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WP3 deals with qualitative spatial cognition, i.e. the acquisition of spatial
(room level) knowledge and reasoning within that knowledge to support effi-
cient and robust task execution in an environment that presents incomplete
and uncertain information, as well as to support human robot interaction
(HRI) for communicating these tasks. Over the 4 years of CogX project we
developed increasingly powerful enabling technologies to support the kind
of reasoning required for a cognitive system that reflects on its knowledge
and identifies gaps and accordingly opportunities for exploration. We fur-
thermore integrated these enabling technologies into a framework for multi-
layered conceptual spatial mapping which forms part of the CAST framework
instantiation in the Dora demonstrator.

The present report deals with two bodies of work. First, an integrated
model for representing spatial knowledge for situated action and human-
robot interaction, and second a set of methods for functional understanding
of space. These latter include segmentation and labelling of a geometric map
of the environment, where the segmentation is based on functional definitions
of the different room concepts, as well as identifying functional spatial regions
within a room from spatial relations of objects in the room. Furthermore two
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methods for augmenting object search with higher level information, using
either web searches to extract Common Sense about Object Locality (CSOL)
or 3D context learned from a large set of labelled 3D training images, such
as collected in the newly established project Kinect@Home.
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Executive Summary

Over the 4 years of the CogX project we developed a large body of work
related to spatial cognition. Work was driven by the need of cognitive sys-
tems to deal with uncertain and incomplete information and reason with
that knowledge to support efficient and robust task execution as well as
communicating these tasks to the robot. Accordingly we developed various
probabilistic methods (e.g. for room categorisation, for planning over uncer-
tain information in large domains) and integrated these into a comprehensive
framework as demonstrated in the Dora scenario.

This report deals with two aspects within this larger context of spatial
cognition. First, a model for representing spatial knowledge for situated
action and human-robot interaction, addressing Task 3.4 Establishing ref-
erence to spatial entities for human-robot interaction. The problems here
are that the robot is faced with changing and incomplete spatial informa-
tion about the environment, and needs to communicate the semantics of
this spatial information at different levels of abstraction in a natural way,
to support situated human-robot interaction. We developed the enabling
techniques, such as room categorisation and reasoning about typical objects
present in a room, and integrated these into a comprehensive probabilis-
tic framework, enabling planning and task execution with uncertain and
incomplete information.

Secondly, we present work related to Task 3.5: Functional understanding
of space. Here we present a method that uses learned spatial relations be-
tween objects in the room together with analogy to define functional regions
such as “the front of the room”. A complementary method uses informa-
tion provided by the web rather than learning by the system for segmenting
and labelling a geometric map of the environment, where the segmentation
is based on functional definitions of the different room concepts, based on
the definition in the Oxford online dictionary, defining e.g. a kitchen as a
room where food is cooked. We furthermore use knowledge from the web to
extract Common Sense about Object Locality (CSOL). For this we calcu-
late the likelihood of finding objects at certain locations from search query
results such as “the cup was on the table” or “the mug was on the shelf”,
and use these locations to direct search for these objects. A complemen-
tary approach is independent of room category and uses surrounding 3D
structure (termed 3D context) to direct search for a given object, avoiding
the need to explicitly detect supporting surfaces such as shelves. This 3D
context is learned from labelled 3D training data. To collect a wide vari-
ety of different typical indoor scenes, we initiated the Kinect@Home project
(http://www.kinectathome.com), where users can upload 3D image se-
quences, where special care had to be taken to handle the enormous amount
of point cloud data using special compression techniques.
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Role of spatial cognition in CogX

Spatial cognition here serves two roles: First as the process of abstracting
raw metric spatial information into semantically meaningful information to
support task planning and execution with uncertain information situated
and to support human robot interaction. Secondly, as top down context
information for object search, e.g. for a cup on a kitchen counter.

Contribution to the CogX scenarios and prototypes

The work presented here is mainly used in the Dora scenario, where the robot
recognises different room types (based on functionality) and uses these to
communicate with the user. Also object search at room level, e.g. for fetch
and carry tasks, is most associated with the Dora scenario.
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1 Tasks, objectives, results

1.1 Planned work

Task 3.4: Establishing reference to spatial entities for human-robot
interaction. The goal is to investigate, in the context of human-robot
interaction, how the robot can refer to objects based on their spatial
relations and how to learn this.

Task 3.5: Functional understanding of space. The goal is to investi-
gate how to gain knowledge about the function of space by analyzing
spatial models over time.

Task 3.4 originally had a focus on learning spatial relations between objects
in a scene and using these for human robot interaction (HRI). The actual
work performed in this task then concentrated more on the room level,
building a hierarchy of spatial concepts for HRI, which turned out to be
more relevant to work in the scenarios. Task 3.5 aimed at learning from
analysis over time. Instead we chose to learn from large corpora on the
web, which is a promising route of research especially when requiring large
amounts of training data.

The work presented in this deliverable contributed to the following of
the CogX objectives:

• 2. Specific representations of beliefs about beliefs for the specific cases
of dialogue, manipulation, maps, mobility and some types of vision.
[WPs 2,3,6]

• 3. Representations of how actions will alter the belief state of the
cognitive system, and those of other agents, as represented in the first
two objectives, i.e. models of the effects of actions on beliefs about
space, categorical knowledge, action effects, dialogue moves etc. [WPs
1,2,3,4,5,6]

• 7. Methods for perception and spatial modelling that enable a robot
to identify gaps in its spatial models (e.g. maps) and to extend them
so as to support natural communication with humans. [WP 3]

• 11. A robotic implementation of our theory able to complete a task
involving mobility, interaction and manipulation, in the face of nov-
elty, uncertainty, partial task specification, and incomplete knowledge.
[WPs 2,3,6,7]

We address objectives 2, 3 and 7 by providing a multi-layered conceptual
spatial mapping framework that on top of metric and topological maps rep-
resents probabilistic knowledge about room categories and relations between
rooms and objects found in them. We also provide the planning techniques
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required to deal with this kind of uncertain information in large planning
domains. Objective 11 is addressed by demonstrating the validity of our
approaches in numerous experiments in the Dora scenario.

1.2 Actual work performed

1.2.1 Task 3.4: Establishing reference to spatial entities for human-
robot interaction

Intelligent autonomous robots that efficiently collaborate with humans in
everyday tasks must have the capabilities to engage in situated human-robot
interaction. This implies that they must be able to understand their spa-
tial environment and its semantics in a way that is compatible to the way
their human users do. If they are furthermore expected to conduct situated
spoken dialogues, their spatial conceptualization must be expressible in nat-
ural language. On the other hand, however, intelligent mobile robots must
be endowed with navigation capabilities that take into account the specific
sensors and actuators the robot is equipped with.

The kinds of autonomous mobile robots that we consider in CogX ulti-
mately operate in dynamic, large-scale environments. These environments
are subject to change and cannot be apprehended as a perceptual whole.
At the same time, the robots have the possibility to alter the world around
them, and to perform actions that allow them to extend their own knowl-
edge. For this to be successful, their knowledge representation must be able
to deal with changing and incomplete information.

In [44] (Annex 2.1) we present a consolidated and integrated approach to
multi-layered conceptual spatial mapping that addresses the aforementioned
challenges. In this approach, spatial knowledge is represented at different
levels of abstraction, ranging from low-level metric maps to symbolic con-
ceptual representations. We also discuss reasoning methods that can be
performed using such spatial conceptual knowledge in order to overcome
the problem of partial information at the sensory-symbol interface, as well
as the bootstrapping of ontological knowledge from available linguistic and
commonsense databases, and how such knowledge can be quantified in order
to support probabilistic action planning for more efficient robot behaviour
in human-oriented environments.

The work presented here summarises the underlying representations for
reference resolution in spatial contexts reported previously in DR.6.4, Annex
2.1.

1.2.2 Task 3.5: Functional understanding of space

When interacting with people, human level concepts such as room labels
are very important. In [33] (Annex 2.2) we present a method for simulta-
neously segmenting and labeling a geometric map of the environment. The
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segmentation is based on commonsense definitions from the Oxford online
dictionary – for example, a kitchen is defined as “That room or part of a
house in which food is cooked; a place fitted with the apparatus for cooking.”
We note that the definitions are crucially bound up with aspects of func-
tion – e.g., what ultimately makes something a kitchen is that food can be
cooked there – and consequently we posit concrete numerical interpretations
of these functional apects. Combining these values into an energy function
which is then maximized, we produce a function-sensitive segmentation of
space. It is also shown how the segmentation can adjust to accommodate re-
ferring expressions. For example, if the human were to mention the “kitchen
next to the corridor” when speaking to the system it would be able to use
this as an indication that the segmentation needs to produce at least one
kitchen and at least one corridor, next to each other.

In the work discussed in [21] (Annex 2.3) we define spatial regions (such
as the front of a room) by functional use, but this time derived from spatial
relations of objects in the room (such as chairs all pointing in a certain
direction). We present a cognitive system able to learn context-dependant
spatial regions by combining qualitative spatial representations, semantic
labels, and analogy and evaluate it against human annotations of real world
scenes.

In the work on object search previously reported in CogX we used the
assumption that objects are often to be found on tables or other support-
ing surfaces. This assumption was taken for granted and hard-coded into
parts of the system. Starting with our work in [19], and also DR.6.4, An-
nex 2.2, [44] (DR.3.3, Annex 2.1) and [1] (DR.3.4, Annex 2.1), we showed
how this common sense knowledge can be extracted from web queries in a
probabilistic fashion, which significantly improves the performance of visual
search. There we employed knowledge like “cups are likely to be located in
kitchens” in a visual search task using a planner switching between contin-
ual symbolic planning and decision theoretic planning, which was capable
of dealing with the uncertain information (cups are not always in kitchens
after all) as well as the large planning domain. In the work presented here
in [47, 48] (Annexes 2.4 and 2.5) we expanded on the way in which those
queries are formed. Additionally to the image search engine employed in
our previous work we also employed a web text mining technique using se-
quential pattern retrieval to extract Common Sense about Object Locality
(CSOL) for linking the search of objects with their potential localities. We
calculate the object location belief OLB(O,L) of finding object O at loca-
tion L by searching for patterns like ’object’ + ’be’ + ’on’ + . . . + ’location’,
such as “the cup was on the table”. We use specific databases like the Open
Mind Indoor Common Sense database (OMICS)1 or generic web searches on
google, yahoo or bing. The result is a probability distribution over locations

1openmind.hri-us.com, Honda Research Institute USA
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an object is most likely to be found. These locations then map to constraints
for the visual search task. Experiments using an indoor mobile robot for an
Active Visual Search (AVS) task (e.g. for a cup or can) demonstrate the
benefits in terms of reduced search time.

The above approach exploits spatial relations between objects (support-
ing surfaces and objects on them in that case) to perform the search more
efficiently. One of the bottlenecks with this is that we rely heavily on the
perception system to categorize objects. Unless finding the larger support-
ing object is easy it might not help enough in finding the small objects on
it. One strand of work therefore investigated ways to build models for cal-
culating the likelihood of finding objects not based on the detection of other
objects but by surrounding 3D structure (we call this the 3D context) which
gives strong cues as to what objects could be found there. So, instead of
learning that cups are on tables, we learn that the local surrounding of a
cup is typically planar and horizontal. This results in a more flexible model
presented in [3] (Annex 2.6).

When working on the 3D context we initially gathered a dataset from
the different sites within CogX (reported on last year in DR.3.2). We soon
realized that if we are serious about understanding real-world spaces we
need to have data from such environments and data from robot labs gath-
ered by roboticists across Europe might not be all that representative. We
have therefore started an effort (http://www.kinectathome.com) to gather
a large dataset of data from Microsoft’s new sensor, the Kinect. We are
working on the final details for the launch of this and plan to announce it
widely at the end of the summer. The idea behind this effort was presented
in [2] (Annex 2.7).

1.3 Relation to state-of-the-art

The work reported in Annex 2.1 builds upon and extends the author’s pre-
vious research on multi-layered conceptual spatial mapping [45, 46] in the
tradition of approaches like the (Hybrid) Spatial Semantic Hierarchy by
Kuipers et al. [24, 25, 5], the Route Graph model by Krieg-Brückner et al.
[43, 23], Buschka and Saffiotti’s hybrid maps [8], as well as multi-hierarchical
semantic maps for mobile robots by Galindo et al. [18, 17].

A number of methods originating in robotics research have been pre-
sented that construct multi-layered environment models. These layers range
from metric sensor-based maps to abstract conceptual maps that take into
account information about objects acquired through computer vision meth-
ods. Vasudevan et al. [39] suggest a hierarchical probabilistic representation
of space based on objects. The work by Galindo et al. [18, 17] presents an
approach containing two parallel hierarchies, spatial and conceptual, con-
nected through anchoring. Inference about places is based on objects found
in them. This approach is based on the Multi-AH-graph model by Fernan-
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dez and Gonzalez [14]. The work by Diosi et al. [11] creates a metric map
through a guided tour. The map is then segmented into discrete rooms
according to the labels given by the instructor. Furthermore, the Hybrid
Spatial Semantic Hierarchy (HSSH), introduced by Beeson et al. [5], allows
a mobile robot to describe the world using different representations, each
with its own ontology.

More recently, Pronobis et al. [32] have presented a refined approach to
multi-layered mapping, in which, inter alia, the representations of the lower
map layers were re-defined, and a probabilistic inference engine is used for
reasoning with the discrete symbols in the conceptual map layer.

