
EU FP7 CogX
ICT-215181

May 1 2008 (52months)

DR 2.1:

Representations of 3D shape for manipulation

Michael Zillich, Markus Vincze, Thomas Mörwald, Andreas
Richtsfeld, Kai Zhou, Yasemin Bekiroglu, Marek Kopicki

TUW, Vienna

〈zillich@acin.tuwien.ac.at〉
Due date of deliverable: July 31 2009
Actual submission date: July 27 2009
Lead partner: TUW
Revision: final
Dissemination level: PU

Vision is one of the primary sensory modalities for a mobile robot that is
to interact with its environment. Interaction comes in two flavors: grasping
objects for fetch-and-carry tasks and manipulating objects to learn object
affordances, i. e. the relationship between shape, applied action and object
behaviour. Both require the knowledge of 3D object shape and 6D pose.
That knowledge is typically imprecise and incomplete. So the 3D shape
representation and 3D vision methods must not only be robust in the face
of real-world noise, clutter and occlusion as encountered in mobile robotics
scenarios, but also be able to formalise their incompleteness and suggest
actions to fill these knowledge gaps.

DR 2.1: Representation of 3D shape Zillich et al.

1 Tasks, objectives, results 6
1.1 Planned work . 6
1.2 Actual work performed . 6
1.3 Relation to the state-of-the-art . 7

2 Annexes 10
2.1 Mörwald et al. “Edge Tracking of Textured Objects with a Recursive Par-

ticle Filter” . 10
2.2 Richtsfeld et el. “3D Shape Detection for Mobile Robot Learning” 11
2.3 Richtsfeld et el. “Basic Object Shape Detection and Tracking Using Per-

ceptual Organization” . 12
2.4 Bekiroglu ”Elementary Grasping Actions for Grasping Polyflaps” 13
2.5 Kopicki et al. “Prediction learning in robotic pushing manipulation” 14

References 15

EU FP7 CogX 2

DR 2.1: Representation of 3D shape Zillich et al.

Executive Summary

This report presents work carried out in WP2 on representation of 3D shape
for manipulation, on detection and tracking of 3D shape and work on using
3D shape for manipulation, exemplified by preliminary results in planning
grasping actions and learning object affordances.

There are numerous ways to represent 3D shape: Depth maps, 3D point
clouds, mesh models, spin images, sparse sets of 3D features and paramet-
ric models such as superquadrics. Each has its benefits and limitations in
terms of expressiveness, compactness and detectability. Manipulation of 3D
objects poses several requirements on 3D shape representations.

The representation should be able to express a wide array of artificial
and natural shapes. It should allow a compact description that abstracts
away from unnecessary detail. It needs to be dense, i. e. provide shape
information everywhere on an object in order to support things like collision
detection. And it should link to several, possibly complementary vision
methods that allow detection of shapes in cluttered environments. Another
practical requirement is the ability to link to existing tools such as robot
simulators, e. g. to support development based on learning from simulations.

Another important aspect for a system that detects gaps in its knowledge
and actively self-extends is that of incomplete models. So the 3D shape
representation should also be able to represent incomplete models (such as
objects seen only from one side) and be able to suggest actions to supply
the missing information.

We report results on reliable detection of basic shapes (such as boxes and
polyflaps) [29, 28], robust 3D object tracking [21] and preliminary results
on grasp planning based on polyflaps [3] and on learning object affordances
from observed actions on objects [16].

The work carried out addresses Task 2.1 (Contour based shape represen-
tations) and supports Tasks 2.2 (Early grasping strategies) and 2.5 (Modular
motor learning theory).

Role of 3D shape representation in CogX

Manipulation of objects rests on a representation of 3D shape. So 3D shapes
are a fundamental type of information passed between components of the
system. Figure 1 shows how these various components interact. Essentially
3D objects are detected, tracked and then used for manipulation.

Objects are detected by detecting generic basic shapes [29, 28] and in-
stantiating 3D models. Basic shapes (like boxes, polyflaps - a polygon cut
out of a flat material and folded once to produce a 3D object [33]) are de-
tected in 2D edge images and either a ground plane constraint or binocular
stereo is used to obtain 3D shapes and 6D poses.

EU FP7 CogX 3

DR 2.1: Representation of 3D shape Zillich et al.

Basic shapes

Model-based
tracking

Boxes,
Cylinders

Polyflaps

Grasp Planning

Learning Affordance

shape, pose

predicted pose

shape, pose

Figure 1: WP2 Overview: blue indicates forward (bottom-up) information,
red indicates feedback (top-down) information.

Tracking is based on models obtained from generic basic shapes [21].
It must be sufficiently fast to enable real-time observation of manipulation
actions and robust enough to recover from lost tracks due to occlusion or
fast motion (a box toppling over will almost certainly be too fast to ob-
serve). Tracking is based on a particle filter which maintains a multitude of
hypotheses and thus allows recovering from lost tracks. The representation
of the 6D pose as a PDF allows incorporation of pose priors, such as the
assumption that an object will move primarily in the ground plane. Fur-
thermore predictions of object motion that go beyond a simple first order
motion model can be supplied by the affordance learning component. The
tracker is implemented to run on a GPU enabling tracking at frame rate.

Learning object affordances requires reliable object poses at constant,
high frame rates. Moreover the manipulating arm will start occluding the
manipulated object at some point. We need to be able to continue tracking
despite possibly large occlusions as well as changing lighting conditions and
shadows cast by the moving arm. Grasp planning has less severe require-
ments, as the manipulated object typically does not move prior to grasping
and must only be tracked until a stable grasp could be established.

Once affordances have been learned and the system can make predictions
on the behaviour of objects based on its own actions, these predictions can
be fed back to improve the performance of the tracker by replacing a simple
first order motion model with an accurate learned model.

EU FP7 CogX 4

DR 2.1: Representation of 3D shape Zillich et al.

Contribution to the CogX scenarios and prototypes

We can detect untextured boxes and polyflaps reliably on low complexity
background and track them robustly at frame rate. Tracking can handle
complex backgrounds, severe lighting changes and large occlusions. This
constitutes the first step of the Dexter scenario (learning object affordances).

EU FP7 CogX 5

DR 2.1: Representation of 3D shape Zillich et al.

1 Tasks, objectives, results

1.1 Planned work

Work reported in this deliverable mainly concerns Task 2.1:

Contour based shape representations. Investigate methods to
robustly extract object contours using edge-based perceptual
grouping methods. Develop representations of 3D shape based
on contours of different views of the object, as seen from different
camera positions or obtained by the robot holding and turning
the object actively. Investigate how to incorporate learned per-
ceptual primitives and spatial relations from WP5.

Although final results are only to be reported in deliverable DR 2.2, work
on manipulation has already started in year 1. These tasks serve as drivers
for the development of 3D shape representation and detection. These tasks
are Task 2.2 (Early grasping strategies) where the goal is to, based on the
visual sensory input extracted in Task 2.1, define motor representations of
grasping actions for two- and three-fingered hands. And Task 2.5 (Modular
Motor Learning), learning to predict object trajectories and contact relations
for pushing and grasping actions.

1.2 Actual work performed

Development of 3D shape representation and detection was driven by the
requirements of manipulation methods, namely grasp planning and pushing
for learning object affordances. Both require information about surfaces
with their normals and surface edges. Grasp points for elementary grasping
actions (EGAs) are set on surfaces or edges of surfaces and surface normals
are used to define friction cones, which are essential in achieving stable
grasps. Learning to predict object behaviour under action requires local
surface patches, again with surface normals.

A mesh model consisting of vertices and planar surfaces provides the
sort of information required by these manipulation methods. It is a common
form of representation in many 3D applications and links well to work in 3D
object tracking as well as available tools, such as robot simulators.

It is easy to determine whether a model is incomplete (e. g. missing
backside) by checking if the mesh has holes. Now a new view point can
be calculated and proposed as a knowledge gathering action in order to see
the missing backside. Though at this point by assuming objects are only
from a limited class of objects (polyflaps and boxes) we avoid the problem
of unknown backsides and always have complete models.

This generic mesh model serves as basis for more advanced models inside
the various manipulation methods. Grasp planning describes a shape via

EU FP7 CogX 6

DR 2.1: Representation of 3D shape Zillich et al.

elementary grasping actions (EGAs). To this end a mesh model is decom-
posed into sets of polyflaps, as EGAs at this point are only specified for
polyflaps,

Affordance learning represents the effect of actions applied to objects
as a mixture of experts, one taking into account global shape information
and one taking into account local shape information in the form of local
surface patches. These experts represent as probability density functions
which object motions are likely/unlikely given an action.

Detection of generic 3D object shape using edge-based perceptual group-
ing was started with a limited class of shapes (boxes and polyflaps) (see
annexes 2.2 and 2.3). Tracking of these shapes can be achieved in real-
time, with high robustness to background clutter, varying lighting and large
occlusions (see annex 2.1. Building up object representations continuously
from different views is currently being investigated, where textures of as yet
unseen sides of an object are filled in as soon as they become visible. This
is ongoing work and has not been reported yet.

The first grasping strategies are defined by an approach vector (relative
pose with respect to object/grasping part) and preshape strategy (grasp
type), see annex 2.4. The grasping system is integrated with the real visual
input and evaluated in simulation. We are currently performing dynamic
simulation to evaluate the interplay between visual representation, applied
actions and their effects. This is ongoing work. Further results will be
reported as planned in deliverable DR 2.2.

Learning object affordances started with learning behaviour from push-
ing actions (annex 2.5. This was tested in simulation using a physics simu-
lator. Tests on a physical arm with input from real vision data are the next
step and will also be reported in deliverable DR 2.2.

1.3 Relation to the state-of-the-art

Representation of 3D shape has been a topic, explicitly or implicitly through
the history of computer vision. Biederman [4] established the theory of
Recognition-by-Components (RBC), in which objects are represented as sets
of geometric primitives (GEONs). One way to describe such GEONs are
superquadrics. [39] and [6] segment 3D point clouds into GEONSs and
estimate superquadric parameters. [5] detect given superquadric models in
cluttered 3D scenes. These methods however work on 3D data only and
require rather good 3D point clouds to start from.

Saxena et al. [32] follow a completely different path. They present an
approach to generic grasping without explicitly representing 3D shape at
all. They learn the 2D image appearance of good grasp points from labeled
training data (many simulated views of a 3D object with a specified grasp
point). They then use simple motion stereo to triangulate the 3D location
of a grasp point from a series of images taken with an arm-mounted cam-

EU FP7 CogX 7

DR 2.1: Representation of 3D shape Zillich et al.

era. While they can show good results in grasping objects that contain
“handle-like” structures (essentially parallel vertical edges) this approach is
not general enough. Also avoiding explicit 3D shape representation does not
allow checking for collisions and more sophisticated grasp planning.

Johnson [14] introduced spin-images as a representation of 3D shape
generated from a 3D triangle mesh. Spin-images are a 3D equivalent of 2D
interest point operators and share their benefits: a compact representation
that is robust to occlusions. Good results for object detection in cluttered
scenes could be shown. This representation however is also sparse in the
sense that only a few distinct surface points are described with their spin-
images. Checking for collisions however requires 3D shape information to
be available on the whole object surface.

We chose to stick to simple mesh models as they are very general, allow
modeling objects at various levels of detail and link to many existing meth-
ods in detection and tracking. More advanced models like those used in our
manipulation methods can typically be easily derived from a mesh model.

A lot of progress has been made in recent years regarding detecting,
recognising and tracking of 3D objects (e. g. [11], [23] [26], [20]). Most
of these methods derive their speed and robustness from the use of strong
interest points and are thus dependent on textured objects. This however
implies that these methods are suitable only for handling specifically trained
object instances. A system that explores and self-extends must however be
able to handle novel, unseen objects.

Supporting learning object affordances requires the ability to detect ob-
jects of a class of shapes. E. g. in order to learn how boxes in general behave
(depending on width/height ratios, standing or lying on their side) requires
the ability to detect box shapes in general. Category-level object recogni-
tion (e. g. [10], [25], [35]) is inherently 2D or handles multiple views of a
3D object, each of which however is again 2D internally. To support object
manipulation we require full 3D object shape

Recent advances in real-time 3D scanning technology, like time-of-flight
cameras 1 or 3D laser range scanners 2 offer interesting possibilities in fast
and direct perception of 3D shape. However the latter are still too bulky and
expensive for mobile robot applications and the former have their own issues
such as low depth resolution and problems with dark areas. Moreover the
tenor of CogX is to understand principles of cognition that allow the system
to overcome limited and possibly contradictory sensory information, rather
than throwing more hardware at the problem (which typically introduces
new problems of its own).

So we need vision methods to provide 3D mesh models from 2D images.
Edge-based object detection is a well-researched area since the eighties [18].

1www.mesa-imaging.ch/prodview4k.php
2www.riegl.com/products/mobile-scanning

EU FP7 CogX 8

DR 2.1: Representation of 3D shape Zillich et al.

3D model indexing based on invariant image features [13, 2, 24, 22] is an
efficient method to detect models in cluttered images. We need however to
detect not only specific object instances but classes of object shapes.

Perceptual grouping approaches [31, 1, 12, 30], also a well-known topic
in computer vision, can find more general shape primitives. Our approach
is based on an incremental perceptual grouping method [40]. This approach
avoids tuning of grouping parameters that plagues many other approaches
when faced with real-world images in changing conditions. It further al-
lows anytime-processing, i. e. results are generated as time progresses, with
significant results typically popping out early. This allows keeping a fixed
frame rate irrespective of image complexity.

Tracking of 3D models has been addressed numerous times in the com-
puter vision and robotics communities. Initial approaches used edge infor-
mation of CAD-like models [8, 9, 38, 7]. More recent approaches combine
edge and texture information [17, 19, 36, 37, 34, 27] to improve robustness
to occlusion. Another recent trend is the use of the good parallel processing
capabilities of graphics cards (GPUs) [15].

Our tracking approach extends the work of [15] by adding tracking of
texture to the model. This greatly increases the number of edges and thus
robustness of the tracker without sacrificing real-time performance.

EU FP7 CogX 9

DR 2.1: Representation of 3D shape Zillich et al.

2 Annexes

2.1 Mörwald et al. “Edge Tracking of Textured Objects with
a Recursive Particle Filter”

Bibliography T. Mörwald, M. Zillich and M. Vincze: “Edge Tracking
of Textured Objects with a Recursive Particle Filter” In: Graphicon 2009
(submitted)

Abstract This paper proposes a new approach of model-based 3D object
tracking in real-time. The developed algorithm uses edges as features to
track, which are easy and robust to detect. It exploits the functionality of
modern highly parallel graphics boards by performing hidden face removal,
image processing, texturing and particle filtering. Using a standard 3D
model the tracker neither requires memory and time consuming training
nor other pre-calculations. In contrast to other approaches this tracker also
works on objects where geometry edges are barely visible because of low
contrast.

Relation to WP The model based 3D tracker presented in this paper
delivers the key input to manipulation methods (grasping and pushing). The
employed particle filter framework allows incorporation of context knowledge
from bottom-up or top-down attention.

EU FP7 CogX 10

DR 2.1: Representation of 3D shape Zillich et al.

2.2 Richtsfeld et el. “3D Shape Detection for Mobile Robot
Learning”

Bibliography A. Richtsfeld and M. Vincze: “3D Shape Detection for
Mobile Robot Learning”, Technical Report, ACIN-TR-2009/1, Automation
and Control Institute, Vienna University of Technology, Vienna, Austria,
June 2009.

Abstract If a robot shall learn from visual data the task is greatly simpli-
fied if visual data is abstracted from pixel data into basic shapes or Gestalts.
This paper introduces a method of processing images to abstract basic fea-
tures into higher level Gestalts. Grouping is formulated as incremental
problem to avoid grouping parameters and to obtain anytime processing
characteristics. The proposed system allows shape detection of 3D such as
cubes, cones and cylinders for robot affordance learning.

Relation to WP Detection of basic 3D shapes such as boxes, cylinders
and polyflaps is the precursor to object tracking and thus the first step
of any manipulation action. The presented anytime perceptual grouping al-
lows real-time operation and furthermore allows incorporation of attentional
mechanisms into the grouping process.

EU FP7 CogX 11

DR 2.1: Representation of 3D shape Zillich et al.

2.3 Richtsfeld et el. “Basic Object Shape Detection and
Tracking Using Perceptual Organization”

Bibliography A. Richtsfeld and M. Vincze: “Basic Object Shape De-
tection and Tracking Using Perceptual Organization”, Technical Report,
ACIN-TR-2009/2, Automation and Control Institute, Vienna University of
Technology, Vienna, Austria, June 2009.

Abstract If a robot shall learn object affordances, the task is greatly
simplified if visual data is abstracted from pixel data into basic shapes or
Gestalts. This paper introduces a method of processing images to abstract
basic features and into higher level Gestalts. Perceptual Grouping is for-
mulated as incremental problem to avoid grouping parameters and to ob-
tain anytime processing characteristics. Furthermore we want to present a
efficient method to track Gestalts using lowlevel Gestalts for motion field
approximation. The proposed system allows shape detection and tracking of
3D shapes such as cubes, cones and cylinders for robot affordance learning.

Relation to WP This paper extends the above by adding tracking of 2D
perceptual groups. Note that this is independent of 3D model based tracking
and mainly serves to increase robustness of the 2D perceptual grouping
process in dynamic scenes.

EU FP7 CogX 12

DR 2.1: Representation of 3D shape Zillich et al.

2.4 Bekiroglu ”Elementary Grasping Actions for Grasping
Polyflaps”

Bibliography Yasemin Bekiroglu: “Elementary Grasping Actions for Grasp-
ing Polyflaps”, Technical Report, CVAP/CAS-CSC, KTH, Stockholm, Swe-
den, July 2009.

