
EU FP7 CogX
ICT-215181

May 1 2008 (52months)

DR 4.2:

Planning for Cognitive Robots

Michael Brenner, Richard Dearden, Moritz Göbelbecker,
Charles Gretton, Patrick Eyerich, Thomas Keller, Bernhard
Nebel

Albert-Ludwigs-Universität Freiburg, University of Birmingham

〈brenner@informatik.uni-freiburg.de〉

Due date of deliverable: 31 July 2010
Actual submission date: 31 July 2010
Lead partner: ALU
Revision: v2
Dissemination level: PU

Planning is a crucial capability for autonomous cognitive agents. In CogX,
we aim at developing intelligent robots that act deliberately in realistic dy-
namic environments where knowledge about the world is fragmentary and
prone to become obsolete quickly. Planning in such environments is very
hard, but nevertheless the robot needs to decide what to do next in close-to
real time. This report describes our approach to meeting these requirements.
We have constructed a system that can switch between a fast continual plan-
ner and a more computationally expensive decision-theoretic planner. The
idea is for the fast planner to plan as if any variable in the world could be
observed directly. Then each time during execution of this plan the robot
observes the value of some state variable, the decision-theoretic planner is
called to build a plan to become as sure as possible of the value of that vari-
able. If the value is not the one the fast planner assumed, then replanning
occurs to find a plan to cope with the newly discovered facts. We present
a prototype of this approach, and examine some of the tradeoffs inherent in
different designs.

1



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

1 Tasks, objectives, results 5
1.1 Planned work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Actual work performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Symbolic Continual Planner . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Decision-Theoretic Planner . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Switching Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Relationship between the Planner and the Overall Architecture . . . 13

1.3 Relation to the state-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Diagnosis of Planning Failures . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 Continual Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.3 POMDP State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.4 Switching Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Annexes 25
2.1 Göbelbecker et al. “Coming up With Good Excuses: What to do When no

Plan Can be Found” (ICAPS’10) . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Benton et al. “G-value Plateaus: A Challenge for Planning” (ICAPS’10) . . 25
2.3 Eyerich et al. “High-Quality Policies for the Canadian Traveler’s Problem”

(AAAI’10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Brenner “Creating Dynamic Story Plots with Continual Multiagent Plan-

ning” (AAAI’10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Wurm et al. “Coordinated Exploration with Marsupial Teams of Robots

using Temporal Symbolic Planning” (IROS’10) . . . . . . . . . . . . . . . . 27
2.6 Robinson et al. “Partial Weighted MaxSAT for Optimal Planning” (PRI-

CAI’10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Dearden et al. “Robot Control Using a Switching Classical/Decision-Theoretic

Planner” (in preparation for ICAPS 2011) . . . . . . . . . . . . . . . . . . . 29

EU FP7 CogX 2



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

Executive Summary

The objective of Workpackage 4 is to develop techniques that enable intel-
ligent agents to act deliberately in highly dynamic environments. In such
environments knowledge about the world is fragmentary and prone to be-
come obsolete quickly. Deliberate action planning in such environments
transcends the standard view of planning as “one-shot” problem solving.
Instead, agents must be able to build plans that include both physical and
information-gathering actions. These actions may be stochastic or non-
deterministic, and the system must reason about their possible outcomes.
However, since the agents developed in CogX are robots acting in the real
world in real time the planning system must make decisions quickly. These
are competing requirements. We have therefore proposed to develop, during
the course of the project, a hybrid planner that can switch between an ac-
curate, yet computationally expensive decision-theoretic planner and a fast
classical planner.

In the second year of CogX we have worked primarily on how to take
advantage of the strengths and avoid the weaknesses of each planner. While
we proposed in the first year to do domain analysis to find out where each
planner should be deployed, we have changed our approach to one we believe
will be much more effective. In our new switching planner design we use the
decision-theoretic planner to resolve uncertainty for the continual planner.
That is, the continual planner generates a plan that assumes it can observe
any domain variable at any time. Then, when a domain variable is actually
observed, the decision-theoretic planner is run to determine, as best it can,
the true value of that variable, before control switches back to the continual
planner.

Role of Planning in CogX

Planning is a crucial capability for any cognitive agent, because it enables
it to act autonomously: rather than just executing pre-defined scripts, a
planning agent can devise its own solutions for the goals it is given or which
it develops. In the CogX project, planning has an additional important role
in detecting and filling gaps in knowledge: information-gathering actions,
e.g. active visual search or asking a question, will be planned whenever
there is a knowledge gap crucial for achieving a goal.

Contribution to the CogX scenarios and prototypes

The planners developed in this workpackage are responsible for all behaviour-
related decisions in the CogX prototypes Dora and George. In contrast to
Year 1, where only the Continual Planner was used, we have now developed

EU FP7 CogX 3



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

a decision-theoretic planner, too, which is integrated into the new switch-
ing planner. Additionally, planning is now also used for goal selection from
within the Motivation subarchitecture.

EU FP7 CogX 4



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

1 Tasks, objectives, results

1.1 Planned work

WP4 focuses on planning and decision making. During all its activities,
the robot constantly has goals either requested of it through interaction,
or generated from its own internal motivations. To turn these goals into
behaviours that the robot will execute, planning is required to determine
how the goals can be accomplished efficiently.

Real-time performance is a major concern for an interactive robot. A
robot that takes a long time to respond to a dialogue act, or to decide what
to do is essentially useless as no human user will be willing to interact with
it. This puts serious resource constraints on planning. To address this,
in the proposed work we identified a switching symbolic/decision-theoretic
planner as a desirable goal for the project. This was expressed in Task 4.1.

Task 4.1: A switching symbolic/decision-theoretic planner. In this task
we will look at how to combine these two approaches (symbolic and
decision theoretic) into the switching planner discussed above. The
result should be a planner that can do limited reasoning about belief
states (the representation in terms of epistemic operators is much less
expressive than a full probabilistic belief-state representation) but still
make good decisions, and that will operate in close-to real-time.

In addition, in the second year we have begun task 4.2, which involves
planning of information gathering actions. The Dora Year 2 scenario involves
identifying rooms, so this is a prime example of this task.

Task 4.2: General planning of information gathering and dialogue actions.
The symbolic planner developed in Task 4.1 is limited in that it uses
epistemic operators to represent beliefs, so it can only represent that
a fact is known to be true, known to be false, or unknown. Better
plans can be achieved by representing a much richer set of beliefs, for
example by using probabilistic belief states. This allows the system to
reason about the most likely states given its current knowledge, so it
can for example begin driving towards the kitchen when sent to look
for the cornflakes because its a-priori belief is that they are most likely
to be in the kitchen. In Task 4.2 we will extend the planning system
to allow arbitrary belief states to be reasoned about. The aim is to
produce a planner capable of planning over arbitrary belief states, but
specialised for the requirements of our domain.

Following this agenda, in this deliverable we report on our development
of a switching planner based on the two base planner systems, the common
language used by both planners, and how the planning system fits into the
overall architecture.

EU FP7 CogX 5



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

1.2 Actual work performed

1.2.1 Symbolic Continual Planner

Automated planning for dynamic real-world environments is challenging for
deterministic AI Planning approaches in several respects: Due to noisy sen-
sor information an agent may not be able to accurately model the true state
of the world; actions might result in different states than foreseen, as their
execution might fail or produce effects that cannot be modelled; or subprob-
lems may be present that cannot be solved on a symbolic level. Work carried
out at ALU Freiburg tries to deal with these difficulties while preserving the
computational advantages of deterministic planning over non-deterministic
approaches (e.g., the decision-theoretic planner presented in Section 1.2.2).
We do this by adopting a Proactive Continual Planning (PCP) approach,
i.e., the planner actively tries to execute actions early and observe previously
unknown parts of its environment in order to avoid having to plan for all
possible contingencies in advance [1].

In the first year of CogX, the Continual Planning framework was de-
signed and implemented within the Dora system. We developed a specific
base planner to be used for PCP called Temporal Fast Downward (TFD),
which both works with arbitrary optimization metrics including temporal in-
formation and produces plans in an anytime fashion [2]. Finally, we proposed
the use of semantic attachments to compute the truth values of propositions
with external modules that may contain arbitrary calculations at runtime of
the planner [3]. In the second year of CogX we developed further extensions
aimed to enhance our robot’s capabiliy to act in dynamic environment, es-
pecially ones where it must interact with humans. In particular we have
developed

• an approach for finding explanations for planning failures so that the
human can at least understand what is wrong with the robot’s infor-
mation state

• a representation and algorithm for describing plans involving multiple
agents and goals, that can be used to reason about how to initiate
collaboration, e.g., with a human who can open doors for the robot

• a representation (and planner support) for intermediate goals and pref-
erences in a planning problem, so that human users or the Motivation
subarchitecture can describe the desired course of action more flexibly

• an initial approach to incorporating probabilistic information into the
continual planning process, applied to a path planning problem under
partial observability

Since information a robot gains about the world is often uncertain or
incomplete it often happens that the planner is unable to come up with

EU FP7 CogX 6



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

a plan given by a human user at all. This might for example happen if
the robot is told to put away a cup the vision subarchitecture was unable
to detect. In such a case, the human user might like to know why the
agent couldn’t find a solution. This is a hard question and not one that
a planner normally can answer, because this would require meta-reasoning
about its own planning process. However, it is a question that both users
and domain designers (for debugging purposes) often raise. For this purpose,
we introduced the concept of excuses, explanations of why the planner is not
able to find a plan [4]. This enables the agent to ask for specific help from a
human rather than merely admitting its own incompetence – in the example
above, it might for instance tell the instructor that it doesn’t see any cups
and ask for a hint where to start looking for one.

Furthermore, we have expanded the system’s functionality in two ways:
We introduced intermediate goals and preferences, which can appear as part
of the goal formula or, in the latter case, in preconditions. Intermediate goals
describe a property that has to be obtained sometime during plan execution,
but not necessarily in the goal state. Preferences describe a property of a
state that is desired to be valid but not necessarily required, leading to a
penalty that’s added to the plan’s cost in the case it is violated.

In order to plan for interactions with others, we had previously suggested
a continual collaborative multiagent planning approach [1]. In year 2, we
have extended this approach to general multiagent scenarios where agents
are not necessarily collaborative and, in particular, where collaboration must
first be initiated and negotiated. As a first step we have implemented this
approach, not on the robot architecture, but in a multiagent simulation. It
uses the same algorithm, but applies for a different task, the generation of
story plots [5].

We have also made a first step in extending Continual Planning to
stochastic domains. Currently, our PCP algorithm is optimistic about being
able to gather information it is still missing in the future and to be able to
fill the gaps in its plan then. This, of course, is not always the case. We
have therefore, for a limited problem of probabilistic planning (the Canadian
Traveler’s Problem) developed a new algorithm based on Monte Carlo sam-
pling [6]. In the remainder of the project, we plan to extend this approach
to general planning tasks, thereby bridging the gap between the Continual
and Decision-Theoretic Planning approaches.

Relevant annexes:

• Annex 2.1 describes our approach to explaining planning failures and
the concept of “excuses”.

• Annex 2.2 is a “challenge paper” describing a problem typically faced
by temporal planners.

EU FP7 CogX 7



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

• Annex 2.3 describes our Monte Carlo method for a probabilistic path
planning.

• Annex 2.4 describes Continual Multiagent Planning with an applica-
tion to generating dynamic story plots.

• Annex 2.5 shows an application of our base planner, Temporal Fast
Downward with semantic attachments, to a multi-robot exploration
scenario.

1.2.2 Decision-Theoretic Planner

Unlike the symbolic planner, which is based around an existing planner, the
decision-theoretic planner is being developed as part of the task. As a rep-
resentation, we have chosen partially observable Markov decision processes
(POMDPs) as they constitute a reasonably general representation of un-
certainty. Because of that generality, state-of-the-art domain independent
solution procedures are quite limited, only able to solve quite (unrealisti-
cally) small problems. Indeed, there are no known general techniques that
scale well as we increase the size and difficulty of problems.

For our purposes, a POMDP is a six-tuple 〈S,A,Pr,R,O, v〉. Here, S, A,
Pr, and R are states, actions, state-transition function, and reward function,
respectively—they provide a Markov Decision Process (MDP)-based speci-
fication of the underlying world state, dynamics, and reward. O is a set of
observations. For each s ∈ S and action a ∈ A, an observation o ∈ O is
generated independently according to some probability distribution v(s, a).
We denote vo(s, a) the probability of getting observation o in state s.

Finite State Controller Based Solution Procedure: The optimal
solution to a finite-horizon POMDP problem can be expressed as a policy
µ : O∗ → PA where µa(o0, .., ot) is the probability that we execute action
a given observation history o0, .., ot.1 A finite-state controller (FSC) is a
more useful policy representation mechanism in the case that the robot
has unbounded interactions with the environment modelled by the POMDP
at hand. Therefore an approach to solving POMDPs is to build a finite-
state controller (FSC) for a POMDP, with that controller representing a
policy. A FSC is a three-tuple 〈N , ψ, η〉 where: n ∈ N is a set of nodes,
ψn(a) = P (a|n), and ηn(a, o, n′) = P (n′|n, a, o). The value of state s at node
n of the FSC for a given POMDP is:

Vn(s) =
∑
a∈A

ψn(a)R(s, a)+β
∑

a,o,s′,n′

ηn(a, o, n′)Pr(s, a, s′)vo(s′, a)Vn′(s′) (1)

1Such a policy can oftentimes be compactly represented as a tree or algebraic decision
diagram (ADD).