Lemaignan et al. [26] present a similar approach to endowing robots
with spatial representations that allow them to act in and talk about their
environment. Their framework has the advantage of providing a kind of
theory of mind that allows the robot to reason about the perspective of its
interlocutor in order to disambiguate and ground natural-language instruc-
tions. While our approach addresses the specific challenges involved when
engaging in dialogues about spatial environments that are larger than what
can be perceived at once, their approach focusses on adequate reasoning
techniques for shared visual scenes, like, e.g. tabletop scenarios.

With the availability of affordable 3D sensors and appropriate techniques
for using them for robotic mapping purposes, a number of approaches for
building layered representations of 3D space have been proposed recently.
The KnowRob-Map framework [36] combines low-level metric costmaps,
maps of 3D point clouds, and ontological knowledge bases into a semantic
environment model of places, object locations, and afforded actions. Panger-
cic et al. [30] use natural-language task instructions from the WWW to
construct a Description Logics-based knowledge base for tabletop scenarios.
Tenorth et al. [35] present a framework that allows mobile service robots to
use multiple web-based knowledge sources (including OMICS, WordNet and
an internet image search engine) in order to perform everyday manipulation
tasks. While these approaches are especially useful for (mobile) manipula-
tion in human-oriented environment (e.g., kitchens [6]), our approach has a
stronger focus on human-robot interaction and situated human-robot dia-
logues.

Viswanathan et al. [40, 41] propose another approach that makes use of
existing commonsense knowledge resources. They use the LabelMe dataset
to train an automated place classifier that relies on the presence of detected
objects to infer which other objects are likely to occur nearby and which
kind of place (e.g., kitchen or office) is seen in the scene.

Given a discretization of space, for example in the form of a Voronoi
diagram, Diosi et al.[10] and Milford et al. [29] let a user impose labels
for different locations. In [28] metric features are used to classify regions,
while [38] utilize spatial relations between objects. Friedman et al. [15] use
a graph-based approach in which place classification is based on potentials
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defined on nodes in a graph. The model is more local, and learned as opposed
to specified by functional criteria as in our work. In the work by Friedman
et al. the world is segmented into either belonging to the class of corridor
or room, but no distinction is made between different rooms or corridors.
In our work in Annex 2.2 we identify the individual areas as well as label
them.

Knowledge acquisition from the web or sharing databases have been
adopted to supply a large corpus of training data [13] for visual recogni-
tion, to build 3D models for robot manipulation [22], improve visual object
recognition [27], to complete qualia structures describing an object [9], to
guide robot planning for specific tasks such as table setting for a meal [31],
and even more ambitiously to fill knowledge gaps when an indoor robot is
executing sophisticated tasks [42]. [19] showed how web queries revealing
probabilistic knowledge about the most likely room locations of various ob-
jects significantly improves search for a given object in a robotic system able
to plan with uncertain knowledge. In the work presented in Annexes 2.4 and
2.5 we expand on the way in which those web queries are performed and
incorporate queries from image as well as text databases.

The work closest to our work on using the 3D shape context (Annex 2.6)
to predict object locations is probably [37] where low-level features are ex-
tracted from the whole image for context driven attention and object detec-
tion. We make use of the 3D information and propose a conceptually simple
method to capture and exploit this information.

Work presented in Annex 2.3 created representations of spatial regions
that may be referenced by humans in task descriptions, e.g. the instruction
for the robot to “go to the front of the classroom”. These regions are de-
fined using Qualitative Spatial Relations based on the objects present in a
room and their configuration. Whilst mobile robots exist which can deter-
mine the type of a room from the objects found in it [20, 16], these works
only concern themselves with the types of whole rooms, and cannot rep-
resent subregions within them. This is also true for those robotic systems
which use some elements of QSR [4]. The need for an autonomous system to
ground references to human-generated descriptions of space has been recog-
nised in domains where a robot must be instructed to perform a particular
task, however existing systems are restricted to purely geometrically-defined
regions [34, 12, 7], rather than the qualitatively-defined, functional regions
in our work.
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2 Annexes

2.1 H. Zender, “Multi-Layered Conceptual Spatial Mapping
– Representing Spatial Knowledge for Situated Action
and Human-Robot Interaction

Bibliography H. Zender. “Multi-Layered Conceptual Spatial Mapping
– Representing Spatial Knowledge for Situated Action and Human-Robot
Interaction.” in In Y. Amirat, A. Chibani, and G. P. Zarri, editors, Bridges
Between the Methodological and Practical Work of the Robotics and Cogni-
tive Systems Communities – From Sensors to Concepts, Intelligent Systems
Reference Library. Springer Verlag, Berlin/Heidelberg, Germany, 2012 (to
appear).

Abstract In this book chapter, we present the principle of multi-layered
conceptual spatial mapping. In multi-layered conceptual spatial mapping,
spatial knowledge is represented at different levels of abstraction, ranging
from low-level metric maps to symbolic conceptual representations. It ad-
dresses the diverse needs involved in representing spatial knowledge for sit-
uated action and human-robot interaction. We give an overview of relevant
topics in human cognition that need to be taken into account when designing
robotic systems that are supposed to act for and among humans. We then
describe different existing individual mapping techniques that can be inte-
grated into a multi-layered conceptual spatial map, with a special emphasis
on ontological reasoning techniques that can be employed at the highest level
of abstraction in order to link the internal robotic spatial representations to
human-compatible concepts and symbols.

Relation to WP Abstracting from raw metric sensor data to a spatial
representation that is meaningful in a situated human robot dialogue (Task
3.4) is a crucial capability for any cognitive robot, as demonstrated in the
Dora scenario,
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2.2 K. Sjöö, “Semantic map segmentation using function-
based energy maximization”

Bibliography K. Sjöö, “Semantic map segmentation using function-based
energy maximization”, In Proc. of the International Conference on Robotics
and Automation (ICRA), 2012

Abstract This work describes the automatic segmentation of 2-dimensional
indoor maps into semantic units along lines of spatial function, such as con-
nectivity or objects used for certain tasks. Using a conceptually simple and
readily extensible energy maximization framework, segmentations similar
to what a human might produce are demonstrated on several real-world
datasets. In addition, it is shown how the system can perform reference res-
olution by adding corresponding potentials to the energy function, yielding
a segmentation that responds to the context of the spatial reference.

Relation to WP The work presented in this paper details one possibility
to abstract from metric floor plans into functionally relevant spatial regions
(Task 3.5), thus feeding into the multi-layered conceptual spatial map de-
scribed in the work in Annex 2.1.
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2.3 N. Hawes et al., “Towards a Cognitive System That Can
Recognize Spatial Regions Based on Context”

Bibliography N. Hawes, M Klenk, K. Lockwood, G.S. Horn and John
D. Kelleher, “Towards a Cognitive System That Can Recognize Spatial Re-
gions Based on Context”, Proceedings of the 26th National Conference on
Artificial Intelligence (AAAI), 2012

Abstract In order to collaborate with people in the real world, cognitive
systems must be able to represent and reason about spatial regions in human
environments. Consider the command “go to the front of the classroom”.
The spatial region mentioned (the front of the classroom) is not perceivable
using geometry alone. Instead it is defined by its functional use, implied by
nearby objects and their configuration. In this paper, we define such areas
as context-dependent spatial regions and present a cognitive system able
to learn them by combining qualitative spatial representations, semantic
labels, and analogy. The system is capable of generating a collection of
qualitative spatial representations describing the configuration of the entities
it perceives in the world. It can then be taught context-dependent spatial
regions using anchor points defined on these representations. From this we
then demonstrate how an existing computational model of analogy can be
used to detect context-dependent spatial regions in previously unseen rooms.
To evaluate this process we compare detected regions to annotations made
on maps of real rooms by human volunteers.

Relation to WP This paper presents a new approach to representing
regions of space whose presence and shape are dependent on spatial context,
i.e. the objects present in a scene and their configuration. Regions of this
nature are of particular relevance to this WP because they represent an
approach to building functional models of space (Task 3.5) without explicitly
representing human activity, and they are a type if regions that humans may
make reference to when talking to a robot (Task 3.4).
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2.4 K. Zhou et. al, “Web Mining Driven Semantic Scene
Understanding and Object Localization”

Bibliography K. Zhou, K. M. Varadarajan, M. Zillich, M. Vincze, “Web
Mining Driven Semantic Scene Understanding and Object Localization”,
IEEE International Conference on Robotics and Biomimetics (ROBIO), pp.
2824-2829, 2011

Abstract Knowledge acquisition from the Internet for robotic applications
has received widespread attention recently. It has turned out to be an impor-
tant supplementary or even a complete replacement to conventional robotic
perception. In this paper, we investigate state-of-the-art online knowledge
acquisition systems for robotic vision applications and present a framework
for further fusion and tighter integration. Boot-strapped by an intercon-
nected process wherein modules for object detection and supporting struc-
ture detection co-operate to extract cross-correlated information, a web text
mining technique using sequential pattern retrieval is introduced for linking
the search of objects with their potential localities. Experiments using an
indoor mobile robot for an Active Visual Search (AVS) task demonstrate the
benefits of our coherent framework for visual representation and knowledge
acquisition from the Internet.

Relation to WP One of the reasons for the importance of knowing about
the semantics of space is that it allows to formulate expectations of what
to find there, where the semantics of a space is related to the function it
provides (Task 3.5). In the above work we use information from the web to
identify typical object locations.
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2.5 K. Zhou et. al, “Web Mining Driven Object Locality
Knowledge Acquisition for Efficient Robot Behavior”

Bibliography K. Zhou, M. Zillich, M. Vincze, “Web Mining Driven Ob-
ject Locality Knowledge Acquisition for Efficient Robot Behavior”, submit-
ted to the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2012

Abstract As an important information resource, visual perception has
been widely employed for various indoor mobile robots. The common-sense
knowledge about object locality (CSOL), e.g. a cup is usually located on
the table top rather than on the floor and vice versa for a trash bin, is a
very helpful context information for a robotic visual search task. In this pa-
per, we propose an online knowledge acquisition mechanism for discovering
CSOL, thereby facilitating a more efficient and robust robotic visual search.
The proposed mechanism is able to create conceptual knowledge with the
information acquired from the largest and the most diverse medium – the
Internet. Experiments using an indoor mobile robot demonstrate the effi-
ciency of our approach as well as reliability of goal-directed robot behaviour.

Relation to WP One of the reasons for the importance of knowing about
the semantics of space is that it allows to formulate expectations of what
to find there, where the semantics of a space is related to the function it
provides (Task 3.5). In the above work we use information from the web to
identify typical object locations.
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2.6 A. Aydemir and P. Jensfelt, “Exploiting and modeling
local 3D structure for predicting object locations”

Bibliography A. Aydemir and P. Jensfelt, “Exploiting and modeling local
3D structure for predicting object locations”, submitted to the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2012

Abstract In this paper, we argue that there is a strong correlation between
local 3D structure and object placement in everyday scenes. We call this
the 3D context of the object. In previous work, this is typically hand-
coded and limited to flat horizontal surfaces. In contrast, we propose to
use a more general model for 3D context and learn the relationship between
3D context and different object classes. This way, we can capture more
complex 3D contexts without implementing specialized routines. We present
extensive experiments with both qualitative and quantitative evaluations of
our method for different object classes. We show that our method can be
used in conjunction with an object detection algorithm to reduce the rate
of false positives. Our results support that the 3D structure surrounding
objects in everyday scenes is a strong indicator of their placement and that
it can give significant improvements in the performance of, for example, an
object detection system. For evaluation, we have collected a large dataset
of Microsoft Kinect frames from five different locations, which we also make
publicly available.

Relation to WP Similar to Annex 2.4 this work deals with object search,
where in this case the local 3D context around an object encodes local
functional understanding (Task 3.5), e.g. a door handle being attached to
the vertical door blade next to the door frame.
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2.7 A. Aydemir et. al, “Kinect@Home: Crowdsourcing a
Large 3D Dataset of Real Environments”

Bibliography A. Aydemir, D. Henell, P. Jensfelt and R. Shilkrot, “Kinect@Home:
Crowdsourcing a Large 3D Dataset of Real Environments”, AAAI Spring
Symposium 2012: Wisdom of the Crowd

Abstract We present Kinect@Home, aimed at collecting a vast RGB-D
dataset from real everyday living spaces. This dataset is planned to be the
largest real world image collection of everyday environments to date, making
use of the availability of a widely adopted robotics sensor which is also in
the homes of millions of users, the Microsoft Kinect camera.

Relation to WP The crowd-sourcing project presented in this work pro-
vides (amongst others) the training data for the learning mechanism in An-
nex 2.6.
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resentation of Large-Scale Space – Applications to Mobile Robots, vol-
ume 24 of International Series on Microprocessor-Based and Intelligent
Systems Engineering. Kluwer Academic Publishers, Dordrecht / Boston
/ London, 2001.

[15] S. Friedman, H. Pasula, and D. Fox. Voronoi random fields: Extracting
the topological structure of indoor environments via place labeling. In
Proc. of the International Joint Conference on Artificial Intelligence
(IJCAI), volume 35, 2007.

[16] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J. A. Fernandez-
Madrigal, and J. Gonzalez. Multi-hierarchical semantic maps for mobile
robotics. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’05), pages 2278 – 2283, August
2005.

[17] Cipriano Galindo, Juan-Antonio Fernández-Madrigal, and Javier
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[26] Séverin Lemaignan, Raquel Ros, E. Akin Sisbot, Rachid Alami, and
Michael Beetz. Grounding the interaction: Anchoring situated dis-
course in everyday human-robot interaction. International Journal of
Social Robotics, 4(2):181–199, 2012.

[27] Marcin Marszalek and Cordelia Schmid. Semantic Hierarchies for Vi-
sual Object Recognition. 2007 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–7, 2007.

