values. Let FN , FV be (finite or infinite)
sets. FN is called the set of all event-specific feature names.

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 14

FV is called the set of all event-specific feature values. The
cross-product F = FN × FV of FN and FV is termed the
set of all event-specific features. Given a set f ⊆ F of event-
specific features π1(f) ⊆ FN denotes the projection to the
set of feature names in f . Likewise, π2(f) ⊆ FV denotes the
projection to the set of feature values in f .

Definition 3. Event, set of all events. An event is a triple
e = (c, l, t) with c = (θ, b, f), l = P2, and t = [tstart, tend].
θ ∈ Θ is an event type, b ∈ {0, 1}∗ is an event-specific binary
string, f ⊆ F is a set of event-specific features, l = P2 is a
polygon in two dimensions and t = [tstart, tend] ⊆ R2 denotes
a non-empty interval of time. E denotes the set of all events.

In addition to the requirements already mentioned this
definition also complies with the overlap requirement. Events
can occur simultaneously or within the same area.

b) Atomic events, complex events and sub-events: The
event in the example above was simple or ‘atomic.’ There are
no constituents which also have event character in the sense
of an episodic-like memory item. Imagine another situation in
which you see an empty glass on a table, try to grasp it but
lose hold. You see it falling and breaking. This sequence of
individual events makes up a more complex event to which you
might refer as ‘I broke the glass’. To represent such nesting
of events a sub-event relation is introduced:

Definition 4. Sub-event relation, sub-events, super-events.
Let E ⊆ E be a set of events. A sub-event relation is a strict
partial ordering relation ⊂E on E. For all pairs (e1, e2) ∈
⊂E , e1 is called a sub-event of e2 and e2 is called a super-
event of e1. subeventsE,⊂E (e) := {e′ ∈ E | e′ ⊂E e} and
supereventsE,⊂E (e) := {e′ ∈ E | e ⊂E e′} denote the set of
sub-events or super-events of e, respectively.

This relation does not only touch on the nesting requirement
but at the same time enables another variant of overlapping of
events: overlap in sub-events.

The definition of the sub-event set subeventsE,⊂E (e) for a
given event e depends both on the set of events E and the sub-
event relation ⊂E considered. In fact, these two provide all the
necessary information about the contents of an episodic-like
memory store (or episodic-like memory, for short):

Definition 5. Episodic-like memory, set of all episodic-like
memories.An episodic-like memory (store) is a pair M =
(E,⊂E) where E is a set of events and ⊂E denotes a sub-
event relation on E. M denotes the set of all episodic-like
memories (episodic-like memory stores).

On this basis subeventsM (e) will be used as a shorthand
for subeventsE,⊂E (e) from now on.

Definition 6. Atomic event, complex event. Let e ∈ E be
an event in the episodic-like memory M = (E,⊂E). e is
termed atomic if subeventsM (e) = ∅. Otherwise, e is termed
a complex event.

According to the definition complex events are events with a
non-empty set of sub-events. In order to arrive at a notion and

Fig. 9. A set of circles in the plane and their convex hull.

representation of such events which is both consistent in itself
and compatible with our common sense notion of a complex
event we next define how the location and time of an event
relate to those of the sub-events.

In the case of time, for example, we would expect a super-
event’s start time to equal the time of its earliest sub-event
and to end with the latest sub-event. More formally:

Definition 7. Time of a complex event. Let e be a complex
event at time [t1, t2] with sub-events s1, ..., sn and let [ti1, ti2]
be the time of si. Then the time of e is defined as: t1 :=
min {ti1 | 1 ≤ i ≤ n} and t2 := max {ti2 | 1 ≤ i ≤ n}.

Similarly, the location of an event should cover the locations
of its sub-events. Consider the set of circles on the left of
Figure 9. If they were locations of sub-events of a complex
event e then the enclosed area on the right could be called the
location of e. It is derived from a set of locations by computing
their convex hull which is defined below:

Definition 8. Convex set. Let C be a set of points in a real
or complex vector space. C is called convex if and only if

∀t ∈ [0, 1] ∀x, y ∈ C : (1− t)x+ ty ∈ C

Definition 9. Convex hull. Let X be a set of points in a real
or complex vector space. The convex hull Hconvex(X) is the
minimal convex set containing X .