EU FP7 CogX 8



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

If b is a POMDP belief state—i.e, b(s) gives the probability that the
robot is in state s—then the value of b according to the FSC is:

VFSC(b) = max
n∈N

∑
s∈S

b(s)Vn(s) (2)

There is a small amount of work that considers POMDP solution proce-
dures based on a FSC representation [7, 8, 9, 10, 11, 12, 13]. Generally, such
a procedure proceeds in two steps: (1) evaluation, and (2) improvement.
The evaluation step consists in fixing ηn and ψn, and then solving the linear
system described in Equation 1. For improvement, one technique is to solve
the following linear program at controller nodes N .

maximise ε
s.t. ∀s ∈ S,∀a ∈ A

Vn(s) + ε ≤
∑

a ψn(a)R(s, a)+
β

∑
a,o,n′,s′ ηn(a, o, n′)Pr(s, a, s′)vo(s′, a)Vn′(s′)∑

a∈A ψn(a) = 1
∀a ∈ A,∀o ∈ O∑

n′∈N ηn(a, o, n′) = ψn(a)
ψn and ηn terms are positive or zero.

Above, for each node the LP variables include ε,2 ηn, and ψn. The Vn(s)
terms are fixed according to the evaluation step. Policy improvement con-
sists in solving the above LP at controller nodes until no further improve-
ment is possible. At this point further improvement might be achieved if a
new node is added to the controller. One strategy here is to copy any node
where the backed up value of the tangent belief state – i.e. belief state at
which the controller node yields the smallest expected reward – is better
than the evaluation step estimates. The copied node is altered to prescribe
the action that is greedy according to the backed up value function. Here,
the backed-up value V (b) at a belief state b has the following form.

V (b)← max
a∈A
{R(b, a) + β

∑
o∈O

vo(b, a)VFSC(bao)} (3)

The solution procedure as outlined above iteratively converges to an ε-
optimal solution for the problem at hand.

Online Solution Procedures: An exact implementation of the policy-
iteration procedure outlined in the previous section is only useful for com-
puting good policies for small POMDPs —with hundreds of states— and is
also computationally expensive in comparisons with state-of-the-art online

2Note, each LP has a different ε.

EU FP7 CogX 9



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

POMDP solution procedures [14]. Online techniques have been demon-
strated to be useful in applications of planning in AI and robotics. A few
recent examples come from dialogue management [15], visual search [16],
automated vent-mapping on the sea floor [17], and effective navigation of
probabilistic roadmaps [18]. Here we briefly summarise the ancestry and
homology of these approaches.

Online techniques can usually be described and implemented as a forward-
search of the information-state space. The algorithms build a search tree
(graph) where nodes correspond to belief states, the root (starting) node
corresponding to the starting-state distribution. Search edges are directed,
and labelled with an action, observation, and a probability value. Where
there is a directed edge from node b to b′ labelled with action a, observa-
tion o, and value p, then with probability p we arrive at beliefs b′ when we
execute a at b and receive observation o. As the search progresses it labels
nodes with an optimal, or good, policy to execute at that node, along with
an estimate of the lower and upper bound of the expected utility of the
corresponding belief state.

Examples of online techniques include: (1) the reactive entropy reduction
approach; i.e. search greedily toward successive belief states with the lowest
entropy, (2) fixed-horizon information lookahead; i.e. solve the contingent
propositional probabilistic planning problem supposing we can act for a
small number of steps, (3) branch-and-bound techniques, the LAO* [19]
versions of those, and their sampled counterparts [20, 21].

Progress: We have an implementation of FSC evaluation and a simple
improvement procedure. We intend to apply this work directly in planning
for dialogue management in our project scenarios. Our current focus is on
implementing an efficient online procedure to target the many distinct small
finite-horizon sensing problems that are posed by the project scenarios. We
are in the process of implementing a generic online branch-and-bound pro-
cedure that supports loop detection and exploitation in the sense of LAO*.
Our online procedure uses a blind-policy (or otherwise a given FSC) in order
to compute a lower bound on the expected value of search nodes. The MDP
approximation is used to provide an upper bound and heuristic 3 for the
forward-search.

Relevant annexes:

• Annex 2.6 describes how to encode serial planning tasks with action
costs as partially weighted MaxSAT problems. It presents an efficient
backtracking MaxSAT procedure (implemented in C++) that com-
putes optimal solutions to such problems. That same procedure can

3When used heuristically, the MDP approximation is sometimes called the certainty
equivalent heuristic.

EU FP7 CogX 10



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

compute optimal serial solutions to fixed horizon POMDPs, or propo-
sitional probabilistic planning problems. In particular, that Annex
describes how to exploit our encoding and procedure to compute glob-
ally optimal solutions to propositional planning problems with action
costs.

1.2.3 Switching Planner

The original concept for the switching planner, as articulated in the Work
Package description was of a planner that chose between classical (PCP)
and decision-theoretic planning depending on the problem and on the po-
tential benefits of each. The research challenge—apart from building the two
planners—was to select a computationally inexpensive method to choose be-
tween them. Our work this year has concentrated on this problem. However,
in the course of our investigations it has become clear that in a world with
partial observability (that is, where we can’t know with certainty the values
of all state variables) the plans generated by PCP (see Section 1.2.1) aren’t
necessarily executable at all as they rely on being able to determine the
values of variables in assertions. Thus the switching planner work has con-
centrated on solving this problem by using the decision-theoretic planner to
generate plans to determine the value of variables that appear in assertions
in the PCP plan. This is one situation in which switching is necessary to
produce a plan that can be successfully executed. There are other situations
where it may be desirable for plan quality reasons to switch from PCP to
the decision-theoretic planner, but we have not yet investigated in any detail
how to detect these.

In situations with partial observability, the agent has at all times a belief
state which represents its current best estimate of the state of the world, but
which may be quite uncertain about some state variables. As the agent acts
in the world, this belief state is updated to reflect the new evidence observed.
As we said in Section 1.2.2, this kind of problem is typically represented as
a POMDP. When PCP builds a plan, it assumes that it can determine
the value of any system variable at execution time. This is represented
in the plan through the use of assertions. When an assertion appears in
the plan (for example, when the robot asserts that the room it is in is a
kitchen), PCP assumes that the true value of the variable is determined,
and either execution continues if the true value matches the assertion, or
replanning is triggered. Since determining the true values of these variables
involves performing information-gathering actions to gain evidence about
the variable, and may be a non-trivial problem, the switching planner we
have built uses these assertions to trigger decision-theoretic planning—the
idea is that the decision-theoretic planner is used to generate a plan to
determine the value of the variable.

The overall architecture of the switching planner is given in Figure 1.

EU FP7 CogX 11



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

DTPDDL
Planning problem

Domain
description 
(pre-built, at 

this point)

Goals
(from 

motivation)

Initial state
(from working

memory)

Continual Planner

Decision-theoretic
 Planner

Straight line plan
Observation

Plan Execution

Policy for achieving 
observation

R
ep

la
nn

in
g

Figure 1: The architecture of the switching planner.

The input is a problem specification in the DTPDDL planning specification
language we developed in Year 1 (DTPDDL and a representation of the
Dora problem domain in it are given in Delverable 1.2, Section 7.4.1, so will
not be repeated here). The input problem is made up of three parts:

• A domain definition that specifies the actions, which at present is pre-
built, but which in the future will be learned from experience.

• An initial state that comes from working memory (specifically the
binder).

• A goal or goals, which come from the motivation subarchitecture.

When the planner is given a problem to work on, the DTPDDL repre-
sentation of the planning problem is translated into a form that PCP can
plan with, and PCP generates a plan. This plan contains no branching
points, but instead it contains points where domain variables are observed
and a particular value is assumed. Thus we can think of it as a branch-
ing plan—with branches that depend on the values of domain variables at
execution time—where only one branch at each branch point has actually
been planned for. If a different branch is needed during execution, then the
planner may be called again to replan for that branch.

During execution of the PCP plan, when a domain variable is observed,
the plan executer needs a way to determine the value of that variable. When

EU FP7 CogX 12



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

the value isn’t known with certainty, then the decision-theoretic planner
is called to determine the value. It is given the same DTPDDL domain
definition and the current initial state, but the goal is to determine with
sufficient confidence the value of the variable. The decision-theoretic planner
produces a plan for this very small problem, which can then be executed
to find out the value. At that point, the plan executor can either continue
with the PCP plan, or if necessary trigger PCP to replan.

The idea of this approach is that the decision-theoretic planner is only
called on relatively simple planning problems for which the set of relevant
actions can be restricted (only actions which produce observations of the
variable of interest are directly relevant). This keeps the state and action
space small, and should mean the problems have quite short plans, so the
computational load is kept to a minimum.

Building these observation plans for variables in the PCP plan turns out
to be the most critical scenario where the switching planner must use the
decision-theoretic planner. Unfortunately, it isn’t particularly suited to the
FSC-based POMDP planner we had been developing. This is the reason for
the construction of a LAO* POMDP planner as reported in Sectionsec:dt-
planner. This work is almost complete as of July 2010 and is the last part
of the switching planner that is required before it can be applied on real
domains. More details of the switching planner can be found in Annex 2.7.

Relevant annexes:

• Annex 2.7 is an early draft of a paper on the switching planner that
we are planning to submit to ICAPS 2011. It describes in detail the
architecture of the switching planner and the way it might work in
practice. There is no experimental evaluation at present as that is
work in progress.

1.2.4 Relationship between the Planner and the Overall Archi-
tecture

In order to create the planning problems for a robotic system, the planner
needs to find out what the system is supposed to do (goal generation) and
what the current state of the system is (state generation). Additionally, the
planner may be able to use control knowledge, domain specific knowledge
that may enable the planner to find better plans. This information is not
part of the planning components itself but is distributed over the entire
system. Figure 2 shows the interactions of the planning components with
the rest of the CogX architecture. The motivation component is responsible
for generating goals while the Binding and Default subarchitectures store
information about the system’s state and the robot’s background knowledge.

EU FP7 CogX 13



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

Robotic System

Planning SA

Motivation

Other SAs

Binding SA

Working
Memory

Actions

Results

Planner
CP DT

Command

State

Execution

Default SA

Default knowledge

GoalsPlans

Selected
plan

Monitoring

Figure 2: The relationship between a planner and the rest of the architecture.

When a plan is generated, the execution component is responsible for
translating planner actions into subarchitecture specific commands and in-
forming the planner of the results.

Knowledge Representation: The planning subarchitecture has three
sources of information to create the planning problem. First, we have the
planning domain description. It describes the actions the robot can perform,
their preconditions and outcomes. It also defines the predicates and func-
tions that the planners will use to describe their internal planning states.
Second, there is instance knowledge that is comprised of the robot’s per-
ceptions and information given to it by other agents (e.g. humans). Fi-
nally there is default knowledge that describes general information about the
robot’s environment. For example “The cornflakes box could be in room 5
or room 6” is instance knowledge while “Cornflakes boxes are usually found
in kitchens” is default knowledge. Both need to be taken into account in
order to create high quality plans.

In the CogX system, the planning domain is provided as an external,
task specific input. Even though the domain is largely fixed, the planning
system will modify the planning domain in order to generate input to the
different planners, or to incorporate default knowledge (see below). In the
future we also want to allow subarchitectures to create new actions and add
them to the planning domain at runtime and add limited learning of actions.
Instance knowledge is represented as a set of Beliefs that are stored in the
working memory of the Binding SA (the “Binder”). Each belief refers to
a real-world entity and contains distributions over features of this entity.

EU FP7 CogX 14



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

Default knowledge is stored inside a separate subarchitecture, Default SA,
in the form of a Bayesian network. Default SA also provides services to
other subarchitectures to infer features of beliefs given the prior beliefs on
the binder.

The easiest way to take default knowledge into account for planning is
using these services to compute the posterior beliefs and use those to create
the initial planning state. While this approach gives us a more informed
initial state (e.g. we can infer that the cornflakes box is more likely in
a room labeled “kitchen”) the planner doesn’t have access to the default
knowledge itself. In cases where there is little prior information that Default
SA can use, taking default knowledge into account during planning would be
desirable. So in a case where there is no kitchen, the planner could include
actions to find the kitchen first before trying to find the cornflakes box.

For use inside the continual planner, default knowledge may be used as
a kind of control knowledge by incorporating it into the planning domain
itself. One way to do this is by augmenting existing observation actions
with preference conditions that are extracted from the default knowledge.
For example, an action to search for objects in a room might include a
preference condition that the room label indicates that it is likely to find
the object there.

For the decision theoretic planner, we use the prior belief state together
with the Bayesian network to create a distribution over possible initial states.

Planning and Motivation: Together with the planner, the motivation
component controls the high level behaviour of the robotic system. While
the planner decides how to achieve the system’s goals, motivation decides
what these goal should be in the first place [22].

When there exists more than one goal at a time there needs to be a mech-
anism to decide which goals to pursue. For motivation to make informed
choices about the goal selection, it needs information about the costs of
achieving a certain goal – information only the planner can provide as these
costs generally depend on the plan.

There are two basic ways to do goal selection: The first method is to
leave goal selection solely to the motivation component. Motivation would
ask the planner for a plan for each goal in order to get a cost esimate for
the goals. Using those estimates and the priority or gain for each goal,
motivation would select a set of the “best” goals and send it to the planner
to find a plan that achieves them. The obvious deficency of this method is
that it ignores interactions between goals. In reality though, the costs of
achieving two goals might be either lower (by exploiting synergies) or higher
(because of conflicts) than the sum of both costs. Determining the costs for
achieving each subset of goals would be a possible solution but is obviously
not feasible for more than a few goals.

EU FP7 CogX 15



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

Thus it is appealing to leave the decision on which goals to satisfy to
the planner. In the implementation of oversubscription planning using “soft
goals” (non-mandatory goals), each goal is augmented with a penalty that
would be incurred if a plan doesn’t achieve it. This mechanism allows moti-
vation to set the maximal costs for a given goal. If the costs of achieving it
surpass this maximum, it would be cheaper to incur the penalty instead of
trying to achieve the goal. While this method accounts for the interaction
between goals, oversubscription planning for many goals may become quite
slow. So in practice we may want to employ a combination of both methods.

To do this more informed goal selection, a stronger integration between
planning and motivation is required. Instead of posting a goal to the planner
and executing the result, in the new architecture motivation is able to post
planning requests which can be processed by the planner in parallel, evaluate
the resulting plans and decide then if a plan should be executed.