[28] O. Martinez Mozos, R. Triebel, P. Jensfelt, A. Rottmann, and
W. Burgard. Supervised semantic labeling of places using informa-
tion extracted from sensor data. Robotics and Autonomous Systems,
55(5):391–402, 2007.

[29] M. Milford, R. Schulz, D. Prasser, G. Wyeth, and J. Wiles. Learn-
ing spatial concepts from ratslam representations. Robotics and Au-
tonomous Systems, 55(5):403–410, 2007.

[30] Dejan Pangercic, Rok Tavcar, Moritz Tenorth, and Michael Beetz. Vi-
sual scene detection and interpretation using encyclopedic knowledge
and formal description logic. In Proceedings of the International Con-
ference on Advanced Robotics (ICAR)., Munich, Germany, June 2009.

[31] Dejan Pangercic, Rok Tavcar, Moritz Tenorth, and Michael Beetz. Vi-
sual scene detection and interpretation using encyclopedic knowledge
and formal description logic. In Proceedings of the International Con-
ference on Advanced Robotics (ICAR)., Munich, Germany, June 22 -
26 2009.

[32] Andrzej Pronobis, Kristoffer Sjöö, Alper Aydemir, Adrian N. Bishop,
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Semantic map segmentation using function-based energy maximization

Kristoffer Sjöö

Abstract— This work describes the automatic segmentation
of 2-dimensional indoor maps into semantic units along lines
of spatial function, such as connectivity or objects used for
certain tasks. Using a conceptually simple and readily extensible
energy maximization framework, segmentations similar to what
a human might produce are demonstrated on several real-world
datasets.

In addition, it is shown how the system can perform reference
resolution by adding corresponding potentials to the energy
function, yielding a segmentation that responds to the context
of the spatial reference.

I. INTRODUCTION

In the field of mobile robotics, one of the main goals is the
integration of robots into the daily lives of humans, aiding
us by carrying out tasks for us at home, at the workplace
or in outdoor environments. There are many challenges still
to overcome before this vision can become reality, however.
One of them is that in order to make sure the robots do the
right thing, and in the right place, means of intuitive commu-
nication between man and machine are needed – in particular,
communication concerning their mutual environment.

Robots will need to parse humans’ statements and requests
and to formulate their own questions and reports in return,
using expressions that can be understood by both human and
machine. The treatment of such expressions are the subject
of this paper; in particular, those describing different parts
of space and which an agent might use for navigation or to
carry out specific tasks.

The fundamental assumption adopted herein is that func-
tional properties are key to dividing up and referring to the
world, see Tversky [1]. An indoor environment is constructed
intentionally with different functions compartmentalized: this
room for eating, this one for sleeping, this for working;
and the words we use to refer to those spaces likewise
pertain to those functional distinctions. Consequently, this
paper attempts to use functional aspects of space to achieve
a subdivision and labeling of 2-D maps that corresponds well
to human intuitions.

A. Related work

There has been a great deal of work related to the
subdivision of maps into discrete units, in many different
contexts. One common approach to discretizing space is by
using Voronoi diagrams [2]. Another is partitioning it on the
basis of the navigational actions it affords, such as in Kuipers

The author is with the Centre for Autonomous Systems at the Royal
Institute of Technology (KTH), Stockholm, Sweden. This work was sup-
ported by the SSF through its Centre for Autonomous Systems (CAS), and
by the EU FP7 project CogX and the Swedish Research Council, contract
621-2006-4520

et al. [3]. Milford et al. [4] accomplish a similar structuring
using neural networks. Pronobis et al. [5] discuss the general
problem of partitioning the world into distinct “places” based
on perceptual distinctiveness and spatial relationships.

Given a discretization, the next step is to label the units
in some relevant way. Diosi et al. [6] and Milford et al.
[7] impose labels externally, through a user that the robot
is talking to at different locations. Mozos et al. [8] clas-
sify regions using metric features, while Vasudevan et al.
[9] utilize spatial relations between objects. A graph-based
approach is taken by Friedman et al. [2], by performing place
classification based on potentials defined on nodes in a graph,
with arity up to 4, making it similar to the framework used
in this paper although with a model that is more local, and
learned as opposed to specified by functional criteria.

Work that examines the functional properties of space
include Kuhn [10], who discusses the problem in general
terms on an abstract level; and at the other end of the
spectrum Dornehege and Kleiner [11], in which parts of
a map are classified according to whether they afford a
robot’s moving through them, though not using human or
linguistic concepts. Also related is Fedrizzi et al. [12] where
specific places are defined on the basis of a robot’s ability to
manipulate objects there. Lastly, a debt is owed to Coventry
and Garrod [13] who have pioneered the investigation of
functional aspects of spatial relations in language.

This work is also concerned with mapping linguistic
expressions to portions of space, although in a limited way.
Related work has been done e.g. by Kollar et al. [14],
who also use an energy optimization method to determine
referents for an expression, and Mandel et al. [15], who
choose the referent from among Voronoi nodes using fuzzy
functions. Both of the above deal with route descriptions, and
not with labeling or segmenting maps. Zender et al. [16] also
deal with determining spatial entities referred to by a speaker,
by finding the lowest common context in a hierarchy. Here
too, the set of potential referents is assumed to be given.

B. Contributions

In this paper, a method is presented by which separate,
basic, common-sense criteria of a functional nature, such
as may be found in a dictionary, can be combined in a
single energy maximization and yield an intuitively reason-
able subdivision and labeling of a map. Furthermore it is
demonstrated how the same energy maximization can be
used to find the referents of a linguistic expression, through
translating it into an energy potential in a straightforward
way.



C. Structure

This paper is structured as follows: in Section II the
reasoning behind using functionality as the basis for spatial
segmentation is explained; Section III outlines the energy
maximization framework and the solution algorithm. Exper-
iments on various datasets are described in Section IV and
Section V presents their outcomes. Section VI summarizes
the paper and discusses future work.

II. FUNCTIONAL PROPERTIES OF SPACE

The basic concept this work is based on is the idea that
function is key to the way humans understand space, and thus
also key to any successful robotic representation intended to
interact with humans and human-designed environments.

As an example, consider the concept of a kitchen. For a
robot to be able to follow orders from humans in a home
environment, it will be necessary for it to understand what
the word means. A typical approach is to have a human “tag”
points in space with the fact that a region is a kitchen [7].
The tag might be attached to a single point, or a region,
segmented out by some independent process – such as using
laser scans to detect doorways and grouping places on each
side of the doorway into different regions [8]. The tagging
might be replaced by using machine learning to train models
of different regions’ appearance.

However, what makes a kitchen a kitchen at a fundamental
level is not its appearance, nor a person calling it “kitchen”,
but the fact that it is used to prepare (and store and consume)
food. An appearance-based model might fail if the kitchen
is of a novel layout or unfamiliar design, and an algorithm
that uses doorways as cues might fail for a studio apartment,
where there is no such clear boundary between “kitchen” and
“living room”. But if a robot can be made to recognize the
potential for the function of a kitchen, e.g. food preparation,
this will improve its ability to generalize and its capacity to
communicate effectively with humans.

The semantic labels humans use for space may also vary
depending on context. In the case of the aforementioned
studio apartment, sometimes “kitchen” will be used to refer
to the part of it that houses the sink and oven, while
sometimes “room” will be used of the entire room including
the kitchen area. This context-sensitivity is an additional nec-
essary feature of a robot’s system for spatial understanding.

In the following section, a framework is presented that
attempts to incorporate both functional segmentation and
context-sensitive reference resolution.

III. FRAMEWORK FOR FUNCTIONAL LABELING OF SPACE

The problem is the following: given a 2-dimensional map
of an environment, including an over-segmentation of it into
a number of small units, “places”, find a combination of
clusters of places and labels for these clusters such that
all the labels well describe the functional features of the
associated place cluster. The map that is given may contain
various additional information, such as occupancy data, paths
existing between places, and objects associated with places.

A. Basic definitions

The set of all places in the map is termed P . A region R
is a set of places: R = {p ∈ P}.

A label L is a linguistic symbol corresponding to a
region’s perceived functional purpose. Labels used in this
paper are “room”, “corridor”, “entrance”, “kitchen”, “office”.

A relational label is a label that additionally refers to
another region by its definition. Of the above, “entrance” is
relational; an entrance is always an entrance to something.

A labeling is a set of 3-tuples, each consisting of a region
Ri, a label for that region Li, and a relational index ki
indicating which other region the label relates to if it is
relational. The regions are subject to the constraint that each
place in P is in exactly one region:

L = {〈Ri, Li, ki〉},





⋃Ri = P⋂Ri = �
1 ≤ ki ≤ |L|

B. Energy function

Every 3-tuple in a labeling has an associated energy,
representing how well that particular label describes that
particular group of places. A higher energy means a better
fit.

E(〈Ri, Li, ki〉) = f(Ri, Li, ki,L) ∈ [0, |Ri|] (1)

Note that the energy depends on the entire labeling in gen-
eral. (It also depends on the map; however, that is considered
a constant here and left out of the notation.) Because the
number and size of regions can vary arbitrarily, in order to
avoid any bias for large or small regions the label energies
should be proportional to the size of the region, other things
being equal, and the average energy per place be within [0, 1].

The energy function is the sum of the energies of each
region in the labeling:

E(L) =
∑

i

E (〈Ri, Li, ki〉) (2)

The energies assigned to a label for a given region should
correspond to the degree to which that region possesses
the functional features that define that label. Features are
combined in a weighted sum, where the weights may be
negative:

E(〈Ri, Li, ki〉) =

= max

{∑

k

wl(Li)φl(〈Ri, Li, ki〉), 0
}

(3)

where φl is the value of the lth feature, and wl(Li) is the
weight assigned that feature for label Li. For example, the
food preparation feature has a positive weight for the kitchen
label. The label energy is bounded from below to 0, and the
weights and features must be such that the per-place energy
is in [0, 1] as mentioned previously. The weights used below
are selected manually, and would be a suitable object for
learning in future work.



C. Labels

Below is a list of the labels used for the experiments in this
paper, followed by the formulation of the functional features
used.

1) Room: The Oxford English Dictionary (OED) [17]
provides this definition of a “room”:

A compartment within a building enclosed by walls
or partitions, floor and ceiling, esp. (freq. with
distinguishing word) one set aside for a specified
purpose; (with possessive) a person’s private cham-
ber or office within a house, workplace, etc. [. . . ]

The functional aspects focused on in the following are the
enclosure of a room and the specified purpose associated
with it (the ownership angle is beyond the scope of this
paper as it entails social considerations besides purely spatial
ones). Enclosure affords a room protection from outside
disturbances and influences, and helps an agent form a
definite boundary when speaking or thinking about a region.
The room also supports some purpose or task for agents who
are in it. It will typically do this through some object or set
of objects located in the room, with which an agent interacts.
The agent needs to perceive those objects; if it cannot the task
functionality is undermined. This is encapsulated in a feature
that will be referred to as perceptual convexity, meaning that
each place in the room is visible from the others.

2) Corridor: The following is the OED’s definition of
“corridor”:

A main passage in a large building, upon which in
its course many apartments open.

Here, the functional aspect implied is connecting, i.e. a
corridor serves as a main route of communication between
different parts of the map.

3) Kitchen:

That room or part of a house in which food
is cooked; a place fitted with the apparatus for
cooking.

The focus is here on the function of cooking, as supported
by specific objects. Having room-like features are also of
relevance, although not stated as absolute requirements.

4) Office:

A room, set of rooms, or building used as a
place of business for non-manual work; a room
or department for clerical or administrative work.
[...]

In this case the function is that of work, specifically non-
manual work. Again, room attributes appear as non-essential
aspects of the term.

5) Entrance:

That by which anything is entered, whether open or
closed; a door, gate, avenue, passage; the mouth (of
a river). Also, the point at which anything enters
or is entered.

Evidently entering is the key aspect here.

D. Features

The above labels make use of the following set of function-
related features:

1) Enclosed: The functional feature of being “enclosed”
that applies to rooms is treated as follows:

φencl = |R|
(
1− Bexternal(R)

Btotal(R)

)
(4)

where Bexternal is the length of the boundary shared by
places in this region and places in other regions, and Btotal

is the total boundary length (excluding internal boundaries
between places within the region). This formulation re-
wards labelings where room-labeled regions are compact and
largely delineated by walls. The |R| factor ensures the energy
grows as the size of the region.

2) Perceptually convex: The measure of perceptual con-
vexity within a region is

φperc =

∑
{p,p′}∈R×R V is(p, p

′)

|R| − 1
(5)

where

V is(p, p′) =

{
1, if p and p′ are visible from each other
0, otherwise

Again, the |R| − 1 term is in order to normalize the energy
to the order of the size of the region.