Abstract The ability to manipulate novel objects detected in the envi-
ronment and to predict their behaviour after a certain action is applied
to them is important for a robot that can extend its own abilities. The
work presented in this report investigates the interplay between perception
and action in the framework of object manipulation based on visual input.
The work concentrates on the development of generalisable and extensible
manipulation strategies for two and three fingered robot hands.

In particular, we investigate the necessary conditions for grasping of ob-
jects using basic geometric representations - polyflaps. We demonstrate how
polyflaps can be grasped by using a parallel jaw gripper. A set of poten-
tial grasps is generated based on an analytical parametrisation. Generated
grasps are ordered based on a metric that considers the pose state space of a
given polyflap. The output of the method is either the most stable grasping
action or the desired pose that can be integrated with a polyflap pushing
mechanism to achieve the most stable grasping action.

Relation to WP This report presents the first design and implementation
of a polyflap grasping system for two-fingered grasps. It demonstrates the
idea of Elementary Grasping Actions (EGAs) and their analytic definition.

EU FP7 CogX 13

DR 2.1: Representation of 3D shape Zillich et al.

2.5 Kopicki et al. “Prediction learning in robotic pushing
manipulation”

Bibliography M. Kopicki, J. Wyatt and R. Stolkin “Prediction learning
in robotic pushing manipulation”, In: The 14th International Conference on
Advanced Robotics (ICAR) 2009, Munich, Germany

Abstract This paper addresses the problem of learning about the interac-
tions of rigid bodies. A probabilistic framework is presented for predicting
the motion of one rigid body following contact with another. We describe an
algorithm for learning these predictions from observations, which does not
make use of physics and is not restricted to domains with particular physics.
We demonstrate the method in a scenario where a robot arm applies pushes
to objects. The probabilistic nature of the algorithm enables it to gen-
eralize from learned examples, to successfully predict the resulting object
motion for previously unseen object poses, push directions and new objects
with novel shape. We evaluate the method with empirical experiments in a
physics simulator.

Relation to WP Learning object behaviour under manipulation and ex-
trapolating to novel objects is a key capability for a self-extending cognitive
agent. This work represents a first step in that direction by starting with
the simple interaction of pushing.

EU FP7 CogX 14

DR 2.1: Representation of 3D shape Zillich et al.

References

[1] F. Ackermann, A. Maßmann, S. Posch, G. Sagerer, and D. Schlüter.
Perceptual grouping of contour segments using markov random fields.
IEEE Transactions on Pattern Recognition and Image Analysis,
7(1):11–17, 1997.

[2] Jeffrey S. Beis and David G. Lowe. Indexing without invariants in
3d object recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(10):1000–1015, 1999.

[3] Y. Bekiroglu. Elmentary Grasping Actions for Grasping Polyflaps.
TRITA-CSC-CV 2009.4 CVAP315, CVAP/CAS-CSC, KTH, Stock-
holm, Sweden, July 2009.

[4] I. Biederman. Human image understanding: Recent research and a
theory. CVGIP, 32(1):29–73, October 1985.

[5] G. Biegelbauer and M. Vincze. Efficient 3D Object Detection by Fitting
Superquadrics to Range Image Data for Robot Object Manipulation.
In IEEE Conf. on Robotics and Automation, pages 1086–1091, 2007.

[6] L. Chevalier, F. Jaillet, and A. Baskurt. Segmentation and superquadric
modeling of 3D objects. In 11-th International Conference in Cen-
tral Europe on Computer Graphics, Visualization and Computer Vision
(WSCG), 2003.

[7] Andrew I. Comport, Eric Marchand, and Francois Chaumette. A real-
time tracker for markerless augmented reality. In In ACM/IEEE Int.
Symp. on Mixed and Augmented Reality, ISMAR’03, pages 36–45, 2003.

[8] Tom Drummond and Roberto Cipolla. Application of lie algebras to
visual servoing. International Journal of Computer Vision, 37(1):21–41,
2000.

[9] Tom Drummond and Roberto Cipolla. Real-Time Visual Tracking of
Complex Structures. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 24(7):932–946, 2002.

[10] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by un-
supervised scale-invariant learning. In IEEE Conference on Computer
Vision and Pattern Recognition, volume 2, pages 264–271, 2003.

[11] I. Gordon and D. G. Lowe. What and where: 3D object recognition
with accurate pose. In J. Ponce, M Hebert, C. Schmid, and A. Zisser-
man, editors, Toward Category-Level Object Recognition, pages 67–82.
Springer-Verlag, 2006.

EU FP7 CogX 15

DR 2.1: Representation of 3D shape Zillich et al.

[12] Gideon Guy and Gerard Medioni. Inferring global perceptual contours
from local features. International Journal of Computer Vision, Spe-
cial issue on computer vision research at the University of Southern
California, 20(1-2):113–133, 1996.

[13] David W. Jacobs. Space efficient 3D model indexing. A.I. Memo 1353,
Massachusetts Institute of Technology, 1992.

[14] Andrew Johnson. Spin-Images: A Representation for 3-D Surface
Matching. PhD thesis, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, August 1997.

[15] Georg Klein and David Murray. Full-3d edge tracking with a particle
filter. In Proc. british machine vision conference (bmvc’06), volume 3,
pages 1119–1128, Edinburgh, September 2006. BMVA.

[16] M. Kopicki, J. Wyatt, and R. Stolkin. Prediction learning in robotic
pushing manipulation. In 14th International Conference on Advanced
Robotics (ICAR), Munich, 2009.

[17] Ville Kyrki and Danica Kragic. Tracking unobservable rotations by cue
integration. In ICRA’06, pages 2744–2750, 2006.

[18] David G. Lowe. Three-dimensional object recognition from single two-
dimensional images. Artificial Intelligence, 31(3):355–395, 1987.

[19] L. Masson, M. Dhome, and F. Jurie. Robust real time tracking of 3D
objects. In Proceedings of the 17th International Conference on Pattern
Recognition (ICPR), volume 4, pages 252 – 255, 2004.

[20] F. Moreno-Noguer, M. Salzmann, V. Lepetit, and P. Fua. Capturing 3D
Stretchable Surfaces from Single Images in Closed Form. In IEEE Con-
ference on Computer Vision and Pattern Recognigion (CVPR), 2009.

[21] T. Mörwald, M. Zillich, and M. Vincze. Edge Tracking of Textured Ob-
jects with a Recursive Particle Filter. In 19th International Conference
on Computer Graphics and Vision (Graphicon), Moscow (submitted),
2009.

[22] Randal C. Nelson and Andrea Selinger. A cubist approach to ob-
ject recognition. Technical Report TR689, Dept. of Computer Science,
Univ. of Rochester, 1998.

[23] S. Obdrzálek and J. Matas. Sub-linear indexing for large scale object
recognition. In Proceedings of the British Machine Vision Conference,
volume 1, pages 1–10, 2005.

EU FP7 CogX 16

DR 2.1: Representation of 3D shape Zillich et al.

[24] Clark F. Olson. Probabilistic indexing: A new method of indexing
model data from 2d image data. In Proceedings of the Second CAD-
Based Vision Workshop, pages 2–8. IEEE, 1994.

[25] A. Opelt, M. Fussenegger, A. Pinz, and P. Auer. Generic object recog-
nition with boosting. PAMI, 28(3):416–431, 2006.

[26] Mustafa Ozuysal, Pascal Fua, and Vincent Lepetit. Fast Keypoint
Recognition in Ten Lines of Code. In CVPR’07, 2007.

[27] Muriel Pressigout and Eric Marchand. Real-time Hybrid Tracking us-
ing Edge and Texture Information. International Journal of Robotics
Research, 26(7):689–713, 2007.

[28] A. Richtsfeld and M. Vincze. 3D Shape Detection for Mobile Robot
Learning. Technical Report ACIN-TR-2009/1, Automation and Control
Institute, Vienna University of Technology, Vienna, Austria, June 2009.

[29] A. Richtsfeld and M. Vincze. Basic Object Shape Detection and
Tracking Using Perceptual Organization. Technical Report ACIN-TR-
2009/2, Automation and Control Institute, Vienna University of Tech-
nology, Vienna, Austria, June 2009.

[30] Paul L. Rosin and Geoff A. W. West. Extracting surfaces of revolution
by perceptual grouping of ellipses. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages
677–678, 1991.

[31] Sudeep Sarkar and Kim L. Boyer. A computational structure for
preattentive perceptual organization: Graphical enumeration and vot-
ing methods. IEEE Transactions on System, Man and Cybernetics,
24(2):246–266, February 1994.

[32] Ashutosh Saxena, Justin Driemeyer, Justin Kearns, and Andrew Ng.
Robotic Grasping of Novel Objects. NIPS, 19, 2006.

[33] A. Sloman. Polyflaps as a domain for perceiving, acting and learning
in a 3-D world. In AAAI Fellows Symposium, Menlo Park, CA, 2006.

[34] Geoffrey Taylor and Lindsay Kleeman. Fusion of multimodal visual
cues for modelbased object tracking. In In australasian conference on
robotics and automation (acra2003), brisbane,australia, 2003.

[35] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, B. Schiele, and
L. Van Gool. Towards Multi-View Object Class Detection. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2006.

EU FP7 CogX 17

DR 2.1: Representation of 3D shape Zillich et al.

[36] L. Vacchetti, V. Lepetit, and P. Fua. Stable Real-Time 3D Tracking
using Online and Offline Information. PAMI, 2004.

[37] Luca Vacchetti, Vincent Lepetit, and Pascal Fua. Combining Edge and
Texture Information for Real-Time Accurate 3D Camera Tracking. In
ISMAR’04, 2004.

[38] M. Vincze, Ayromlou M., W. Ponweiser, and Zillich M. Edge Projected
Integration of Image and Model Cues for Robust Model-Based Object
Tracking. International Journal of Robotics Research, 20(7):533–552,
2001.

[39] Kenong Wu and Martin D. Levine. Segmenting 3d objects into geons.
In in ICIAP, pages 321–334. Springer-Verlag, 1995.

[40] Michael Zillich and Markus Vincze. Anytimeness Avoids Parameters
in Detecting Closed Convex Polygons. In The Sixth IEEE Computer
Society Workshop on Perceptual Grouping in Computer Vision (POCV
2008), 2008.

EU FP7 CogX 18

Edge Tracking of Textured Objects with a Recursive Particle Filter

Thomas Mörwald∗

Vienna University of Technology
Michael Zillich†

Vienna University of Technology
Markus Vincze‡

Vienna University of Technology

Abstract

This paper proposes a new approach of model-based 3D object
tracking in real-time. The developed algorithm uses edges as fea-
tures to track, which are easy and robust to detect. It exploits the
functionality of modern highly parallel graphics boards byperform-
ing hidden face removal, image processing, texturing and particle
filtering. Using a standard 3D -model the tracker requires neither
memory and time -consuming training nor other pre-calculations.
In contrast to other approaches this tracker also works on objects
where geometry edges are barely visible because of low contrast.

Keywords: Object tracking, edge detection, 3D tracking, real-
time, image processing, feature matching

Best to read in color.

1 Introduction

Tracking the pose of a three dimensional object from a singlecam-
era is a well known task in computer vision. What seems to be
simple for humans turns out to be significantly more complicated
for computers. While humans are able to perform highly parallel
image processing, even moderncentral processing units (CPUs)
have problems calculating the pose of an object with sufficient ac-
curacy, robustness and speed. This leads to the idea of usingmodern
graphics cards, which also work in parallel, to solve this problem.
This approach exploits the parallel power ofgraphics processing
units (GPUs)by comparing edge features of camera images and a
3D -model.

Graphics boards are designed to render virtual scenes as realisti-
cally as possible. The main idea is to compare those virtual scenes
with an image captured from reality. Texturing is a common method
of simulating realistic surfaces. In this paper, the edges of those tex-
tures are used for comparison. Fast progress in computer science
will soon allow the inclusion of more and more optical effects like
shadows, reflections, shading, occlusions or even smoke, fire, water
or fog.

1.1 Related work

One of the first successful approaches of tracking objects bytheir
edges was RAPiD [Harris 1992]. It uses points on edges and
searches for correspondence to its surroundings along the edge gra-
dient. However this method lacks robustness and several improve-
ments were applied to overcome this problem as in [Drummond and
Cipolla 1999; Philipp Michel 2008; Luca Vacchetti and Fua 2004;
Klein and Drummond 2003].

Another approach is to globally match model primitives withthose
from the camera image [Lowe 1992; Gennery 1992; D. Koller and
Nagel 1993; Kosaka and Nakazawa 1995; A. Ruf and Nagel 1997].
This method has been used for robot and car tracking applications,
but was later replaced by improved versions based on RAPiD.

∗e-mail: moerwald@acin.tuwien.ac.at
†e-mail: zillich@acin.tuwien.ac.at
‡e-mail: vincze@acin.tuwien.ac.at

[Lucie Masson and Jurie 2004] also uses edges and textures for
tracking. They extract point features from the texture and use them
together with the edges to calculate the pose. This turns outto
perform very fast and robust against occlusion. Our approach not
only uses patches but the whole texture, which usually lets the pose
converge very quickly to the accurate pose. Since the algorithm
runs on the GPU, it is as fast as the method in [Lucie Masson and
Jurie 2004].

The work presented in [M. Vincze and Zillich 2001] uses edge fea-
tures to track but does not take into account texture information.
This makes it less robust against occlusion. Since the search area in
that approach is very small, it is also less robust against fast move-
ment and getting caught in local minima.

The work presented in this paper is based on [Klein and Murray
2006] where they take advantage of graphics processing by pro-
jecting a wireframe model into the camera image. Then a particle
filter with a Gaussion noise model is used to evaluate the likelihood
distribution of the pose.

Figure 1: Edges from geometry vs. edges from texture

Our approach not only uses geometry edges but also edge features
from textures which extends the class of trackable models bythose
that have curved surfaces as illustrated on the right of Figure 1.
This is because in a standard 3D -model curvature is approximated
by triangles and quadrangles which would produce virtual edges
which do not correspond to the actual edges as shown on the left
of Figure 1. The particle filter is extended by using it in a recursive
design that evaluates a single pose estimate given by the most likely
particles.

1.2 Overview

The idea of this approach is to

• extract the edges from the incoming camera image,

• extract the edges from the textured 3D -model,

• generate hundreds of slightly different views of the model rel-
ative to a pose estimate,

• calculate the most likely pose of the model by matching the
edges of the camera image and the 3D -model.

The algorithm developed is separated into two parts. Theprepro-
cessingin Section 2, where all possible pre-calculations are made

and therecursive particle filteringin Section 3, which generates
several hundred views and for each of them evaluates the match
likelihood. Therefore the second part is very time -crucial. A lin-
ear Kalman filterdescribed in Section 4 is applied for smoothing
the resulting trajectory. Section 5 gives some hints on how to im-
plement the proposed methods. Theresults in Section 6 and the
conclusionin Section 7 summarize the advantages and strengths of
the presented tracker.

2 Preprocessing

In the preprocessing stage of the algorithm the edge imageIe
C of the

incoming camera imageIC is extracted and stored for comparison
later. The color surfaceS of the object to track isprojectedinto the
incoming imageIC and the edges are calculated again. This edge
image of the objectIe

S is then used tore-project to the geometry
in world space which results in the corresponding edge map ofthe
original surfaceSe.

forward
projection

edge edge
detection detection

re-projection

S,X

Ie
S

IS

Se

IC

Ie
C

Figure 2: Flow chart of preprocessing

2.1 Edge detection

The edgesIe are found by convolving the original imageI with a
Gaussian smoothingG and the two Sobel kernelsHs,x andHs,y

as described in [Burger and Burge 2008].

Ie =

„
Ie

x

Ie
y

«
=

„
Hx ∗G ∗ I
Hy ∗G ∗ I

«
(1)

Furthermore, the result is improved by applying thinning and
spreading algorithms. Note that for the gradient calculation in Sec-
tion 3.2 thex andy values are stored separately.

Figure 3 shows the different results of edge detection wherethe x-
and y-components of the gradient are stored in the red and green
color channel. The detection tolerance can be influenced by apply-
ing spreading, which broadens the edges by a specific number of
pixels according to the tolerance level. This means that instead of
searching for edge pixels close to each other, the line widthof the
edge is raised as shown in Figure 3, which broadens the matching
area.

2.2 Forward projection

The 3D -model is projected into the camera imageIC as defined
by Equation (2). Using the camera imageIC takes into account
that edges are not visible when there are similar light and color
conditions in the background. Then the edges of the image are
extracted using Equation (1).

The transformation of the model from world space to image space
is performed by the following matrix operations:

uS = TpXvS (2)

IS(u, v) =

S(vS) if (u, v) ∈ U
IC(u, v) else

whereIS is the camera image with the projected model.U defines
the geometry of the object in image space with

uS = [uS , vS] ∈ U
Tp denotes the projection- andX the model view or world trans-
formation matrix which defines the pose of an object to track with
a rotational and translational termR andt.

X =

»
R t
0 1

–
The geometry of the object in world spaceV is represented by its
vectors

vS = [xS, yS, zS] ∈ V

projection

re-projection

ed
ge

de
te

ct
io

n

u

uv

v

Figure 4: Forward projection and re-projection

2.3 Re-projection

The idea of re-projection is to replace the color surface of the 3D -
model with the corresponding edge map. Note that it is not possible
to do the image processing on the color surfaceS of the object
directly, as the edge features get distorted and thinned outwhen
they are projected to image space and therefore wrongly failthe
edge matching test. Comparing the edges of the model with the
camera image requires the same methods applied to the same point
of view and also the same scaling of the edge width.

Using a particle filter requires drawing the model several hundred
times at different posesXi with i = 1...N . Replacing the surface

Figure 3: Edge detection results from left to right: original, no spreading, one time spreading, three times spreading

and running the edge detection algorithm for each particle would
cause the tracker to be far away from real-time capability. For this
reason, the surface of all particles is replaced by only one edge map
Ie

S , calculated by using the prior tracking resultX+. This, in prin-
ciple causes the same problems as mentioned above, but assuming
that the motion of the particlesXi remains small within one track-
ing pass, the distortions and thinning out can be disregarded.