1.3 Relation to the state-of-the-art

1.3.1 Diagnosis of Planning Failures

Detecting execution failures and recovering from them is a typical task for
any robotic system. In plan-based agent architectures this can be done by
plan monitoring and plan repair (in its most simple variant this can be
achieved by full replanning) [1]. A problem that is much harder to deal with
than an execution failure is a failure to find a plan. In CogX, the robot
might for instance be located in a living room with a locked door to the
kitchen, and receive the order to tidy up the kitchen table. As our agent is
unable to open the locked door, it is unable to come up with a plan. Better
than merely admitting its incompetence would be if the robot could provide
a good excuse – an explanation of why it was not able to find a plan. In this
example, the robot would recognize that if the kitchen door were unlocked
it could achieve its goals.

Annex 2.1 describes our approach to explaining planning failures and the
concept of “excuses”. We are not aware of other work in the area of AI plan-
ning that addresses the problem of explaining why a goal cannot be reached.
However, there is some overlap with abduction (a term introduced by the
philosopher Peirce), counterfactual reasoning [23], belief revision [24], and
consistency-based diagnosis [25]. All these frameworks deal with identifying
a set of propositions or beliefs that either lead to inconsistencies or permit
to deduce an observation. There are parallels to our notions of acceptable,
good and perfect approaches in these fields [26]. The main difference to the
logic-based frameworks is that in our case there is no propositional or first-
order background theory. Instead, we have a set of operators that allows
us to transform states. There has been some work in the somewhat related
field of error diagnosis, though. For instance, Howe and Cohen describe how

EU FP7 CogX 16



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

erroneous plans can be analysed in order to debug a planning system [27].

1.3.2 Continual Planning

Planning in dynamic, partially observable environments is usually modelled
as a conformant, contingent or probabilistic planning problem. These ap-
proaches compute conditional plans or policies for the possible contingencies
such that the agent can react adequately when faced with them. Unfortu-
nately, this increased flexibility comes at the cost of being computationally
much harder than classical planning [28, 29]. Thus, these approaches scale
badly in dynamic multiagent environments with large numbers of unobserv-
able features and exogenous events. Therefore, we employ a different ap-
proach: Instead of considering many possible futures in advance, an agent
may execute parts of its plan in order to gather additional information,
thereby reducing the number of possible contingencies that it has to take
into account for the remaining planning.

This technique of interleaving planning, plan execution and execution
monitoring is called Continual Planning (CP). CP is often advocated as
a practical approach to planning in dynamic or incompletely known do-
mains. Yet, previously, only few principled approaches to CP have been
described [30, 31]. Our own CP approach is based on the idea of proac-
tive knowledge-gathering : instead of planning for all possible contingencies,
agents try to learn more about the state of the world directly [1]. In order
to enable agents to reason about how they can gather additional knowledge
it is necessary to explicitly model the agents’ beliefs as well as their sensing
capabilities as part of their formal planning domain [32, 33, 31, 34].

When planning for interaction with other agents, a robot must reason
about their states of mind, too. To model the beliefs of different agents (and
their reasoning about each other) epistemic modalities must be integrated
into the planning representation [35]. Additionally, similarly to BDI models
of multiagent cooperation, it must be able to model the desires and inten-
tions of different agents [36]. Proactive information gathering, as needed for
CP, is not limited to sensing in a multiagent setting; dialogue is an essential
means to constrain the possible futures during CP as well [37].

1.3.3 POMDP State-of-the-art

In recent times there have been very promising developments towards prac-
tical and efficient algorithms for solving POMDPs. Although the majority of
this work has developed approximate (resp. optimal) solution algorithms,
the community has also made headway in the direction of practical opti-
mal algorithms. Whatever is sought in terms of the quality of the solu-
tion, proposed techniques are either based on Sondik’s adaptations [38, 39]
of Howard’s value and policy iteration [40], or reinforcement learning [41].

EU FP7 CogX 17



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

Value iteration algorithms work by iteratively improving a value function.
Theoretically the optimal value function can always be expressed as a piece-
wise linear and convex mapping from belief states to the reals. Thus, the
most popular representations are vector-based, however for approximate
algorithms piecewise constant – also called tabular – representations have
shown promise [20]. Policy iteration represents the control strategy directly.
Here a given initial controller is iteratively improved by performing policy
evaluation and policy improvement operations. Although not a significant
focus of our work, many reinforcement learning approaches for fully observ-
able MDPs have occasionally demonstrated excellent performance in settings
that feature partial observability [42, 43, 44, 21]. Most notably, FPG [21] is
a reinforcement learning based planning system that achieved first-place in
the uncertainty track of the 2006 International Planning Competition.

There is an enormous literature proposing a vast collection of approaches
for reasoning about POMDPs. We focus on the state-of-the-art in auto-
mated planning. Approaches here fall broadly into three classes: (1) point-
based value iteration [45, 46, 47, 48], (2) heuristic search with a tabular or
vector-based value function presentation [49, 50, 51, 20], and (3) bounded
policy iteration [7, 10, 52, 12, 13]. Value-based approaches have two ad-
vantages over their policy-based counterparts. First, the state-of-the-art is
universally approximate or online, targeting a problem instance with a spe-
cific starting state distribution. Consequently they are significantly faster
at computing a good solution for a given problem. The second advantage is
very pragmatic. Good implementations of many of the approaches are avail-
able off-the-shelf. These include Blai Bonet and Héctor Geffner’s RTDP-Bel,
Matthijs Spaan’s Perseus, Pascal Poupart’s symbolic variant of Perseus, and
Trey Smith’s ZMDP.

Policy-based approaches have two advantages that we consider to be
fundamentally important given the CogX goals of self-understanding and
self-extension. First, unlike value-based approaches, there is no need for ex-
pensive belief propagation during policy execution4 – i.e., plan execution is
relatively cheap. Second, a policy can be evaluated and executed over multi-
ple problem instances – i.e., the policy (resp. its value) is not parametrised
by problem states, but rather by observations and actions. Key to an agent’s
understanding of a problem is the language over perceptions and actions that
it has inferred to be important for acting well in its environment. A con-
troller derived using policy iteration is represented compactly in terms of
a small graph capturing the observation-action history distinctions neces-
sary for rewards to be accumulated and goals to be achieved. Indeed, the
controller and domain model correspond more-or-less exactly to the agent’s
understanding of the task at hand. In more detail, given a controller and
model, the robot can directly answer queries – sourced introspectively or

4Intractable for the optimal case [53].

EU FP7 CogX 18



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

otherwise – about: (1) how well it expects to perform with respect to cer-
tain objectives, (2) how well it can perform given a specific change to the
domain model, and (3) performance improvements that are obtained if we
extend the controller or modify its parameters. The second advantage can
be cast in terms of self-extension. Indeed, extension occurs where interleaved
evaluation and improvement of a given policy is undertaken to accommodate
new or changed observations, actions, rewards, and goals – i.e., to adapt a
controller for a particular problem instance.

1.3.4 Switching Planner

The problem the switching planner is trying to solve is essentially the same as
the POMDP planners we discussed in Section 1.2.2 so all the work mentioned
in Section 1.3.3 is relevant. The key difference in the switching planner is
that we are trying to reduce the computational requirements by using PCP
to perform as much of the planning as possible, and only using a POMDP
planner to reduce the uncertainty in our belief state when necessary.

The other approach that solves similar kinds of planning problems is to
use classical planners to generate plans with branches and loops in them.
These do not resemble our switching planner approach except in the sense
that they try to solve decision-theoretic problems using classical planners
to reduce computational demands. Examples of this include the limited
contingency planning work of [54], although this is operating in a completely
observable domain and cannot produce plans with loops, and C-Buridan
[55], which solves partially observable problems, but seeks to maximise the
probability of goal achievement rather than plan quality.

As we mention in Annex 2.7, another way to think of the switching
planner is as the top two tiers of a three-tiered robotic architecture such as
3T [56] (see the Architectures chapter in [57] for a survey of such architec-
tures). The idea of these is to use a classical planner at the top level for
decision making. To reduce the uncertainty inherent in robotic domains,
the actions from the high-level planner are decomposed into sequences of
low-level control. Thus a high-level action Goto(hall) decomposes into a
sequence of wheel rotations interspersed with checks to see if the hall has
been reached. The architecture’s three tiers consist of the classical planner
at the top, the control rules at the bottom, and in the middle, a set of skills
or reactive action plans (RAPs) that provide alternative ways to translate
the high-level actions into control. Our switching planner can be thought
of in the same way, with the actions from the other subarchitectures as the
low level, PCP at the high level, and the RAPs constructed on the fly by
the decision-theoretic planner.

EU FP7 CogX 19



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

References

[1] M. Brenner and B. Nebel. Continual planning and acting in dynamic
multiagent environments. JAAMAS, 19(3):297–331, 2009.

[2] Patrick Eyerich, Robert Mattmüller, and Gabriele Röger. Using the
context-enhanced additive heuristic for temporal and numeric plan-
ning. In Proceedings of the 19th International Conference on Automated
Planning and Scheduling (ICAPS 2009), 2009.

[3] Christian Dornhege, Patrick Eyerich, Thomas Keller, Sebastian Trüg,
Michael Brenner, and Bernhard Nebel. Semantic attachments for
domain-independent planning systems. In Proceedings of the 19th In-
ternational Conference on Automated Planning and Scheduling (ICAPS
2009), 2009.

[4] Moritz Göbelbecker, Thomas Keller, Patrick Eyerich, Michael Brenner,
and Bernhard Nebel. Coming up with good excuses: What to do when
no plan can be found. In Proceedings of the 20th International Con-
ference on Automated Planning and Scheduling (ICAPS). AAAI Press,
may 2010.

[5] Michael Brenner. Creating dynamic story plots with continual multia-
gent planning. In Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence (AAAI). AAAI Press, july 2010.

[6] Patrick Eyerich, Thomas Keller, and Malte Helmert. High-quality
policies for the canadian traveler’s problem. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI).
AAAI Press, july 2010.

[7] Eric A. Hansen. Solving POMDPs by searching in policy space. In
UAI, pages 211–219. AUAI Press, 1998.

[8] Nicolas Meuleau, Leonid Peshkin, Kee eung Kim, and Leslie Pack Kael-
bling. Learning finite-state controllers for partially observable environ-
ments. In In Proceedings of the fifteenth conference on uncertainty in
artificial intelligence, pages 427–436. Morgan Kaufmann, 1999.

[9] Zhengzhu Feng and Eric Hansen. Approximate planning for factored
pomdps. In In Proceedings of the Sixth European Conference on Plan-
ning. Springer, 2001.

[10] Pascal Poupart and Craig Boutilier. Bounded finite state controllers.
In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors,
NIPS. MIT Press, Cambridge, MA, 2004.

EU FP7 CogX 20



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

[11] Shihao Ji, Ronald Parr, Hui Li, Xuejun Liao, and Lawrence Carin.
Point-based policy iteration. In AAAI’07: Proceedings of the 22nd
national conference on Artificial intelligence, pages 1243–1249. AAAI
Press, 2007.

[12] Eric A. Hansen. Sparse stochastic finite-state controllers for POMDPs.
In UAI, pages 256–263. AUAI Press, 2008.

[13] B. Bonet, H. Palacios, and H. Geffner. Automatic derivation of mem-
oryless policies and finite-state controllers using classical planners. In
ICAPS, to appear, 2009.

[14] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-
draa. Online planning algorithms for pomdps. J. Artif. Int. Res.,
32(1):663–704, 2008.

[15] Steve Young, Milica Gasic, Simon Keizer, François Mairesse, Jost
Schatzmann, Blaise Thomson, and Kai Yu. The hidden information
state model: A practical framework for pomdp-based spoken dialogue
management. Computer Speech & Language, 24(2):150–174, 2010.

[16] M. Sridharan, J. Wyatt, and R. Dearden. HiPPo: Hierarchical
POMDPs for Planning Information Processing and Sensing Actions
on a Robot. In International Conference on Automated Planning and
Scheduling (ICAPS), September 2008.

[17] Zeyn A. Saigol, Richard W. Dearden, Jeremy L. Wyatt, and Bramley J.
Murton. Information-lookahead planning for AUV mapping. In Pro-
ceedings of the Twenty-first International Joint Conference on Artificial
Intelligence (IJCAI-09), 2009.

[18] Michael Kneebone and Richard Dearden. Navigation planning in prob-
abilistic roadmaps with uncertainty. In Proceedings of the 19th Inter-
national Conference on Automated Planning and Scheduling (ICAPS).
AAAI Press, september 2009.

[19] Eric A. Hansen and Shlomo Zilberstein. LAO * : A heuristic search
algorithm that finds solutions with loops. Artificial Intelligence, 129(1-
2):35–62, 2001.

[20] Blai Bonet and Héctor Geffner. Solving pomdps: RTDP-bel vs. point-
based algorithms. In IJCAI, page to appear, 2009.

[21] Olivier Buffet and Douglas Aberdeen. The factored policy-gradient
planner. Artificial Inteligence, 173(5-6):722–747, 2009.

EU FP7 CogX 21



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

[22] Marc Hanheide, Nick Hawes, Jeremy Wyatt, Moritz Gobelbecker,
Michael Brenner, Kristoffer Sjoo, Alper Aydemir, Patric Jensfelt, Hen-
drik Zender, and Geert-Jan M. Kruijff. A framework for goal gen-
eration and management. In Proceedings of the AAAI Workshop on
Goal-Directed Autonomy, 2010.

[23] David K. Lewis. Counterfactuals. Harvard Univ. Press, Cambridge,
MA, 1973.

[24] P. Gärdenfors. Belief revision and the Ramsey test for conditionals.
The Philosophical Review, XCV(1):81–93, January 1986.

[25] R. Reiter. A theory of diagnosis from first principles. Artificial Intelli-
gence, 32(1):57–95, April 1987.

[26] Thomas Eiter and Georg Gottlob. The complexity of logic-based ab-
duction. Jour. ACM, 42(1):3–42, 1995.