3) Connecting: The connecting function of corridors is
evaluated as the number of pairs of places in the map that
have a shortest path that passes through the (prospective)
corridor. If any path passes through multiple places in the
corridor it counts multiple times. Thus, places that are
crossed by many paths in the map contribute strongly to
the connecting function of a region, while “dead ends” do
not contribute at all. The feature can be expressed:

φconn =
∑

p∈R
{pfrom,pto}∈P×P

C(p, pfrom, pto)

Cmax
(6)

where

C(p, pfrom, pto) =





1,
if p 6= pfrom, p 6= pto

and p is on the shortest
path between pfrom and pto

0, otherwise

Cmax is a normalizing constant equal to the highest value
of
∑
{pfrom,pto} C(p, p

from, pto) for any single p.
4) Entering: The entering feature is similarly defined to

the connecting feature, except only paths leading to the
region specified by the relational index ki are counted,
and paths starting inside the active region are similiarly
discounted:

φent,ki
=

∑

p∈Ri,p
to∈Rki

pfrom∈P\Ri

C(p, pfrom, pto)

|Ri||Rki
| (7)



5) Food-preparing: The potential of food preparation is
here modeled as a function of the distance to objects needed
for the task. Two objects are taken as determinants: “refriger-
ator” and “stove”, although this should only be regarded as an
illustration; more study will be needed to determine exactly
which objects support the function and to what degree, in
humans’ minds. The value falls off as a sigmoid with the
navigation distance (not the straight-line distance):

φfood =
∑

p∈R

(
α

1 + C

ed1(p)/B + C
+ β

1 + C

ed2(p)/B + C

)
(8)

where B and C are constants determining the shape of
the sigmoid, and the d1 is whichever distance (stove or
refrigerator) is smaller, d2 the larger. This formulation allows
a non-zero value even if one object is missing entirely.

6) Working: The working feature is treated analogously
to the food-preparing feature, except that there is only one
object, “desk” and so only one corresponding term in Eq. 8.

E. Referring expression matching

Maximizing the energy described above serves to produce
a context-less labeling of the map. In the following it is
explained how a spatial referring expression, such as “the
room next to the corridor”, can be matched to a part of the
map using the same framework.

A description D consists of a set of attributes and an
n-tuple of regions taken from a labeling, each called an
operand. n is called the arity of the description. Attributes
are similar to labels, but may be defined on more than one
region. Each attribute is associated with some subset of the
descriptions’ n-tuple.

Example: A description of arity 2 might have 3 attributes:
1) Region 1 should be labeled “Corridor” (unary)
2) Region 1 and region 2 should be neighbors (binary)
3) Region 2 should be a room (unary)

This description encodes: “find a room that is next to a
Corridor”.

Attributes each evaluate to a number ai ∈ [0, 1], and their
geometric mean is taken as the “fit” of the description:

F (D) = n
√
a1 . . . an ∈ [0, 1] (9)

The energy of the description is the product of its fit and
the energy of the corresponding labeling:

E(D) = γF (D)E(L) (10)

This energy is added to that of the labeling itself, and when
this sum is maximized it will tend to assign the n-tuple to
regions from the labeling which possess all the attributes –
which may involve influencing the labeling such that there
exists a match, e.g. by reinterpreting two otherwise separate
rooms as a single large room. This effect is desirable,
because the description implicitly injects information that the
unbiased labeling does not have access to about e.g. how a
human user conceptualizes different parts of the map. The
weight constant γ determines how strongly the description

influences the labeling. Its value will in general depend on
the application and the linguistic context; γ = 0.1 is used in
this paper.

Attributes used here are:
• Operand region A should have a specific label
• Operand region A should contain a specific place p∗

• Operand region A should be large
• Operand region A should be located toward a given

direction in the map
• Operand region A should be located in a given drection

relative to operand region B

IV. EXPERIMENTS

This section describes experiments done using the above
framework, operating on three grid maps: FR079, Intel and
SDR (see Figure 1). The maps were thresholded and a mor-
phological closure operation performed to eliminate spurious
holes in walls. In order to obtain the initial oversegmentation
of places P that the framework needs, a set of nodes
and connections were added manually in the manner of an
exploring robot to produce a graph similar to e.g. Mozos
et al. [8]. Each free grid cell was then assigned to the closest
(via free space) node, forming a place and permitting the
computation of border lengths (see Sec. III-D). Objects were
also assigned manually to places in two of the three maps, for
illustrative purposes. The SDR map was left without objects.

A. Energy maximization

The high-level features making up the energy function
make it problematic for standard graphical solving methods.
For the purposes of this paper a stochastic method, simulated
annealing, was found to provide adequate optimization. Sim-
ulated annealing works by taking random moves, and may
move against the energy gradient in order to escape local
minima, but does so at an ever-decreasing probability as time
passes; see Algorithm 1.

All experiments used Tstart = 2 and Tend = 0.001. The
cooling-down rate, κ was set to 0.9998, leading to a step
count of circa 40 000.

The perturb function changes the labeling using one of
the following moves, picked at random:

1) Transfer: A donor region is picked at random, and
a receiver region is picked from among the donor’s
neighbors. Places are transferred from the donor to the
receiver until a random trigger stops it, or that entire
connected component is transferred.

2) Split: A seed place is picked at random from the map,
and another seed is picked from the neighbors of that
place within the same region. The two seeds then grow
competitively within the region, until a random trigger
stops the process or that entire connected component
is covered. Finally one of the grown seeds is picked at
random to generate a new region with a random label.

3) Relabel: A random region is picked and given a
random new label.

4) Reassign index: The relational index ki of a relational
label is set to a new random region



Algorithm 1 Energy maximization procedure
begin
T := Tstart;
while T > Tend

do
Lnew := perturb(Lcur);
if E(Lnew) > E(Lcur)

then
paccept := 1;

else
paccept := e

E(Lnew)−E(Lcur)
T ;

fi;
if rand() < paccept

then
Lcur := Lnew;

fi;
T := T · κ

od;
end

5) Reassign description: If a description is being used,
change one of its operands to a new random region

Note that nothing in these rules keeps a region from be-
coming disconnected in the process. Maintaining a region’s
integrity comes out of the energy maximization.

After each perturb move above (except #5), additionally
the description – if one is in use – is locally optimized
by taking each of the regions that was affected by the
change, and trying it in the place of each current operand
in turn, to see if the description’s value is improved by
switching. This is done before paccept is computed, and
permits the description to effectively steer the labeling toward
an optimum for both description and labels.

V. RESULTS

Figure 1 shows the result of a context-less segmentation
of the three maps. For the most part, the result accords
with what a human might come up with. Some corridors
in the upper half of the SDR map are mislabeled as rooms,
probably because the many loops make for many alternative
paths that “dilute” the connected property compared to the
southern corridor. This might be remedied by normalizing
that property more locally.

Note that this segmentation comes about purely from
commonsense functional semantics, without the training of
perceptual models, heuristics such as detected doorways or
explicit tagging by humans.

No regions are classified as offices or kitchens even where
there is functional support – this is not suprising, since
they are also good representatives of rooms, and there is
no context to decide between them until it is imposed, see
below.

A. Description resolution

Below are some examples of reference resolution per-
formed on the maps as described in Sec. III-E. They
demonstrate that the functional framework can provide both
flexibility and simplicity to spatial reference resolution. The
labelings are shown in Figure 2 (note that some are cutouts
of the full map).

1) Fig. 2(a): “The eastern corridor” (Operand A: Labeled
“corridor”; operand B: Labeled “corridor”, located east
of A). The expression implies there is at least one other
corridor that is less easterly.

2) Fig. 2(b): “A big room” (Operand A: Labeled “room”,
large size).

3) Fig. 2(c): “A kitchen” (Operand A: Labeled “kitchen”).
What is otherwise a single room (Fig. 1(a)) is contextu-
ally reinterpreted as a kitchen and another region (be-
cause the work function crowds out the food function
at the upper end of the room).

4) Fig. 2(d): “The room at place < p∗ >” (Operand A:
labeled “room”, contains p∗). Although not part of a
context-less labeling (Fig. 1(b)), the best fit was found
through extending the room into the corridor.

5) Fig. 2(e): “Entrance to a kitchen” (Operand A: labeled
“entrance”, relational index must point to B; Operand
B: labeled “kitchen”).

An example of a failed resolution is displayed in Figure 2(f):
“Entrance to a big room”. Here the search got stuck in a local
minimum, where any move to reduce the size of the room
led to an energy decrease.

VI. CONCLUSIONS

This paper has shown how a conceptually very simple –
and, consequently, flexible – energy maximization approach
can be used to perform segmentation of 2D maps into units,
using features taken from the functional aspects that form the
core of spatial semantics. The resulting clusters correspond
well to human intuitions. Additionally, it is shown how the
framework can use the same mechanism to find matches
for referring expressions, even adjusting the segmentation
to accommodate the context implicit in those expressions.

A. Future work

The set of different labels used in this work was small.
Future work must investigate how increasing the number
of possible labels affects outcomes and performance. More
complex contexts should also be investigated, as well as the
opportunities for combining the framework with language
parsing or production. In addition, the different parameters
used in the energies for the different labels are good candi-
dates for learning.

The simulated annealing method used for solving the
energy in this paper leaves much to be desired in terms of ef-
ficiency. It might be worthwhile to explore other approaches;
however, because of the general nature of the energies used
few simplifying assumptions can be made by any algorithm.



(a) FR079 map (b) Intel map (c) SDR map

Fig. 1. Labeling of regions. Grey signifies rooms, white corridors and yellow entrances. Red lines delimit regions. Nodes used to create the places are
also shown, with connectivity. A white square represents a refrigerator object; a dot, a stove; a black square, a desk. A red box indicates the place used
in description 4 in Sec. V-A.

(a) “The eastern corridor” (b) “A big room” (c) “A south-easterly room”

(d) “The room at place < p∗ >” (e) “Entrance to kitchen” (f) “Entrance to a big room”

Fig. 2. Fitting descriptions to map. Diagonal stripes indicate the primary operand of the description, horizontal ones the secondary when applicable.
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[9] S. Vasudevan, S. Gächter, V. Nguyen, and R. Siegwart,
“Cognitive maps for mobile robots – an object based
approach,” Robotics and Autonomous Systems, 2007.

[10] W. Kuhn, Modeling the Semantics of Geographic Cat-
egories through Conceptual Integration, ser. Lecture
Notes in Computer Science. Springer Berlin / Hei-
delberg, 2002, vol. 2478, pp. 108–118.

[11] C. Dornehege and A. Kleiner, “Behavior maps for
online planning of obstacle negotiation and climbing
on rough terrain,” in Proc. of the IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), 2007.
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Abstract

In order to collaborate with people in the real world, cogni-
tive systems must be able to represent and reason about spa-
tial regions in human environments. Consider the command
“go to the front of the classroom”. The spatial region men-
tioned (the front of the classroom) is not perceivable using
geometry alone. Instead it is defined by its functional use,
implied by nearby objects and their configuration. In this pa-
per, we define such areas as context-dependent spatial regions
and present a cognitive system able to learn them by combin-
ing qualitative spatial representations, semantic labels, and
analogy. The system is capable of generating a collection
of qualitative spatial representations describing the configu-
ration of the entities it perceives in the world. It can then be
taught context-dependent spatial regions using anchor points
defined on these representations. From this we then demon-
strate how an existing computational model of analogy can be
used to detect context-dependent spatial regions in previously
unseen rooms. To evaluate this process we compare detected
regions to annotations made on maps of real rooms by human
volunteers.

1 Introduction
Consider a janitorial robot cleaning a classroom. While per-
forming this task, it encounters a teacher working with a stu-
dent. The teacher tells the robot to “start at the front of the
classroom”, expecting it to go to the front of the classroom
and begin cleaning that area. This response requires that the
robot is able to determine the spatial region in the environ-
ment that satisfies this concept.

The ability to understand and reason about spatial re-
gions is essential for cognitive systems performing tasks for
humans in everyday environments. Some regions, such as
whole rooms and corridors, are defined by clearly perceiv-
able boundaries (e.g. walls and doors). However, many re-
gions to which humans routinely refer are not so easily de-
fined. Consider, for example, the aforementioned region the
front of the classroom. This region is not perceivable using
just the geometry of the environment. Instead, it is defined
by the objects present in the room (chairs, a desk, a white-
board), their role in this context (seats for students to watch

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a teacher who writes on the whiteboard) and their configu-
ration in space (the seats point toward the whiteboard). We
refer to such regions as context-dependent spatial regions
(CDSRs).

Current cognitive systems are not capable of representing
and reasoning about CDSRs, yet it is an important ability. If
cognitive systems are to collaborate with humans in every-
day environments then they must be able to understand and
refer to the same spatial regions humans do. Many regions
are best defined in a context-dependent manner, for exam-
ple, a kitchen in a studio apartment, an aisle in a church
or store, behind enemy lines in a military engagement, etc.
In order to represent and reason about such regions, cogni-
tive systems must integrate different types of information,
including geometric, semantic, and functional knowledge.
Creating systems able to integrate such a range of informa-
tion is a key challenge in the cognitive systems paradigm
(Langley in press).

This paper presents an artificial cognitive system (specifi-
cally a mobile robot) able to represent and reason about CD-
SRs. Our approach is founded on two assumptions. The first
assumption is that CDSRs can be defined using qualitative
spatial representations (QSRs) corresponding to sensor data
of the system (Cohn and Hazarika 2001). The second as-
sumption is that semantically and geometrically similar ar-
eas (e.g. two different classrooms) will feature similar CD-
SRs, and that these similarities can be recognised through
analogy. The rest of the paper is structured following these
assumptions. Section 2 describes how we generate QSRs
from sensor data taken from an existing, state-of-the-art,
cognitive system and use these to define CDSRs. Section 3
then describes how we use the structure-mapping model of
analogy (Gentner 1983) to transfer a CDSR from a labelled
example to a new situation. Section 4 presents a worked ex-
ample of the entire process, and Section 5 evaluates our sys-
tem in comparison to data from human subjects performing
the same task.

2 Metric to Qualitative Representations
The context which defines a CDSR is a combination of the
functional and geometric properties of a room, i.e. what can
be done there and where. In this work we implicitly repre-



sent context using the types of objects present in a room and
their location relative to each other. The following sections
describe how we construct symbolic representations of these
ingredients of context from robot sensor data.