Based on convex hulls the location of a complex event can
now be formally defined:

Definition 10. Location of a complex event. Let e be a
complex event with sub-events s1, ..., sn and let li be the
location of si (1 ≤ i ≤ n). The location l of e is the convex
hull of the union of the sub-event locations li:

l := Hconvex(
⋃

1≤i≤n
li)

It is worth to note that the time of a complex event as defined
above equals the convex hull of the sub-events’ times (viewed
as point sets in R1). This allows for one homogeneous notion
of time and location of complex events.

Moreover, note that the conceptualisation of an event, result-
ing from the inclusion of complex events, now also subsumes
the idea of an episode. The consistent incorporation of the
episode notion into our general event concept is possible since
episodes share the characteristics of ‘simple’ events. This will
allow units of experience on all levels of granularity to be

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 15

processed using the same interfaces and based on the same
principles.

1) Operations on episodic-like memories: Above we de-
fined the structures of events and episodic-like memories.
Next, we define operations on theses structures.

a) Event Insertion: We first consider the simple opera-
tion of inserting events, as units of experience, into a memory.

Definition 11. Event insertion. Let M = (E,⊂E) be
an episodic-like memory. The insertion operation for M is
defined by:

insM : (E \ E)× 2E → M
(e, S) 7→ (E ∪ {e} ,⊂E ∪{(si, e) | si ∈ S})

Given an episodic-like memory, an event not yet contained
in the latter and a set of designated sub-events (already in the
given memory) insM yields an episodic-like memory which
also includes the new event with the appropriate new sub-
event relation. This update takes place “in one shot.” insM
can be applied to both atomic and complex events. Below we
introduce an update operation specifically for complex events.

b) Complex event recognition: Complex event recogni-
tion is a process in which experience is structured by forming
meaningful, lower-granular units of several events which also
have event character. These lower-granular units are complex
events. The events which they combine are their sub-events.
We define the process of complex event recognition as the
application of a recognition function to a memory M .

Definition 12. Complex event recognition function. A com-
plex event recognition function is a function R : M → M
which maps an episodic-like memory M = (E,⊂E) ∈ M
to an episodic-like memory M ′ = (E′,⊂E′) ∈ M such that
E ⊆ E′ and ∀e′ ∈ E′ \E ∃ e ∈ E : e ∈ subeventsM ′(e′). An
episodic-like memory M is termed saturated with respect to
R if R(M) = M . For any (possibly unsaturated) episodic-like
memory M , R∗(M) denotes its saturated form.

At a finer level of detail the application of a complex event
recognition function to an episodic-like memory M can be
viewed as the application of (one or more) complex event
recognisers to M and the extension of M with their results.

Definition 13. Complex event recogniser. A complex event
recogniser is a function r : M → E × 2E×E which maps an
episodic-like memory M = (E,⊂E) ∈ M to a pair ∆M =
(∆E,∆ ⊂E) such that E ∩∆E = ∅ and ∀(e1, e2) ∈ ∆ ⊂E :
e1 ∈ E ∧ e2 ∈ ∆E.

Thus it is possible to define one complex event recogniser
per complex event type or split “responsibilities” along other
lines. This possibility of viewing the results of the complex
event recognition process as a superposition of complex event
recogniser applications and insertions can be exploited for the
design of the corresponding interfaces, cf. sub-section IV-E.

c) Recollection : Recollection is modelled with a cued
recall approach in which the cues are underspecified events. In
these event cues any component can be left unspecified. Thus
event cues represent templates against which stored events

can be matched. For any specified component, values can be
matched with the corresponding values of stored events in
several ways (which depend on the respective component).