[27] Adele Howe and Paul Cohen. Understanding planner behavior. Artifi-
cial Intelligence, Special issue on Planning Systems., Vol. 76(1–2):125–
166, 1995.

[28] M. Littman, J. Goldsmith, and M. Mundhenk. The computational
complexity of probabilistic planning. JAIR, 9:1–36, 1998.

[29] Jussi Rintanen. Constructing conditional plans by a theorem-prover.
JAIR, 10:323–352, 1999.

[30] José A. Ambros-Ingerson and Sam Steel. Integrating planning, execu-
tion and monitoring. In Proc. AAAI-88, pages 83–88, Saint Paul, MI,
August 1988.

[31] K. Golden. Leap before you look: Information gathering in the puccini
planner. In Proc. AIPS-98, pages 70–77, 1998.

[32] Oren Etzioni, Steve Hanks, Daniel Weld, Denise Draper, Neal Lesh,
and Mike Williamson. An approach to planning with incomplete infor-
mation. In Proc. KR-92, pages 115–125, 1992.

[33] Hector J. Levesque. What is planning in the presence of sensing? In
Proc. AAAI-96, pages 1139–1146. MIT Press, July 1996.

[34] R. Petrick and F. Bacchus. A knowledge-based approach to planning
with incomplete information and sensing. In Proc. AIPS-02, 2002.

[35] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About
Knowledge. MIT Press, 1995.

EU FP7 CogX 22



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

[36] Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex
group action. Artificial Intelligence, 86, 1996.

[37] K. E. Lochbaum. A collaborative planning model of intentional struc-
ture. Computational Linguistics, 24:525–572, 1998.

[38] E. J. Sondik. The Optimal Control of Partially Observable Markov
Decision Processes. PhD thesis, Stanford, California, 1971.

[39] Edward J. Sondik. The optimal control of partially observable markov
processes over the infinite horizon: Discounted costs. Operations Re-
search, 26(2):282–304, 1978.

[40] R. A. Howard. Dynamic Probabilistic Systems. John Wiley & Sons,
New York., 1971.

[41] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[42] Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Learn-
ing without state-estimation in partially observable markovian decision
processes. In In Proceedings of the Eleventh International Conference
on Machine Learning, pages 284–292. Morgan Kaufmann Publishers
Inc., 1994.

[43] Tommi Jaakkola, Satinder P. Singh, and Michael I. Jordan. Reinforce-
ment learning algorithm for partially observable markov decision prob-
lems. In NIPS, pages 345–352. MIT Press, 1995.

[44] Jonathan Baxter and Peter L. Bartlett. Reinforcement learning in
POMDPs via direct gradient ascent. In ICML, pages 41–48. Morgan
Kaufmann Publishers Inc., 2000.

[45] Pascal Poupart. Exploiting structure to efficiently solve large scale par-
tially observable markov decision processes. PhD thesis, University of
Toronto, Toronto, Ont., Canada, Canada, 2005.

[46] Matthijs T. J. Spaan and Nikos Vlassis. Perseus: Randomized point-
based value iteration for POMDPs. Journal of Artificial Intelligence
Research, 24:195–220, 2005.

[47] Joelle Pineau, Geoffrey J. Gordon, and Sebastian Thrun. Anytime
point-based approximations for large POMDPs. Journal of Artificial
Intelligence Research, 27:335–380, 2006.

[48] Josep M. Porta, Nikos Vlassis, Matthijs T. J. Spaan, and Pascal
Poupart. Point-based value iteration for continuous POMDPs. Journal
of Machine Learning Research, 7:2329–2367, 2006.

EU FP7 CogX 23



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

[49] Hctor Geffner and Blai Bonet. Solving large POMDPs using real time
dynamic programming. In AAAI Fall Symposium on POMDPs, 1998.

[50] Trey Smith and Reid Simmons. Heuristic search value iteration for
POMDPs. In UAI, pages 520–527, Arlington, Virginia, United States,
2004. AUAI Press.

[51] Trey Smith and Reid Simmons. Point-based POMDP algorithms: Im-
proved analysis and implementation. In UAI, pages 542–55, Arlington,
Virginia, 2005. AUAI Press.

[52] Darius Braziunas and Craig Boutilier. Stochastic local search for
POMDP controllers. In AAAI, pages 690–696. AAAI Press, 2004.

[53] Xavier Boyen and Daphne Koller. Tractable inference for complex
stochastic processes. In UAI, pages 33–42. AUAI Press, 1998.

[54] J. Bresina, R. Dearden, N. Meuleau, S. Ramkrishnan, D. Smith, and
R. Washington. Planning under continuous time and resource uncer-
tainty: A challenge for AI. In Proc. of UAI-02, pages 77–84. Morgan
Kaufmann, 2002.

[55] Dan Weld, Denise Draper, and Steve Hanks. Probabilistic planning
with information gathering and contingent execution. In Proceedings of
AIPS, pages 31–36. AAAI Press, 1994.

[56] R. P. Bonasso, D. Kortenkamp, and T Whitney. Using a robot control
architecture to automate space shuttle operations. In Proceedings of
IAAI, 1997.

[57] D. K. Kortenkamp, R. P. Bonasso, and R. Murphy, editors. AI-based
Mobile Robots. AAAI/MIT Press, 1997.

EU FP7 CogX 24



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

2 Annexes

2.1 Göbelbecker et al. “Coming up With Good Excuses:
What to do When no Plan Can be Found” (ICAPS’10)

Bibliography Moritz Göbelbecker, Thomas Keller, Patrick Eyerich, Michael
Brenner, and Bernhard Nebel. “Coming up With Good Excuses: What to
do When no Plan Can be Found” In Proceedings of the 20th International
Conference on Automated Planning and Scheduling (ICAPS 2010)

Abstract When using a planner-based agent architecture, many things
can go wrong. First and foremost, an agent might fail to execute one of
the planned actions for some reasons. Even more annoying, however, is a
situation where the agent is incompetent, i.e., unable to come up with a plan.
This might be due to the fact that there are principal reasons that prohibit
a successful plan or simply because the task’s description is incomplete or
incorrect. In either case, an explanation for such a failure would be very
helpful. We will address this problem and provide a formalization of coming
up with excuses for not being able to find a plan. Based on that, we will
present an algorithm that is able to find excuses and demonstrate that such
excuses can be found in practical settings in reasonable time.

Relation to WP The phenomenon of a planner not being able to come
up with a plan is of particular relevance to our robot applications, since the
robot’s limited perception and complex sensor fusion processes will often
lead to incomplete information states and, consequentially, to the planner
not being able to find a plan. Coming up with an “excuse”, i.e., an ex-
planation about what might be wrong, is a first step in making this failure
transparent to a human user or triggering additional sensing that might pro-
vide the missing information. This will be demonstrated in the year 2 Dora
system.

2.2 Benton et al. “G-value Plateaus: A Challenge for Plan-
ning” (ICAPS’10)

Bibliography J. Benton, Kartik Talamadupula, Patrick Eyerich, Robert
Mattmüller, and Subbarao Kambhampati “G-value Plateaus: A Challenge
for Planning” In Proceedings of the 20th International Conference on Au-
tomated Planning and Scheduling (ICAPS 2010)

Abstract Recent years have seen the development of several scalable plan-
ners, many of which follow the string of successes found in using heuristic,
best-first search methods. While this provides positive reinforcement for

EU FP7 CogX 25



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

continuing work along these lines, fundamental problems arise when han-
dling objectives whose value does not change with each search operation.
An extreme case of this occurs when handling the objective of generating a
temporal plan with short makespan. Typically used heuristic search meth-
ods assume strictly positive edge costs for their guarantees on completeness
and optimality to hold, while the usual ”fattening” and ”advance time” steps
of heuristic search algorithms for temporal planning have the potential for
zero-cost edges, resulting in ”g-value plateaus”. In this paper we point out
some underlying difficulties with using modern heuristic search methods for
optimizing makespan and discuss how the presence of these problems con-
tributes to the poor performance of makespan-optimizing heuristic search
planners. To further illustrate this, we show empirical results on recent
benchmarks using a planner made with makespan optimization in mind.

Relation to WP This is a “challenge paper” describing a problem typi-
cally faced by temporal planners (like our base planner Temporal Fast Down-
ward).

2.3 Eyerich et al. “High-Quality Policies for the Canadian
Traveler’s Problem” (AAAI’10)

Bibliography Patrick Eyerich, Thomas Keller, and Malte Helmert “High-
Quality Policies for the Canadian Traveler’s Problem” In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10).

Abstract We consider the stochastic variant of the Canadian Traveler’s
Problem, a path planning problem where adverse weather can cause some
roads to be untraversable. The agent does not initially know which roads
can be used. However, it knows a probability distribution for the weather,
and it can observe the status of roads incident to its location. The objective
is to find a policy with low expected travel cost. We introduce and compare
several algorithms for the stochastic CTP. Unlike the optimistic approach
most commonly considered in the literature, the new approaches we propose
take uncertainty into account explicitly. We show that this property enables
them to generate policies of much higher quality than the optimistic one,
both theoretically and experimentally.

Relation to WP This paper is a first step towards extending our Contin-
ual Planning approach with a limited form of stochasticity, through Monte
Carlo sampling. Here, we study this technique still within the context of
a specific path planning problem, but will extend this to general planning
tasks in the future.

EU FP7 CogX 26



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

2.4 Brenner “Creating Dynamic Story Plots with Continual
Multiagent Planning” (AAAI’10)

Bibliography Michael Brenner “Creating Dynamic Story Plots with Con-
tinual Multiagent Planning” In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI-10).

Abstract An AI system that is to create a story (autonomously or in
interaction with human users) requires capabilities from many subfields of
AI in order to create characters that themselves appear to act intelligently
and believably in a coherent story world. Specifically, the system must be
able to reason about the physical actions and verbal interactions of the
characters as well as their perceptions of the world. Furthermore it must
make the characters act believably–i.e. in a goal-directed yet emotionally
plausible fashion. Finally, it must cope with (and embrace!) the dynamics of
a multiagent environment where beliefs, sentiments, and goals may change
during the course of a story and where plans are thwarted, adapted and
dropped all the time. In this paper, we describe a representational and
algorithmic framework for modelling such dynamic story worlds, Continual
Multiagent Planning. It combines continual planning (i.e. an integrated
approach to planning and execution) with a rich description language for
modelling epistemic and affective states, desires and intentions, sensing and
communication. Analysing story examples generated by our implemented
system we show the benefits of such an integrated approach for dynamic
plot generation.

Relation to WP The paper presents an extension of our Continual Plan-
ning approach to multiagent scenarios, such as the one our robot faces when
interacting with humans. In such environments the robot must reason not
only about its own actions, but also about what others will do and how the
robot can make the engage in collaborative activity. Although the paper
describes a different application in which virtual agents interact, the same
principles apply to planning for human-robot interaction.

2.5 Wurm et al. “Coordinated Exploration with Marsupial
Teams of Robots using Temporal Symbolic Planning”
(IROS’10)

Bibliography Kai M. Wurm, Christian Dornhege, Patrick Eyerich, Cyrill
Stachniss, Bernhard Nebel, Wolfram Burgard “Coordinated Exploration
with Marsupial Teams of Robots using Temporal Symbolic Planning” In
Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS-10).

EU FP7 CogX 27



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

Abstract The problem of autonomously exploring an environment with a
team of robots received considerable attention in the past. However, there
are relatively few approaches to coordinate teams of robots that are able
to deploy and retrieve other robots. Efficiently coordinating the exploration
with such marsupial robots requires advanced planning mechanisms that are
able to consider symbolic deployment and retrieval actions. In this paper,
we propose a novel approach for coordinating the exploration with mar-
supial robot teams. Our method integrates a temporal symbolic planner
that explicitly considers deployment and retrieval actions with a traditional
utility-based assignment procedure. Our approach has been implemented
and evaluated in several simulated environments and with varying team
sizes. The results demonstrate that our proposed method is able to coordi-
nate marsupial teams of robots to efficiently explore unknown environments.

Relation to WP This paper shows an application of our base planner,
Temporal Fast Downward, to a multi-robot exploration scenario.

2.6 Robinson et al. “Partial Weighted MaxSAT for Optimal
Planning” (PRICAI’10)

Bibliography N. Robinson, C. Gretton, D. Pham, and A. Sattar “Partial
Weighted MaxSAT for Optimal Planning” In 11th Pacific Rim International
Conference on Artificial Intelligence (PRICAI-2010).

Abstract We consider the problem of computing optimal plans for propo-
sitional planning problems with action costs. In the spirit of leveraging
advances in general-purpose automated reasoning for that setting, we de-
velop an approach that operates by solving a sequence of partial weighted
MaxSAT problems, each of which corresponds to a step-bounded variant of
the problem at hand. Our approach is the first SAT-based system in which
a proof of cost optimality is obtained using a MaxSAT procedure. It is also
the first system of this kind to incorporate an admissible planning heuristic.
We perform a detailed empirical evaluation of our work using benchmarks
from a number of International Planning Competitions.5

Relation to WP This paper demonstrates how to leveraged Boolean
decision-procedures in order to solve complex optimisation problems in plan-
ning.

5An earlier version of this work was also published at a the ICAPS 2010 Work-
shop on Constraint Satisfaction Techniques for Planning and Scheduling Problems
(COPLAS’2010).

EU FP7 CogX 28



DR 4.2: Planning for Cognitive Robots Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

2.7 Dearden et al. “Robot Control Using a Switching Classical/Decision-
Theoretic Planner” (in preparation for ICAPS 2011)

Bibliography R. Dearden, C. Gretton, M. Brenner, M. Göbelbacher “Robot
Control Using a Switching Classical/Decision-Theoretic Planner” (unpub-
lished draft).