3 Recursive particle filtering

For each tracking pass the recursive particle filtering executes the
methods shown in Figure 5. First the particlesi = [1 . . . N], repre-
senting the pose of the object, are generated using Gaussiannoise.
Then the likelihood of each particlei is evaluated by matching it
against the edge image of the cameraIe

C . If there is still processing
time tf remaining, then a further recursion step of particle gener-
ation and likelihood evaluation is performed with different param-
eters as described in Section 3.4. Otherwise the maximum likely
particle is passed to the next step. The linear Kalman filter,in-
cluding a physical motion model, is attached to the outcome of the
recursive particle filter to fine tune the result and remove remain-
ing jitter. As this additional filter is not part of the recursion it is
explained in Section 4.

The reason for this setup is to benefit from the robustness andspeed
of a particle filter. For higher accuracy, the standard deviation of
the noise is reduced in each recursion. The linear Kalman filter is
attached just for fine tuning as mentioned above.

3.1 Particle generation

The prior poseX−
i of each particle is calculated by perturbing the

posteriorX+ with Gaussian noisen(σ2) with a standard deviation
scaled by the prior likelihood of the posewm, a scaling factor for
motion effectfm and a scaling factorfc set by each recursion step:

X−
i = X+ + n(σ2(wm, fm, fc)) (3)

i = [1 . . . N]

The standard deviation is evaluated by

σ = σI fmfc.(1− wm) (4)

where the prior pose likelihoodwm is multiplied to the initial stan-
dard deviationσI so that the particle distribution narrows with
higher likelihood. The motion effectfm takes into account that
motion in world space along the camera viewing axis causes less
change in image space then the same motion orthogonally to the
viewing axis. fc becomes smaller with each recursion step in the
particle filter. σI is implemented as a parameter to be set by the
user, but should be evaluated automatically in the future regarding
the tracking conditions.

Ie
S

Ie
Si

Ie
C

X+

X+

X̄+

X
+

,f
c
,w

m

particle
generation

likelihood
evaluation

if(tf < t30Hz)

Kalman
filter

best match

Figure 5: Block scheme of motion with recursive particle filter and
Kalman filter

3.2 Likelihood evaluation

Each particle is tested against the camera image and a matching
likelihood is calculated. Therefore the correlation between the gra-
dients of the edgesgSi(u, v) andgC(u, v) is evaluated by compar-
ing the direction of the edges at each image point(u, v).

gSi(u, v) =

„
Ie

Si,x(u, v)
Ie

Si,y(u, v)

«
gC(u, v) =

„
Ie

C,x(u, v)
Ie

C,y(u, v)

«
The angles between those vectors are calculated, producingthe
edge correlation imageΦi:

φ = arccos (gSi .gC)

Φi(u, v) =

8<: 1− 2φ
π

if φ < π/2

1− 2|φ−π|
π

if φ > π/2
0 if (u, v) /∈ v′

S

(5)

Note that it is assumed that the result of thearccos() function lies
within 0 andπ. The imageΦi now contains the degree of corre-
lation between the pose suggested by the particlei and the camera

image. The angular deviation of the edge anglesΦi is scaled to the
range of 0 to 1.

The match likelihoodwi is calculated by integratingΦi and divid-
ing it by the integrated edge image of the surfaceIe

Si
.

wi =

R
u

R
v
Φi(u, v)dvduR

u

R
v
|Ie

Si
(u, v)|dvdu

(6)

3.3 Determining the pose

As explained in the sections 2.2 and 2.3 for projection and re-
projection of the model, a single poseX+ has to be defined. This
is where the approach suggested in this paper differs from usual,
straight forward particle filters, where the whole propability density
function defined by allXi is carried over into the next estimation
step.

The poseX+ is evaluated using the mean of the top most likely
particlesM . X−

k in Equation (7) denotes the particles sorted by
likelihoodwk in descending order.

X+ =
1

wm

MX
k=1

X−
k .wk (7)

with

wm =
1

M

MX
k=1

wk

Experiments have shown that increasing the number of most likely
particlesM to consider in the mean likelihood, while lowering the
standard deviation in Equation (4) byfc and the edge width (see
Figure 3) for each further recursion obtains good results.

3.4 Recursion

The methods described in Section 3.1 and 3.2 are performed for
each of the hundreds of particles. The idea of recursion is totake
advantage of the information gain when calculating. This means
that theN particles are divided into subrangesR1, R2, R3, . . . and
so forth. For every rangeRk, the pose estimateX+ and likelihood
wm of the previous particle filteringRk−1 is used. The standard
deviation for the particle generation is reduced by the scaling factor
fc, which narrows thesearch areaof the filter. Therefore Equa-
tion (3) becomes

X−
i (Rk) = X+ (Rk−1) + n

`
σ2´

i = [1 . . . Nk]

with
σ = σI fmfc(Rk−1).(1− wm(Rk−1))

Figure 6 shows the principal idea of recursive particle filtering in
2D. In the lower left graph the particles are perturbed usinga high
standard deviation of the Gaussian noise of the particles, covering
a large area around the prior pose estimate. The mean of the top
most likely particles is used to evaluate the rough pose of the real
object. The upper left graph shows particles with lower standard
deviation, where this time the most likely particles measure the real
pose much more accurately.

The example in Figure 6 is drawn with 1500 particles with highand
500 with low standard deviation. This method allows the tracker to
respond both quickly and accurately without wasting performance
as it does not require any more particles than before.

x

y

real pose

pose estimate

Figure 6: Recursive particle filter

4 Linear Kalman filtering

The discrete Kalman filter implemented for this approach uses a
motion model for all six degrees of freedom of the object. The
reason why the motion model is not applied in the particle filter is
because this would reduce the speed and accuracy of the tracker,
as modelling the velocity of the object would rise the degreeof
freedom from 6 to 12. This would mean that the particles have to
cover 6 more dimensions. Therefore the Kalman filter is attached
only to smooth the resulting trajectory and remove remaining jitter.

Time Update - ”Predict”

x−
k = Axk−1 + Buk

P−
k = APk−1A

T + Q

Measurement Update - ”Correct”

Kk = P−
k HT

“
HP−

k HT + R(wm)
”−1

(8)

xk = x−
k + Kk

`
zk −Hx−

k

´
Pk = (I−KkH)P−

k

where

xk =
h
xk, yk, zk, αk, βk, γk, ẋk, ẏk, żk, α̇k, β̇k, γ̇k

i
denotes the state of the Kalman filter containing the pose andve-
locity of the six degrees of freedom.

A =

»
I diag(∆t)
0 I

–
is thestate matrix,

B = [diag(0)]

the input matrix,
H = [I, diag(0)]

theoutput matrix, Pk theestimate error covariance, Q theprocess
noise covariance, R themeasurement noise covariance, I the unity
matrix andKk theKalman gain. Please refer to [Welch and Bishop
2004] for more details on Kalman filtering.

The process covariance matrixQ defines the noise of the physical
model, where no information is available. However, in contrast to
R, this matrix is set to a fixed value.

The measurement covariance matrixR depends on the pose likeli-
hood as follows:

R(wm) =

»
diag((wt−3)

3) 0
0 diag((wt−3)

3)

–
As shown in Equation (8), this means thatR rises proportionally to
the delayed likelihood of the measurement from the particlefilter.
Therefore, the Kalman gain drops, giving less weight to the mea-
surementzk and more weight to the motion model, which smooths
the result. This means that jitter is removed when the likelihood is
high, for example when the object to track does not move.

On the other hand, the lag behind the real object, caused by the
motion model during acceleration, is decreased when the likelihood
falls, which usually happens when the object to track moves fast. In
this case, the Kalman gain increases the weight of the measurement,
increasing the speed but also allowing jitter which is barely visible
when the object is moving anyway.

Experimants have shown that a cubic likelihood function yields to
a smooth tracking behaviour. The delay of the likelihoodwt−3 re-
moves overshooting of the motion model when the object suddenly
stops moving.

5 Implementation notes

The implementation of the algorithm requires discretization which
is denoted by bold letters for images in this section.

5.1 Notes for preprocessing

The preprocessing is done once per tracking pass and is not astime
critical as the recursive particle filtering in the following section.
However, the overall performance of the tracker needs to be as fast
as possible, so this part is also implemented using the graphics pro-
cessing unit. Therefore, the image received by the camera issent
to the graphics board where it is stored as texture. The convolu-
tion with the Gaussian and Sobel kernels are applied by shaders as
well as thinning and spreading. The edge image is again stored as
RGBtexture where theR- andG-channels are used for thex- and
y-components of the image gradient.

As the channels only allow values between 0 and 1, the normalized
gradients ranging from -1 to 1 need to be adjusted.

The surface of the object to track is made up of vertices whichform
triangles and quadrangles, also called primitives. The projections
described in Equation (2) and (9) are performed for these vertices
only, because the surface points within a primitive can be deter-
mined by linear interpolation, which is optimized by the graphics
adapter.

Tp andX denote the projection and model view matrix, which can
be queried from OpenGL. The six degrees of freedom are storedin
the vector

xi = [xi, yi, zi, αi, βi, γi]

Instead of transforming the edge mapIe
S back to world space by

solving Equation (2) with respect toS, the coordinates for the edge
map in image space are evaluated. This has to be done only once,
since those coordinates do not change for the other particles.

u+
S = TpX

+vS (9)

Ie
Si

(u, v) = Ie
S(u+

S)

The particlesi are represented by the pose matricesX−
i . The vec-

torsuSi that are used to find the corresponding point in the camera
imageIe

C are calculated with

uSi = TpX
−
i vS

Ie
Ci

(u, v) = Ie
C(uSi)

At this point for each particlei the modelIe
Si

and camera image
Ie

Ci
are ready for comparison which is described in Section 3.2.

5.2 Notes for recursive particle filtering

The calculations described in this section are very critical with re-
spect to optimized programming, since every single line of code is
called several hundreds of times. In particular evaluatingthe match
likelihood using theNVIDIA Occlusion Queryis definitely a bottle-
neck in the algorithm. This OpenGL extension is responsiblefor
counting the pixels of the whole edge map. The matching pixels
mi and total edge pixelsni are evaluated by summing up the cor-
relation imageΦi and the edge mapIe

Si
:

mi =
X
u,v

Φi(u, v)

ni =
X
u,v

Ie
Si

(u, v)

As this extension only supports counting pixels disregarding the
value, they only can be marked to be rendered or not. Therefore,
the displacement image is thresholded by the angleǫ:

φ = arccos (gSi(u, v).gC(u, v))

Φi =

0 if φ < ǫ
1 if φ ≥ ǫ

(10)

whereǫ denotes the angular threshold. For the match evaluation
shader0 means that the pixel is discarded when rendering and does
not increase the counter, whereas1 means the pixel is drawn and
therefore increasesmi.

Figure 7b) shows the pixelsmi successfully passing the match eval-
uation. 7c) are the pixels which fail the match test of Equation (10)
and 7d) is the total number of pixelsni of the edge image of the
object. Note the missing pixels on the very upper edge, as a result
of the background having the same color (yellow) as the object. The
mismatch of the edges on the front side of the box is caused by the
inaccuracy of the placement of the texture on the geometry ofthe
model which is produced manually by a 3D modeling tool.

The likelihoodwi is evaluated by

w′
i =

„
mi

ni
+

mi

nmax

«
1

wpos

The first term within the brackets is the percentage of matching
edge pixelsmi with respect to the total visible edge pixelsni. Cal-
culating the likelihood only with this term would cause the tracker
to lock when only one side of the 3D object is visible. When at
this special pose the object is rotated slightely, another side of the
object becomes visible. The particle matching this rotation would
be equal or most often less then the prior front facing particle. The
reason for this is that the number of matching pixelsmi grow less
than the total visible pixelsni when rotating the object out of the
front side view. This effect amplifies when taking into account that
edge detection for strongly tilted faces is very faulty.

a) Object to track with cluttered background

b) Matched edgesmi

c) Mismatched edges

d) Total edges of modelni

Figure 7: Edge matching

The second term allocates more weight to the total number of
matching pixelsmi which is intrinsically higher for the rotated par-
ticle. nmax which are the maximum visible edge pixels in the ac-
tuall area scales the pixels to the proper range. As this summation
would lead to likelihood values higher than 1, it is divided by the
maximum possible likelihoodwpos which is updated online.

This differs from the likelihood calculation used in [Kleinand Mur-
ray 2006]

Likelihood
`
X−

i

´ ∝ exp

„
k

di

vi

«
which we experienced to lock very fast at the local minima men-
tioned above. Heredi denotes the number of matching edge pixel,
vi the total edge pixels of the wireframe model, where the hidden
edges are removed andk is a constant for distributing the likeli-
hood.

6 Results

As the tracker requires fast parallel calculations, the focus of the
system is on the graphics board where it is implemented. It has
been tested on an NVIDIA GeForce GTX 285 with a fill rate of
50 billion pixels per second, and an Intel Core2 Quad CPU Q6600
with 2.4 GHz. To fulfill a minimum frame rate of 30 FPS (frames
per second), the time for one tracking pass is 33 ms. Within this
limits it is possible to draw 1500 particles for a box (6 facestextured
with a 900x730 pixel image) like in Figure 7a). With the cylinder
model shown in Figure 1 with 16 faces and a 900x400 pixel texture
image, the tracker achieves 580 particles within the same time and
100 particles with the cylinder with 64 faces.

Figure 8 shows some results of a video sequence. The first row
demonstrates the robustness of the tracker. The whole top surface
and the edges of the geometry are covered by the hand and there
are reflections of the checkerboard pattern on the front faceand a
cluttered background, but the pose of the box still can be estimated.
Of course at some degree of occlusion, the accuracy of the pose
drops until it cannot be determined at all.

The second row shows the fast and reliable convergence. Although
the deviation of the estimated from the actual pose is very high,
the tracker finds the correct alignment within a second. The third
row illustrates the concept of recursive particle filtering. Especially
in the second image from the left, where the speed of the moving
object is high, the benefit is clearly visible (compare with Figure 6).

7 Conclusion

We presented a method for fast and robust object tracking. Itcon-
verges fast to the correct pose and is able to handle relativelarge
deviations, for example when initializing. Partial occlusion, re-
flections, light changes, shadows and cluttered backgroundare no
problem for the tracker, as long as enough features are visible to
determine the pose. Exploiting the power of a graphics processing
unit with a particle filter in a recursive design allows high tracking
speed with sufficient accuracy.

However, there are several improvements possible. Firstlythe mis-
match of the 3D -model to the real object, as described in Sec-
tion 5.2, can be learned and corrected with constraints thatprevent
the model from strong distortion. Secondly corner detection, color
matching and so forth can be implemented which would most likely
further improve the accuracy and robustness of the tracker.

The correlation mapΦi in Equation (5) is simplified to Equa-
tion (10), because theNVIDIA Occlusion Queryonly counts visible
pixels disregarding the information about the angular displacement
stored within. A future work would be to implement precise likeli-
hood evaluation as described in Equations (5) and (6).

The bottle-neck, with respect to the frame time of this approach, is
definitely the particle filter with its likelihood evaluation using the
OpenGL extension. The tracking errore directly correlates with the
standard deviationσ and number of particlesN as follows:

e ∝ σ

N

with
N ∝ t = t33ms

This means that the tracking errore can be significantly reduced by
lowering the standard deviationσ for each degree of freedom inde-
pendently. When for example the z position of an object to track is
known, because it lies on a table the accuracy can be increased by
lowering the standard deviation for this degree of freedom.

There are several points of the algorithm where further investiga-
tion needs to be done, like finding the optimal boundary conditions
and functions for the recursive particle filter and designing a bet-
ter function for particle generation. Or more specifically,designing
better functions for calculating the standard deviation ofthe Gaus-
sian noise in Equation (4).

A further problem that needs to be solved is, that the trackercannot
supply information if tracking fails when it locks into a local mini-
mum. There, the likelihood evaluation returns sometimes values as
high as at the correct tracking pose.

Figure 8: First row: robustness against occlusion, reflections and background clutter; Second row: fast and robust convergence;Third row:
particle distribution with three recursions

Acknowledgements

The research leading to these results has received funding
from the European Community’s Seventh Framework Programme
[FP7/2007-2013] under grant agreement No. 215181, CogX.

References

A. RUF, M. TONKO, R. H., AND NAGEL, H.-H. 1997. Visual
tracking by adaptive kinematic prediction.Proceedings of Inter-
national Conference on Intelligent Robots and Systems.

BURGER, W., AND BURGE, M. J. 2008.Digital Image Processing,
An Algorithmic Introduction Using Java. Springer.

D. KOLLER, K. D., AND NAGEL, H.-H. 1993. Model-based
object tracking in monocular image sequences of road traffic
scenes.International Journal of Computer Vision.

DRUMMOND, T., AND CIPOLLA , R. 1999. Real-time tracking of
complex structures with on-line camera calibration. 574–583.

GENNERY, D. 1992. Visual tracking of known three-dimensional
object. International Journal of Computer Vision.

HARRIS, C. 1992. Tracking with rigid objects.MIT Press.

KESSENICH, J. 2008. The OpenGL Shading Language, Version
1.30.

KLEIN , G., AND DRUMMOND, T. 2003. Robust visual tracking
for non-instrumented augmented reality.

KLEIN , G., AND MURRAY, D. 2006. Full-3d edge tracking with a
particle filter.British Machine Vision Conference Proc 17th.

KLEIN , G., AND MURRAY, D. 2007. Parallel tracking and map-
ping for small ar workspaces.Proc International Symposium on
Mixed and Augmented Reality (ISMAR).

KOSAKA, A., AND NAKAZAWA , G. 1995. Vision-based motion
tracking of rigid objects using prediction of uncertainties. Inter-
national Conference on Robotics and Automation.