Definition 14. Event cue. Let M = (E,⊂E) be an episodic-
like memory, I = {θ, b, f, t, l, S⊂E , S⊃E} an index set of
cardinality 7 and I ′ ⊆ I . An event cue is a function

QM : E → {0, 1}
e 7→

∧

i∈I′
Ci,∼i,Xi

mapping an event

e = ((θe, be, fe), te, le)

to a conjunction of conditions of the form

Ci,∼i,Xi :=

θe ∼i Xi for i = θ

be ∼i Xi for i = b

fe ∼i Xi for i = f

te ∼i Xi for i = t

le ∼i Xi for i = l

subeventsM (e) ∼i Xi for i = S⊂E
supereventsM (e) ∼i Xi for i = S⊃E

with Xi an event type, a binary string or a set and relations

∼i∈ Ri
where

Rθ = {=,≺∗}
Rb = {=}

Rt = Rl = RS⊂M = RS⊃M = {=,⊆,⊇,∩R}
In the context of the relation sets Ri the relations =,⊆,⊇
are defined as usually, ≺∗ is the sub-type relation as defined
above. The relation ∩R is defined as follows:

∀A,B : A ∩R B :⇔ A ∩B 6= ∅
The set Rf , finally, contains the relations =,⊆,⊇,∩R as well
as modified versions of the same which allow matching to be
restricted to feature names

Rf = {=,⊆,⊇,∩R} ∪
{

=π1 ,⊆π1 ,⊇π1 ,∩Rπ1
}

where for any event-specific feature sets f , f ′ and any relation
∼∈ {=,⊆,⊇,∩R} the modified relation ∼π1

is defined by

f ∼π1 f
′ :⇔ π1(f) ∼ π1(f ′)

Definition 15. Retrieval result set Let M = (E,⊂E) be
an episodic-like memory and QM : E → {0, 1} be an event
cue. The set ResSet(QM) := {e ∈ E | QM (e)} is called the
retrieval result set under event cue QM .

The retrieval result set ResSet(QM) for a given event cue
QM contains all the events from memory M which match
QM , not only partial information stemming from events. Thus
the formalisations of event cues and result sets fulfil the
structure requirement.

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 16

REFERENCES

[1] D. Stachowicz, “Episodic-like memory for cognitive robots,” Master’s
thesis, Department of Computer Science, Saarland University / DFKI
GmbH, December 2009.

[2] L. R. Squire, “Memory systems of the brain: a brief history and current
perspective,” Neurobiology of Learning and Memory, vol. 82, no. 3, pp.
171–177, Nov 2004.

[3] A. Baddeley, “The concept of episodic memory,” Philosophical Trans-
actions of the Royal Society of London. Series B, Biological Sciences,
vol. 356, no. 1413, pp. 1345–1350, Sep 2001.

[4] D. O. Hebb, Organization of Behaviour. New York: Wiley, 1949.
[5] W. B. Scoville and B. Milner, “Loss of recent memory after bilateral hip-

pocampal lesions,” Journal of Neurology, Neurosurgery and Psychiatry,
vol. 20, no. 1, pp. 11–21, Feb 1957.

[6] J. D. Gabrieli, N. J. Cohen, and S. Corkin, “The impaired learning of
semantic knowledge following bilateral medial temporal-lobe resection,”
Brain and Cognition, vol. 7, no. 2, pp. 157–177, Apr 1988.

[7] G. O’Kane, E. A. Kensinger, and S. Corkin, “Evidence for semantic
learning in profound amnesia: an investigation with patient H.M.”
Hippocampus, vol. 14, no. 4, pp. 417–425, 2004.

[8] C. Blakemore, Mechanics of the mind. Cambridge: Cambridge Uni-
versity Press, 1977.

[9] L. R. Squire, B. Knowlton, and G. Musen, “The structure and organiza-
tion of memory,” Annual Review of Psychology, vol. 44, pp. 453–495,
1993.

[10] E. Tulving, “Episodic and semantic memory,” in Organization of Mem-
ory, E. Tulving and W. Donaldson, Eds. Academic Press, 1972, pp.
381–403.

[11] ——, Elements of episodic memory. Clarendon, 1983.
[12] ——, “Episodic memory: from mind to brain,” Annual Review of

Psychology, vol. 53, pp. 1–25, 2002.
[13] N. S. Clayton and A. Dickinson, “Episodic-like memory during cache

recovery by scrub jays,” Nature, vol. 395, no. 6699, pp. 272–274, Sep
1998.