Abstract Planning problems where the state of the world cannot be de-
termined with certainty but must be inferred from observations are tradition-
ally represented as partially observable Markov decision problems (POMDPs).
However algorithms that operate on POMDPs are restricted to very small
problems due to their computational cost. In this paper we describe an
approach to plan in these domains by combining a classical planner and a
POMDP planner. The approach builds plans as if the world was observable
at execution time using the classical planner. These plans include assertions
that state variables have particular values. When execution of the plan
reaches one of these variables, the POMDP planner is called to generate a
plan to determine the value of the variable. This plan can then be executed,
the value determined, and the classical plan can then continue executing if
the value determined was the one desired, or if the variable was found to
have a different value, replanning occurs. We show how this approach can
generate plans in domains that are much too large for POMDP planners to
solve directly.

Relation to WP This draft paper describes the architecture of the switch-
ing planner and the process that is used to generate and execute a plan when
the planner is called.

EU FP7 CogX 29



Coming up With Good Excuses:
What to do When no Plan Can be Found

Moritz Göbelbecker and Thomas Keller
and Patrick Eyerich and Michael Brenner and Bernhard Nebel

University of Freiburg, Germany
{goebelbe, tkeller, eyerich, brenner, nebel}@informatik.uni-freiburg.de

Abstract

When using a planner-based agent architecture, many things
can go wrong. First and foremost, an agent might fail to exe-
cute one of the planned actions for some reasons. Even more
annoying, however, is a situation where the agent is incom-
petent, i.e., unable to come up with a plan. This might be
due to the fact that there are principal reasons that prohibit a
successful plan or simply because the task’s description is in-
complete or incorrect. In either case, an explanation for such
a failure would be very helpful. We will address this problem
and provide a formalization of coming up with excuses for
not being able to find a plan. Based on that, we will present
an algorithm that is able to find excuses and demonstrate that
such excuses can be found in practical settings in reasonable
time.

Introduction
Using a planner-based agent architecture has the advantage
that the agent can cope with many different situations and
goals in flexible ways. However, there is always the pos-
sibility that something goes wrong. For instance, the agent
might fail to execute a planned action. This may happen be-
cause the environment has changed or because the agent is
not perfect. In any case, recovering from such a situation
by recognizing the failure followed by replanning is usually
possible (Brenner and Nebel 2009).

Much more annoying than an execution failure is a fail-
ure to find a plan. Imagine a household robot located in the
living room with a locked door to the kitchen that receives
the order to tidy up the kitchen table but is unable to come
up with a plan. Better than merely admitting it is incompe-
tent would be if the robot could provide a good excuse – an
explanation of why it was not able to find a plan. For exam-
ple, the robot might recognize that if the kitchen door were
unlocked it could achieve its goals.

In general, we will adopt the view that an excuse is a
counterfactual statement (Lewis 1973) of the form that a
small change of the planning task would permit the agent
to find a plan. Such a statement is useful when debugging a
domain description because it points to possible culprits that
prevent finding a plan. Also in a regular setting a counter-
factual explanation is useful because it provides a hint for

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where to start when trying to resolve the problem, e.g., by
asking for help from a human or exploring the space of pos-
sible repair actions.

There are many ways to change a planning task so that it
becomes possible to generate a plan. One may change
• the goal description,
• the initial state, or
• the set of planning operators.

Obviously, some changes are more reasonable than oth-
ers. For example, weakening the goal formula is, of course,
a possible way to go. We would then reduce the search for
excuses to over-subscription planning (Smith 2004). How-
ever, simply ignoring goals would usually not be considered
as an excuse or explanation.

On the other hand, changing the initial state appears to be
reasonable, provided we do not make the trivial change of
making goal atoms true. In the household robot example,
changing the state of the door would lead to a solvable task
and thus give the robot the possibility to actually realize the
reasons of its inability to find a plan.

In some cases, it also makes sense to add new objects
to the planning task, e.g., while the robot is still missing
sensory information about part of its environment. Thus,
we will consider changes to the object domain as potential
changes of the task, too. Note that there are also situations
in which removing objects is the only change to the initial
state that may make the problem solvable. However, since
these situations can almost always be captured by changing
those objects’ properties, we ignore this special case in the
following.

Finally, changing the set of planning operators may in-
deed be a “better” way, e.g., if an operator to unlock the
door is missing. However, because the number of poten-
tial changes to the set of operators exceeds the number of
changes to the initial state by far, we will concentrate on the
latter in the remainder of the paper, which also seems like
the most intuitive type of explanation.

The rest of the paper is structured as follows. In the
next section, we introduce the formalization of the planning
framework we employ. After that we sketch a small moti-
vating example. Based on that, we will formalize the notion
of excuses and determine the computational complexity of
finding excuses. On the practical side, we present a method



that is able to find good excuses, followed by a section that
shows our method’s feasibility by presenting empirical data
on some IPC planning domains and on domains we have
used in a robotic context. Finally, we discuss related work
and conclude.

The Planning Framework
The planning framework we use in this paper is the
ADL fragment of PDDL2.2 (Edelkamp and Hoffmann 2004)
extended by multi-valued fluents as in the SAS+ formalism
(Bäckström and Nebel 1995) or functional STRIPS (Geffner
2000).1 One reason for this extension is that modeling us-
ing multi-valued fluents is more intuitive. More importantly,
changing fluent values when looking for excuses leads to
more intuitive results than changing truth values of Boolean
state variables, since we avoid states that violate implicit
domain constraints. For example, if we represent the loca-
tion of an object using a binary predicate at(·, ·), changing
the truth value of a ground atom would often lead to hav-
ing an object at two locations simultaneously or nowhere
at all. The domain description does not tell us that, if we
make a ground atom with the at predicate true, we have to
make another ground atom with the identical first parameter
false. By using multi-valued fluents instead, such implicit
constraints are satisfied automatically.

Of course, our framework can be applied to any reason-
able planning formalism, since it is simply a matter of conve-
nience to have multi-valued fluents in the language. This be-
ing said, a planning domain is a tuple ∆ = 〈T , C∆,S,O〉,
where

• T are the types,

• C∆ is the set of domain constant symbols,

• S is the set of fluent and predicate symbols with associ-
ated arities and typing schemata, and

• O is the set of planning operators consisting of precon-
ditions and effects.

A planning task is then a tuple Π = 〈∆, CΠ, s0, s
∗〉,

where

• ∆ is a planning domain as defined above,

• CΠ is a set of task-dependent constant symbols disjoint
from C∆,

• s0 is the description of the initial state, and

• s∗ is the goal specification.

The initial state is specified by providing a set s0 of
ground atoms, e.g., (holding block1) and ground flu-
ent assignments, e.g., (= (loc obj1) loc2). As usual,
the description of the initial state is interpreted under the
closed world assumption, i.e., any logical ground atom not
mentioned in s0 is assumed to be false and any fluent not
mentioned is assumed to have an undefined value. In the
following sections we assume that S contains only fluents

1Multi-valued fluents have been introduced to PDDL in version
3.1 under the name of “object fluents”.

and no predicates at all. More precisely, we will treat predi-
cates as fluents with a domain of {⊥,>} and a default value
of ⊥ instead of unknown.

The goal specification is a closed first-order formula over
logical atoms and fluent equalities. We say that a planning
task is solvable iff there is a plan Ψ that transforms the state
described by s0 into a state that satisfies the goal specifica-
tion s∗.

Sometimes we want to turn an initial state description into
a (sub-)goal specification. Assuming that plan Ψ solves the
task Π = 〈∆, CΠ, s0, s

∗〉, by nec(s0,Ψ, s∗) we mean the
formula that describes the setting of the fluents necessary for
the correct execution of Ψ started in initial state s0 leading to
a state satisfying s∗. Note that s0 |= nec(s0,Ψ, s∗) always
holds.

Motivating Examples
The motivation for the work described in this paper mostly
originated from the DESIRE project (Plöger et al. 2008), in
which a household robot was developed that uses a domain-
independent planning system. More often than not a sen-
sor did not work the way it was supposed to, e.g., the vi-
sion component failed to detect an object on a table. If the
user-given goal is only reachable by utilizing the missing ob-
ject, the planning system naturally cannot find a plan. Obvi-
ously, thinking ahead of everything that might go wrong in a
real-life environment is almost impossible, and if a domain-
independent planning system is used, it is desirable to also
realize flaws in a planning task with domain-independent
methods. Furthermore, we wanted the robot to not only re-
alize that something went wrong (which is not very hard to
do after all), but it should also be able to tell the user what
went wrong and why it couldn’t execute a given command.

However, not only missing objects may cause problems
for a planning system. Consider a simple planning task on
the KEYS-domain, where a robot navigates between rooms
through doors that can be unlocked by the robot if it has the
respective key (see Fig. 1). The goal of such a task is to
have the robot reach a certain room, which in this example
is room1.

room0

room1 room2

door 1 door 2

robot

k1

k2

(:objects
room0 room1 room2 - room
door1 door2 - door
key1 key2 - key)

(:init
(= (robot_pos) room0)
(= (key_pos key1) room2)
(= (key_pos key2) room1)
(connects room0 room1 door1)
(connects room1 room0 door1)
(connects room0 room2 door2)
(connects room2 room0 door2)
(= (key_opens key1) door1)
(= (key_opens key2) door2)
(locked door1)
(locked door2))

(:goal (= (robot_pos) room1))

Figure 1: Unsolvable task in the Keys domain with corresponding
PDDL code.

Obviously there exists no plan for making the robot reach
its goal. What, however, are the reasons for this task being



unsolvable? As we argued in the introduction, the answer to
this question can be expressed as a counterfactual statement
concerning the planning task. Of course, there are numerous
ways to change the given problem such that a solution exists,
the easiest one certainly being to already have the goal ful-
filled in the initial state. An only slightly more complicated
change would be to have the door to room1 state) in which
case the robot could directly move to its destination, or have
the robot already carry the key to that door (changing the
value of (key pos key1) from room2 to robot) or even
a new one (adding an object of type key with the required
properties), or simply have one of the keys in room0 (e.g.
(= (key pos key1) room0)).

Having multiple possible excuses is, as in this case, rather
the rule than the exception, and some of them are more rea-
sonable than others. So, the following sections will answer
two important questions. Given an unsolvable planning task,
What is a good excuse? and How to find a good excuse?

Excuses
As spelled out above, for us an excuse is a change in the ini-
tial state (including the set of objects) with some important
restrictions: We disallow the deletion of objects and changes
to any fluents that could contribute to the goal. For example,
we may not change the location of the robot if having the
robot at a certain place is part of the goal.

A ground fluent f contributes to the goal if adding or
deleting an assignment f = x from a planning state can
make the goal true. Formally, f contributes to s∗ iff there
exists a state s with s 6|= s∗ such that s ∪ {f = x} |= s∗ for
some value x.

Given an unsolvable planning task Π = 〈∆, CΠ, s0, s
∗〉,

an excuse is a tuple χ = 〈Cχ, sχ〉 that implies the solvable
excuse task Πχ = 〈∆, Cχ, sχ, s∗〉 such that CΠ ⊆ Cχ and
if (f = x) ∈ s0 4 sχ (where 4 denotes the symmetric set
difference) then f must not contribute to s∗.

The changed initial state sχ is also called excuse state.
It should be noted that it is possible that no excuse ex-

ists, e.g., if there is no initial state such that a goal state is
reachable. More precisely, there is no excuse iff the task
is solvable or all changes to the initial state that respect the
above mentioned restrictions do not lead to a solvable task.

Acceptable Excuses
If we have two excuses and one changes more initial facts
than the other, it would not be an acceptable excuse, e.g., in
our example above moving both keys to the room where the
robot is would be an excuse. Relocating any one of them to
that room would already suffice, though.

So, given two excuses χ = 〈Cχ, sχ〉 and χ′ = 〈Cχ′ , sχ′〉,
we say that χ is at least as acceptable as χ′, written χ � χ′,
iff Cχ ⊆ Cχ′ and s0 4 sχ ⊆ s0 4 sχ′ . A minimal element
under the ordering � is called an acceptable excuse.

Good Excuses
Given two acceptable excuses, it might nevertheless be the
case that one of them subsumes the other if the changes in
one excuse can be explained by the other one.

In the example from Fig. 1, one obvious excuse χ would
lead to a task in which door1 was unlocked so that the robot
could enter room1. This excuse, however, is unsatisfactory
since the robot itself could unlock door1 if its key was lo-
cated in room0 or if door2 was unlocked. So any excuse χ′
that contains one of these changes should subsume χ.

We can formalize this subsumption as follows: Let χ =
〈Cχ, sχ〉 be an acceptable excuse to a planning task Π =
〈∆, CΠ, s0, s

∗〉 with the plan Ψ solving Πχ. Another accept-
able excuse χ′ = 〈Cχ′ , sχ′〉 to Π is called at least as good
as χ, in symbols χ′ v χ, if χ′ is an acceptable excuse also
to 〈∆, CΠ, s0, nec(sχ′ ,Ψ, s∗)〉. We call χ′ better than χ, in
symbols χ′ @ χ, iff χ′ v χ and χ 6v χ′.

In general, good excuses would be expected to consist
of changes to so-called static facts, facts that cannot be
changed by the planner and thus cannot be further regressed
from, as captured by the above definition. In our example
this could be a new key – with certain properties – and per-
haps some additional unlocked doors between rooms.

However, there is also the possibility that there are cyclic
dependencies as in the children’s song There’s a Hole in the
Bucket. In our example, one excuse would be χ, where the
door to room2 is unlocked. In a second one, χ′, the robot
carries key k2. Obviously, χ v χ′ and χ′ v χ hold and thus
χ and χ′ form a cycle in which all excuses are equally good.

In cases with cyclic dependencies, it is still possible to
find even “better” excuses by introducing additional objects,
e.g., a new door or a new key in our example. However,
cyclic excuses as above, consisting of χ and χ′, appear to
be at least as intuitive as excuses with additional objects.
For these reasons, we define a good excuse χ as one such
that there either is no better excuse or there exists a different
excuse χ′ such that χ v χ′ and χ′ v χ.

Perfect Excuses
Of course, there can be many good excuses for a task, and
one may want to distinguish between them. A natural way
to do so is to introduce a cost function that describes the cost
to transform one state into another. Of course, such a cost
function is just an estimate because the planner has no way
to transform the initial state into the excuse state.