2.1 The Dora System
We base our work on Dora, a mobile cognitive robot with
a pre-existing multi-layered spatial model (Hawes et al.
2011). In this paper, we draw on the metric map from
this model. For more information on Dora’s other com-
petences, see recent papers, e.g. (Hawes et al. 2011;
Hanheide et al. 2011).

Dora’s metric map is a collection of lines in a 2D global
coordinate frame. Two example maps are pictured in Fig-
ure 4. Map lines are generated by a process which uses
input from the robot’s odometry and laser scanner to per-
form simultaneous localization and mapping (SLAM). Lines
in this SLAM map represent features extracted from laser
scans wherever a straight line is present for long enough to
be considered permanent. In practice, lines are generated at
the positions of walls and any other objects that are flat at the
height of the laser (e.g. bins, closed doors etc.). The robot’s
location in the metric layer is represented as a 2D position
plus an orientation.

Dora is capable of using vision to recognize pre-trained
3D object models. Recognition can either be triggered
through autonomous visual search or at a user’s command.
When an object is detected it is represented in the metric
map by placing a copy of the model at the detected pose.
The recognizer associates each object with a semantic type
that was provided during a training phase.

To enable us to generate a range of different evaluation
situations in a reasonable length of time, we have gener-
ated data from Dora in both real rooms and in simulation.
Simulation is performed using the Player/Stage hardware
abstraction layer (Gerkey, Vaughan, and Howard 2003) al-
lowing us to run the system mostly unchanged in a pre-
defined environment. Also, to enable us to detect a wider
range of objects than is usually possible (from armchairs to
whiteboards), we used a simulated object recogniser in all
runs. The recogniser was configured with types and posi-
tions of objects in the environment and was guaranteed to
detect them when the robot was orientated towards them.
This eliminated any errors from the recognition process, but
was still influenced by errors in robot localisation.

2.2 Qualitative Spatial Representation Extraction
For each object that Dora detects we compute the strengths
of 8 spatial relations between that object and each of the ob-
jects adjacent to it; adjacency is determined using a voronoi
diagram, as is standard in geometric reasoning (Forbus,
Usher, and Chapman 2003). The strength of a computed
relation for a given pair of objects represents the applica-
bility of that relation to the pair. Strength ranges from 0
to 1, with 0 being unsuitable. The model used to compute
these relations was inspired by the literature on modeling
the semantics of spatial terms (Kelleher and Costello 2009;
Kelleher and van Genabith 2006; Regier and Carlson 2001;

Gapp 1994). The model accommodates both direction and
distance as factors in the relative position of objects.

The relations we compute between each given landmark
object and its adjacent neighbours are analogous to the car-
dinal and intermediate points on the compass when the
compass is centered on the object. The canonical direc-
tions of these relations are defined using the following
vectors: 〈0, 1〉, 〈1, 1〉, 〈1, 0〉, 〈1,−1〉, 〈0,−1〉, 〈−1,−1〉,
〈−1, 0〉, 〈−1, 1〉. The predicates used to denote these rela-
tions are named accordingly, e.g. xZeroYPlus, xPlusYPlus,
xPlusYZero, xPlusYMinus, etc.

We generate the strengths of these spatial relations as fol-
lows. First we compute the maximum distance dmax be-
tween any two points in the room, this value is used to nor-
malize the distances between objects. Next, taking each ob-
ject in turn to be the landmark, we translate the origin of the
room to the landmark’s centroid. This results in the coordi-
nates of the all the other objects in the room being translated
into a frame of reference whose origin is the centroid of the
landmark. We then compute the strength of each of the 8
spatial relations between the landmark and each of the ob-
jects adjacent to it by calculating: (a) the distance d between
the landmark’s centroid and the adjacent object’s location,
and (b) the inner angle θ between the direction vector of the
relation and the vector from the origin (the landmark’s cen-
troid) to the neighbour’s location. These two spatial com-
ponents are integrated to compute the strength s of a given
relationship using Equation 1. Figure 1 provides a visualiza-
tion of a spatial relationship across a region.

s =

{ (
1− θ

90

)
∗
(

1− d
dmax

)
if θ ≤ 90◦

0 otherwise
(1)

These spatial relationships between adjacent objects pro-
vide the structure necessary for analogical processing. Gen-
erating the relationships in this way (as opposed to, for ex-
ample, simple coordinate-based thresholding) has the advan-
tage that the presence and absence of relationships is repre-
sented on a continuous scale. This provides our representa-
tions with the flexibility necessary to manage the variation
in perceptual information (i.e. the position of walls and ob-
jects) inevitable in human environments and robot percep-
tion.

In addition to spatial relations, we also create grouping
entities from the robot sensor data. Grouping entities collect
together sets of adjacent objects of the same type. For ex-
ample, a classroom would likely have a group entity created
in which all of the students’ desks were members.

2.3 Representing CDSRs
We use anchor points (Klenk et al. 2005) to define the
boundaries of CDSRs. Anchor points are symbolic descrip-
tions which link a conceptual entity to a perceived entity.
The perceived entities we use are the objects recognised
by Dora, and the room itself. The room representation is
created by putting a convex hull around the lines in Dora’s
SLAM map. Anchor points are created from perceived enti-
ties using unary functions, e.g. (XMaxYMostFn Desk1)



Figure 1: A visualisation of a the strength of a spatial re-
lation across a region. The landmark is the red square and
the direction vector used was 〈0, 1〉 (i.e. above of the land-
mark). The lighter the pixel the stronger the spatial relation
is deemed to be at that point.

represents the point on the Desk1 with the largest x coordi-
nate taken from the set of points with a y coordinate within
5% of the maximum y coordinate. Anchor points are linked
to particular CDSRs using a boundarySegment ternary
relation. After we have defined the boundary of the region,
we assign it a semantic label using the regionType re-
lation. Therefore, each CDSR has one type and a variable
number of boundary segments.

(regionType CDSR9 FrontRegion)

(boundarySegment CDSR9

(YMaxXFewestFn Room3)

(YMinXFewestFn Room3))

(boundarySegment CDSR9

(YMinXFewestFn Room3)

(YMinXFewestFn Group1))

Figure 2: Three of the five expressions representing the front
of the classroom context-dependent region CDSR9

Figure 2 contains three of the five expressions defining the
front of classroom Room3 which is pictured in the top of
Figure 4. The boundary segments (shown in orange in Fig-
ure 4) define the extent of the region. (YMaxXFewestFn
Room3) and (YMinXFewestFn Room3) are the points
with the highest and lowest y coordinate out of the set of
points within 5% of the minimum x coordinate of Room3.
The next segment connects the lower left coordinate in
the figure to the (YMinXFewestFn Group1), where
Group1 includes the eight desks. There are two more
boundary segments completing a polygon for this region.
The semantic label FrontRegion ties this polygon to a
conceptual region, “the front of the room”. This definition
for the front of the room is specific to Room3 and its en-
tities. It is clearly context-dependent because its extent is
dependent on the arrangement of the anchor points used to
define its boundary. If the desks were in a different position
then the region would cover a different extent (e.g. if they
were further to the left then the region would be smaller).

3 Analogical Transfer of Spatial Regions
We assume that a cognitive system will have a way of ini-
tially acquiring examples of CDSRs, e.g., by being taught
through dialogue, sketching, or hand-coding. To avoid bur-
dening potential users with the task of teaching the system
every CDSR individually, it is desirable for a cognitive sys-
tem to be able to automatically recognize similar regions af-
ter initial training. For example, after a janitorial robot has
been taught where the front of one classroom is, it should be
able to identify the fronts of other classrooms in the building.
Our system uses analogy to solve this problem. We chose
this approach because analogy has been previously used to
successfully combine semantic and geometric information
in spatial reasoning tasks (Lockwood, Lovett, and Forbus
2008).

Analogy is an essential cognitive process. In humans,
analogical processing has been observed in language com-
prehension, problem-solving, and generalization (Gentner
2003). The structure-mapping theory of analogy and sim-
ilarity postulates this process as an alignment between
two structured representations, a base and a target (Gen-
tner 1983). We use the Structure-Mapping Engine (SME)
(Falkenhainer, Forbus, and Gentner 1989) to perform ana-
logical matching in our system. Given base and target rep-
resentations as input, SME produces one or more mappings.
Each mapping is represented by a set of correspondences
between entities and expressions in the base and target struc-
tures. Mappings are defined by expressions with an identi-
cal relation and corresponding arguments. When provided
with expression strengths, such as, our spatial relationships,
SME prefers mappings with closely aligned fact strengths.
SME can be given pragmatic constraints that require certain
entities in the base to be included in the mapping. Map-
pings also include candidate inferences which are conjec-
tures about the target using expressions from the base which,
while unmapped in their entirety, have subcomponents that
participate in the mapping’s correspondences. SME oper-
ates in polynomial time, using a greedy algorithm (Forbus,
Ferguson, and Gentner 1994).

Figure 3: Analogical mapping between six base expressions
and three target expressions.



Figure 3 illustrates a sample mapping between six
base expressions and three target ones. Each oval rep-
resents a predicate, and the entity arguments are rep-
resented by squares. SME generates a mapping be-
tween the base expressions (group Desk1 Desk2) and
(xMinusYZero Desk1 Desk2), and the target expres-
sions (group Desk11 Desk12) and (xMinusYZero
Desk11 Desk12) as well as between the regionType
expressions in each case in the following manner. First,
the predicates of these expressions are placed in correspon-
dence, as identical predicates are preferred by SME. Then
SME aligns the arguments of the aligned predicates, Desk1
with Desk11, Desk2 with Desk12, and CDSR1 with
CDSR2. While there is another XMinusYZero statement
in the base about two desks, it cannot correspond to either of
the target expressions in the same mapping due to the one-
to-one constraint in SME which allows each element in the
target to map to at most one element in the base and vice
versa. In Figure 3, the correspondences are highlighted by
the hashed bi-directional arrows. Next, SME creates a candi-
date inference for the boundary segment expression, because
both the mapped Group and regionType predicates par-
ticipate in the mapping. The candidate inference is shown
in red in the figure. Note that inference is selective, with
no candidate inferences generated for the entirely unmapped
expressions.

In our system, the base and target representations consist
of the entities Dora has perceived in two different rooms, the
QSRs between them and any groups that have been identi-
fied. The base also contains a labeled CDSR of the type
sought in target. The result of running SME on these rep-
resentations is a set of correspondences between the base
and target, and a set of candidate inferences about the tar-
get. We use these to transfer the CDSR from base to target
(i.e. recognizing the CDSR in the target) as follows. First,
we identify the CDSR of the sought type in the base and
use SME’s pragmatic constraints to ensure that the entities
referred to its anchor points participate in the mapping. To
transfer the CDSR to the target, we collect the candidate in-
ferences that result from boundarySegment statements
mentioning the base CDSR. The second and third arguments
of these candidate inferences are anchor points in the target
environment. We use these to define the boundary of the
CDSR in the target.

4 Example System Run
To elucidate the workings of our system, we now present an
example of how it can transfer a CDSR describing the front
of a known classroom (the base) to a new classroom (the
target).

We first create the base and target representations by run-
ning Dora in the two different classrooms. In each case,
Dora is manually driven around the room to allow it to cre-
ate a metric map. Once the map is created, Dora is then
positioned such that the objects are observable and the vi-
sual recognition system is run. The map and object data that
result from this are then passed on to the QSR generator.
The base and target maps are pictured in the top and bottom
of Figure 4 respectively. In the base case, Dora perceives 8

Figure 4: Maps of 2 real classrooms generated by our sys-
tem. The lines around the perimeter are walls, the unfilled
polygons are the outlines of objects and the filled polygons
are CDSRs. The maps show an expert-annotated CDSR
(red, top image), a subject-annotated CDSR (blue, bottom
image) and a CDSR transferred by analogy (green bottom
image). The classroom used to generate the bottom class-
room is pictured in Figure 5.

Figure 5: One of the classrooms used in our evaluation. This
image was presented to subjects who were asked to annotate
a copy of the image in the bottom half of Figure 4. The inset
shows a screenshot from the data collection webpage.



individual desks, a group entity containing these desks and
the room area. To this we add the CDSR representing the
front of the room. The case includes a total of 50 expression
relating the 20 entities. Six of these expressions are used to
define the boundary segments and CDSR representing the
front of the room. The target case includes 26 expressions
and 11 entities.

SME generates an analogy between the base and target
cases enabling the transfer of the symbolic description of the
front of the room to the new situation requiring Room3 and
Group1 participate in the mapping as they are referenced
by the anchor points in the base. The resulting analogy in-
cludes 26 correspondences between the entities and expres-
sions and 32 candidate inferences. Four of these candidate
inferences define the CDSR in the target with anchor points
defined on the room and the group of desks in the target.
The green region in the lower image of Figure 4 illustrates
the transferred CDSR.

5 Evaluation
To evaluate our progress toward building a cognitive system
capable of reasoning about CDSRs, we conducted the an ex-
periment focusing on the following questions:

• Are anchor points able to encode context-dependent spa-
tial regions?

• When provided with a base representation containing a
labelled CDSR, how well does our approach identify the
CDSR in a given target?

5.1 Materials
We evaluated our approach on six classrooms (two simu-
lated and four real) and two simulated studio apartments.
The simulated rooms were based on real-life counterparts.
For each room we manually encoded appropriate CDSRs
that could be represented by our approach. For the class-
rooms these were the front and back, and the front and back
rows of desks. For the studios these were the kitchen, of-
fice and living areas. These manually encoded regions were
used as the base CDSRs for analogical transfers, and can be
considered the training data for our evaluation.