[14] N. S. Clayton, T. J. Bussey, and A. Dickinson, “Can animals recall the
past and plan for the future?” Nature Reviews. Neuroscience, vol. 4,
no. 8, pp. 685–691, Aug 2003.

[15] N. S. Clayton, D. P. Griffiths, N. J. Emery, and A. Dickinson, “Elements
of episodic-like memory in animals,” Philosophical Transactions of the
Royal Society of London. Series B, Biological Sciences, vol. 356, no.
1413, pp. 1483–1491, Sep 2001.

[16] N. S. Clayton and J. Russell, “Looking for episodic memory in animals
and young children: prospects for a new minimalism,” Neuropsycholo-
gia, vol. 47, no. 11, pp. 2330–2340, Sep 2009.

[17] W. Dodd and R. Gutierrez, “The role of episodic memory and emotion
in a cognitive robot,” in Proceedings of 14th Annual IEEE International
Workshop on Robot and Human Interactive Communication (RO-MAN),
Nashville, TN, August 13-15, 2005, 2005, pp. 692–697.

[18] S. Jockel, D. Westhoff, and J. Zhang, “EPIROME - A novel framework
to investigate high-level episodic robot memory,” in Proc. IEEE Inter-
national Conference on Robotics and Biomimetics ROBIO 2007, 2007,
pp. 1075–1080.

[19] S. Jockel, M. Weser, D. Westhoff, and J. Zhang, “Towards an episodic
memory for cognitive robots,” in Proceedings of the 6th International
Cognitive Robotics Workshop at 18th European Conference on Artificial
Intelligence (ECAI), Patras, Greece, July 21-22, 2008. IOS Press, 2008,
pp. 68–74.

[20] A. Nuxoll and J. E. Laird, “A cognitive model of episodic memory
integrated with a general cognitive architecture,” in Proceedings of the
Sixth International Conference on Cognitive Modeling - ICCM 2004,
2004, pp. 220–225.

[21] J. L. Kolodner, Case–Based Reasoning. Morgan Kaufmann, 1993.
[22] A. Nuxoll and J. E. Laird, “Extending cognitive architecture with

episodic memory,” in Proceedings of the 21st National Conference on
Artificial Intelligence (AAAI). AAAI Press, 2007, pp. 1560–1564.

[23] N. S. Kuppuswamy, S.-H. Cho, and J.-H. Kim, “A cognitive con-
trol architecture for an artificial creature using episodic memory,” in
Proceedings of the SICE-ICASE International Joint Conference, 2006.
IEEE, 2006, pp. 3104–3110.

[24] S. A. Vere and T. W. Bickmore, “A basic agent,” Computational
Intelligence, vol. 6, pp. 41–60, 1990.

[25] C. Brom, K. Pešková, and J. Lukavsky, “What does your actor remem-
ber? towards characters with full episodic memory,” in Proceedings of
the 4th international conference on Virtual storytelling: using virtual
reality technologies for storytelling, 2007, pp. 89–101.

[26] W. Ho, K. Dautenhahn, and C. Nehaniv, “Computational memory
architectures for autobiographic agents interacting in a complex virtual
environment: A working model,” Connection Science, vol. 20, no. 1, pp.
21–65, 2008.

[27] H. Jacobsson, N. Hawes, G.-J. Kruijff, and J. Wyatt, “Crossmodal
content binding in information-processing architectures,” in Proceed-
ings of the 3rd ACM/IEEE International Conference on Human-Robot
Interaction (HRI), Amsterdam, The Netherlands, March 12–15 2008.

[28] R. Bayer and E. M. McCreight, “Organization and maintenance of large
ordered indexes,” Acta Informatica, vol. 1, no. 3, pp. 173–189, Feb.
1972, also published in/as: ACM SIGFIDET 1970, pp.107–141.

[29] D. Comer, “The ubiquitous B-tree,” ACM Computing Surveys, vol. 11,
no. 2, pp. 121–137, Jun. 1979.