Here, we will use a cost function c(·), which should re-
spect the above mentioned acceptability ordering � as a
minimal requirement. So, if χ′ � χ , we require that
c(χ′) ≤ c(χ). As a simplifying assumption, we will only
consider additive cost functions. So, all ground fluents have
predefined costs, and the cost of an excuse is simply the sum
over the costs of all facts in the symmetric difference be-
tween initial and excuse state. Good excuses with minimal
costs are called perfect excuses.

Computational Complexity
In the following, we consider ordinary propositional and
DATALOG planning, for which the problem of deciding
plan existence – the PLANEX problem – is PSPACE- and
EXPSPACE-complete, respectively (Erol, Nau, and Subrah-
manian 1995). In the context of finding excuses, we will
mainly consider the following problem for acceptable, good,
and perfect excuses:



• EXCUSE-EXIST: Does there exist any excuse at all?
In its unrestricted form, this problems is undecidable for

DATALOG planning.

Theorem 1 EXCUSE-EXIST is undecidable for DATALOG
planning.

Proof Sketch. The main idea is to allow an excuse to in-
troduce an unlimited number of new objects, which are ar-
ranged as tape cells of a Turing machine. That these tape
cells are empty and have the right structure could be veri-
fied by an operator that must be executed in the beginning.
After that a Turing machine could be simulated using ideas
as in Bylander’s proof (Bylander 1994). This implies that
the Halting problem on the empty tape can be reduced to
EXCUSE-EXIST, which means that the latter is undecid-
able.

However, an excuse with an unlimited number of new ob-
jects is, of course, also not very intuitive. For these reasons,
we will only consider BOUNDED-EXCUSE-EXIST, where
only a polynomial number of new objects is permitted. As
it turns out, this version of the problem is not more difficult
than planning.

Lemma 2 There is a polynomial Turing reduction from
PLANEX to BOUNDED-EXCUSE-EXIST for acceptable,
good, or perfect excuses.

Proof Sketch. Given a planning task Π = 〈∆, CΠ, s0, s
∗〉

with planning domain ∆ = 〈T , C∆,S,O〉, construct two
new tasks by extending the set of predicates in S by a fresh
ground atom a leading to S ′. In addition, this atom is added
to all preconditions in the set of operators resulting in O′.
Now we generate:

Π′ = 〈〈T , C∆,S ′,O′〉, CΠ, s0, s
∗〉

Π′′ = 〈〈T , C∆,S ′,O′〉, CΠ, s0 ∪ {a}, s∗〉
Obviously, Π is solvable iff there exists an excuse for Π′ and
there is no excuse for Π′′.

It is also possible to reduce the problems the other way
around, provided the planning problems are in a determinis-
tic space class.

Lemma 3 The BOUNDED-EXCUSE-EXIST problem can
be Turing reduced to the PLANEX problem – provided
PLANEX is complete for a space class that includes
PSPACE.

Proof Sketch. By Savitch’s theorem (1980), we know that
NSPACE(f(n)) ⊆ DSPACE((f(n))2), i.e., that all deter-
ministic space classes including PSPACE are equivalent to
their non-deterministic counterparts. This is the main rea-
son why finding excuses is not harder than planning.

Let us assume that the plan existence problem for our
formalism is XSPACE-complete. Given a planning task
Π = 〈∆, CΠ, s0, s

∗〉, the following algorithm will determine
whether there is an excuse:
1. If Π is solvable, return “no”.
2. Guess a χ = 〈Cχ, sχ〉 and verify the following:

a) CΠ ⊆ Cχ;

b) Πχ = 〈∆, Cχ, sχ, s∗〉 is solvable;

This non-deterministic algorithm obviously needs only
XSPACE using an XSPACE-oracle for the PLANEX prob-
lem. Since the existence of an excuse implies that there is
a perfect excuse (there are only finitely many different pos-
sible initial states), the algorithm works for all types of ex-
cuses.

From the two lemmas, it follows immediately that the
EXCUSE-EXIST problem and the PLANEX problem have
the same computational complexity.

Theorem 4 The BOUNDED-EXCUSE-EXIST problem is
complete for the same complexity class as the PLANEX
problem for all planning formalisms having a PLANEX
problem that is complete for a space class containing
PSPACE.

Using similar arguments, it can be shown that we can
compute which literals in the initial state can be relevant
or are necessary for an excuse. By guessing and verifying
using PLANEX-oracles, these problems can be solved and
are therefore in the same space class as the PLANEX prob-
lems, provided they are complete for a space class including
PSPACE.

Candidates for Good Excuses
The range of changes that may occur in acceptable excuses
is quite broad: The only excuses forbidden are those that
immediately contribute to the goal. We could try to find
acceptable excuses and apply goal regression until we find a
good excuse, but this would be highly suboptimal, because
it might require a lot of goal regression steps. Therefore, we
first want to explore if there are any constraints (on fluent
or predicate symbols, source or target values) that must be
satisfied in any good excuse.

In order to analyze the relations between fluent symbols,
we apply the notion of causal graphs and domain transition
graphs (Helmert 2006) to the abstract domain description.

The causal graph CG∆ of a planning domain ∆ =
〈T , C∆,S,O〉 is a directed graph (S, A) with an arc (u, v) ∈
A if there exists an operator o ∈ O so that u ∈ pre(o) and
v ∈ eff(o) or both u and v occur in eff(o). If u = v then
(u, v) is in A iff the fluents in the precondition and effect
can refer to distinct instances of the fluent.

The causal graph captures the dependencies of fluents on
each other; to analyze the ways the values of one fluent can
change, we build its domain transition graph. In contrast
to the usual definition of domain transition graphs (which is
based on grounded planning tasks), the domain of a fluent
f can consist of constants as well as free variables. This
fact needs to be taken into account when making statements
about the domain transition graph (e.g., the reachability of
a variable of type t implies the reachability of all variables
of subtypes of t). For the sake of clarity, we will largely
gloss over this distinction here and treat the graph like its
grounded counterpart.

If dom(f) is the domain of a fluent symbol f ∈ S , its
domain transition graph Gf is a labeled directed graph



(dom(f), E) with an arc (u, v) ∈ E iff there is an op-
erator o ∈ O so that f = u is contained in pre(o) and
f = v ∈ eff(o). The label consists of the preconditions of
o minus the precondition f = u. An arc from the unknown
symbol, (⊥, v), exists if f does not occur in the precondi-
tion. We also call such an arc (u, v) ∈ Gf a transition of f
from u to v and the label of (u, v) its precondition.

For example, the domain transition graph of the
robot pos fluent has one vertex consisting of a variable
of type room and one edge (room, room) with the label of
connected(room1 , room2 , door) ∧ open(door).

In order to constrain the set of possible excuses, we re-
strict candidates to those fluents and values that are relevant
for achieving the goal. The relevant domain, domrel(f),
of a fluent f is defined by the following two conditions and
can be calculated using a fixpoint iteration: If f = v con-
tributes to the goal, then v ∈ domrel(f). Furthermore, for
each fluent f ′ on which f depends, domrel(f ′) contains the
subset of dom(f ′) which is (potentially) required to reach
any element of domrel(f).

A static change is a change for which there is no path
in the domain-transition graph even if all labels are ignored.
Obviously all changes to static variables are static, but the
converse is not always true. For example, in most planning
domains, if in a planning task a non-static fluent f is unde-
fined, setting f to some value x would be a static change.

In the following, we show that in some cases it is suf-
ficient to consider static changes as candidates for excuses
in order to find all good excuses. To describe these cases,
we define two criteria, mutex-freeness and strong connect-
edness, that must hold for static and non-static fluents, re-
spectively.

We call a fluent f mutex-free iff changing the value of
an instance of f in order to enable a particular transition of a
fluent f ′ that depends on f does not prevent any other transi-
tion. Roughly speaking, excuses involving f ′ are not good,
because they can always be regressed to the dependencies f
without breaking anything else. Two special cases of mutex-
free fluents are noteworthy, as they occur frequently and can
easily be found by analyzing the domain description: If a flu-
ent f is single-valued, i.e. there are no two operators which
depend on different values for f , it is obviously mutex-free.
A less obvious case is free variables. Let o be an opera-
tor that changes the fluent f(p1, . . . pn) from pv to p′v . A
precondition f ′(q1, . . . qn) = qv of o has free variables iff
there is at least one variable in q1, . . . , qn that doesn’t occur
in {p1, . . . pn, pv, p

′
v}. Here the mutex-freeness is provided

because we can freely add new objects to the planning task
and thus get new grounded fluents that cannot interfere with
any existing fluents.

For example, consider the unlock operator in the
KEYS-domain. Its precondition includes key pos(key) =
robot ∧ key opens(key) = door . Here key is a free vari-
able, so it is always possible to satisfy this part of the pre-
condition by introducing a new key object and setting its
position to the robot and its key opens property to the door
we want to open. As we do not have to modify an existing
key, all actions that were previously applicable remain so.

The second criterion is the connectedness of the domain

transition graph. We call a fluent f strongly connected iff
the subgraph of Gf induced by the relevant domain of f is
strongly connected. This means that once f has a value in
domrel(f) any value that may be relevant for achieving the
goal can be reached in principle. In practice, most fluents
have this property because any operator that changes a fluent
from one free variable to another connects all elements of
that variable’s type.
Theorem 5 Let ∆ be a domain with an acyclic causal graph
where all non-static fluents are strongly connected and all
static fluents are mutex-free.

Then any good excuse will only contain static changes.
Proof. First note that a cycle free causal graph implies that
there are no co-occurring effects, as those would cause a
cycle between their fluents.

If an excuse χ = 〈Cχ, sχ〉 for Π = 〈∆, CΠ, s0, s
∗〉 is an

excuse that contains non-static changes, then we will con-
struct an excuse χ′ = 〈Cχ′ , sχ′〉 @ χ containing only static
facts which can explain χ. As all static fluents are mutex-
free, no changes made to the initial state sχ′ to fulfill static
preconditions can conflict with changes already made to sχ,
so we can choose the static changes in χ′ to be those that
make all (relevant) static preconditions true.

Let f, v, v′ be a non-static change, i.e., f = v ∈ s0 and
f = v′ ∈ sχ. This means that there exists a path from v to v′
in Gf . If all preconditions along this path are static, we are
done as all static preconditions are satisfied in sχ′ . If there
are non-static preconditions along the path from v to v′, we
can apply this concept recursively to the fluents of those pre-
conditions. As there are no co-occurring effects and the rel-
evant part of each non-static fluent’s domain transition graph
is strongly connected, we can achieve all preconditions for
each action and restore the original state later.

We can easily extend this result to domains with a cyclic
causal graph:
Theorem 6 Let ∆ be a domain where all non-static fluents
are strongly connected, all static fluents are mutex-free and
each cycle in the domain’s causal graph contains at least
one mutex-free fluent.

Then any good excuse will only contain static changes or
changes that involve a fluent on a cycle.
Proof. We can reduce this case to the non-cyclic case, by
removing all effects that change the fluents f fulfilling the
mutex-free condition, thus making them static. Let us call
this modified domain ∆′.

Let χ be an excuse with non-static changes. Because
∆′ contains only a subset of operators of ∆, any non-static
change that can further be explained in ∆′ can also be ex-
plained in ∆. So there exists an χ′ @ χ, which means that χ
cannot be a good excuse unless the changed fluent lies on a
cycle so that χ @ χ′ may hold, too.

While these conditions may not apply to all common
planning domains as a whole, they usually apply to a large
enough set of the fluents so that limiting the search to static
and cyclic excuses speeds up the search for excuses signifi-
cantly without a big trade-off in optimality.



Finding Excuses Using
a Cost-Optimal Planner

We use the results from the previous section to transform
the problem of finding excuses into a planning problem by
adding operators that change those fluents that are candi-
dates for good excuses. If we make sure that those change
operators can only occur at the start of a plan, we get an
excuse state sχ by applying them to s0.

Given an (unsolvable) planning task Π = 〈∆, CΠ, s0, s
∗〉,

we create a transformed task with action costs Π′ =
〈∆′, CΠ′ , s0

′, s∗〉 as follows.
We recursively generate the relevant domain for each flu-

ent symbol f ∈ S by traversing the causal graph, starting
with the goal symbols. During this process, we also iden-
tify cyclic dependencies. Then we check Gf for reachabil-
ity, adding all elements of dom(f) from which domrel(f)
is not reachable to changes(f). If f is involved in a cyclic
dependency we also add domrel(f) to changes(f).

To prevent further changes to the planning state after the
first execution of a regular action, we add the predicate
started to S ′ and as a positive literal to the effects of all
operators o ∈ O.

For every fluent f (with arity n) and v ∈ changes(f) we
introduce a new operator setfv as follows:

pre(setfv ) = ¬started ∧ f(p1 . . . pn) = v
n∧
i=1

¬unused(pi)

eff(setfv ) = {f(p1 . . . pn) = pn+1}

To add a new object of type t to the initial state, we
add a number2 of spare objects spt1 . . . sptn to CΠ′ . For
each of these objects spti, the initial state s0

′ contains the
facts unused(spti). We then add the operator addt(p) with
pre(addt) = unused(p) ∧ ¬started and eff(addt) =
{¬unused(p)}.

To prevent the use of objects that have not been activated
yet we add ¬unused(pi) to each operator o ∈ O for each
parameter pi to pre(o) if pre(o) does not contain a fluent or
positive literal with pi as parameter.

Due to the use of the started predicate, any plan Ψ can be
partitioned into the actions before started was set (those that
change the initial state) and those after. We call the subplans
Ψs0 and ΨΠ, respectively.

As a final step we need to set the costs of the change ac-
tions. In this implementation we assume an additive cost
function that assigns non-zero costs to each change and does
not distinguish between different instances of a fluent, so
c(f) are the costs associated with changing the fluent f
and c(t) the costs of adding an object of type t. We set
c(setfv ) = αc(f) and c(addt) = αc(t) with α being a scal-
ing constant. We need to make sure that the costs of the
change actions always dominate the total plan’s costs as oth-
erwise worse excuses might be found if they cause ΨΠ to be

2As shown in the complexity discussion, the number of new
objects might be unreasonably high. In some cases this number can
be restricted further but this has been left out for space reasons. In
practice we cap the number of spares per type with a small constant.

shorter. We can achieve this by setting α to an appropriate
upper bound of the plan length in the original problem Π.