L. VACCHETTI, V. L., AND FUA , P. 2004. Stable real-time 3d
tracking using online and offline information.IEEE Transactions
on Pattern Analysis and Machine Intelligence.

LOWE, D. G. 1992. Robust model-based motion tracking through
the integration of search and estimation.International Journal
of Computer Vision.

LUCA VACCHETTI, V. L., AND FUA , P. 2004. Combining edge
and texture information for real-time accurate 3d camera track-
ing.

LUCIE MASSON, M. D., AND JURIE, F. 2004. Robust real time
tracking of 3d objects.

M. V INCZE, M. AYROMLOU, W. P., AND ZILLICH , M. 2001.
Edge-projected integration of image and model cues for ro-
bust model-based object tracking.The International Journal of
Robotics Research.

MUSTAFA ÖZUYSAL , M ICHAEL CALONDER, V. L., AND FUA ,
P. 2009. Fast keypoint recognition using random ferns.IEEE
Transactions on Pattern Analysis and Machine Intelligence.

P.A. SMITH , I. R., AND DAVISON, A. 2006. Real-time monoc-
ular slam with straight lines.Proc 17th British Machine Vision
Conference(sept).

PHILIPP M ICHEL, J. C.E. A . 2008. Gpu-accelerated real-time 3d
tracking for humanoid autonomy.

R. KOCH, K. KOESER, B. S., AND EVERS-SENNE, J.-F. 2005.
Markerless image-based 3d tracking for real-time augmented re-
ality applications.WIAMIS(april).

ROST, R. J. 2006.OpenGL Shading Language, vol. Second Edi-
tion. Addison-Wesley.

SEGAL, M., AND AKELEY, K. 2008. The OpenGL Graphics Sys-
tem: A Specification, Version 3.0.

SUN-KYOO HWANG, M. B., AND K IM , W.-Y. 2008. Local
discriptor by zernike moments for real-time keypoint matching.
IEEE Congress on Image and Signal Processing.

V INCENT LEPETIT, JULIEN PILET, P. F. 2004. Point matching as a
classifiaction problem for fast and robutst object pose estimation.
Conference on Computer Vision and Pattern Recognition(june).

WELCH, G.,AND BISHOP, G. 2004. An introduction to the kalman
filter.

Basic Object Shape Detection and Tracking
Using Perceptual Organization

Andreas Richtsfeld and Markus Vincze

Abstract— If a robot shall learn object affordances, the task
is greatly simplified if visual data is abstracted from pixel
data into basic shapes or Gestalts. This paper introduces a
method of processing images to abstract basic features and
into higher level Gestalts. Perceptual Grouping is formulated
as incremental problem to avoid grouping parameters and
to obtain anytime processing characteristics. Furthermore we
want to present a efficient method to track Gestalts using low-
level Gestalts for motion field approximation. The proposed
system allows shape detection and tracking of 3D shapes such
as cubes, cones and cylinders for robot affordance learning.

I. INTRODUCTION

Humans can solve even complex tasks such as manipulat-
ing or grasping objects by learning and using the relationship
of object shape to the intended behavior - also referred to
as affordances. Robotics would profit considerably if a robot
could learn these affordances [1] and relate them to visual
percepts. However, at present visual perception delivers only
image-based features. It is the objective of this work to
present a method that extracts the basic 3D shape of objects
for enabling more realistic robot learning.

There are several paradigms of making robots learn af-
fordances. [2] and [3] present an approach where a mobile
robot observes the environment and autonomously learns
a prediction model from its actions and observation data.
An overhead camera is used to track color blobs of the
robot and the objects. Another possibility is to discover
object affordances [4]. To track objects and estimate the
object behavior, they are also using color blobs and a set
of visual features to describe the 2D blob shape. As an
example, a circle can roll but a rectangle cannot. Another
possibility is learning high-level ontologies, as proposed in
[5] and [6], by clustering the point data from a laser range
scanner with an occupancy grid map. All these approaches
for autonomous learning are dealing with simple vision data,
which are determining relative positions of objects and use
image-based point or blob features. However, to understand
the usage of different objects the capability to abstract shapes
from images into 3D shapes is necessary. This is particularly
true for object grasping but also holds for navigation, where
an abstraction of point data into geometric features reduces
complexity, thus enables efficient learning and yields an
effective description of affordances.

Hence we propose a system using methods of perceptual
organization to estimate basic object shapes in a hierar-
chical manner such that affordances can link to different

A. Richtsfeld and M. Vincze are with Automation and Control Institute,
Faculty of Electrical Engineering, Vienna University of Technology, 1040
Vienna, Austria {ari,vinzce}@tuwien.ac.at

Fig. 1. Processing schema of the proposed system.

abstractions as required. Fig. 1 shows the overall processing
schema of the observation system, which will be discussed
in the following sections. Perceptual Grouping is used to
determine 3D object shapes like cubes, cones, cylinders
or balls. As recognition of 3D shapes is dependent on
the view on objects, we propose an object tracking and
hypothesizing strategy using an approximation of the motion
field. Therefore, once a object shape was determined, it is
possible to follow 3D objects over image sequences even
if objects can only be detected partially in one frame. This
aims at offering a generic tool for autonomous learning of
robots in their environments.

II. RELATED WORK

Perceptual organization is a well known topic in computer
vision and was researched since the Eighties. Seminal works
regarding the theory of perceptual recognition of simple
objects are [7] and [8]. Biederman [7] proposed that there
are non-accidental differences between simple objects, which
can be derived through so called geons. [9] discusses the
potential of geons in computer vision systems. Perceptual
grouping is a bottom-up method to estimate Gestalts, where
new Gestalts will be estimated from Gestalts of lower-level
Gestalt principles. It can also be seen as geometric grouping,
because most of the Gestalt principles implements geometric
restrictions.

The main challenge of perceptual grouping is to limit the
combinatorial explosion. Indexing and thresholding of less
salient hypotheses are normally used to solve this problem
[8][10]. Indexing divides the search space for relations be-
tween elements into bins and each element will be allocated
to a bin depending on the grouping relationship. Further
all elements in a bin can be analyzed whether they fulfil
the given relation or not. [11] proposes to use indexing
in the image space where growing search lines are used

to find intersections between Gestalts. With the reduced
search space, the problem of combinatorial explosion and
the length definition of search lines can be avoided. When
using incremental growing search lines, results are no longer
dependent on the length definition of search lines, but to the
processing time.

[12] investigated the role of perceptual organization in
tracking of 2D structures. He pointed out, that extended
structures from 2D shapes are more stable, reliable, less
susceptible to noise and have more descriptive capability than
point features. Therefore it is obvious to use these higher-
level Gestalts for the motion field estimation, what allows
later easier tracking of higher-level Gestalts.

III. PERCEPTUAL ORGANIZATION

When following the work of [11], search lines will be
used to find intersections between Gestalt features. Indexing
into the image pixels limits the search space and avoids
the problem of comparing all combinatorial possibilities to
find connections. Depending on the type of search line,
different types of groupings can be found. A dilemma of
using search lines is the length definition. When the length
of the search lines is too small, some important Gestalts
could not be found and on the other side, if they are too
long, enhancement of computation time could be provoked
because many combinations may occur. This problem can
be avoided with incrementally growing search lines, where
in every processing circle another search line grows one
pixel. When drawing into the indexing image, intersections
with existing search lines are detected immediately in the
respective bin. The biggest advantage of this method is that
any preset parameters or thresholds are now moved into
longer and longer processing. The results are no longer
dependent on the line length, but to the processing time.
The longer the process operates, the more junctions can be
found and thus more other Gestalts can be detected. This
gives a possibility to evaluate the best possible hypotheses
for a limited processing time and on the other side this makes
it feasible to obtain results at any time (a quality referred to
as anytimeness).

We propose an incremental grouping method as shown in
Fig. 2. Triggered by incremental growing search lines, used
for Line- and Ellipse-Junctions, each Gestalt creates new
hypotheses and delivers them to Gestalts of higher levels.
The concept of incremental growing search lines provides
the system with incremental processing capabilities. Boxes
in the non-shaded area of Fig. 2 are referring to basic
geometric features, whereas the boxes in the shaded area
indicate Gestalts obtained by incremental processing. The
fundamental principles for incremental processing are Line-
and Ellipse-Junctions. Each processing circle starts with in-
crementing one search line of a line or an ellipse. Depending
on which search line was chosen, the next hypothesis can be
an Ellipse- or a Line-Junction.

In a first processing step the basic features are processed
all at once and grouping uses neighborhood constraints. Next,
incremental processing of Line- and Ellipse-Junctions starts

Fig. 2. Perceptual grouping system.

and the higher level Gestalts receive new input incrementally:
each cycle extends one search line and all new hypotheses are
processed at once to obtain new Gestalt hypotheses. If one of
the Gestalts can hypothesize for a new Gestalt one level up
the tree, the Gestalt from the next higher level begins to work,
and so on. Hence the next junction will not be processed until
all higher Gestalts are processed and no more hypotheses
can be produced. This functionality of the processing tree
guarantees that the best Gestalt hypotheses for the detected
junctions are calculated in every processing circle.

[13] and [11] discusses the approach for grouping of the
Gestalts and the processing of Gestalt principles in detail.
The following list explains the grouping conditions and
methods in short terms for completeness:

• Edge-Segments: Each edge segment consists of multiple
neighboring edge points. The segments are estimated
by canny edge detection with self-adjusting hysteresis
thresholds.

• Lines: Lines are built from edge segments, by fitting
straight lines to the detected segments using the method
by Rosin and West [14].

• Arcs: Circular arcs can be fitted to edge segments, using
the RANSAC algorithm. Fitting circles instead of el-
lipses is more stable and faster and locally approximates
ellipses well [15].

• Convex Arc Groups: Arcs will be grouped to convex
arc groups to avoid the problem of an exponentially
large number of groups. Perceptual grouping based on
proximity and good continuation helps to significantly
reduce the number of hypotheses.

• Ellipses: In this stage, ellipse hypotheses will be formed
from groups of arcs, using the direct least squares B2AC
algorithm by [16].

• Line Junctions: Line Junctions are connections between
two lines and can be found with intersections of defined
search lines. Six different search-lines are defined for
each line, one at each end in tangential direction and
two in normal direction. Different combinations of in-
tersecting search lines are generating different junctions.
We distinguish between Collinearities, L-Junctions and
T-Junctions, where T-Junctions could also be interpreted
as two L-Junction. For growing search lines, the ”smart

grow” algorithm of [11] is used.
• Ellipse Junctions: Ellipse-Junctions are connections be-

tween a vertex of an Ellipse and a Line, which can also
be found with search lines. The four defined search
lines for Ellipses are growing on the main axis of
the Ellipses, beginning at the two vertices into both
directions. For the growing of the search lines, we are
using the same growing algorithm as for the search lines
of Line-Junctions.

• Closures: Closures are closed convex contours, built
from the Gestalts Lines and Line-Junctions, as proposed
in [11]. Whenever the principle will be informed about a
new Line-Junction, a new closed convex contour could
be detected. To find these contours, Dijkstras algorithm
for shortest path search is used, where only paths
consisting of non-intersecting Lines, Collinearities and
L-junctions of the same turning direction are allowed,
thus ensuring simple convex polygon contours.

• Rectangles: Rectangles can be directly derived from
Closures by using geometric restrictions, which are
given through the description of Rectangles in a per-
spective view. When considering these perspective pro-
jections as shown in [17] and neglecting one vanishing
point (one-point projection), it is possible to recognize
Rectangles as Trapezoid, whenever a new Closure ap-
pears.

• Flaps: A Flap is a geometric figure consisting of two
Rectangles which do not overlap and which have one
line in common. Detecting Flaps is the intermediate
step for detecting Cubes, because two sides of a Cube
are always building a Flap in a perspective view of a
camera. When seeing a Cube aligned to one side only a
Rectangle or Flap is visible, making the Flap an obvious
Gestalt element.

• Cubes: An image taken from a camera may show
different perspective views of three-dimensional objects.
In the case of a cube there may be one, two or three
rectangles (in perspective view) visible. The chance that
one observed rectangle indicates a cube is small and
increases for a flap, but both can occur accidentally.
Only when we are able to find three adequate rectan-
gles, we can conclude that the robot observes a cube.
Therefore, cubes are built up from flaps (rectangles),
lines and junctions.

• Extended Ellipses: Extended Ellipses are Ellipses and
Lines, which are assigned through Ellipse-Junctions.
Extended Ellipses also assigning all Lines, which are
connected to these Lines with a Collinearity.

• Cones: Cones are geometric figures, whose shape con-
sisting of an (partly visible) ellipse, lines and junctions
between these components.

• Cylinders: The object shape of a cylinder consists of two
(partly visible) ellipses and lines between these ellipses.
Therefore Cylinders can be grouped from Extended
Ellipses, Lines and Junctions.

• Balls: Balls can be estimated directly from Ellipses,
when the shape of the ellipse is nearly a perfect circle.

IV. GESTALT BASED TRACKING

A fundamental problem of the proposed perceptual group-
ing system for detection of 3D shapes is the predetermined
view to objects for recognition. Thinking on a cube, there is
the need to have a view on three different sides to make
sure that it is the sought-after three-dimensional object.
One or two visible sides are not enough to obtain a high
reliability. Only a view from a position where three sides of
the cube are visible gives a high significance for observing
the object shape of a cube. But this is not general true for
all objects, because it does not fit for the other basic object
shape of cones, cylinders or balls. The radial symmetry of
these objects causes always the same shape from every point
around the object.

To solve the problem with the view to objects, we suggest
a processing schema with additional processing modules
as shown in Fig. 1. After the estimation of Gestalts by
perceptual grouping with the rules of the Gestalt principle
tree as explained in section III, follows a approximation
of the motion field. This aims for the explanation of the
motion of object shapes over following images from a video
sequence, where the view to objects changes with time. The
motion field allows later a reliable tracking of Gestalts and
a reliable hypothesizing of higher-level Gestalts from lower-
level Gestalts. So once a basic object is detected, it will be
possible to recognize it in the next image without a view to
the three-dimensional shape.

A. Motion Field Approximation

A camera mounted on a mobile robot can be seen as a
moving observer in a quasi-stationary environment. When the
observer moves, the projected image from the environment
will change. For visually-guided navigation the task of the
observer is to use this changing image to determine the mo-
tion in space. The proposed method is not accurate enough
for self localization and mapping (SLAM), but this is not
necessary, because we are only interested in a approximation
of the motion field to evaluate the results of tracking. When
the observing camera is mounted on a robot, which drives on
the ground floor, it is possible to constrain the motion to two
dimensions for the approximation of the motion field. This
simplifies the calculation, because only forward or backward
motion and respectively left or right turning is possible.

We calculate the motion field from tracked corner points
and use the L- junctions already calculated as corner de-
tectors, rather than running an additional corner detectors
such as Harris or KLT. L-Junctions are good candidates,
because they appear constant in images and they have strong
descriptive features to distinguish between them. Needless
to say that L-Junctions can occur accidentally and without
relevance to the image content, but a high correctness is not
mandatory. It is enough to get the motion vectors of a fraction
of L-Junctions to evaluate the motion field stable.

Fig. 3 shows the motion vectors of L-Junctions. The
median of all estimated directions can be considered as main
direction of the motion field. This helps to prune the possible
false assigned L-Junctions. The main direction is also used

to distinguish between four different motion cases, shown in
Fig. 3, which will be considered for the calculation.

Fig. 3. Motion vectors of L-Junctions (top, left). Defined motion cases
(top, right). Approximated motion field for forward motion (bottom, left)
and for right turn (bottom, right).

Once the main direction and therewith the motion case
is determined, the focus of expansion (FOE) or the center
of rotation (COR) can be estimated when calculating all
intersection points between different motion vectors, which
has been extended to infinity. The FOE can be estimated
directly for forward and backward motion, whereas the
motion vectors must be rotated 90 degrees in case of left
and right motion for the COR calculation. The FOE and
COR will be determined as weighted mean value of the
intersection points from the motion vectors. In most instances
the FOE and COR are outside of the image. The position of
the FOE or the COR and the knowledge about the direction
of the motion allows a approximation of the motion field
as proportional ratio between motion and distance between
FOE or COR and the point of the sought-after motion:

motion = k ∗ distance (1)

To get the weighting factor k, we calculate the mean value
of k from the motions and distances of all recovered L-
Junctions:

kavg = 1/n ∗
n∑

i=1

motioni/distancei (2)

The direction of the motion depends on the position of the
FOE/COR and the motion case. It is possible to distinguish
between the four cases of movement, where we get following
directions for the different movements:

• Forward: Direction against FOE.
• Backward: Direction to FOE.
• Left: Direction to COR + 90 degree.
• Right: Direction to COR - 90 degree.

The left bottom image of Fig. 3 shows the resulting motion
field for a forward motion and the right bottom image shows
it for a left turn. In both cases the FOE/COR is outside the
image.

B. Tracking of Gestalts and Hypothesis Generation

The motion field allows us to predict the motion of
all following Gestalts and therefore makes tracing more
reliable. Nevertheless prediction of motion is not enough
to assign Gestalts from the former image to the next, it is
recommended to compare Gestalts by descriptive features to
ensure that they match. Once all possible shapes are tracked,
the system tries to create hypotheses for objects which could
not be tracked as a whole. For the latter the system tries
to identify partial objects from lower-level Gestalts, because
these still strongly indicate the presence of the whole object.
Fig. 4 shows grouping, tracking and hypothesis generation
for an example of a turning cube over three images.