[30] A. Guttman, “R-trees: a dynamic index structure for spatial searching,”
SIGMOD Record (ACM Special Interest Group on Management of
Data), vol. 14, no. 2, pp. 47–57, 1984.

[31] T. K. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-tree: A dy-
namic index for multi-dimensional objects,” in VLDB’87, Proceedings of
13th International Conference on Very Large Data Bases, September 1-
4, 1987, Brighton, England, P. M. Stocker, W. Kent, and P. Hammersley,
Eds. Morgan Kaufmann, 1987, pp. 507–518.

[32] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-
tree: an efficient and robust access method for points and rectangles,”
in SIGMOD ’90: Proceedings of the 1990 ACM SIGMOD international
conference on Management of data. New York, NY, USA: ACM, 1990,
pp. 322–331.

[33] I. Kamel and C. Faloutsos, “Hilbert R-tree: An improved R-tree using
fractals,” in Proceedings of the 20th International Conference on Very
Large Data Bases (VLDB’94), J. B. Bocca, M. Jarke, and C. Zaniolo,
Eds. Santiago de Chile, Chile: Morgan Kaufmann, 12–15 1994, pp.
500–509.

[34] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi, “The Priority R-tree:
a practically efficient and worst-case optimal R-tree,” in SIGMOD ’04:
Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data. New York, NY, USA: ACM, 2004, pp. 347–
358.

[35] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer, “Generalized search
trees for database systems,” in Proceedings of the 21st International
Conference on Very Large Data Bases (VLDB’95). San Francisco, Ca.,
USA: Morgan Kaufmann, Sep. 1995, pp. 562–573.

[36] “Open GIS consortium, Inc., OpenGIS Simple Features Specification For
SQL Revision 1.1, OpenGIS Project Document 99-049, May 5, 1999,
http://www.opengis.org/techno/specs/99-049.pdf,” 1999.

[37] P. P.-S. S. Chen, “The entity-relationship model: Toward a unified view
of data,” ACM Transactions on Database Systems, vol. 1, no. 1, pp.
9–36, 1976.

[38] N. Hawes, J. Wyatt, and A. Sloman, “An architecture schema for
embodied cognitive systems,” University of Birmingham, School of
Computer Science, Tech. Rep. CSR-06-12, November 2006.

[39] N. Hawes, M. Zillich, and J. Wyatt, “BALT & CAST: Middleware for
cognitive robotics,” in Proceedings of IEEE RO-MAN 2007, August
2007, pp. 998 – 1003.

[40] N. Hawes, A. Sloman, and J. Wyatt, “Towards an empirical exploration
of design space,” in Evaluating Architectures for Intelligence: Papers
from the 2007 AAAI Workshop, G. A. Kaminka and C. R. Burghart,
Eds. Vancouver, Canada: AAAI Press, July 2007, pp. 31 – 35.

[41] N. Hawes, J. Wyatt, and A. Sloman, “Exploring design space for an
integrated intelligent system,” in Research and Development in Intelli-
gent Systems XXV: Proceedings of AI-2008, The Twenty-eighth SGAI
International Conference on Innovative Techniques and Applications
of Artificial Intelligence, M. Bramer, F. Coenen, and M. Petridis, Eds.
Cambridge, England: Springer, December 2008.

[42] N. Hawes and J. Wyatt, “Benchmarking the influence of information-
processing architectures on intelligent systems,” in Proceedings of the
Robotics: Science & Systems 2008 Workshop: Experimental Methodol-
ogy and Benchmarking in Robotics Research, June 2008.

[43] H. Zender, P. Jensfelt, Óscar Martı́nez Mozos, G.-J. M. Kruijff, and
W. Burgard, “An integrated robotic system for spatial understanding
and situated interaction in indoor environments,” in Proceedings of the
22nd Conference on Artificial Intelligence (AAAI-07), Vancouver, British
Columbia, Canada, July 2007, pp. 1584–1589.

[44] H. Zender, “Learning spatial organization through situated dialogue,”
Master’s thesis, Department of Computational Linguistics, Saarland
University, Saarbrücken, Germany, August 2006.