To determine how people define CDSRs, we asked three
naı̈ve users to draw polygons for each region type for each
room. This task was performed using a webpage on which
each user was presented with an image of the real room plus
an image of the map data generated by the robot onto which
the drawing could be done. The webpage1 is shown in the
inset in Figure 5. The user-defined polygons define the tar-
get regions against which we evaluate our transfers.

We consider a problem instance to be a room and a sought
CDSR type. For each room containing a manually encoded
CDSR of the sought type, we generate a transferred region
using analogical transfer. To assess the quality of the trans-
fer, we calculate precision (p, the proportion of the trans-
ferred region that overlaps with the target region) and recall
(r, the proportion of the target region that overlaps with the
transferred region) as follows:

1http://home.csumb.edu/k/katherinelockwood/world/

p =
area(transferred region ∩ target region)

area(transferred region)
(2)

r =
area(transferred region ∩ target region)

area(transferred region)
(3)

Using this approach we generate results showing the
matches between each of the following pairs of regions:
the transferred region and the appropriate target region; the
CDSR we manually encoded for the target room and target
region; and the region for the whole room and the target re-
gion. Results comparing transferred and target regions mea-
sure how well our system is able apply a single example to
new situations. The comparisons between the manual an-
notations to the target regions measure how well the anchor
points we chose capture the users’ regions (who were not
constrained to anchor points). Results from the whole room
regions provide a baseline performance for comparison.

5.2 Results
To assess overall performance, Table 1 summarizes the re-
sults across all problem instances against user-defined tar-
get regions from three different users. The transferred re-
gions achieved a precision of .47 (σ=.37) and a recall of .46
(σ=.38). Comparing the manually encoded regions against
each target region results in a mean precision of .71 (σ=.30)
and recall of .67 (σ=.25). The region defined by the room
corresponds to the target region with a precision of .17
(σ=.11) and recall of .98 (σ=.05).

To identify how our approach fairs under different condi-
tions, Table 2 separates the results by CDSR type. The mean
precision for the transferred regions ranged from .76 for the
front rows of classrooms to 0 for the office in studio apart-
ments. Comparing manually encoded against target regions
resulted in a minimum mean precision of .60. This occurred
for the front of the classroom. The whole room precision,
which is directly proportionally to the size of the target re-
gion, varied from .08 for the office to .35 for the living area.

5.3 Discussion
These results support the hypothesis that anchor points can
provide a symbolic representation on top of sensor data for
context-dependent spatial regions, and, when combined with
qualitative spatial relations, they facilitate learning from a
single example through analogical transfer. Collaboration
with human users requires a high precision and recall, be-
cause cognitive systems must be able to understand as well
as refer to these regions in human environments. Conse-
quently, the high manually encoded precisions and recalls
indicate that the defined anchor points are a reasonable start-
ing point for a symbolic representation. Our future work
seeks to further evaluate the utility of this representation by
embedding the cognitive system within tasks with human
users.

The transferred regions were considerably more precise
(.47) when compared to the room as whole (.17), and their
recalls (.46) indicate that they captured almost half of the
area indicated by the human user. As we create CDSRs



Transferred Manually Encoded Entire Room
p̄=.47 σ=.37, r̄=.46 σ=.38 p̄=.71 σ=.30, r̄=.67 σ=.25 p̄=.17 σ=.11, r̄=.98 σ=.05

Table 1: Overall Performance Compared Against Target Regions Defined by Three Users

Region Transferred Manually Encoded Entire Room
Front p̄=.32 σ=.33, r̄=.49 σ=.41 p̄=.60 σ=.29, r̄=.83 σ=.19 p̄=.16 σ=.10, r̄=1 σ=0
Back p̄=.44 σ=.37, r̄=.56 σ=.41 p̄=.66 σ=.25, r̄=.84 σ=.17 p̄=.11 σ=.06, r̄=.99 σ=.03

Front Rows p̄=.76 σ=.27, r̄=.28 σ=.21 p̄=.83 σ=.31, r̄=.50 σ=.11 p̄=.22 σ=.08, r̄=1 σ=0
Back Rows p̄=.72 σ=.30, r̄=.42 σ=.26 p̄=.80 σ=.29, r̄=.43 σ=.26 p̄=.19 σ=.06, r̄=1 σ=0

Kitchen p̄=.60 σ=.05, r̄=.59 σ=.34 p̄=.78 σ=.20, r̄=.71 σ=.13 p̄=.16 σ=.02, r̄=.92 σ=.13
Office p̄=.00 σ=.00, r̄=.00 σ=.00 p̄=.78 σ=.29, r̄=.55 σ=.20 p̄=.08 σ=.03, r̄=.94 σ=.06

Living Room p̄=.40 σ=.39, r̄=.01 σ=.01 p̄=.63 σ=.34, r̄=.54 σ=.13 p̄=.35 σ=.22, r̄=.96 σ=.06

Table 2: Performance by Region Type

using anchor points defined on perceived entities, our ap-
proach performs best when the boundary of the target CDSR
is closely tied to such entities. This is the case in the front
rows of the classroom, with p of .76 and .82 for the inferred
and the manually encoded regions respectively. The system
performs worst when the extent of the CDSR is defined as an
unbounded area near or around particular objects. The office
of a studio apartment is loosely defined as the region around
the desk. This motivates one direction of future work: ex-
panding the vocabulary of anchor points to better capture
these notions of space.

6 Related Work
Typical approaches to spatial representation for mobile
robots tend to focus on localization, and thus mostly rep-
resent the world uniformly without subdivision into mean-
ingful (semantic) units (Thrun 2003). When a more struc-
tured representation is required, many turn to Kuipers’ Spa-
tial Semantic Hierarchy (Kuipers 2000). This paper follows
in this tradition, adding CDSRs to his qualitative topolog-
ical representations. Whilst mobile robots exist which can
determine the type of a room from the objects in it (Han-
heide et al. 2010; Galindo et al. 2005), they only concern
themselves with types of whole rooms, and cannot represent
regions within rooms. This is also true for those systems
which use some elements of QSR (Aydemir et al. 2011).
The need for an autonomous system to ground references to
human-generated descriptions of space has been recognized
in domains where a robot must be instructed to perform a
particular task, however existing systems are restricted to
purely geometrically-defined regions (Tellex et al. 2011;
Dzifcak et al. 2009; Brenner et al. 2007).

There is mounting evidence that analogy, operating over
structured qualitative representations, can be used to sim-
ulate a number of spatial reasoning tasks. Forbus et al.
showed that analogy between course of action diagrams
could be used to identify potential ambush locations in
new situations by focusing on only the relevant aspects of
sketched battle plans (Forbus, Usher, and Chapman 2003).
A core contribution of their work was the definition of a
shared similarity constraint between a spatial reasoning sys-
tem and its user; where users and spatial reasoning systems

agree on the similarities between situations. This has close
parallels to what we are trying to accomplish, where a cogni-
tive system is able to reason about context-dependent spatial
regions by identifying the same salient features as its hu-
man user. The anchor points in our work were originally
used in teaching a system how to solve problems from the
Bennett Mechanical Comprehension Test that require spatial
and conceptual reasoning. For example, identifying which
wheelbarrow will be more difficult to lift based on the rela-
tive locations of its loads as depicted in a sketch (Klenk et al.
2005). In that work, the anchor points defined the endpoints
of lines. We go beyond that result to use anchor points to
specify 2D regions.

7 Conclusion

In this paper we presented an integrated cognitive sys-
tem capable of representing and reasoning about context-
dependent spatial regions. The system identifies CDSRs in
previously unseen environments through analogy with a sin-
gle example. This is a difficult cognitive systems task re-
quiring integration of semantic and geometric knowledge to
identify regions as small as 8% of the room. Our system
demonstrates a successful integration of a range of technolo-
gies including vision, SLAM, qualitative spatial reasoning
and analogy to achieve this task. In order to make this rich
collection of components work together, our work takes a
number of short-cuts that we plan to address with future
work. These include a reliance on the initial orientation of a
room in a global coordinate frame, the lack of a mechanism
to retrieve relevant rooms from memory (e.g. MAC/FAC
(Forbus, Gentner, and Law 1995)), and a lack of transfer
post-processing (e.g. comparing the QSRs present in both
base and transferred regions) to improve results. In addi-
tion, we must complement our system development work
with more comprehensive human studies assessing how peo-
ple define and use these regions as well as how well anchor
points capture them. Despite the preliminary nature of this
work, our evaluation demonstrates that the system is able to
transfer CDSRs that overlap with user-defined regions for 6
out of 7 region types.
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Web Mining Driven Semantic Scene Understanding and Object
Localization

Kai Zhou, Karthik Mahesh Varadarajan, Michael Zillich, Markus Vincze

Abstract— Knowledge acquisition from the Internet for
robotic applications has received widespread attention recently.
It has turned out to be an important supplementary or even
a complete replacement to conventional robotic perception.
In this paper, we investigate state-of-the-art online knowledge
acquisition systems for robotic vision applications and present
a framework for further fusion and tighter integration. Boot-
strapped by an interconnected process wherein modules for
object detection and supporting structure detection co-operate
to extract cross-correlated information, a web text mining
technique using sequential pattern retrieval is introduced for
linking the search of objects with their potential localities.
Experiments using an indoor mobile robot for an Active Visual
Search (AVS) task demonstrate the benefits of our coherent
framework for visual representation and knowledge acquisition
from the Internet.

I. INTRODUCTION

In order to observe, detect, recognize, grasp or manipulate
objects, diverse sensors have been mounted on versatile
robots and various perception techniques have been designed
for searching potential interest areas. As visual information
is the most important sensory source for humans, visual
perception algorithms play the most important role of all
the robotic sensory knowledge acquisition methods and have
received widespread attention in the last decades. Robotic
researchers have applied numerous computer vision algo-
rithms for detecting/recognizing potential objects in envi-
ronments, and most recently they provide clear evidences
of success in situating isolated object detector/recognizer in
holistic scene understanding frameworks. These approaches
[1][2][3][4][5] focus on the relationship between object
information and environment, thereby facilitating more ac-
curate detection/recognition of potential objects. However,
the knowledge about the semantic link between the object
of interest and its potential surrounding environment is still
missing in current holistic scene understanding methods.
This paper addressed this knowledge gap.

A practical instance of visual perceptual analysis in an
indoor mobile robot scenario will be first described here
to depict our intuition and development of robot visual
perception system. Given a mobile robot with the task of
searching a mug in the apartment, 1) The robot is driven
around based on pre-defined or exploratory waypoints and
isolated mug detector processes the image streams. How-
ever, abundant wrong and redundant detections are caused

The work was supported by EU FP7 Programme [FP7/2007-2013] under
grant agreement No.215181, CogX.

All authors are with Automation and Control Institute, Vienna Uni-
versity of Technology, Gußhausstraße 27-29, A-1040, Vienna, Austria
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Fig. 1: Scenario and object search task at a glance, left:
test scene with the robot at initial point, right: simula-
tion/visualization of visual search task.

due to the presence of clutter (wrong detections), illusory
or noisy contour (redundant detections) and degrade the
robot’s performance greatly. 2) Alternatively, the holistic
scene understanding methods consider the potential spatial
layout of the surroundings of a mug (e.g., a supporting
plane) and coherently perceive the mug and the surrounding
scene. This approach improves the efficiency and accuracy
significantly (e.g., the isolated detector will process a poster
with mug inside as candidate for region analysis, but the
holistic method will not). Although the paradigm of holistic
understanding of entire scenes improves the efficiency of
existing robotic vision systems, considerable effort is still
necessary to build robots that can perceive and interact with
the environment in a fashion similar to that of humans.
People focus visual attention on tables rather than on the
floor given the task of locating a mug, and vice versa for
locating a trash bin. This intelligence is based on an existing
knowledge stored in our mind – in the normal case, the
likelihood that a mug stands on the table is much higher
than the possibility that mug is on the floor. We term
this kind of knowledge as ”Common Sense about Object
Locality (CSOL)”. 3) Web mining driven semantic scene
understanding and object localization with situated CSOL is
proposed in this paper for intelligent robot visual perception
system. In the aforementioned example, using either surface
web mining (e.g., a direct search from Google) or deep
database mining (e.g., querying the online databases such
as Open Mind Indoor Common Sense database (OMICS)),
robots can be programmed to obtain the CSOL predicate that
mugs are usually located on the top of tables or desks.

The paper is organized as follows. In §II we introduce
the background and review state-of-the-art robot visual per-
ception approaches. §III describes a holistic understanding
approach using coherent stereo line detection and plane
estimation for reasoning about the scene. We then detail how



to generate CSOL predicates using web content mining in
§IV. Subsequent sections present experimental results with
synthetic scenes, and real robotic applications. A conclusion
is given at the end of the paper and the future work is shortly
discussed as well.

II. RELATED WORK

The ultimate goal of robot visual perception is the gen-
eration of detailed 3D representations for salient objects to
perform further robot manipulation. Researchers have devel-
oped many algorithms towards this goal; here we summarize
the developments in three phases:

1) Isolated visual operators, such as specific object de-
tector [6], sign recognizer [7] and preattentive feature based
detector [8] are utilized to process the visual image captured
from camera on the robot. However, isolated methods work
on the entire search space thereby consuming excess com-
putational power which is a scarce resource on a robot.

2) The holistic scene understanding techniques
[1][2][3][4][5] consider visual operators and spatial
layouts in a integrated manner for archiving accurate visual
perceptive analysis of scene elements. However, these
methods only use pure computer vision algorithms for robot
perception and still work on a single robot agent without
any prior knowledge or memories.