The oldest cube on the left side of the image is created
by perceptual grouping, whereas the next cube in the middle
of the image could not be detected cause of the missing
rectangle, which should be on the top of the cube. The
cube can be hypothesized using the tracked flap, because it
belongs to the cube of the former image. The last cube can
not be hypothesized in one step, because only one rectangle
was detected. The system hypothesizes first the flap from
the single rectangle and in the next step the cube from the
hypothesized flap. It is still sure, that the cube is at this
position, because the rectangle could be tracked from the
former two images. With this method is it now possible to
follow a Gestalt, even if it is not possible to detect the whole
shape with the perceptual grouping tool.

Fig. 4. Hypotheses generation from tracked Gestalts.

C. 3D Object Representation

Using a ground plane constraint enables the estimation
of 3D points when object points on the ground plane are
known as image points. It is therefore possible to get the
position and the size of the basic object shapes in a three
dimensional coordinate system. When we are hypothesizing
objects after tracking of lower-level Gestalts, we have to
recalculate the 3D position and the size of objects dependent
on the current position and orientation of the tracked low-
level Gestalt. When using the model (e.g. corner points, size,
orientation) of the former detected object, it is enough to
know two points or a point and a orientation to recalculate

the new position and orientation of the object and we can
show the model again in the two dimensional image.

V. EXPERIMENTAL RESULTS

The incremental grouping method has been evaluated
with a mobile robot moving among simple geometric 3D
objects. Fig. 5 shows an example image, with several
three-dimensional objects. The picture indicates the typical
problem of grouping, namely that shadows or image noise
creates spurious features such as lines or arcs. A grouping
into higher level Gestalts sometimes accidentally includes
a wrong feature though, more often the grouping principle
constrain the search to actual higher level Gestalts. With the
incremental approach object detection depends on processing
time. The first two images present the original and the
cluttered edge image. The left image of the second row
shows all extended search lines after 468ms and the next
three images are showing the results after 184ms, 328ms
and 468ms processing time.

Fig. 5. Perceptual grouping for a single image: edge image, voting image
and basic objects after 184ms, 328ms, 468ms.

The left image in Fig. 6 shows two cubes which are tracked
over ten images. The tracked cubes are laid over the last
image to show the motion of the cubes. The right image
shows the calculated motion of the cube center points (red
line) and the real motion (cyan) over ten images.

To evaluate the capabilities of the proposed perceptual
grouping with the Gestalt based tracking method, we pro-
cessed a playground scene with different processing times.
Tab. I shows the results of runs without tracking and with
tracking, using a Intel Core2Duo with 2,5GHz. The pro-
cessing time for detection with tracking is between 1.5%

Fig. 6. Tracking of cubes. Deviation of calculated (red) and real motion
of a cube (magenta) after 10 tracking steps.

and 5,0% higher than without tracking, because the non-
incremental processing of the motion field and the tracking
algorithm needs some more processing time after the percep-
tual grouping of Gestalts. The whole scene consists of 148
images within 417 cubes to detect. As expected, the detection
rate increases with increasing processing time, but also the
rate of falsely detected cubes.

TABLE I
DETECTION OF CUBES IN A PLAYGROUND SCENE.

Without Tracking With Tracking
Time [ms] True False Time [ms] True False

150 211 0 151,66 223 1
200 294 0 203,03 344 5
300 340 1 305,37 383 5
400 359 12 412,8 390 17
600 378 28 630,1 406 31

Fig. 7. Detection rate of a playground sequence of 148 images with 417
possible cube detections.

Fig. 7 shows the detection rate graphically over processing
time. The blue curve shows the detection rate for processing
without tracking, whereas the red presents the detection rate
using the tracking method. The second curve shows the
advantage of tracking. For processing times around 250ms
increases the detection rate about twelve percent, while
processing time increases just about two percent. Note that
Canny edge detection alone takes approximately 150 ms. So
near 150 ms processing time only edges and very few L-
junctions and accordingly very few higher-level Gestalts are
detected.

Fig. 8. First row: Tracked (white) and hypothesized (red) rectangles, flaps and cubes from a single image of the sequence. Second row: Five sample
images with estimated hypotheses from tracking of lower-level Gestalts, when driving a robot around a cube.

The goal of the motion field approximation was to track
cubes if not all three sides of their shapes are visible, which
are needed to detect them as three-dimensional objects with
the proposed grouping method. Fig. 8 presents a showcase,
where a robot drives around a cube with some degenerate
views, where only two or a single side of the cube are visible.
The first row shows tracked (white) and hypothesized (red)
rectangles, flaps and cubes, and the last image of the first
row the resulting cube hypothesis. The second row shows
that the Gestalt based tracking algorithm allows to follow
the cube through the whole scene, which consists of sixteen
images, and create hypotheses even if there is only one flap
or a single rectangle visible.

VI. CONCLUSIONS AND FURTHER WORK

We presented a efficient method for detection and tracking
of basic geometric Gestalts, based on a hierarchical visual
grouping system. With the incremental processing approach
the problem of having parameters for each Gestalt principle
is reduced to the single parameter processing time. A ap-
proximation of the motion field makes tracking of Gestalts
possible, whereas tracking Gestalts and creating hypothesis
allows us to follow basic object shapes even for degenerate
views, where not all sides of an object are visible for an
observer. The evaluation shows that the proposed methods
increase the detection rate without a essential increase of
processing time.

In future work it is interesting to investigate how the
approach in [4] can be extended from learning affordance
relations to 2D image blobs to different object shapes and
their behavior when pushed or grasped.

VII. ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under grant agreement No.
215181, CogX and from the European Community’s Sixth
Framework Programme under grant agreement No. 029427
as part of the Specific Targeted Research Project XPERO.

REFERENCES

[1] J. Gibson, The Ecological Approch to Visual Perception, Hougton
Mifflin, Boston; 1979.

[2] J. Zabkar, I. Bratko, A. Mohan, ”Learning Qualitative Models by
an Autonomous Robot”, 22nd International Workshop on Qualitative
Reasoning, 2008, pp 150-157.

[3] J. Zabkar, I. Bratko, G. Jerse, J. Prankl, M. Schlemmer, ”Learning
Qualitative Models from Image Sequences”, 22th International Work-
shop on Qualitative Reasoning, 2008, pp 146-149.

[4] M. Montesano, A. Lopes, J. Bernardino, J. Santos-Victor, ”Learning
Object Affordances: From Sensory-Motor Coordination to Imitation”,
Robotics, IEEE Transactions on [see also Robotics and Automation,
IEEE Transactions on], Vol 24(1), 2008, pp 15-26.

[5] B. Kuipers, P. Beeson, J. Modayil, J. Provost, ”Boostrap learning of
foundational representations”, Connection Science 18.2; special issue
on Developmental Robotics, 2006.

[6] J. Modayil, B. Kuipers, ”Bootstrap Learing for Object Discovery”,
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2004, pp 742-747.

[7] I. Biederman, ”Recognition-by-Components: A Theory of Human
Image Understanding”, Psychological Review, Vol 94(2), 1987, pp
115-147.

[8] D. G. Lowe, ”Three-dimensional object recognition from single two-
dimensional images”, Artificial Intelligence, Vol 31(3), 1987, pp 355-
395.

[9] S. Dickinson, R. Bergevin, I. Biederman, J. Eklund, et al, ”Panel
report: The potential of geons for generic 3-d object recognition”,
In Image and Vision Computing, Vol. 15(4), 1997, pp 277-292.

[10] S. Sarkar, K. L. Boyer, ”A computational structure for preattentive
perceptual organization: Graphical enumeration and voting methods”,
IEEE Transactions on System, Man and Cybernetics, Vol 24(2), 1994,
pp 246-266.

[11] M. Zillich, Making Sense of Images: Parameter-Free Perceptual
Grouping, Ph.D. Dissertation, Technical University of Vienna, 2007.

[12] S. Sarkar, ”Tracking 2D Structures using Perceptual Organizational
Principles”, Proceedings of the International Symposium on Computer
Vision, 1995, pp 283-288.

[13] A. Richtsfeld, M. Vincze, ”3D Shape Detection for Mobile Robot
Learning”, accepted at German Workshop on Robotics, 2009.

[14] P. L. Rosin, G.A.W. Westl, ”Non-parametric segmentation of curves
into variuos representations”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 17(12), 1995, pp 1140-1153.

[15] M. Zillich, J. Matas, ”Ellipse detection using efficient grouping of arc
segments”, In 27th Workshop of the Austrian Association for Pattern
Recognition AGM/AAPR, 2003, pp 143-148.

[16] A. W. Fitzgibbon, M. Pilu, R. B. Fisher. ”Direct least square fitting
of ellipses”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 21(5), 1999, pp 476-480.

[17] I. Carlbom, J. Paciorek, ”Planar Geometric Projections and Viewing
Transformations”, Computing Surveys, Vol.10(4), 1978, pp 465-502.

School of Computer Science and Communication

CVAP - Computational Vision and Active Perception

TRITA-CSC-CV 2009.4 CVAP315

Elementary Grasping Actions for Grasping Poly�aps

Yasemin Bekiroglu

Yasemin Bekiroglu
Elementary Grasping Actions for Grasping Polyflaps

Report number: TRITA-CSC-CV 2009.4 CVAP315
Publication date: July, 2009
E-mail of author: yaseminb@kth.se

Reports can be ordered from:

School of Computer Science and Communication (CSC)
Royal Institute of Technology (KTH)
SE-100 44 Stockholm
SWEDEN

telefax: +46 8 790 09 30
http://www.csc.kth.se/

Elementary Grasping Actions for Grasping Polyflaps

Yasemin Bekiroglu

Centre for Autonomous Systems

Computational Vision and Active Perception Lab

School of Computer Science and Communication

KTH, Stockholm, Sweden

yaseminb@kth.se

15th July 2009

Contents

1 Introduction 2

2 Related work 3

3 System Setup 5

4 Elementary Grasping Actions for Polyflaps 7
4.1 EGA 1 . 8
4.2 EGA 2 . 9
4.3 EGA 3 . 13

5 Using EGAs 15

6 Discussion and Conclusion 16

1

Abstract

The ability to manipulate novel objects detected in the environment and to predict their
behaviour after a certain action is applied to them is important for a robot that can extend
its own abilities. The work presented in this report investigates the interplay between per-
ception and action in the framework of object manipulation based on visual input. The work
concentrates on the development of generalisable and extensible manipulation strategies for
two and three fingered robot hands.

In particular, we investigate the necessary conditions for grasping of objects using basic
geometric representations - polyflaps. We demonstrate how polyflaps can be grasped by
using a parallel jaw gripper. A set of potential grasps is generated based on an analytical
parametrisation. Generated grasps are ordered based on a metric that considers the pose
state space of a given polyflap. The output of the method is either the most stable grasping
action or the desired pose that can be integrated with a polyflap pushing mechanism to
achieve the most stable grasping action.

1 Introduction

Robots that move about in natural environments need the ability to detect and manipulate
known and novel objects. Learning about objects and their affordances is also central for under-
standing the context and execution of various delivery tasks. Given an object, the embodiment
of the robot and the task itself, the amount of potential grasps that can be applied to that
object is huge. How to choose a feasible grasp and, at the same time, deal with incomplete
information about e.g. the object geometry is not a trivial task to program. Although humans
master this skill easily, no suitable representations of the whole process have yet been proposed
in the neuroscientific literature. It is thus difficult to develop artificial control systems that can
demonstrate human grasping behaviour.

Although there exist robotic hands with several degrees of freedom, most common solutions
for mobile robots have only two or three fingers. With only two fingers and a single degree of
freedom to be controlled, the manipulation capabilities of a robot are quite constrained. Since
the shape and size of object in natural environments varies a lot, determining a good grasping
strategy is a complex task. The goal in this project is for the robots to be able to manipulate novel
objects in natural environments and there are potentially infinitely many grasping strategies that
need to be considered.

Figure 1: Polygons to form polyflaps and sample polyflaps [1].

With the aim of reducing the complexity of the problem, minimal models for objects should
be determined which requires as few assumption as possible. Humans can perceive and act
on unfamiliar and unrecognisable objects without the need of identifying or describing spatial
structures in order to perceive them. Therefore, for a robot to be able to mimic this ability,

2

the choice of the representation of objects is crucial. For this purpose, polyflaps [2] have been
considered in this work. A polyflap is a polygon (concave or convex) cut out of a flat material
and folded once to produce a 3D object. Figure 1 shows a few sample polyflaps. Based on the
shape of the original polygon and how it is folded, different polyflaps are created and thus there
is a large number of possible configurations of a single polyflap. The domain of polyflaps was
chosen since they may be easily fitted to a variety of everyday objects, [1]. We can also define
polyflap grasping strategies for two and three fingered robot hands.

In general, grasping cannot simply be achieved by opening the gripper, approaching an
object and then closing the fingers around the object. Grasping requires an understanding of the
spatial configuration of the environment to determine the approach direction, the orientation
of the gripper and the gripping location on the object. Therefore, when planning a suitable
grasping strategy, the robot needs prior knowledge about its own embodiment and scene it is
supposed to act in.

In some cases, the robot will not be able to achieve a position and orientation in the
environment from which a grasp should be applied. This may be due to the obstacles in the
scene or if the number of degrees of freedom of the robot is low. However, the robot may still
be able to change the pose (position and orientation) of the object through pushing. Thus,
pushing-for-grasping can change the state of an object from an ungraspable to a graspable pose.
This is a natural behaviour in humans to: if we want to grasp a cup by the handle and the
handle is not directly in reach of our hand, we will rotate the cup in a position from which a
suitable handle-grasp can be performed. Thus, moving an object from “out of reach” to “in
reach” is an additional requirement closely related to grasping. Pushing an object may also be
helpful when the sensory input cannot deliver a useful model of the object to plan a good grasp.
The object may then be pushed to a new pose to afford new views and provide more sensory
information about the object.

In order to specify a better pose in terms of grasping, there are two problems to be solved.
The first one is how to quantify a pose according to the grasp quality and the other is the need
of a method to specify the desired pose as a bounded region in the pose state space that enables
a performable grasp. A suitable approach is to categorise object poses and then choosing among
them. When a model for an object is given, a choice among possible poses needs to be made
that enables pushing to a suitable grasping pose. Thus, a pose needs to be quantified according
to its “graspability”.

We have developed a method for generating suitable grasps using a polyflap representation
that relies on analytic evaluation of grasp quality. Good grasps related to each pose are listed
and sorted according to the chosen quality criteria. After determining which potential poses
afford good grasps, the one with the best grasp is chosen. Nearness with respect to the current
pose or being achievable with less pushes can also influence the decision.

This report is structured as follows. In Section 2 we outline some of the related work. In
Section 3, we present the initial implementation of the grasping system. In Section 4 we describe
the idea of elementary grasping actions for polyflaps and show their use in Section 5. Finally,
we provide a discussion and conclusions in Section 6.

2 Related work

In robotic object grasping there has been a lot of effort during the past few decades. It has
been widely recognised that high-level task-related grasp planning is difficult due to the large
search space resulting from all possible hand configurations, grasp types, and object properties
that occur in realistic settings.

Early work on grasping considered generation of force-closure grasps: grasps resisting any
arbitrary force and/or moment that may act on the object externally. A good discussion and

3

review on force-closure grasp can be found in [3] and [4]. Necessary and sufficient conditions for
force-closure grasps can be defined ([5]). [6], [7], [8] have identified properties that a force-closure
grasp must possess in order to be able to perform everyday tasks similar to those performed by
human hands.

[9] extracts four mutually independent properties for grasp generation: dexterity (how
should grasping fingers be configured), equilibrium (how hard to squeeze the grasped object),
stability (how to remain unaffected by external disturbances), dynamic behaviour (how soft a
grasp should be for a given task). During task execution, the fingers should be controlled in a
way that the grasped object possesses these four essential properties. Here, it is required to have
methods to compute finger parameters such as positions and forces of fingertips and joints. Such
algorithms are essential parts of robot hand control and are called grasp synthesis algorithms.
Synthesis means determining the required finger properties in order for the grasp to have desired
properties.

Numerous approaches have been proposed for the problem of automatic grasp synthesis.
The nature of human grasps inspired many works [10], [11]. For the study of robotic grasping
and manipulation, works in [12], [9], [13], [14] provide a good starting point.

Approaches considering known objects have a detailed object model in 2D or 3D. They
aim to estimate object’s pose and retrieve a suitable grasp ([15], [16], [17]). There are also
examples of generation of grasp databases. [18] treats grasping as a shape matching problem
where a database of grasp examples are used and given a model of a new object, shape features
of the object are compared to shape features of hand poses in examples to identify a grasp. The
work relies on the availability of a 3D object model.

Approaches considering unknown objects represent the shape of an unknown object and
try to reduce the potential grasps. Related to our work, several authors have investigated
different geometrical representations for object shape. In [19], the shape of an unknown object is
approximated by box decomposition and used to choose feasible grasps. The simple geometry of
a box helps to reduce the number of potential grasps. Also, in [20] and [21], a similar approach is
proposed which contains fitting superquadrics to 3D data and then grasping a primitive shape is
performed. In [22], grasping of unknown objects is considered. Vision based object segmentation
and shape extraction are demonstrated and integrated with four elementary grasping actions.
An interesting approach for grasping unknown objects is to use genetic algorithms. In [23],
tries to solve the problem of automatic grasp synthesis of unknown planar objects by means
of a genetic algorithm and objects to be grasped are represented as superellipses, a family of
deformable 2D parametric functions. The space of possible grasp configurations is analysed
using the genetic algorithm in which resulting grasp optimises several predefined criteria. Here,
a neural network is trained on a set collected off-line using genetic algorithms. [24] proposes
an evolutionary computation method to compute force-closure grasps from surface points. The
method searches for grasping configurations without prior knowledge of objects geometry. The
object is presented as set of points.

There are also approaches trying to use grasp experience about certain objects for grasping
similar objects. The assumption here is that new objects similar in terms of shape, colour
or texture can be grasped in a similar way. Since in practice, it is difficult to extract full
3D geometry of the object very accurately, most experience based approaches that have been
demonstrated for real scenes rely on 2D data. [25] proposed a system that detects a point on
the object to grasp directly as a function of its image. The method uses machine learning on
labelled images of different objects and the classification is based on the features containing
colour, texture and edge information extracted from the image.