From the resulting plan Ψ we can easily construct an ex-
cuse χ = 〈CΨ, sΨ〉 with CΨ = CΠ ∪ {c : addt(c) ∈ Ψ}
and sΨ being the state resulting from the execution of Ψs0
restricted to the fluents defined in the original Problem Π.

Theorem 7 Let Π be a planning task, Ψ an optimal solution
to the transformed task Π′, and χ = 〈CΨ, sΨ〉 the excuse
constructed from Ψ. Then χ is an acceptable excuse to Π.

Proof. ΨΠ only contains operators in ∆ and constants from
Cχ. Obviously ΨΠ also reaches the goal from sΨ. So Πχ is
solvable and χ thus an excuse. To show that χ is acceptable,
we need to show that no excuse with a subset of changes
exists. If such an excuse χ′ existed it could be reached by
applying change operators (as the changes in χ′ are a subset
of those in χ). Then a plan Ψ′ would exist with c(Ψ′s0) <
c(Ψs0) and, as the cost of Ψs0 always dominates the cost of
ΨΠ, c(Ψ′) < c(Ψ). This contradicts that Ψ is optimal, so χ
must be acceptable.

Theorem 8 Let Π be a planning task, Ψ an optimal solution
to the transformed task Π′, and χ = 〈CΨ, sΨ〉 the excuse
constructed from Ψ. If χ changes only static facts, it is a
perfect excuse.

Proof. As χ contains only static facts, it must be a good
excuse. From the definition of the cost function it follows
that c(χ) = αc(Ψs0), so existence of an excuse χ′ with
c(χ′) < c(χ) would imply, as in the previous proof, the
existence of a plan Ψ′ with c(Ψ′) < c(Ψ), contradicting the
assumption that Ψ is optimal.

Cyclic Excuses
Solving the optimal planning problem will not necessarily
give us a good excuse (unless the problem’s causal graph is
non-cyclic, of course). So if we get an excuse that changes
a non-static fact, we perform a goal regression as described
earlier. We terminate this regression when all new excuses
have already been encountered in previous iterations or no
excuse can be found anymore. In the former case we select
the excuse with the lowest cost from the cycle, in the latter
case we need to choose the last found excuse.

Note though, that this procedure will not necessarily find
excuses with globally optimal costs: As there is no guaran-
tee that χ′ @ χ also implies c(χ′) ≤ c(χ) the goal regression
might find excuses that have higher costs than a good excuse
that might be found from the initial task Π.

Experiments
To test our implementation’s quality we converted selected
planning tasks of the IPC domains LOGISTICS (IPC’00),
ROVERS and STORAGE (both IPC’06) to use object fluents,
so that our algorithm could work directly on each problem’s
SAS+ representation. In order to give our program a rea-
son to actually search for excuses, it was necessary to create
flaws in each problem’s description that made it unsolvable.
For each problem file, we modified the initial state by ran-
domly deleting any number of valid fluents and predicates,



sat 0 opt 0 sat 1 opt 1 sat 2 opt 2 sat 3 opt 3 sat 4 opt 4
logistics-04 0.78s 1.43s 0.69s (0.5) 0.94s (0.5) 0.71s (1.5) 1.02s (1.5) 0.53s (1.0) 0.57s (1.0) 0.52s (2.5) 1.29s (2.5)
logistics-06 0.75s 9.81s 0.74s (1.5) 28.12s (1.5) 0.65s (2.5) 101.47s (2.5) 0.65s (3.0) 55.05s (2.5) 0.62s (3.5) 43.57s (3.5)
logistics-08 1.27s 76.80s 1.27s (1.0) 276.99s (1.0) 1.17s (1.0) 46.47s (1.0) 1.08s (5.5) 1176.49s (3.5) 0.96s (5.5) 1759.87s (4.5)
logistics-10 2.62s — 2.24s (2.0) — 2.36s (5.5) — 2.25s (4.0) — 1.29s (5.5) —
logistics-12 2.58s — 2.66s (2.0) — 2.66s (4.5) — 2.28s (5.0) — 1.89s (6.5) —
logistics-14 4.73s — 4.78s (2.5) — 4.24s (6.0) — 3.70s (7.5) — 2.71s (6.0) —
rovers-01 3.04s 3.61s 3.09s (0.5) 5.72s (0.5) 3.17s (1.5) 8.17s (1.5) 2.79s (5.5) — 2.90s (7.5) —
rovers-02 3.25s 3.79s 3.24s (0.5) 4.45s (0.5) 3.31s (2.5) 21.48s (2.5) 3.23s (3.0) 62.36s (3.0) 2.87s (6.5) —
rovers-03 4.15s 5.53s 4.11s (0.5) 7.90s (0.5) 3.55s (2.5) 112.43s (2.5) 4.04s (5.5) — 3.67s (6.5) —
rovers-04 5.01s 6.53s 4.94s (1.0) 8.97s (0.5) 68.60s (5.0) 22.01s (2.0) 3.21s (6.0) — 9.45s (12.0) —
rovers-05 5.29s — 6.23s (2.0) 925.61s (2.0) 7.25s (4.0) — 5.82s (5.0) 790.57s (5.0) 6.32s (8.0) —
storage-01 1.77s 1.83s 2.01s (0.5) 2.31s (0.5) 1.71s (3.0) 2.11s (2.0) 1.84s (5.0) 24.81s (4.0) 1.82s (4.5) 11.12s (3.5)
storage-05 11.14s 15.66s 10.85s (0.5) 37.09s (0.5) 8.25s (4.0) 53.38s (4.0) 10.25s (6.0) — 31.70s (6.0) —
storage-08 30.46s 101.32s 35.59s (1.5) — 774.17s (5.5) — 765.32s (7.5) — 110.31s (8.5) —
storage-10 88.07s 214.10s 62.93s (1.0) — 64.56s (2.0) — 423.71s (3.0) — 257.10s (4.0) —
storage-12 131.36s — — — — — — — — —
storage-15 1383.65s — — — — — — — — —

Table 1: Results for finding excuses on some IPC domains. All experiments were conducted on a 2.66 GHz Intel Xeon processor with a
30 minutes timeout and a 2 GB memory limit. We used two setting for the underlying Fast Downward Planner: sat is Weighted A* with
the enhanced-additive heuristic and a weight of 5, opt is A* with the admissible LM Cut Heuristic. For each problem instance there are five
versions: the original (solvable) version is referred to as 0 while versions 1 to 4 are generated according to the deletions described in the
Experiments section. We used an uniform cost measure with the exception that assigning a value to a previously undefined fluent costs 0.5.
Runtime results are in seconds; the excuses costs are shown in parentheses.

or by completely deleting one or more objects necessary to
reach the goal in every possible plan (the latter includes the
deletion of all fluents and predicates containing the deleted
object as a parameter). For instance, in the LOGISTICS do-
main, we either deleted one or more city-of fluents, or all
trucks located in the same city, or all airplanes present in the
problem.

In order to not only test on problems that vary in the diffi-
culty to find a plan, but also the difficulty to find excuses, we
repeated this process four times, each repetition taking the
problem gained in the iteration before as the starting point.
This lead to four versions of each planning task, each one
missing more initial facts compared to the original task than
the one before.

Our implementation is based on the Fast Downward plan-
ning system (Helmert 2006), using a Weighted A∗ search
with an extended context-enhanced additive heuristic that
takes action costs into account. Depicted are runtimes and
the cost of the excuse found. Because this heuristic is not
admissible, the results are not guaranteed to be optimal, so
we additionally ran tests usingA∗ and the (admissible) land-
mark cut heuristics (Helmert and Domshlak 2009).

To judge the quality of the excuses produced we used a
uniform cost measure, with one exception: The cost of the
assignment of a concrete value to a previously undefined flu-
ent is set to be 0.5. This kind of definition captures our defi-
nition of acceptable excuses via the symmetric set difference
and also appears to be natural: Assigning a value to an un-
defined fluent should be of lower cost than changing a value
that was given in the original task. Note that switching a
fluent’s value actually has a cost of 1.0.

As the results in Table 1 show, the time for finding ex-
cuses increases significantly in the larger problems. The
principal reason for that is that previously static predicates
like connected in the STORAGE domain have become non-
static due to the introduction of change operators. This leads
both to a much larger planning state (as they cannot be com-
piled away anymore), as well as a much larger amount of
applicable ground actions. This effect can be seen in the

first two columns which show the planning times on the un-
modified problems (but with the added change operators).

As expected, optimal search was able to find excuses for
fewer problems than satisficing search. Satisficing search
came up with excuses for most problems in a few seconds
with the exception of the storage domain, due to the many
static predicates. The costs of the excuses found were some-
times worse than those found by optimal search, but usu-
ally not by a huge amount. If better excuses are desired,
additional tests showed that using smaller weights for the
Weighted A∗ are a reasonable compromise.

It is interesting to note that for the satisficing planner the
number of changes needed to get a solvable task has little
impact on the planning time. The optimal search, on the
other hand, usually takes much longer for the more flawed
problems. A possible explanation for this behavior is that
the number of possible acceptable excuses grows drastically
the more facts we remove from the problem. This makes
finding some excuse little harder, but greatly increases the
difficulty of finding an optimal excuse.

While most of the excuses described in this paper can be
found in the problems we created this way, it is very un-
likely that a problem is contained that is unsolvable due to
a cyclic excuse3. The aforementioned KEYS-domain on the
other hand is predestined to easily create problems that are
unsolvable because of some cyclic excuse. So for our second
experiment, we designed problems on that domain with an
increasing number of rooms n connected so that they form a
cycle: for each room k, k 6= n, there is a locked door k lead-
ing to room k + 1, and an additional, unlocked one between
rooms n and 0 (each connection being valid only in the de-
scribed direction). For each door k there is a key k which
is placed in room k, with the exception of key 0 which is
placed in room n and the key to the already unlocked door
n which doesn’t exist. Obviously a good excuse for every n
remains the same: If the robot held the key to door 0 in the

3This is only possible if that cyclic excuse was already part of
the task, but didn’t cause a problem because there existed another,
after the deletion nonexistent way to the goal.



rooms sat opt rooms sat opt
3 0.91s (1) 0.97s (1) 10 19.20s (2) 368.09s (1)
4 1.2s (1) 1.72s (1) 11 57.39s (2) 849.69s (1)
5 1.75s (1) 4.23s (1) 12 72.65s (2) 1175.23s (1)
6 2.19s (2) 10.69s (1) 13 84.45s (2) —
7 4.24s (2) 27.01s (1) 14 215.05s (2) —
8 6.03s (2) 65.15s (1) 15 260.39s (2) —
9 14.22s (2) 158.28s (1) 16 821.82s (2) —

Table 2: Results for finding excuses on the KEYS domain. We
used the same settings as in the experiments for Table 1, except
that the weight in the satisficing run was 1. The rows labeled rooms
give the number of rooms or the size of the cycle minus 1.

initial state, or if that door was unlocked, the task would eas-
ily be solvable. The number of necessary regression steps to
find that excuse grows with n, though, which is why KEYS is
very well suited to test the performance of the finding cyclic
excuses part of our implementation.

As can be seen in the results in Table 2, the planning time
both scales well with the size of the cycle and is reasonable
for practical purposes.

Related Work
We are not aware of any work in the area of AI planning that
addresses the problem of explaining why a goal cannot be
reached. However, as mentioned already, there is some over-
lap with abduction (a term introduced by the philosopher
Peirce), counterfactual reasoning (Lewis 1973), belief re-
vision (Gärdenfors 1986), and consistency-based diagnosis
(Reiter 1987). All these frameworks deal with identifying a
set of propositions or beliefs that either lead to inconsisten-
cies or permit to deduce an observation. There are parallels
to our notions of acceptable, good and perfect approaches
in these fields (Eiter and Gottlob 1995) – for non-cyclic ex-
cuses. The main difference to the logic-based frameworks is
that in our case there is no propositional or first-order back-
ground theory. Instead, we have a set of operators that al-
lows us to transform states. This difference might be an ex-
planation why cyclic excuses are something that appear to
be relevant in our context, but have not been considered as
interesting in a purely logic-based context.

Conclusion
In this paper we have investigated situations in which a
planner-based agent is incompetent to find a solution for a
given planning task. We have defined what an excuse in such
a situation might look like, and what characteristics such an
excuse must fulfill to be accounted as acceptable, good or
even perfect. Our main theoretical contribution is a thorough
formal analysis of the resulting problem along with the de-
scription of a concrete method for finding excuses utilizing
existing classical planning systems. On the practical side,
we have implemented this method resulting in a system that
is capable of finding even complicated excuses in reasonable
time which is very helpful both for debugging purposes and
in a regular setting like planner-based robot control.

As future work, we intend to extend our implementation

to more expressive planning formalisms dealing with time
and resources.

Acknowledgements
This research was partially supported by DFG as part of
the collaborative research center SFB/TR-8 Spatial Cogni-
tion Project R7, the German Federal Ministry of Education
and Research (BMBF) under grant no. 01IME01-ALU (DE-
SIRE) and by the EU as part of the Integrated Project CogX
(FP7-ICT-2xo15181-CogX).