3) The situated perception methods allow the robot to
make use of knowledge databases, short/long memories of
the robot, learning beliefs and/or knowledge from networked
robots, thereby obtaining more comprehensive information
about the environment for perceiving the world it is situated
in. A detailed overview of situated robotics can be found
in [9] and of embodiment in [10], where it is argued to
be crucial for a close coupling between brain, body and
environment. Knowledge acquisition from the web or sharing
databases have been adopted to supply a large corpus of
training data [11] for visual recognition, to build 3D models
for robot manipulation [12], to complete qualia structures
describing an object [13], to guide robot planning for specific
tasks such as table setting for a meal [14], and even more
ambitiously to fill knowledge gaps when an indoor robot is
executing sophisticated tasks [15]. However, to our knowl-
edge, there is no robot vision system that obtains information
extracted from the web for revealing the relationships of
various objects and their most-likely locations.

Note that our robotic vision system as well as the entire
robot platform are built atop the CoSy Architecture Schema
(CAS) – a distributed asynchronous architecture [16], which
facilitates integration of many relevant components that could
bring additional functionality to the system in a coherent and
systematic way.

III. HOLISTIC SCENE UNDERSTANDING

A unified probabilistic framework, which combines stereo
line detection with planar surface estimation is described
in this section. Data association between planar surfaces
and specific objects is addressed next. We also recommend
readers [2][3] for the details.

The stereo line extraction is a bottom-up approach, First,
edges are detected from image pairs with an adaptive canny
edge detector before we fit lines into the extracted edge
chains using the method of Rosin and West [17]. Then we
match the lines of the stereo image pair using the mean-
standard deviation line descriptor (MSLD) [18] together with
the constraint of epipolar lines is utilized in the calibrated
stereo camera setup. A confidence value Con(f) for stereo
matched line is then calculated based on the angle between
the stereo match and the epipolar line. Note that the resulting
value Con(f), although in the range of [0, 1], is not a prob-
ability. Rather, this value denotes the quality and correctness
of the reconstructed lines.

We adopt CC-RANSAC [19] as the underlying plane esti-
mator and assign confidence values Con(S) to the estimated
planes by calculating the average normal vector of connected
points. This confidence value is used for the joint probability
maximization and will be addressed in detail in §??. It is
reported in [2][3] that plane refinement within a unified
probabilistic framework facilitates more reliable estimation
than using CC-RANSAC only.

Again the confidence Con(S) does not explicitly represent
a probability. However, we can use these confidence values to
approximate a probability distribution by generating samples
around the estimated plane and weighting these samples with
confidences. Given the plane S returned by CC-RANSAC,
and S̃ a generated sample near S, we formulate the proba-
bility distribution in the following way,

p(S̃|Con(S̃)) = p(Con(S̃)|S̃)p(S̃)
p(Con(S̃))

=
[(Con(S̃) > t)]p(S̃)

p(Con(S̃))

(1)

Here t is a threshold and [ ] denotes the Iverson bracket:

[X] =

{
1, if X is TRUE
0, otherwise

(2)

With the Iverson bracket, the probability p(S̃|Con(S̃)) is
proportional to the prior for the sampled plane S̃ whenever
Con(S̃) > t, and 0 elsewhere. In other words, p(Con(S̃)|S̃)
facilitates thresholding of plane samples with low confidence.
We draw samples randomly from the neighboring area of
S to generate S̃, and S̃ ∼ N (µn, σn)N (µh, σh), where n
and h are the normal vector of plane S, and the distance of
plane S to the origin. Hence, p(S̃) is a Gaussian distribution
and assigns higher probabilities to the samples near to the
estimated plane.

The joint probabilistic model consists of three parts, (1) the
probability that the estimated plane is at S̃, (2) the likelihood
of positive stereo line detection with the underlying plane
estimation, (3) the confidence value of detected lines returned
by the stereo line detection algorithm, and can be written as

p(S,W,E) ∝
K∏

i=1

p(S̃i|Con(S̃i))

M∏

j=1

p(tj |fj , S)p(fj , tj |ej)

(3)



The first and last probabilities are given using Eq. 1 and
stereo match confidence respectively. The second probability
is determined by the distance and angle between detected
stereo lines and planes.

To maximize the joint probability, we present the optimiza-
tion problem as argmaxsi,tj (ln p(S,W,E)), the logarithmic
formulation can be rewritten as,

ln p(S,W,E) =
K∑

i=1

ln p(Si|Con(Si))

+

M∑

j=1

[ln p(tj |fj , S) + ln p(fj , tj |ej)]
(4)

where Si, tj are the parameters to be estimated. We select
the plane which has the highest confidence value of all the
plane estimation results, and only consider this plane as the
scene geometry for the joint probabilistic model optimiza-
tion. Then the first part of Eq. 4 is a constant and the second
part can be calculated independently through M 3D matched
lines comparisons of ln p(tj = 0|fj , S) + ln p(fj , tj = 0|ej)
with ln p(tj = 1|fj , S) + ln p(fj , tj = 1|ej). After labeling
all the stereo lines, the pose of the plane with the highest
confidence is refined by searching the nearby planes S̃. This
refined pose should satisfy the criterion of maximizing the
number of stereo lines parallel or orthogonal to it.

Again, we refer the authors to the previous publication
[2][3] for the deduction of aforementioned formulae. A
noteworthy remark of this joint probabilistic approach is that
it considers all the relative elements (planes, stereo lines as
objects) of the current scene in a integrated manner to obtain
the optimized scene understanding, but it doesn’t know
whether the objects and planes in the current scene should
be linked properly or not under the situated consideration.
Obviously, if visual perceptive analysis is implemented only
when the proper link of objects and supporting surface is
detected, the object search task in the large scale environment
can be executed more accurately and efficiently. The solution
to break the improper link or vice versa to reveal the most
appropriate link between the given objects and detected
supporting planes, will be addressed in the next section.

IV. LOCALITY DISCOVERY WITH WEB MINING

Locality of objects plays an important role in robotic top-
down perception processes, such as active visual search. The
spatial concepts reflected by the locality of objects are of
great importance to robots, especially mobile ones [2][3][4].

As mentioned earlier, knowledge acquisition from the web
for robots has received widespread attention in the last years
[11][12][13][14][15], given that the World Wide Web is a
huge, dynamic, diverse and interactive medium to gain open
and free information. While these papers focus on obtaining
various knowledge, they do not cater to obtaining semantic
positional saliency from the Internet, which forms the core of
this paper. We make use of text mining from web to generate
Common Sense about Object Locality (CSOL) for efficient
guiding of robot visual search.

A. Noun Of Locality: ON

The functional interpretations of the spatial language term
”on” not only act as an indicator for cognitively plausible and
practical abstractions of localization knowledge in the field of
mobile robotics, but have also received widespread research
attention from psychology, neurobiology and linguistics. The
use of web content mining technology to extract CSOL
enables the exploration of large resources of information to
improve efficiency of robot visual search.

1) The term ”on” is the functional abstraction of me-
chanical support, which is strongly relevant to the planar
supporting surfaces – a dominative structure in artificial
indoor environments.

2) The spatial concept implied in the noun of locality ”on”,
which allows humans to analyse, generalize and internalize
spatial experiences, plays a prominent role in human cogni-
tion.

3) When verbally representing scenes with mechanical
support, contact or suspension, ”on” is also a keyword which
can demonstrate and derive other related vocabulary. Hence
researchers in the field of Natural Language Processing
(NLP) have developed several algorithms around the study
of the spatial language term ”on”.

4) As the 14th most common English word, ”on” serves
as an exemplar of knowledge discovery or information re-
trieval from diverse resources. This diversification ensures
the stability of the web mining results.

The spatial language term ”on” thus serves as an efficient
text mining pattern for semantic knowledge representation
and hence is used in this paper for discovery of CSOL for
visual perception in indoor mobile robotics.

B. Basic Definition

As a fertile area for data mining, the Wide World Web has
been viewed as the biggest information resource today, while
the huge amount of available information also raises issues of
scalability, transiency, diversification and redundancy. Web
content mining, as one of the most important research
directions in web mining, has reached considerable maturity
in recent years (see [20][21] for good overviews). Among all
web content mining techniques, Pattern Taxonomy Mining
(PTM) remains a popular technique. Though inefficient in the
context of information extraction from web documents [22],
its specific characterizations – indirect phrase representation
and absolute definitions fit perfectly to our requirements.

The definition of sequential pattern used in the paper
is described as follows. Let T = 〈t1, t2, t3 . . . , tn〉 be the
representation of a sequential text pattern. The semantic
representation (both singular and plural) of the object O is
obtained for both user-driven mode (i.e., the user requests
the robot for something) and non-situated inference mode,
e.g., in [14], wherein the robot learns how to set the table
for a meal through retrieval of web information, in the
form of annotations of objects required. The first term of
the sequential pattern, t1 will be set to the collection of
O, i.e., t1 = {O1, O2, . . . , Ok}, where k is the number of
queried objects. The second term t2 is the lemma ”be” which



includes occurrences of ”was”, ”is”, ”were” and ”are”. The
third term t3 is a set of nouns of locality, including ”on”.
The last term in the pattern tn = {S1, S2, . . . , Sh} is a
collection of potential supporting surfaces S in the robot
exploration environment. The information of these surfaces
can be provided by user predefined contexts or furniture
detection algorithms.

Definition IV.1. (Sub- and Super-sequence) Given two se-
quences α = 〈a1, a2, . . . , am〉, β = 〈b1, b2, . . . , b`〉, we
define α is a sub-sequence of β if and only if there exist
integers 1 ≤ i1 < i2 < . . . < im < `, such that
a1 = bi1, a2 = bi2, . . . , am = bim.

For instance, sequence I = 〈t1, t3, tn−1〉 is a sub-sequence
of T = 〈t1, t2, t3 . . . , tn〉. Furthermore, if sequence G is a
sub-sequence of T , we call T = 〈t1, t2, t3 . . . , tn〉 a super-
sequence of G.

Definition IV.2. (Absolute and Relative Support) Given
a database D (can either be the World Wide Web or a
specific robotics knowledge database, e.g., OMICS) and a
sequential pattern T , the absolute support of T in D,
denoted as suppa(T ;D) = ||{T |T ∈ D}||, is the number
of occurrences of T in D. The relative support of T is the
fraction of sentences that contain T in the entire database
D, denoted as suppr(T ;D) = suppa(T ;D)/||D||. The
support collection is defined as a set of paragraphs, and
each of the paragraphs contains the same sequential pattern
T , i.e., {supp(T ;D)} = {T |T ∈ D}.
Definition IV.3. (Frequent Sequential Pattern) A sequential
pattern T is considered as a frequent sequential pattern
(fsp) if and only if suppa(T ;D) ≥ ζ, where ζ is the minimum
support (min sup) threshold.

The reason for using min sup in our approach is to
evaluate and qualify the support collections discovered in
specific-scaled databases (e.g., professional robotic knowl-
edge database), thereby enabling the selection of support
collections with higher relative support for further process-
ing, while objects with lower relative support trigger the
robot to change its mining database to a lager one (e.g.,
Internet). Since the size of the professional robotic database
is far smaller than the size of generic on-line database,
this piecewise process is capable of decreasing the system
burden and/or time for cognitive processing or reflection
for the robot. The utilization of generic on-line database
is also inevitable because the professional database delivers
higher performance only in a limited scope (You may not
get reasonable number of retrieval items when searching
uncommon objects in professional database).

Definition IV.4. (Object pattern, Locality pattern and Full
pattern) A object pattern T o is composed of in-sequence
object representations O, lemma ”be” and a noun of locality,
a full pattern T f consists of a object pattern, a potential
supporting surface at the end, and an arbitrary number
of terms between. A locality pattern T l is the full pattern
without the first object term.

Both object pattern T o and locality pattern T l are sub-
patterns of full pattern T f , and full pattern T f is the super-
pattern of object pattern T o and locality pattern T l.

C. Pattern Retrieval

Based on the pattern representation of text documents,
we present a new two-stage pattern retrieval approach for
discovering locality knowledge CSOL. As we demonstrate
in Algorithm 1, using pattern retrieval for robotic visual
search is designed as a closely integrated two stage mining
process. The mining databases are set to the specific robotic
knowledge library (e.g., OMICS) or a more generic large-
scale information source (e.g., Internet). The pattern retrieval
algorithm operating on the specific robotic database that is of
a reasonable size, can satisfy the timeliness of active visual
search task while providing reasonable results for retrieving
items of daily use. However, most of the robotic knowledge
libraries (e.g., OMICS) are incomplete and updated periodi-
cally, and the retrieved results to queries are limited in scope.
The generic large-scale information source (e.g., Internet)
can be considered as an important supplementary source
when the retrieval of the robotic database fails. Utilization
of it increases the system burden and time consumption,
not only because of the database size changing but also
caused by the pruning as a preprocessing step to filter out
the unrelated items. However, the robust retrieval results can
facilitate more effective visual search.

Algorithm 1 Pattern retrieval of visual object search

1: Set operating database D to robotic database Dr

2: if ∃ fsp T o , i.e. suppa(T
o;D) ≥ ζ then

3: Calculate support collection C = {supp(T o;D)}
4: for tn = S1 → Sh do
5: Compose T l

i with tn = Si as the last term
6: Compute relative support suppr(T l

i ; C) w.r.t. C
7: Sort {suppr(T l

i ; C)|i = 1, . . . , h}
8: end for
9: else

10: if D = Dr then
11: Set D to the generic Internet database DI , back to

line 2
12: else
13: Return failure
14: end if
15: end if
16: Return the sorted results

The relative supports with respect to various elements
in the support collection are sorted, thereby providing a
priority table for linking the first term in sequential pattern
(object) with the last term in the pattern (locality). We
compute the relative support of T l in the support collection
C = {supp(T o;D)} for normalization of relative supports of
various objects, since there might be a significant difference
in the number of retrieved items between commonly found
and uncommon objects.