Lots of work on grasping has also concentrated on generation of planar grasps. The geometry
of force-closure grasps has been studied in [26] and results on polygonal planar objects are
presented. [27] presents an algorithm for computing force-closure two-finger grasp on curved

4

2D objects. [28] and [29] show an algorithm for force-closure three-finger grasps for polygonal
objects. Other work that has a similar approach are [30], [31], [32], [33], [34], [35]. In [36] and [37],
the quality of 2D grasps are evaluated by several criteria. [38] propose a grasp criterion that
yields the best grasping position for a robot hand with two soft fingers for planar objects. [39]
defines candidate grips for a parallel-jaw gripper that are resistant to slipping and torque about
the object’s centre of mass and orders them according to the defined criteria. In our work, this
method is adapted to be applicable on polyflaps.

3 System Setup

In order to demonstrate the use of the grasp generation system on real objects, a vision
system that delivers the pose of the detected polyflap models is described below. The vision
system relies on stereo images of the scene and constructs the 3D models of the detected objects.
The object is represented by the list of vertices of the surfaces and the pose. The vision system
is able to detect polyflaps with convex surfaces and track the detected model. The polyflap
models are then reconstructed using the simulator GraspIt, [40] to generate the grasps chosen
for the models as shown in Figure 2 and Figure 3. The next section describes the definition of
grasps for a two-fingered gripper which we name Elementary Grasping Actions (EGAs). EGAs
are crafted for grasping of polyflaps but generalise to objects that have planar regions. In our
work we consider three EGAs. The EGAs are formed by the approach vector and contact points.
From the determined contact points the orientation vector and the position of the gripper are
then derived.

Figure 2: System’s components.

The EGAs defined for a two-fingered, parallel jaw gripper are used with a three-fingered
hand based on the idea of virtual fingers, [41]. We do not use the full dexterity of the three-
fingered hand but use two fingers in unison to act as a parallel jaw gripper. The reason for this
is the special kinematics of the three-fingered Barrett hand since one of the fingers is static and
only a spread angle between two other fingers can be actively controlled. The procedure uses
the information obtained for the two-finger grasps, which is the locations of the grasp contact
points. One of the contact points is selected to act as a thumb and the other is the virtual
finger of the three-fingered hand. The real contacts are placed symmetrically on both sides of
the virtual contact. This also requires that there is enough space in the grasp region around
the virtual contact point to place the two fingers. Figure 4 shows the idea of virtual fingers and
Figure 5 and 6 show some example grasps generated on polyflaps with a two-fingered gripper
and the Barrett hand.

The position of the contact points is defined by the pose of the polyflap and grasp quality
requirements. Since the grippers are attached on a robot arm, the position of the hand needs

5

Figure 3: Demonstration of the grasping system with the example of the visual feedback.

Figure 4: Mapping between two- and three-finger grasps using virtual fingers.

Figure 5: Example polyflap grasps using the Barrett hand and a parallel jaw gripper.

to be estimated based on the position of the contact points. The position of the wrist for a
two-fingered hand is easy to determine since the fingers of the hand are made of a single link.
The position of the wrist for the Barrett hand is defined through a simple geometric estimation
based on the finger angles.

We start by estimating the opening between the opposing fingers of the Barrett hand. This

6

Figure 6: A few examples of Barrett preshapes as a two-fingered gripper.

Figure 7: Finding wrist position.

is based on the Euclidean distance d between the two original contact points. As seen from
Figure 7, the length x is obtained by subtracting the wrist width w from the distance between
the two contact points (x = (d − w)/2). If the distance between the fingertips is less than the
width of the wrist, then the distance is x = (w − d)/2. Since the link lengths and the angle
between them are known, f and consequently the distance L are also known. The Barrett hand
is then placed at that distance from the middle point of the two contact points along the chosen
approach direction. In Figure 6, the Barrett hand grasps two contact points on two parallel
surfaces using this approach.

4 Elementary Grasping Actions for Polyflaps

To be able to define qualified grasps, several conditions have to be satisfied. The gripper
should not cause the object to slide due to a torque when it closes its fingers around a polyflap.
The evaluation is based on the concept of friction cones and makes use of angles between the
normals to the object’s contour at the grasping points and the grasping line. As stated by [26],
force closure with two friction contact points is achieved when the grasping line lies inside both
friction cones. The grip axis, the line joining the contact points, must lie in the friction cones
at each contact edge in order to prevent the slippage.

The friction cone is defined by the half angle arctan(µ), where µ is the coefficient of friction.
We consider the model of contact with friction. According to Coulomb friction model, the
directions of forces exerted on the surface by the fingers should not differ from the normal
direction for an angle larger than arctan(µ) to prevent finger slippage, and the value of coefficient
depends on the materials of both the finger and the object surface. The directions of forces must
meet this condition regardless of their magnitude.

The objects considered in this work are assumed homogeneous so the friction coefficient is

7

the same on all surfaces. The grip should have minimal dependence on friction, so the grip axis
is aligned as close as possible to the corresponding normal of the each contact. The grip should
minimise the amount of torque when lifting the object thus the length of the moment arm with
respect to the centre of the mass of the object needs to be minimised.

Different polyflaps afford different types of grasps considering their geometry. As mentioned
previously, in our work we consider three EGAs. The EGAs are formed by the approach vector
and contact points. From the determined contact points the orientation vector and the position
of the gripper are derived.

EGA1 is defined to grasp a surface as close as possible to the centre of mass of the object.
EGA2 and EGA3 are very similar to each other. EGA2 is defined for one surface, while EGA3 is
considering two surfaces. EGA3 can be applied with different approach vectors to make it more
applicable. The main motivation for choosing these grasps is that they represent the simplest
possible two fingered grasps humans commonly use.

The EGAs are parameterised by the final pose and gripper configuration which can easily be
obtained from the desired fingertip positions. For the simple parallel jaw gripper, an EGA will
thus be defined by seven parameters: EGA(x, y, z, γ, β, α, δ) where p = [x, y, z] is the position
of the gripper “centre” according to Figure 8; γ, β, α are the roll, pitch and yaw angles of the
vector ~n (in order to achieve the desired approach and orientation vector); and δ is the gripper
configuration, see Figure 8. Note that the gripper “centre” is placed in the middle of the gripper.

Figure 8: Parameterisation of grasps using the approach vector.

In the following sections, we describe each of the EGAs in more detail.

4.1 EGA 1

The EGA1 is defined in order to grasp a given polyflap using only one surface and one edge.
The aim is to grasp the object from a point which is as close as possible to the centre of mass
of the object. That point should be reached in order to minimise the amount of torque. In
Figure 9, a few example grasps are shown where the chosen contact point on the surface is the
closest point to the centre of mass of the polyflap.

Figure 9: Example of EGA1.

8

The orientation of the hand is parallel to the surface normal and the approach vector is
derived as following. After determining possible edges that can be grasped, for each of them the
approach direction is found based on the chosen point to be grasped. As seen in Figure 10, d1
and d2 are the end points of the chosen edge and the vector ~A is projected on the unit vector
~B to reach point d which is used to form the approach vector ~APP estimated as following:

~A = (c − d1) (1)

~B =
(d2 − d1)
‖(d2 − d1)‖

Given the distance between d and d1 as dist = ~A · ~B, the approach and orientation vectors
are estimated as:

d = ~B ∗ dist + d1 (2)

~APP =
(c − d)
‖(c − d)‖

~ORI = ~N

where ~N represents the surface normal.

Figure 10: Approach vector for EGA1.

If the aimed contact point is not reachable by the fingers due to the fact that the distance
between the outer edge and the point c is bigger than the finger length, then the reachable point
along the approach direction is chosen for grasping.

4.2 EGA 2

The EGA2, shown in Figure 11, is defined in order to grasp a given polyflap from one surface
using two surface edges. The angle between normal to the edge and the grip axis should be less
than or equal to friction angle arctan(µ). The aim is to minimise both angles for two edges
at the same time, to have minimum dependence on friction. In order to achieve a balance for
minimising the angles at the same time, the grip axis should be perpendicular to the bisector of
the two edges. In other words, the angle between the grip axis and the normal to the bisector

9

should be zero in the optimal case. In order to achieve a good orientation for the hand, the
grasp axis is chosen as close as possible to the normal of the bisector of two contact edges. If
they are parallel, the orientation perpendicular to both edges is the best choice.

Figure 11: Example of EGA2.

In summary, the grip axis should be aligned as close as possible to the normal of the each
contact edge in order to have minimal dependence on friction. A good candidate is therefore
parallel to the normal of the bisector of contact edges which provides minimal dependence on
friction as shown in Figure 12. In that way, both angles between the grip axis and the edge
normals are minimised.

Figure 12: Definition of grip axis for EGA2.

The grip should also minimise the amount of torque when lifting the object. Thus, the
length of the moment arm with respect to the centre of the mass should be minimised. The grip
axis should thus go through the centre of the mass of the object and it should be perpendicular
to the bisector of the contact edges as shown in Figure 13 (left). If the line that passes through
the centre of the mass is perpendicular to the bisector, but it fails to hit one or both edges
then we must adjust the grasp to meet all criteria. To be able to have the grip axis within the
friction cones, the angle between the edge normal and the grip axis should be less than or equal
to arctan(µ) for both contacts. As seen in Figure 12, the angles a and b should satisfy this
condition by a <= arctan(µ) and b <= arctan(µ). Therefore the angle between the two edges
a + b should satisfy the condition a + b <= 2 ∗ arctan(µ), otherwise the grip axis is no longer
within the friction cones.

10

Figure 13: The best grip axis (left) and contact points for EGA2 (right).

The aim is to achieve a grip axis which is both as close as possible to the centre of mass
of the object and has minimum angle with both edge normals at the same time. Therefore, the
contact points for EGA2 are determined by considering the centre of mass of the polyflap and
the best possible angle with the edge normals. If the angle (α) between two edges is less than
or equal to 2 ∗ arctan(µ), then for this pair the contact points are calculated as following.

As seen in Figure 13 (right), the point o is the intersection point of the chosen edge pair.
By using o, the point d on the intersection of grip axis and the bisector is obtained. The point
c on the surface is the closest point to the centre of mass of the object and the grip axis goes
through this point. The definitions are as follows:

~u1 =
(e1 − o)
‖(e1 − o)‖ (3)

~u2 =
(e3 − o)
‖(e3 − o)‖

α = acos(~u1 · ~u2)

~A =
(~u1 + ~u2)
‖(~u1 + ~u2)‖

~C =
(~u1 − ~u2)
‖(~u1 − ~u2)‖

d = (~A · ~B) ∗ ~A + o

The distance between cp1 and d is denoted x:

x = (A · B) ∗ tan(
α

2
) (4)

cp1 = ~C ∗ x + d

cp2 = ~−C ∗ x + d

11

The orientation vector for the hand is obtained by using the two contact points:

~ORI =
(cp1 − cp2)
‖(cp1 − cp2)‖ (5)

and the approach vector is simply ~APP = −surface normal. It can also be seen that, after
finding a point on the desired grip axis like d by using any point on the surface as o, the contact
points are the intersections of the two contact edges with the line passing through d and c.

Figure 14: Two examples where the best grip axis does not intersect the chosen edges.

When the best grip axis, namely the optimum grasp which has the minimum torque and
friction, can not be applied, then the grip axis needs to be modified satisfying the requirement
that the grip axis lies within the friction cone of each contact edge by minimising friction and
torque. The change to the grip axis can be performed in two ways: by minimising either
frictional dependence or torque. To minimise friction, the grip axis should have a suitable angle
with both contact edges at the same time. Since it is perpendicular to the bisector of the edges
in the optimal case, then the aim is to have the minimum deviation from that case. To minimise
the torque, the grip axis should be as close as possible to the centre of the mass of the object.
To achieve this, the contact points are searched in the neighbourhood of the optimum contact
points. The result of the search is then added to the list of possible grasps. The procedure for
each of the cases is as follows:

� Minimising friction: We start by finding i) critical edge(s) not intersected by the line
perpendicular to the bisector through the centre of the mass and ii) critical point(s) as the
end point of the critical edge nearest to that line, as shown in Figure 14. We then need to
check for a grip axis parallel to the normal of the bisector through each critical point. If
none exists, then the best grip has one grip point at a critical point and the other at one
of the endpoints of the other edge. The one closest to the normal is chosen and it should
be in friction cones of edges as shown in Figure 15.

� Minimising torque: If there is no friction minimising grip then there is no torque minimising
grip. Otherwise, we need to check for a grip axis through both the com and a critical point
similarly, to find the closest axis to the centre of the mass. If the axis is not within the
friction cones then perturb it to have a direction that satisfies the friction criteria as shown
in Figure 16.

12

Figure 15: Minimising Friction: in the first case, the grip axis is normal to the bisector; in the
second, minimum deviation from normal is achieved.

Figure 16: Minimising Torque: in the first case, the grip axis goes through com; in the second,
minimum distance to com is achieved and in the third, the grip axis is perturbed to be in the
friction cones.

4.3 EGA 3

EGA3 can be applied in three ways where the way the contact points are calculated is the same
but the approach vectors or the way fingers get in contact with the object may differ as explained
below. These are denoted EGA3a, EGA3b and EGA3c, respectively.

Figure 17: Example of EGA3a.

The contact points are derived similarly to EGA2 and some examples are shown in Figure 17,
Figure 18, Figure 19 and Figure 20. The grip axis is formed by considering the centre of mass
of the polyflap and the best possible angle with the surfaces. The approach vector ~APP for

13

Figure 18: Contact points for EGA3.

EGA3a is derived from the surface normals (~N1 and ~N2).

~APP =
−(~N1 + ~N2)

‖(~N1 + ~N2)‖
= ~A (6)

This grasp can be applied if the angle (180 − α) between surfaces is less than or equal to
2 ∗ arctan(µ):

α = acos(~N1 · ~N2) (7)

The point o lies on the common line of two surfaces and is chosen as the closest point to
the centre of mass of the object. After choosing o, similar calculations to EGA2 are performed
in order to find contact points on two surfaces (Figure 18).

Figure 19: Example of EGA3b.

EGA3b is considered when the common line is parallel to the planar surface on which the
polyflap stands and the distance between contact points is big enough to place the fingers. It
can be preferred when the orientation calculated for the hand is parallel to the planar obstacle
surface. The approach vector is computed in the same way as in EGA3c, and it is parallel to
the common line between the two surfaces and can also be defined as:

~APP ‖ (~N1 ∗ ~N2)

‖(~N1 ∗ ~N2)‖
(8)

14

Figure 20: Example of EGA3c.

The fingers are opened until contacts are obtained. The fingertip positions should be at the
centre of mass of the object at least or beyond that to be able to perform this type of grasp.

The only difference between EGA3a and EGA3c is the approach vector, since one of them
can be easier to be reached than the other. If the gripper can not be opened enough to grasp
according to the chosen grip axis then the grip axis is moved along the two contact edges without
changing its orientation for EGA2 and EGA3. Obviously, for EGA2, when parallel edges are to
be grasped and the fingers can not be opened enough, the grasp is eliminated, since moving the
axis does not change the required finger opening.

5 Using EGAs

A polyflap can be in three discrete qualitative states: i) one surface down, ii) one edge
next to the common line from each surface down and iii) one edge from each surface other than
the neighbour edges to the common edge down, see Figure 21. In case a much better grasp is
applicable in a qualitative state other than the current one, in order to increase grasp quality,
a mechanism that plans pushes to move the polyflap from the current state to the desired one
can be triggered. Pushing may also help when a chosen grasp is good enough but not reachable
for the hand.

Figure 21: Qualitative pose states of a polyflap.

For each state, all possible EGAs are generated and compared according to two criteria. To
achieve this, edges in contact with the resting surface are marked as blocked and only reachable
parts of the polyflap are considered. For the polyflap to stand on the considered edges, those
edges should be lying on the same plane and also polyflap should be at rest (in a state of
equilibrium). In the calculations, weights are proportional to surface areas, since we consider
objects for which weight is evenly distributed.

The quality measures are as follows. The grip axis should be as close as possible to the
centre of mass of the polyflap and the angle between the normal at the contact and the grip axis
should be as close as possible to 0. Therefore, the values for the measure should be as close as
possible to 0 and these are normalised into [0-1] accordingly. Thus, we can define two measures
accordingly:

DTC = distance(grip axis, com) (9)

15

where DTC denotes the distance to the centre of mass of the polyflap. Then

b = angle(grip axis, corresponding normal) (10)

Angle =
(b1 + b2)

2

where b is the angle between the normal and the grip axis at the contact point. The normal is
the surface normal for EGA3 and EGA1, and it is the normal to the edge for EGA2.

The orderings with respect to the distance to com and the angle are simply combined like
in the following:

Quality =
(DTC + Angle)

2
(11)

For instance, the polyflap below (Figure 22) should be pushed to move to one of the listed
states where EGA1, EGA3a and EGA3c provide the best quality in three different qualitative
states. The selection can favour the one requiring the least effort for pushing. The quality
measures calculated for this polyflap and all possible EGAs are listed in Figure 23 and Figure 24.

Figure 22: The best EGAs for the given polyflap.

6 Discussion and Conclusion

In this work, EGAs for single polyflaps are studied. Using the models delivered by the vision
system for detected polyflaps in the scene, polyflaps are reconstructed and the corresponding
EGAs are generated. These are then evaluated using two quality measures. The polyflaps are
evaluated considering all possible states and better alternatives to the current state in terms of
making it reachable or more graspable can be suggested. Realising that the present situation
does not afford a desired grasp (or maybe view) means the system is able to understand the
existence of a need for a change, and take steps to turn (extend) the current situation into a
new one that affords the desired grasps. Additionally, according to seeing world composed of
polyflaps, the system knows what kind of objects (polyflaps) can be grasped due to kinematics of
the hand which means the system is aware of whether or not an object can be grasped according
to the visual input.