[45] H. Zender and G.-J. M. Kruijff, “Multi-layered conceptual spatial
mapping for autonomous mobile robots,” in Control Mechanisms for
Spatial Knowledge Processing in Cognitive / Intelligent Systems, ser.

JOURNAL OF AUTONOMOUS MENTAL DEVELOPMENT 17

Papers from the AAAI Spring Symposium, H. Schultheis, T. Barkowsky,
B. Kuipers, and B. Hommel, Eds., vol. Technical Report SS-07-01.
Menlo Park, CA, USA: AAAI Press, March 2007, pp. 62–66.

[46] E. A. Topp and H. I. Christensen, “Tracking for following and pass-
ing persons,” in International Conference on Intelligent Robotics and
Systems (IROS), Edmundton, Canada, Aug. 2005, pp. 70–77.

[47] G.-J. M. Kruijff, H. Zender, P. Jensfelt, and H. I. Christensen, “Situated
dialogue and understanding spatial organization: Knowing what is where
and what you can do there,” in Proceedings of the 15th IEEE Inter-
national Symposium on Robot and Human Interactive Communication
(RO-MAN 2006), Hatfield, Hertfordshire, UK, September 2006, pp. 328–
333.

[48] ——, “Situated dialogue and spatial organization: What, where. . . and
why?” International Journal of Advanced Robotic Systems, Special Issue
on Human-Robot Interaction, vol. 4, no. 1, pp. 125–138, March 2007.

[49] H. Zender, P. Jensfelt, and G.-J. M. Kruijff, “Human- and situation-
aware people following,” in Proceedings of the 16th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN
2007), Jeju Island, Korea, August 2007, pp. 1131–1136.

[50] G.-J. M. Kruijff, H. Zender, P. Jensfelt, and H. I. Christensen, “Clarifi-
cation dialogues in human-augmented mapping,” in Proceedings of the
2006 ACM Conference on Human-Robot Interaction (HRI 2006), Salt
Lake City, UT, USA, March 2006, pp. 282–288.

[51] M. Brenner, “Continual collaborative planning for mixed-initiative action
and interaction (short paper),” in Proceedings of 7th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller, and Parsons, Eds., Estoril, Portugal,
2008.

[52] M. Brenner and I. Kruijff-Korbayová, “A continual multiagent planning
approach to situated dialogue,” in Proceedings of the 12th Workshop
on the Semantics and Pragmatics of Dialogue (Semdial), London, UK,
2008.

[53] M. Brenner and B. Nebel, “Continual planning and acting in dynamic
multiagent environments,” Journal of Autonomous Agents and Multia-
gent Systems, vol. 19, no. 3, pp. 297–331, 2009.

[54] D. Stachowicz, N. Hawes, and G.-J. M. Kruijff, “Adding episodic-like
memory to an event-based system,” in IROS Workshop on Event-Based
Systems for Robotics, D. Brugali, S. Wrede, and I. Lütkebohle, Eds.,
September 2009.

[55] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “C-JDBC: Flexible
database clustering middleware,” in USENIX Annual Technical Confer-
ence, FREENIX Track. USENIX, 2004, pp. 9–18.

Dennis Stachowicz studied computer science and
psychology in Saarbrücken and Edinburgh. He re-
ceived a Diplom (MSc.) degree in computer science
from Saarland University in 2010. He conducted the
research for his thesis at the German Research Cen-
ter for Artificial Intelligence (DFKI GmbH) under
the supervision of Geert-Jan M. Kruijff.

Geert-Jan M. Kruijff received an MSc degree from
the University of Twente (Enschede, the Nether-
lands) in 1995 , and a PhD in computer science
from Charles University (Prague, Czech Republic)
in 2001. Since 2004 he is a senior researcher and
project leader at the German Research Center for
Artificial Intelligence (DFKI GmbH). His research
focus is on spoken dialogue in human-robot interac-
tion.

	Introduction
	Motive Management
	Goal Activation
	Proposed Approach

	Representations for Cognitive Systems
	References
	Annexes
	Exploiting Probabilistic Knowledge under Uncertain Sensing for Efficient Robot Behaviour
	Episodic-Like Memory for Cognitive Robots