(a) table scene (b) sofa scene (c) floor scene

Fig. 2: The indoor robot test scenario setting, from left to
right, the robot is looking towards the table, sofa and floor
for visual perception.

In our experiments, the minimum support (min sup)
threshold is set to 20 for the OMICS empirically, although
this is a relative small number with regard to the 1184144
statements1 in OMICS. Furthermore, min sup is set to 1000
for the Internet data and we will show that this setting
produces robust retrieval results in the next section.

V. EXPERIMENTS

The evaluation of pattern retrieval is performed by demon-
strating the validity of linkage between several common
objects with their most likely locations. An indoor robot
that applies this knowledge discovery methods is tested in a
structured environment (Fig. 1 and Fig. 2) to depict how the
online knowledge discovery facilitates effective and accurate
active visual search.

A. Evaluation of Pattern Retrieval

To assess the quality of our pattern retrieval approach,
several objects are used as the target term in the pattern and
the two different databases (the specific database through
OMICS and the large-scale generic one through Google
advanced search) are applied as data mining sources. Fig. 3
displays the text mining results for three common objects in
OMICS. Note that the noun of locality used for mining may
be tailed by contextually unrelated nouns - not just places
which do not exist in the current room/apartment context,
but also some phrases or idioms. For instance, we notice
that the object term ”book” has a relative high likelihood
57% for other ”location” misnomers in comparison with the
locations the robot could possibly find in a room, such as
table, shelf and floor. However, since most misnomers are
widely used phrases, such as ”on sale”, these can be easily
pruned away.

When there are not enough (> ζ) retrieval results from
OMICS, we use Google advanced search to retrieve results
from the Internet. Fig 4 shows three pattern retrieval results.
In this figure, we find that the object ”cushion” and ”trash
can” are tightly bound with the locations ”sofa” and ”floor”
respectively. The retrieval result of pattern {′′football′′ +′′

1According to the database statistic of OMICS project at
http://openmind.hri-us.com.

Fig. 3: The pattern retrieval results of three common objects –
”cup”, ”book” and ”can”, the source being the indoor-robot
knowledge database OMICS, - only localities that exist in
an office room are shown in the figure. Patterns containing
”cup”, ”book” and ”can” have absolute support values 31,
21 and 21 respectively.

Fig. 4: The pattern retrieval results of three objects – ”cush-
ion”, ”trash can” and ”football”, the source is the general
Internet data accessed with Google advanced search, and
only the localities that exist in an office room are searched
for - these are displayed in the figure. Note that here we use
the bar figure instead of pie figure, because comparing with
the localities that are not depicted here (“others” part in Fig.
3), the number of displayed items are significantly smaller.

be′′+′′on′′ . . .+′′ location′′} returns two dominant locations
which have similar probabilities of occurence. Although the
location ”table” is dominantly picked up, the actual meaning
of this word refers to ”diagram with columns of information”
in the context of ”football” rather than what we need for
robotic task – ”furniture upon which to work, eat”.

B. Robot Active Visual Search

We test our web content mining approach within a real
indoor robotic scenario. The robot explores a room with a
table in the center and a sofa next to the wall. Several objects
(listed in Fig. 5) are placed on the table, floor or couch. The
autonomous navigation of the robot is implemented as [23].
The visual search strategy is straightforward – at every spot,
the robot will pan (±90◦) and tilt (−60◦) the camera to
perform visual perceptive analysis. In contrast, the pattern
retrieval based web content mining will prune the search
when the dominant plane in the current scene does not match
the object’s most likely location. Fig. 6 depicts the way points
of the robot and also shows the relative positions of furnitures
in the room. The greater efficiency of applying this approach
for the task of object visual search is apparent in Fig. 5.



Fig. 5: Comparison of average visual search time for brute
force search and the web content mining method proposed
in this paper. The visual search of each object is repeated 10
times and the average processing time is recorded.

Fig. 6: Simulation/Visualization world from the top view.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a robotic vision system which
is based on the fusion of holistic visual perception and web
content mining. We generate spatial information in the scene
by considering plane estimation and stereo line detection
coherently within a unified probabilistic framework, and
show how the resulting scene information can be efficiently
searched using pattern based data mining from web. Ex-
periments demonstrate that our system can sort possible
spatial locations according to their relationships with various
objects, thereby providing an effective and plausible robotic
visual search strategy.

Two main dimensions of using web content mining for
discovering CSOL knowledge form the focus of our future
work. Firstly, the assumption that the sentence containing
the object and its most likely existing location has the
dominant role in the online database, although intuitively
correct, requires further investigation. Secondly, the selection
of the objective term influences significantly the quality of
retrieval results. The application of objects’ synonyms or
surface variants can help solve this problem.
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M. Göbelbecker, M. Brenner, H. Zender, P. Lison, I. Kruijff-Korbayov,
G.-J. M. Kruijff, and M. Zillich, “Dora the explorer: A motivated
robot,” in Proc. of 9th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2010), May 2010.



Kinect@Home: Crowdsourcing a Large 3D Dataset of Real Environments

Alper Aydemir, Daniel Henell and Patric Jensfelt
CVAP, KTH, Stockholm, Sweden
aydemir, dhenell,patric@kth.se

Roy Shilkrot
Fluid Interfaces Group, Media Lab, MIT

roy.shil@gmail.com

Abstract

We present Kinect@Home, aimed at collecting a vast
RGB-D dataset from real everyday living spaces. This
dataset is planned to be the largest real world image col-
lection of everyday environments to date, making use
of the availability of a widely adopted robotics sensor
which is also in the homes of millions of users, the Mi-
crosoft Kinect camera.

Introduction
Robotics has a long-standing aim to build robots that can
function in complex man-made environments. The long term
vision (which is rapidly becoming a short term goal) of
robotics is to help humans with tedious and hard tasks, e.g.
assisting elderly in everyday tasks, providing care for dis-
abled persons for increased ability or performing hard, haz-
ardous and tedious tasks that are unfit for human health.

In order to determine and accomplish such tasks, the
robotics researcher usually guesses the tasks needed or the
environments used by a typical user of such robots in the real
world and tries to come up with various problems and solu-
tions regarding perception, action and planning in robotics.
The proposed solutions generally lacks the basis for the ro-
bustness as they are not tested in complex real environ-
ments with the intended end user. This leads a mismatch
between what is promised in publications and their actual
performance which is a growing concern as the pressure on
robotics as a field to provide working products increases. For
this reason, we present the Kinect@Home project.

Kinect@Home
The Kinect@Home project is aimed at collecting a vast
dataset of Microsoft Kinect images of real everyday living
spaces such as offices, homes and alike. The project loca-
tion is at http://www.kinectathome.com. We have chosen the
Microsoft Kinect camera because it provides both an RGB
image and a depth value for each pixel of the image. Thanks
to its high quality 3D data for its low price, the Kinect cam-
era has been rapidly adopted as a robotics sensor. Most im-
portantly, it has since entered the homes of some 20 million
users therefore fit for a crowdsourcing task. The significance

Copyright c© 2012, Association for the Advancement of Artificial
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of this is being, never before a highly used robotics sensor
was at the home of millions of people, therefore it presents
ample opportunity for a crowdsourcing application.

Datasets in computer vision and robotics are widely used
for testing and benchmarking various algorithms such as ob-
ject recognition and detection, mapping and image segmen-
tation. Already there exists several Kinect datasets (Kevin et
al. 2011; Min et al. 2010; Garage 2011; Silberman and Fer-
gus 2011; Koppula et al. 2011) mainly on the topic of ob-
ject recognition and detection in scenes. We welcome these
efforts and find them very encouraging. Closest to our ap-
proach is (Janoch 2011) where individual images of indoor
scenes are being collected. However none of these datasets
aims to capture the challenging real world scenes that a robot
shipped to a home today might face. We believe we can
make a big impact by collecting a large dataset of real world
environments for developing better methods.

In robotics, various research groups have opted to recreate
the man-made environments that these robots are intended to
work in by building mock versions of living spaces such as
kitchens and living rooms in their laboratories. These envi-
ronments certainly serve as an initial testbed for algorithms
and methods as a way of validating the plausibility of the
proposed approach. However, there are several shortcom-
ings regarding evaluating robot performances in simulated
of living spaces. First, since only a few instances of the said
home environments can be built, the evaluation of the pro-
posed methods tends to include only a few cases of a gen-
eral problem. Second, the environments tend not to be real-
istic and instead become over simplified, as no human lives
and uses these spaces on a daily basis. We therefore propose
the Kinect@Home project as a way to collect large amounts
of 3D data from ordinary people’s everyday environments.
With this project, we will amass a large dataset of everyday
indoor environments such as offices, kitchens, living room
spaces. This data will be used for various applications such
as object detection, recognition, 3D mapping and various
other robotic applications. The dataset will be available pub-
licly at the interest of all interested researchers.

In order to construct such a dataset, the software imple-
mentation should have certain specifications. We will con-
tinue by briefly describing our software architecture.



Software architecture and usage

The software architecture consists of two parts: clients
which are ordinary people uploading Kinect frames and the
server which collects the uploaded data. There are several
considerations for building the software implementation that
realizes the dataset. First of all, we want to minimize the
number of steps a user has to take in order to accomplish
the task. Therefore we avoid hefty downloads, installation
guides or tedious tutorials. This means we cannot simply
ask the user to download and install a program, record the
Kinect frames to file (which would take a few gigabytes of
data) and send over to us.

We have chosen a browser plug-in as the client since it
provides a much more light-weight installation compared to
a stand alone program both technically and in the minds of
regular internet user. Furthermore by doing this the user in-
terface will be HTML-based and by default cross platform.
The plug-in is programmed using the FireBreath cross plat-
form browser plugin framework (Firebreath 2012).

We want the server to be as simple as possible and gen-
eral enough to accept any type of client that may be realized
in the future. Furthermore, the bandwidth and heavy hard
disk file operations involving receiving large amounts of im-
ages need to be considered. For this reason, we have opted
for an HTTP RESTful API using the Django web frame-
work. We have considered frameworks such as ZeroMQ,
Apache thrift, rpclib (Arslan 2012; Hintjens 2010). We will
skip over the detailed discussion for the lack of space in this
extended abstract, however they all seemed to need a signifi-
cant amount of infrastructure, front-end code and a complete
user-interface. Instead, HTTP REST calls are a fairly basic
and almost ubiquitous standard used throughout the internet.

The raw Kinect data is too big to be uploaded without
compression, we assume the typical user would not wait for
the whole upload period. Therefore we compress the data
stream with near-lossless video encoding. We compress and
upload the data in chunks. We have tried several compres-
sion techniques cite. The RGB data is compressed using
x264 codec and the depth stream is encoded lossless using
FFV1 for 16bit depth images. This way the amount of HTTP
calls and computational overhead is reduced compared to
uploading every frame individually.

Upon reaching the website, the user will be prompted to
connect their Kinect devices and install the plug-in. Once
this is done, the website starts showing the live Kinect im-
ages on the browser as a confirmation that the software is
working accordingly. This also helps to display the user the
currently captured data. A Record button and an optional
email adress text box is also displayed the purpose of which
we will explain in more detail. Once the button is pressed,
the plug-in starts uploading captured frames to server. After
a set period of time or when the user hits the Stop button, the
recording stops and the user is prompted with an optional
text box for metadata about the video. A progress bar indi-
cates how much of the data is sent to the server.

Privacy and control of the data
In order to alleviate any user trust and user related problems
we give full control to the data uploader. If the user pro-
vides an email address, we email the participant with a PIN
code after each recording and the unique identification num-
ber of the specific upload. With these credentials, the user
can view or delete the uploaded files anytime, with no ques-
tions asked. Our code base is entirely open source. As part
of addressing the privacy concerns, we don’t keep any user-
related data whatsoever. The users however need to agree a
terms of service agreement, which basically states that the
data uploaded will be used for scientific purposes.

Conclusion
We have presented a crowdsourcing platform for collecting
Kinect camera images. We will share our findings about the
software architecture and the wider public’s reactions in the
coming months during the symposium. The system is open
source and the data will be completely anonymous and pub-
licly available. We expect a high participation.

Acknowledgements
The authors thank Javier Romero and Burak Arslan for their
suggestions.

References
Arslan, B. 2012. Remote procedure call library.
Firebreath. 2012. Cross-platform browser plugin frame-
work.
Garage, W. 2011. Solutions in perception challenge.
Hintjens, P. 2010. ZeroMQ: The Guide.
Janoch, A. 2011. A Category-Level 3-D Object Dataset:
Putting the Kinect to Work. In ICCV Workshop on Consumer
Depth Cameras for Computer Vision.
Kevin, L.; Bo, L.; Xiaofend, R.; and Fox, D. 2011. A large-
scale hierarchical multi-view rgb-d object dataset. In ICRA,
1817–1824.
Koppula, H.; Anand, A.; Joachims, T.; and Saxena, A. 2011.
Semantic labeling of 3d point clouds for indoor scenes. In
NIPS.
Min, S.; Bradski, G.; Bing-Xing, X.; and Savarese, S. 2010.
Depth-encoded hough voting for joint object detection and
shape recovery. In Proceedings of European Conference on
Computer Vision.
Silberman, N., and Fergus, R. 2011. Indoor Scene Segmen-
tation using a Structured Light Sensor. In ICCV Workshop
on 3D Representation and Recognition.