At this point, if a grasp that is expected to succeed fails, some assumptions about the
object can be made such as its weight distribution not being even, the visual input representing

16

Figure 23: Quality values for the listed EGAs.

Figure 24: All EGAs for the given polyflap.

17

the objects shape, size and pose is not accurate enough or the real surface friction coefficients
are different than the expected ones. The polyflap world abstracts away from a huge amount
of complex detail of the real world. Therefore, polyflaps are good candidates to minimise the
representation of an object model when it is possible to fit polyflaps to real world objects of
interest, although the lack of curved surfaces and edges in the polyflap domain might be a
restriction.

However there may be some problems when using EGAs on polyflaps detected on different
objects. For example, in case of a scene with a box, EGAs as shown in Figure 25 can be
generated if no constraints are taken into account. In order to eliminate unfeasible ones, there
can be two alternatives which are trying to detect another polyflap or support the input model
with additional point cloud information to include more knowledge from the scene that means
seeking additional information in order to compensate for this situation and extend its knowledge
about the scene. In the former case, the EGAs may not be directly applied to the combinations
of polyflaps, therefore a need for a hierarchical representation of polyflaps (putting polyflaps
together) may arise so that the relations between them are kept to form EGAs.

Figure 25: Example of fitting polyflaps.

Looking at grasping generally, failures can come from a number of things such as object
shape, size or position and orientation wrongly observed depending on the level of accuracy of the
vision system. If the situation where weight of object not evenly distributed is not considered,
failure may occur as well. Another reason could be that surface texture is too smooth, therefore
slippage occurs. In case object is detected as one object but separates from other parts when
grasped, vision system detects failure but tactile sensors still detect success.

There may be other reasons due to embodiment such as limitations in the hand where objects
a parallel gripper can grasp a multifinger may fail at and vice versa. Therefore, sometimes an
exploratory stage may be needed where the robot hand pushed objects in order to confirm that
there is one or more than one object, or to rotate the object to eliminate occlusions. In doing
so, the object may be turned and a handle appears which increases the likelihood for choosing
a better grasp. For example, a cup where the handle is facing backwards and is occluded from
the vision system may appear cylindrical in nature and when the robot tries to grasp it fails
because the back part is sticking out and results in not good enough contact between the hand

18

and the object, slippage can occur and result then in complete failure.
In terms of using polyflaps as a type of representation, the additional possibilities to those

mentioned above can be listed as in the following. First of all, depending on the chosen work
environment, polyflaps may not be detected on all graspable objects due to their shape being
too different than a polyflap in nature. Another situation where grasp results in failure might
be that when at least one polyflap is fit on the object by the vision system, but the chosen
grasp for that polyflap is not stable enough due to the centre of mass of the object having a
large distance from the grip centre causing a large amount of torque or as mentioned before, if
the vision system can not provide enough information about the object, a grasp which is not
feasible can be chosen.

In summary, the next step for our work will be to first integrate the presented system with
a pushing module to demonstrate the feasibility of achieving poses from which good grasps can
be performed. In parallel, we will work on extending the method to three fingered grasps and
explore the use of the polyflap representations on real objects.

19

References

[1] Sloman, A., The domain of polyflaps and other domains for acting and learning, http:
//www.cs.bham.ac.uk/~axs/polyflaps/

[2] Sloman, A., Polyflaps as a domain for perceiving, acting and learning in a 3-D world, AAAI
Fellows Symposium, Menlo Park, CA, (2006)

[3] Misra, B., and Silver, N., Some discussion of static gripping and its stability, IEEE Trans.
Sys. Man Cybernet, 19(4):783-796, (1989)

[4] Troccaz, J. P., Grasping: A state of the art, The Robotics Review, Vol. 1, 71-98, MIT Press,
Cambridge, MA, (1989)

[5] Li, J., Jin, M., and Liu, H., A new algorithm for three-finger force-closure grasp of polygonal
objects, Proc. IEEE Int. Conf. on Robotics and Automation ICRA ’03, IEEE Computer
Society Press, Los Alamitos, (2003)

[6] Cutkosky, M. R., On grasp choice, grasp models, and design of hands for manufacturing
tasks, IEEE Trans. Robotics Automation, RA-5(3):269-279, (1989)

[7] Liu, H., Iberall T., and Bekey, G. A., The multidimensional quality of task requirements
for dexterous robot hand control, Proc. 1989 IEEE Int. Conf. on Robotics and Automation,
452-457, (1989)

[8] Iberall. T., The nature of human prehension: Three dexterous hands in one, Proc. IEEE
Int. Conf. Robotics and Automation, 396-401, (1987)

[9] Shimoga, K. B., Robot grasp synthesis algorithms: A survey, Int. Journal of Robotics Re-
search 15(3), 230-266, (1996)

[10] Cutkosky, M., and Howe, R., Human grasp choice and robotic grasp analysis, Dextrous
robot hands, 5-31, New York, Spring-Verlag, (1990)

[11] Iberall, T., and Mackenzie, C., Opposition space and human prehension, Dextrous robot
hands, 32-54, (1990)

[12] Bicchi, A., and Kumar, V., Robotic grasping and contact: a review, Proc. IEEE Int. Conf. on
Robotics and Automation ICRA ’00, vol. 1, IEEE Computer Society Press, Los Alamitos,
(2000)

[13] Li, Z., and Sastry, S., Issues in dextrous robot hands, Dextrous robot hands, 154-186, (1990)

[14] Yoshikawa, T., and Nagai, K., Analysis of multi-fingered grasping and manipulation, Dex-
trous robot hands, 187-208, (1990)

[15] Ekvall, S., and Kragic, D., Learning and Evaluation of the Approach Vector for Automatic
Grasp Generation and Planning, IEEE Int. Conf. on Robotics and Automation, 4715-4720,
(2007)

[16] Morales, A., Azad, P., Asfour, T., Kraft, D., Knoop, S., Dillmann, R., Kargov, A., Pylatiuk,
C., and Schulz, S., An Anthropomorphic Grasping Approach for an Assistant Humanoid
Robot, 37th Int. Symposium on Robotics, 149-152, (2006)

[17] Glover, J., Rus, D., and Roy, N., Probabilistic Models of Object Geometry for Grasp Plan-
ning, IEEE Int. Conf. on Robotics and Automation, Pasadena, CA, USA, (2008)

20

[18] Li, Y., and Pollard N. S., A shape matching algorithm for synthesizing humanlike enveloping
grasps, 5th IEEE-RAS Int. Conf. on In Humanoid Robots, 442-449, (2005)

[19] Heubner, K., and Kragic, D., Selection of robot pre-grasps using box-based shape approxi-
mation, IEEE Int. Conf. on Intelligent Robotics and Systems, 1765-1770, (2008)

[20] Biegelbauer, G., and Vincze, M., Efficient 3D Object Detection by Fitting Superquadrics
to Range Image Data for Robot’s Object Manipulation, IEEE Int. Conf. on Robotics and
Automation, 1086-1091, (2007)

[21] Goldfeder, C., Allen, P. K., Lackner, C., and Pelossof, R., Grasp Planning via Decomposition
Trees, IEEE Int. Conf. on Robotics and Automation, 4679-4684, (2007)

[22] Kraft, D., Pugeault, N., Baseski, E., Popovic, M., Kragic, D., Kalkan, S., Worgotter, F.,
and Krueger, N., Birth of the Object: Detection of Objectness and Extraction of Object
Shape through Object Action Complexes, Int. Journal of Humanoid Robotics

[23] Chella, A., Dindo H., Matraxia, F., and Pirrone, R., Real-time visual grasp synthesis using
genetic algorithms and neural networks, AI*IA ’07: Proc. of the 10th Congress of the Italian
Association for Artificial Intelligence, 567-578, Springer-Verlag, Rome, (2007)

[24] Sangkhavijit, C., Niparnan, N., and Chongstitvatana, P., Computing 4-Fingered Force-
Closure Grasps from surface Points Using Genetic Algorithm, Proc. of the IEEE Int. Conf.
on Robotics, Automation and Mechatronics, 1-5, (2006)

[25] Saxena, A., Driemeyer, J., Kearns, J., and Ng, A. Y., Robotic Grasping of Novel Objects,
Neural Information Processing Systems, 19, 1209-1216, (2007)

[26] Nguyen, V. D., Constructing force-closure grasps, Int. Journal of Robotics Research, 7(3),
(1988)

[27] Faverjon, B., and Ponce, J., On computing two-finger force-closure grasps of curved 2D
objects, IEEE Int. Conf. on Robotics and Automation, 424-429, (1991)

[28] Park, Y. C., and Starr, G. P., Grasp synthesis of polygonal objects using a three-fingered
robot hand, Int. Journal of Robotics Research, 11(3):163-184, (1992)

[29] Ponce, J., and Faverjon, B., On computing three-finger force-closure grasps of polygonal
objects, IEEE Transactions on Robotics and Automation, 11(6):868-881, (1995)

[30] Markenscoff, X., Li, L., and Papadimitriou, C. H., The geometry of grasping, Int. Journal
of Robotics Research, 9(1):61-74, (1990)

[31] Ferrari C., and Canny, J., Planning optimal grasps, IEEE Int. Conf. on Robotics and
Automation, 2290-2295, Nice, France, (1992)

[32] Chen I. M., and Burdick, J. W., Finding antipodal point grasps on irregularly shaped objects,
IEEE Int. Conf. on Robotics and Automation, 2278-2283, (1992)

[33] Guo, G., Gurver, W.A., and Zhang, Q., Optimal grasps for planar multifinger robotic hands,
IEEE Transactions on Systems, Man and Cybernetics, 22(1):193-198, (1992)

[34] Mishra, B., and Teichmann, M., Three finger optimal planar grasp, IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, Grenoble, France, (1994)

[35] Mirtich, B., and Canny, J., Easily computable optimum grasps in 2D and 3D, IEEE Int.
Conf. on Robotics and Automation, 739-747, (1994)

21

[36] Park, Y., and Starr, G., Optimal grasping using a multifingered robot hand, Proc. IEEE Int.
Conf. on Robotics and Automation, 689-694, IEEE Computer Society Press, Los Alamitos
(1990)

[37] Morales, A., Sanz, P., and del Pobil, A., Vision-based computation of three-finger grasps
on unknown planar objects, IEEE/RSJ Int. Conf. on Intelligent Robots and System, vol. 2,
(2002)

[38] Sugiyama, S., Koeda, M., Fujimoto, H., and Yoshikawa, T., Measurement of Grasp Position
by Human Hands and Grasp Criterion for Two Soft-Fingered Robot Hands, IEEE Int. Conf.
on Robotics and Automation Kobe International Conference Center, Japan, (2009)

[39] Smith, G., Lee, E., Goldberg, K., Bhringer, K., and Craig, J., Computing Parallel-Jaw
Grips, Proc. IEEE Int. Conf. Robotics and Automation, vol. 3, 1897-1903, (1999)

[40] Miller, A. T. and Allen, P. K. Graspit! A Versatile Simulator for Robotic Grasping, Robotics
and Automation, 11(4), 110-122, (2004).

[41] Mackenzie, C., and Iberall, T., The Grasping Hand, North Holland, (1994)

22

Prediction learning
in robotic pushing manipulation

Marek Kopicki, Jeremy Wyatt, Rustam Stolkin
School of Computer Science

University of Birmingham, UK

Abstract— This paper addresses the problem of learning
about the interactions of rigid bodies. A probabilistic frame-
work is presented for predicting the motion of one rigid body
following contact with another. We describe an algorithm for
learning these predictions from observations, which does not
make use of physics and is not restricted to domains with
particular physics. We demonstrate the method in a scenario
where a robot arm applies pushes to objects. The probabilistic
nature of the algorithm enables it to generalize from learned
examples, to successfully predict the resulting object motion for
previously unseen object poses, push directions and new objects
with novel shape. We evaluate the method with empirical
experiments in a physics simulator.

I. INTRODUCTION

In early childhood, humans and animals learn models for
predicting the interactions with the environment [1]. It seems
unlikely that these models comprise an explicit encoding of
Newtonian physics, and so must instead rely on a learned
relationship between observed actions and their outcomes.

This paper addresses the problem of learning to predict the
motion of one body, which results from a forced interaction
with another. We have chosen to investigate this problem in
the context of robotic “poking” or “pushing” operations, be-
cause this includes a large number of unstable manipulations
and hence provides interesting situations. However the work
is potentially more general.

An algorithm is presented which learns to predict the
motions of a rigid object that will result from an applied
robotic pushing action. The algorithm does not rely on any
understanding or encoding of Newtonian mechanics, but can
be trained in simple online experiments in which a robot
arm applies random pushes to objects of interest and extracts
the resulting motions using a vision system. Properties of
objects, and their interactions, are learned as distributions.

Pushing operations are encountered frequently in robotics,
but have received relatively little attention in the research
community. They are important in that robotic grasping
frequently involves a pushing phase, when one finger or
jaw of a gripper contacts the workpiece before another.
Furthermore, pushing may often be preferable to pick and
place type operations if the robot lacks the size or strength
necessary to lift an object.

[2] was the first to identify pushing operations as funda-
mental to manipulation, especially grasping. Mason develops
a detailed analysis of the mechanics of pushed, sliding
objects and determines conditions required for various 2D

motions of a pushed object. [3] attempts to put quantitative
bounds on the rate at which these predicted motions occur.
[4] developed a method for finding the set of all possible
motions of a sliding object, in response to an applied push.
More recently, [5] has developed path planning techniques
for push manipulation of 2D sliding objects, based on the
use of a physics simulator for prediction.

The above work is restricted to planar sliding motions of
effectively 2D objects. In contrast, there is comparatively
little literature which addresses the far more complex prob-
lems of predicting the results of push manipulations on real
3D bodies, which are free to tip or roll. It is possible to
use physics simulators to predict the motions of interacting
rigid bodies, however this approach is reliant on explicit
knowledge of the objects, the environment and key physical
parameters. It is therefore not generalizable to new objects
or novel situations.

Machine learning approaches have been developed to learn
pre-specified binary affordance classes, e.g. rolling versus
non-rolling objects [6], or liftable versus non-liftable objects
[7]. [8] present experiments where a robot arm coupled to
a vision system learns affordances (e.g. rolling or sliding)
of various different objects by applying pushes and then
observing the resulting motions. This kind of approach is
limited, in that affordances learned for a specific object and
push action, may not be generalizable to a new object, pose
or push direction. Furthermore, although certain primitive
classes of motion, e.g. “rolling”, may be predicted, such
systems cannot predict an explicit 6-DOF rigid body motion
for the pushed object.

In contrast, we present a system which can learn to predict
the explicit 3D rigid body transformations that will result
when an object in an arbitrary orientation is subjected to
an arbitrary push. The probabilistic nature of the learning
enables generalization to previously unseen push directions
and object poses. Furthermore, the system is often able
to successfully predict the behaviors of novel objects with
previously unencountered shapes.

II. REPRESENTING THE INTERACTION OF RIGID BODIES

Consider three reference frames A, B and O in a 3-
dimensional Cartesian space (see Figure 1). While frame O
is fixed, A and B change in time and are observed at discrete
time steps ..., t−1, t, t+1, ... every non-zero ∆t. A frame X

Fig. 1. A system consisting of two interacting bodies with frames A and B
in some constant environment with frame O can be described by six rigid
body transformations T At,Bt , T Bt,O , T At−1,At , T At,At+1 , T Bt−1,Bt ,
and T Bt,Bt+1 .

at time step t is denoted by Xt, a rigid body transformation
between a frame X and a frame Y is denoted by TX,Y .

From classical mechanics we know that in order to predict
a state of a body, it is sufficient to know its mass, velocity
and a net force applied to the body. We do not assume
any knowledge of the mass and applied forces, however the
transformations of a body, with attached frame B, over two
time steps TBt−1,Bt and TBt,Bt+1 encode its acceleration
- the effect of the applied net force. Therefore, if the net
force and the body mass are constant, the transformations
TBt−1,Bt and TBt,Bt+1 provide a complete description of
the state of a body at time step t in absence of other bodies.
A triple of transformations TBt,O, TBt−1,Bt and TBt,Bt+1

provide a complete description of a state of a body in some
fixed frame of reference O which accounts for a constant
or stationary environment. Similarly, transformations TAt,O,
TAt−1,At and TAt,At+1 provide such a description for some
other body with frame A.

The state of a system consisting of two bodies with frames
A and B in some constant environment with frame O can
be described by the six transformations as it is shown in
Figure 1, where TAt,O has been replaced by a relative
transformation TAt,Bt . The transformation TBt,O can be
omitted, if the environment does not affect the motion of
the bodies or it is explicitly modeled by one of them.

The prediction problem can now be stated as: given we
know or observe the starting states and the motion of the
pusher, TAt,At+1 , predict the resulting motion of the object,
TBt,Bt+1 . This is a problem of finding a function:

f : TAt,Bt , TBt,O, TAt−1,At , TBt−1,Bt , TAt,At+1 → TBt,Bt+1

(1)
Function 1 is capable of encoding all possible effects of

interactions between rigid bodies A and B, providing their
physical properties and applied net forces are constant in
time. Furthermore, it can be learned purely from observations
for some fixed time delta ∆t. There are two important
problems related to relying on such a function:

1) Limited or no generalization capability. A function
approximating interactions between bodies A and B

cannot be used for any other bodies of e.g. different
shape or mass. This is because function 1 implicitly
encodes information about the surfaces of A and
B, which play a critical role in collisions. In this
way a slight change of the objects’ shape can cause
a dramatic deviation of the predicted transformation
TBt,Bt+1 .

2) Dimensionality problem. For a rigid body transfor-
mation represented as a set of 6 or 7 numbers, the
domain of function 1 has 30 or 35 dimensions.

III. COMBINING LOCAL AND GLOBAL INFORMATION

It is clear that we need to enable generalization of pre-
dictions with respect to changes in shape. We also assume
quasi-static conditions, i.e. we ignored all frames at time
t− 1. Consider two objects lying on a table top. In Figure 2
there are two situations that are identical except for the shape
of the object A, yet it is clear that the same transformation of
A’s position will lead to quite a different motion for object B.
How can we encode the way that the shapes of A and B alter
the way they behave? We use a product of several densities to
approximate the density over the rigid body transformation
given in the function 1.

At

At1

Bt=B t1

At1
At

Bt

Bt1

Fig. 2. Two scenes, each with two objects on a table top, viewed from
above. Between the two scenes only the shape of A is different. Yet when A
moves the resulting transformation T Bt,Bt+1 will be quite different. This
shows that our predictors must take some aspect of the shape of A and B
into account.

To do this we approximate two densities, conditioned
on local and global information respectively. We define the
global information to be the information about the pose, but
not the shape, of the whole object. We define the local shape
we consider here to be the pose of the surfaces of A and B at
the contact point, or the point of closest proximity, between
the object and the finger. We model this local shape as a pair
of planar surface patches, of limited extent (see Figure 3).
Statistically, the greater the starting distance between these
local surface patches of A and B, and/or the smaller the
magnitude of the transformation TAt,At+1 , the less likely
it is that the objects will collide, and hence the less likely
it is that the pose of shape B will change between t and
t+ 1, or equivalently the more likely that the transformation
TBt,Bt+1 will be an identity transformation Id. On the other
hand, if the local surfaces A and B are close a large portion
of possible transformations TAt,At+1 will cause collisions.

Transformations TAt,Bt , TAt,At+1 and TBt,Bt+1 , ob-
served over many experimental trials for many different

At
T
At , B t

Bt
T
Bt , Bt1

T
At , At1

At1

Bt1

At
T
At , B t

Bt
T
Bt , Bt1

T
At , At1

At1

Bt1

Fig. 3. Two scenes, each with two objects on a table top, viewed from
above. Local shapes A and B, transformations T At,At+1 and T At,Bt are
the same in each scene. Still, the transformation T Bt,Bt+1 is different
because local shapes belong to different parts of objects.

objects form a distribution. A particularly useful distribution
is a conditional distribution:

{TBt,Bt+1 |TAt,At+1 , TAt,Bt} (2)

While conditional distribution 2 for global frames may
become unimodal, for local shapes is highly multi-modal.
To see this consider two scenes with two objects, where the
initial conditions are identical (Figure 3). Local shapes A
and B, transformations TAt,At+1 and TAt,Bt are the same
in each scene. Still, the transformation TBt,Bt+1 is different
because local shapes belong to different parts of objects.

Fig. 4. 2D projection at time t of a robotic finger with global frame At,
an object with global frame Bt, and a ground plane with constant global
frame O. Local frames Ap

t and Bp
t describe the local shape of the finger

and an object at their point of closest proximity.

Consider a 2D projection at time t of a robotic finger
with global frame At, an object with global frame Bt, and
a ground plane with constant global frame O (Figure 4).
Similarly, local frames Ap

t and Bp
t describe local shapes

belonging to a finger and an object. The global conditional
density function can be defined as:

p(TBt,Bt+1 |TAt,At+1 , TAt,Bt , TBt,O) (3)

and similarly a local conditional density function as:

pc(TBp
t ,Bp

t+1 |TAp
t ,Ap

t+1 , TAp
t ,Bp

t) (4)

Because both objects are rigid, TAt,At+1 ≡ TAp
t ,Ap

t+1 and
TBt,Bt+1 ≡ TBp

t ,Bp
t+1 . To predict the rigid body transfor-

mation of an object when it is in contact with others we
are faced with how to represent the constraints on motion
provided by the contacts. We do this using a product of
experts. The experts represent by density estimation which

rigid body transforms are (in)feasible for each frame of refer-
ence. In the product, only transformations which are feasible
in both frames will have high probability. For the finger-
object scenario a prediction problem can then be defined as
finding that TBt,Bt+1 which maximizes the product of the
two conditional densities (experts) 3 and 4:

max
T Bt,Bt+1

p(TBt,Bt+1 |TAt,At+1 , TAt,Bt , TBt,O)×
pc(TBt,Bt+1 |TAt,At+1 , TAp

t ,Bp
t) (5)

The prediction problem cannot be solved using regression
approach. Two regression estimates could only be combined
linearly since they each make only a single prediction.
Without information about the density around each of these
predictions there is no ability to find compromise predic-
tions in a principled way. In principle it is possible to fit
unimodal densities using regression, but even this approach
will lead to failure if the conditional distribution is multi-
modal. In this case the conditional distributions are indeed
highly multi-modal. Another way of saying this is that since
the constraints are clearly highly non-linear the regression
approach will fail for even very simple situations.

Starting with some initial state of the finger TA0 and
the object TB0 , and knowing a trajectory of the finger
A1, . . . AN over T time steps, one can predict a whole
trajectory of an object B1, . . . BN by sequentially solving
a problem of maximization of the product 5.

There are two major advantages of using such products
of densities, e.g. over attempting to directly approximate the
function of equation 1:

1) Efficient movement encoding and learning. Combin-
ing information from both local and global frames, al-
lows objects’ properties to be separated into those that
are common to many objects and those that are specific
to the particular object in question. Common properties
(e.g. impenetrability) tend to be encoded in the local
surface patches distribution, function 4, whereas the
global density function 3 encodes information specific
to the workpiece, such as its overall shape. The global
density function 3 tends not to require many learning
trials to provide accurate predictions, when combined
with the local density function 4, which is shared or
common to many different objects or situations. Thus
this combination provides a movement encoding and
learning method which is highly efficient.

2) Generalization. Even small differences in a local
object surface can cause very different reactions
TBt,Bt+1 for some given action TAt,At+1 . However,
such changes are unlikely to be predicted by a global
density function alone. Hence, computing TBt,Bt+1 as
the maximizer of the product of densities, equation
5, enhances the ability of the system to generalise
between different objects and actions, because both
local and global densities must simultaneously support
the predicted motion hypothesis TBt,Bt+1 .

IV. LEARNING AS DENSITY ESTIMATION

We use memory-based learning in which all learning
samples are stored during learning. The learning samples
create a global joint distribution:

{TAt,Bt , TBt,O, TAt,At+1 , TBt,Bt+1} (6)

and local joint distribution:

{TAp
t ,Bp

t , TAt,At+1 , TBt,Bt+1} (7)

We address 3D rigid bodies, subject to 6-DOF transfor-
mations, so that distributions 6 and 7 have 4 × 6 = 24
and 3 × 6 = 18 dimensions respectively. During prediction
conditional densities 3 and 4 are created online from learning
sample sets (i.e. from distributions 6 and 7).

Consider N D-dimensional sample vectors Xi drawn from
some unknown distribution. We would like to find an approx-
imation of this distribution in the form of a density function
p(X). Kernel density methods with Gaussian kernels (see
e.g. [9]) estimates the density p(X) for any given vector
X as a sum of N identical multivariate Gaussian densities
centered on each sample vector Xi:

p(X) = Cnorm

∑
i=1...N

exp
[
−1

2
(X −Xi)T C−1(X −Xi)

]
(8)

where a constant Cnorm = [N(2π)D/2|C|1/2]−1 and C is a
D×D sample covariance matrix. For simplicity, we assume
that C is diagonal. The above equation can be re-written in
a new simpler form ([9]):

p(X) =
1
N

∑
i=1...N

 ∏
j=1...D

Khj
(Xj −Xj

i)

 (9)

where Khj
are 1-dimensional Gaussian kernel functions:

Khj
(Xj −Xj

i) =
1

(2π)1/2hj
exp

[
Xj −Xj

i

hj

]
(10)

and D parameters hj are called bandwidth H ≡
(h1, . . . , hD). The bandwidth H is estimated from all dis-
tribution learning samples using the ”multivariate rule-of-
thumb”, see [9].

Let us decompose each D-dimensional sample vector Xi

into two vectors: K-dimensional Yi and L-dimensional Zi

so that Xi ≡ (Yi, Zi)T and D = K+L. Knowing bandwidth
H or equivalently diagonal covariance matrix C for sample
set {Xi} ≡ {(Yi, Zi)T }, we can compute conditional density
p(Z|Y) for some given vectors Y and Z using the following
two step procedure:

1) Find a set of M weighted samples {(Zi, wi)} repre-
senting a conditional distribution for given vector Y ,
such that Yi which corresponds to Zi lies within some
predefined maximum Mahalanobis distance dmax to
vector Y . Mahalanobis distance di between sample
vector Yi and vector Y is defined as:

di = (Y − Yi)T C−1
Y (Y − Yi) (11)

where diagonal covariance CY is defined as:

C =
[

CY 0
0 CZ

]
(12)

Weights wi are computed from distance di as:

wi = exp[−di/2] (13)

and normalized for all M weights wi. Normalized
weight wi can be interpreted as a probability of gen-
erating Yi from a multivariate Gaussian centered at Y
with covariance CY .

2) Compute conditional probability density p(Z|Y) as:

p(Z|Y) =
∑

i=1...M

wi exp
[
−1

2
(Z − Zi)T C−1

Z (Z − Zi)
]

(14)
The density product 5 is maximized using the differential

evolution optimization algorithm [10]. This requires the abil-
ity to evaluate and sample from each distribution comprising
product 5.

All conditional distributions are represented as a weighted
set of samples {(Zi, wi)}. Computation of a probability
density for some given vector Z is realized as in Equation
14. Sampling consists of a two step procedure:

1) Choose vector Zi from a set of samples {(Zi, wi)} us-
ing an importance sampling algorithm with importance
weights wi ([11]).

2) Sample from a multivariate Gaussian centered at Zi

with covariance CZ .

V. RESULTS

We evaluated the prediction algorithm with experiments
in a physics simulator. Multiple experimental trials are per-
formed, in which a 5-DOF robotic arm equipped with a finger
performs a random movement of length approximately 25
cm towards an object at a random initial pose (Figure 5). In
each experiment, learning samples comprising distributions
6 and 7 are stored for a particular object over a series of such
random trials. Each experimental trial lasts 10 seconds, while
learning samples are stored every 0.1 seconds. Further, new
random trials are then generated and the learned distributions
are tasked with predicting the resulting motions. Although
random trials are independently generated for the learning
and prediction phases, the same level of variability in pose
and pushing action is used for each phase.

We take the output of a physics simulator to be ground-
truth, and compare this with predictions made by our sta-
tistical learning method according to an average prediction
error E defined as:

E =
1
K

∑
k=1...K

1
T

∑
t=1...T

1
N

∑
n=1...N

∣∣p1
n − p2

n

∣∣ (15)

Fig. 5. A 5-DOF robotic arm equipped with a finger performs forward
movements towards an object (top left). Object behavior varies depending
on the initial object pose and finger trajectory. Physics simulator predictions
are rendered as solid, while predictions obtained from our prediction
algorithm are rendered as wired. A majority of the algorithm predictions
are qualitatively plausible (top right and bottom left). Bottom right panel
shows a qualitative error.

where K is a number of experiment trials, T is a number
of discrete time steps in each trial (i.e. trial duration), N is a
number of pairs of 3D points {p1

n, p
2
n}, |·| denotes Euclidean

distance between points in a pair. Points p1
n are rigidly

attached to an object controlled by a physics simulator, while
points p2

n to an object controlled by the prediction algorithm.
All points are randomly generated at the beginning of each
trial so that for t = 1, p1

n = p2
n for all n.

Fig. 6. Average prediction error for a polyflap in a function of a number
of learning samples.

In the first experiment a robot pushes a simple symmetric
14cm × 14cm polyflap1 (Figure 5) placed randomly on a
ground plane in arbitrary stable poses.

Figure 6 shows the average prediction error as a function
of the number of samples collected during learning (the same
for local distribution 7 and global distribution 6). The error

1Polyflaps are objects consisting of a number of connected flat surfaces.
Their behavior can be very complex as compared to e.g. a simple box.

decreases as the number of learning samples increases and
predictions are reasonably good for just a few thousand learn-
ing samples. Even in cases where the prediction errors are
large, the majority of predictions are qualitatively plausible,
for example, correctly predicting whether a polyflap will
slide, tilt or topple (Figure 7).

Polyflap shape modification Prediction error [cm]
none (learnt shape) 0.76
narrowed by 50% 0.72
widened by 40% 1.3
skewed by 15 ˚ 1.16
skewed by 30 ˚ 1.26
skewed by 40 ˚ 1.35

TABLE I
PREDICTION ERROR IN POLYFLAP EXPERIMENTS.

Fig. 7. After the modification of the polyflap shape most of predictions are
still qualitatively correct. For example the algorithm predicts that a polyflap
tips instead of returning to its initial pose after tilting (left), furthermore it
makes no errors if some parts of the surface are removed (right).

In the second experiment we attempted to generalise to
novel objects, by using learning samples from the first
experiment to predict the trajectory of a new polyflap with a
previously unseen shape. We experimented with 5 types of
modified polyflap shapes which, together with corresponding
prediction error, are collected in Table I. Most predictions
are qualitatively correct (Figure 7), however there are more
coarse errors compared to the previous experiment.

Box shape modification Prediction error [cm]
none (learnt shape) 1.68
narrowed by 40% 1.72
widened by 30% 2.15
enlarged by 30% 2.75

TABLE II
PREDICTION ERROR IN BOX EXPERIMENTS.

In a third experiment, we learn on a box (16cm ×
5cm×12cm parallelepiped) instead of a polyflap, and try to
generalize to predict the motions of distorted boxes that are
differently shaped to the one used in learning. We considered
3 types of box modifications which are also compared to the
unmodified box shape in Table II. Note that the absolute
prediction error is larger than for the polyflap experiment,

Fig. 8. For a modified box shape version many predictions are correct (left)
while if the modified shape extends beyond the learnt one the predictor tends
to make more errors (right).

but this is mostly due to the larger box dimensions, and
more frequent rotational box movements (see Figure 8).

Prediction Learning samples Prediction error [cm]
polyflap box 2.38
box polyflap 3.13

TABLE III
PREDICTION ERROR FOR SWAPPED LEARNING SAMPLES.

Fig. 9. After swapping learning samples between a box and a polyflap,
the majority of predictions are still qualitatively plausible (left). However
there is a relatively larger percentage of coarse errors (right).

In the final experiment we attempted to generalise between
qualitatively different objects, using box learning samples to
predict a polyflap trajectory, and polyflap learning samples
to predict a box trajectory (Table III). Again, a majority of
predictions are still qualitatively plausible, however there is
a relatively larger percentage of coarse errors (Figure 9)

Although the results of these experiments are promising,
the algorithm displays errors which are especially visible
in the shape generalization experiments and where there
are motions involving large amounts of rotation. The major
sources of these errors are thought to be:

1) Density estimation algorithm. Uniform covariances,
used for all kernels, are not completelly adequate for
approximating local densities in so many dimensions.
Kernel density estimators are unable to handle rank-
deficient data [9], whereas such data is clearly present
in the introduced distributions.

2) Correlation problem. The density product 5 express
a correlation (functional relationship) between a finger

and an object. While they are correlated if they are in
contact, they are no longer strongly correlated when
they lose contact following a push. An example is
when a polyflap tips over after being pushed by the
finger.

VI. CONCLUSIONS

We have presented a statistical framework for learning to
predict the motions of interacting objects. By decomposing
the prediction task into a product of two distributions, each
encoding different kinds of information, we have demon-
strated a degree of generality in terms of handling variations
in shape, poses and actions. We have also shown that it is
possible to produce reasonable predictions for the behaviour
of a novel shape (e.g. a box), having learned on a quite
different one (e.g. a polyflap). This is despite the very small
number of densities we use to encode the spatial relationship
and shape of the two objects. We are now extending this
approach to a product of many densities to give an improved
representation of object shape. Future work will also look at
using this prediction system for path planning and control
during robotic pushing operations.

VII. ACKNOWLEDGMENTS

We gratefully acknowledge the support for this work of the
EC funded FP7 project CogX, number ICT-215181-CogX.

REFERENCES

[1] A. Berthoz, The Brain’s Sense of Movement. Harvard University Press,
1997.

[2] M. Mason, “Mechanics and planning of manipulator pushing opera-
tions,” IJRR, vol. 5, no. 3, pp. 53–71, 1986.

[3] M. Peshkin and A. Sanderson, “The motion of a pushed, sliding
workpiece,” IEEE Journal of robotics and automation, vol. 4, no. 6,
1988.

[4] K. Lynch, “The mechanics of fine manipulation by pushing,” in Proc.
IEEE ICRA, 1992.

[5] D. Cappelleri, J. Fink, B. Mukundakrishnan, V. Kumar, and J. Trinkle,
“Designing open-loop plans for planar micro-manipulation,” in Proc.
IEEE ICRA, 2006.

[6] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini, “Learning
about objects through action - initial steps towards artificial cognition,”
in Proc. IEEE ICRA, 2003.

[7] L. Paletta, G. Fritz, F. Kintzler, J. Irran, and G. Dorffner, “Learning
to perceive affordances in a framework of developmental embodied
cognition,” in Proc. IEEE Int. conf. on development and learning,
2007.

[8] B. Ridge, D. Skocaj, and A. Leonardis, “A system for learning basic
object affordances using a self-organizing map,” in Proc. Int. conf. on
cognitive systems, 2008.

[9] D. W. Scott and S. R. Sain, ”Multi-Dimensional Density Estimation”,
pp. 229–263. Elsevier, 2004.

[10] R. Storn and K. Price, “Differential evolution. a simple and efficient
heuristic for global optimization over continuous spaces,” J. of Global
Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[11] C. Bishop, Pattern recognition and machine learning. Springer, 2006.