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comp. Intell. 11(4):625–655.
Brenner, M., and Nebel, B. 2009. Continual planning
and acting in dynamic multiagent environments. JAAMAS
19(3):297–331.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. AIJ 69(1–2):165–204.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. Technical Report 195, Univ. Freiburg, Institut
für Informatik, Freiburg, Germany.
Eiter, T., and Gottlob, G. 1995. The complexity of logic-
based abduction. Jour. ACM 42(1):3–42.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995. Com-
plexity, decidability and undecidability results for domain-
independent planning. AIJ 76(1–2):75–88.
Gärdenfors, P. 1986. Belief revision and the Ramsey test
for conditionals. The Philosophical Review XCV(1):81–
93.
Geffner, H. 2000. Functional STRIPS: a more flexible
language for planning and problem solving. In Minker,
J., ed., Logic-Based Artificial Intelligence. Dordrecht, Hol-
land: Kluwer.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS 2009, 162–169.
Helmert, M. 2006. The fast downward planning system.
JAIR 26:191–246.
Lewis, D. K. 1973. Counterfactuals. Cambridge, MA:
Harvard Univ. Press.
Plöger, P.-G.; Pervölz, K.; Mies, C.; Eyerich, P.; Brenner,
M.; and Nebel, B. 2008. The DESIRE service robotics
initiative. KI 4:29–32.
Reiter, R. 1987. A theory of diagnosis from first principles.
AIJ 32(1):57–95.
Savitch, W. J. 1980. Relations between nondeterministic
and deterministic tape complexity. Journal of Computer
and System Sciences 4:177–192.
Smith, D. E. 2004. Choosing objectives in over-
subscription planning. In ICAPS 2004, 393–401.



G-value Plateaus: A Challenge for Planning

J. Benton† and Kartik Talamadupula†

Patrick Eyerich‡ and Robert Mattmüller‡ and Subbarao Kambhampati†

† Dept. of Computer Science and Eng. ‡ Department of Computer Science
Arizona State University University of Freiburg
Tempe, AZ 85287 USA Freiburg, Germany

{j.benton,krt,rao}@asu.edu {eyerich,mattmuel}@informatik.uni-freiburg.de

Abstract

While the string of successes found in using heuristic, best-
first search methods have provided positive reinforcement
for continuing work along these lines, fundamental prob-
lems arise when handling objectives whose value does not
change with search operations. An extreme case of this oc-
curs when handling the objective of generating a temporal
plan with short makespan. Typically used heuristic search
methods assume strictly positive edge costs for their guaran-
tees on completeness and optimality, while the usual “fatten-
ing” and “advance time” steps of heuristic search for temporal
planning have the potential of resulting in “g-value plateaus”.
In this paper we point out some underlying difficulties with
using modern heuristic search methods when operating over
g-value plateaus and discuss how the presence of these prob-
lems contributes to the poor performance of heuristic search
planners. To further illustrate this, we show empirical results
on recent benchmarks using a planner made with makespan
optimization in mind.

Introduction

Search space topology has received significant attention in
planning; efforts such as those made by Hoffmann (2005)
have, for example, identified the problem of h-value
plateaus, regions of the search space where h-values do not
change. A related, but less recognized problem within the
planning community are g-value plateaus, in which search
operations do not increase the g-value over large regions.
While h-value plateaus occur because of the imperfect or
myopic nature of heuristics, g-value plateaus can trace their
roots to a more basic mismatch between the search oper-
ations and objectives. Specifically, the children (and de-
scendants) of a search node may not necessarily have a
higher g-value than the node. There are many objectives
in planning for which standard formulations tend to lead to
g-value plateaus. Perhaps the poster child of such objec-
tives is makespan minimization using normal state-space (or
decision-epoch (Cushing et al. 2007)) search formulations.
It is easy enough to see that the operation of adding an action
to a plan does not necessarily increase its makespan.1

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Another example is partial order planning search, where many
operations, such as establishment, do not increase cost.

At first glance, g-value plateaus seem to run afoul of the
“positive edge cost” assumption that is the textbook suf-
ficiency condition for the completeness/termination of A∗

search. Fortunately, while the absence of g-value plateaus is
sufficient to guarantee completeness, their presence does not
necessarily lead to incompleteness as long as there are no in-
finitely long bounded-value (zero-cost) paths. This is often
of little consolation however as g-value plateaus can, and
do, significantly inhibit A∗-search especially when coupled
with non-pathological heuristics (i.e., where h(s) < h∗(s)).
This issue is by no means unique to planning: the work on
treewidth computation using best-first search (Dow and Korf
2007) also highlights problems similar to those encountered
in makespan minimization (although they do not connect it
to the broader g-value plateau problem).

In this paper, we aim to call the community’s attention
to the problem of g-value plateaus and the need for tech-
niques to handle them. In order to do this effectively, we
need to answer two natural questions: (i) why has the plan-
ning literature not paid much attention to the deleterious ef-
fects of g-value plateaus? and (ii) just how much of an ef-
fect do g-value plateaus have on the efficiency of the under-
lying search? In the following, we will answer both these
questions, specifically in the context of finding plans of low
makespan. For the first, we shall show how existing sys-
tems may overlook the presence of g-value plateaus either
(a) because they have usually focused on multi-objective
search (e.g., Sapa (Do and Kambhampati 2003)) where the
search operations are not mismatched with respect to at least
one of the objectives or (b) because search space representa-
tions must attribute a portion of the minimum cost through a
state to the h-value (as against the g-value) to ensure certain
properties hold. Turning to question (ii), we will quantify
the effect of g-value plateaus on search both in theoretical
and empirical terms. In the case of optimal planning we
show that g-value plateaus will necessarily cause expansion
of all states within the plateau that lead to optimal solutions.
For suboptimal planning, we will state criteria for when g-
value plateaus can force state expansions and empirically
confirm that g-value plateaus can cause poor performance.
We conclude the paper with some suggestions and show how
“pseudo-multi-objective” search that looks at “cost” objec-
tives even when the main focus is makespan can improve
performance without significantly degrading plan quality.



Case Study: Minimizing Makespan

It can be shown that typical temporal state-space planners
working to optimize makespan can suffer from plateaus over
the objective function. However, this fact may be overlooked
at first glance due to their state space models and how they
attribute h- and g-values. We present an evaluation of cur-
rent approaches that shows how plateaus over the objective
function can appear.

Temporal Planning Background

Many existing forward and regression heuristic search tem-
poral planners use a decision epoch time point as their g-
value.2 In usual forward chaining search methods (Bac-
chus and Ady 2001; Do and Kambhampati 2003; Eye-
rich, Mattmüller, and Röger 2009), this is the “current
time” for actions to begin execution; the regression plan-
ner TP4 (Haslum and Geffner 2001), on the other hand, uses
a different style of search where the g-value represents the
time from the goal to a state’s decision epoch. This entails
keeping time points of where “currently executing” actions
end (progression) or begin (regression). In the following, we
call these action time points to simplify discussion.

State Evaluation

A usual problem for makespan optimization in state space
temporal planning relates to adding long actions that must
run in parallel with a series of shorter actions to obtain a
high quality solution. Often in these cases, many permu-
tations of the shorter actions can be considered. That is,
there is long action giving a constant minimum bound on
the makespan for a state, a value different than the cur-
rent decision epoch time point. In the usual A∗ evalua-
tion function of f(s) = g(s) + h(s) for a state s, this
constant bound can be on either g(s) or h(s). In terms
of the discussed planning methods, we call the decision
epoch gt(s) (with a corresponding heuristic ht(s)) and dis-
tinguish it from the known minimum makespan, which we
call gm(s). More formally, given a state s and a maximum
distance action time point from gt(s), tmax(s) we define
gm(s) = max(gt(s), tmax(s)) (see Figure 1). Note that we
cannot (and should not) easily use this view of state eval-
uation in practice, as it can produce complications in rep-
resenting the state space (for instance, hm(s) = 0 is not
enough for a goal test). Ultimately, since ht(s) defines a
minimum value that can be found with constant computa-
tional time, we can perform this transfer of values from h to
g. For this reason the transfer serves to simplify discussion
and analysis to considering only g-value plateaus whenever
such minimum bounds exist in the calculation of h.

Plateaus on g

In temporal planning problem benchmarks, adjacent search
states with equal makespan (as defined by gm) can occur in
abundance since it is often possible to execute extraneous

2We are focusing on planners that handle temporally “simple”
models, i.e., those that cannot generally handle problems with re-
quired concurrency.

Figure 1: A state s in a (progression) temporal heuristic
search planner.

actions in parallel with useful ones without changing the fi-
nal plan makespan, leading to g-value plateaus. Informally,
g-value plateaus are a tree structure within the search space
where the evaluation values of states do not change from an-
cestor to descendant. They are inherently local in nature.
We discuss plateaus on g in both the optimal and suboptimal
contexts but first give them a more formal definition.

Definition 1. A g-value plateau with respect to state s is the
partial subtree T [s] where s is the root and T [s] includes all
immediate descendants s′ where g(s) = g(s′) and all states
in the g-value plateau T [s′].

In the worst case, when all states in the g-value plateau
T [s] have a constant heuristic value, upon expanding a state
s, A∗ will eventually expand all states s′ ∈ T [s]. This im-
plies that better heuristics or tie-breaking rules may signif-
icantly improve matters. It turns out that this is not always
enough. In optimal planning, multiple paths to equally val-
ued states can cause expansion of large portions of the g-
value plateau.

Theorem 1. Given a g-value plateau T [s] (of a state s) that
does not contain a goal state and an admissible but non-
pathological heuristic function h, upon expanding s during
the search, A∗ will eventually expand all state s′ ∈ T ′[s]
before reaching a goal state, where T ′[s] ⊆ T [s]\{s} is the
set of states that can be expanded to an optimal path.

Proof. Let g∗ be the optimal solution value. For any state
s′ ∈ T ′[s]: h∗(s) = h∗(s′), since g(s) + h∗(s) = g(s′) +
h∗(s′) = g∗ and g(s) = g(s′). As h is an admissible and
non-pathological heuristic function, h(s′) < h∗(s′) which
implies f(s′) = g(s′) + h(s′) = g(s) + h(s′) < g(s) +
h∗(s′) = g(s) + h∗(s) = g∗. Therefore, A* must expand s′

before finding an optimal solution.

A similar problem also occurs in the case of finding
suboptimal plans using any heuristic (e.g., inadmissible or
weighted heuristics) in the A∗ framework. Specifically, we
can characterize a portion of the g-value plateau that must
be explored.

Proposition 1. Consider a path P = (s0, . . . , sg) from
an initial state s0 to a solution state sg found with an
A∗ search using an (inadmissible) heuristic h. Let si be
a state in the path such that its g-value plateau, T [si],
does not contain sg, sj (j > i) be the first state s.t.
g(sj) > g(si) (and therefore is outside the plateau), and
smax = arg maxs∈(sj ,...,sg){f(s)}. Then, upon expanding



si, before reaching the goal state A∗ will have eventually
expanded all states s in the plateau that can be reached
from si through at least one path with all states s′ s.t.
f(s′) < fmax = f(smax).

Proof. As all the states s′ along the path from si to s satisfy
f(s′) < fmax, they will be pulled off the queue before the
state smax.

This proposition implies that there is a portion of the g-
value plateau with states s where h(s) < hmax = fmax −
g(si) that eventually must be explored. In other words, the
heuristic function must return a value greater than the bound
hmax in order to prune this search space, underscoring that
only the h-value can guide search over g-value plateaus.

Empirical Confirmation

We designed experiments to analyze the search spaces of
recent temporal planning benchmark problems for g-value
plateaus on makespan. To enable this analysis, we designed
a new (inadmissible) makespan heuristic (hm) on top of the
context-enhanced additive heuristic used in the Temporal
Fast Downward (TFD) planner (Eyerich, Mattmüller, and
Röger 2009).

The heuristic uses the same method as TFD for deter-
mining sets of actions required to reach the goal. In the
makespan heuristic we make use of the causal constraints
between actions (assuming TGP semantics (Smith and Weld
1999)) as detected during the extraction of the heuristic
plan. These constraints, together with duration constraints
between when action begin and end points, are encoded in
a Simple Temporal Network (STN). The makespan of the
schedule produced by solving the STN is then returned as
the heuristic estimate.

Table 1 summarizes the results of the empirical analysis
on the 6th International Planning Competition (IPC-2008)
domains. Our experiments were run on an Intel Xeon pro-
cessor running at 2.66 Ghz at a 10 minute time limit running
using SuSE Linux. Unlike the original TFD, the planner
neither performs an anytime search nor uses “preferred op-
erators”. Note that the values rg and rf in the table include
runs where no solution was found (but a sample of the search
space could still be taken).

We define the function gc(s) as the sum of all action du-
rations chosen at s, hc(s) as the heuristic on the sums of du-
rations on the “actions-to-go”, hm(s) as our new heuristic,
and gm(s) as described previously (i.e., the makespan of s
up to the longest running action). The results show remark-
ably large portions of the search space with g-value plateaus
on makespan in all domains where fm = gm + hm is used.
Notice that, except in openstacks-adl and openstacks-strips,
f -value plateaus increase significantly with g-value plateaus
(an expected result). Contrasting with fc = gc + hc, it is
apparent that using summed durations improves coverage of
problems solved significantly, though the quality of the solu-
tions is reduced. Note that it is possible to get equal g-values
on parents and children using gc in our search with the “ad-
vance time” operation, which does not add any actions.

Steps Toward a Solution

By now we have accomplished the main aim of this paper,
which is to bring the challenge to the foreground. In this sec-
tion, we discuss steps towards handling this challenge and
share results on one promising idea.

The problem with g-value plateaus is that they can induce
search that is worse than standard breadth-first search, a phe-
nomenon that can occur in A∗ search with any non-uniform
cost values on transitions. g-value plateaus may be seen as a
special case of this and offer a step in identifying such “prob-
lem” regions of the search space. For instance, one possi-
bility of handling these situations is to find “exit points” to
any state beyond the g-value plateau. While it is generally
impossible to know fmax, we can at least identify g-value
plateaus, areas we know have strong dependency on the be-
havior of the heuristic. In particular, we consider finding
a set of exit points that are diverse in their potential reach-
ability across a plateau (c.f., Srivastava et al. (2007)). Of
course, such techniques would likely need to be anytime in
nature for complete and optimal planning.

Another possibility is to try to remove the plateaus by
using equivalence classes between states. Such analysis
would likely be domain-dependent but if done properly may
collapse g-value plateaus. Related to this, in planning for
makespan, we can consider using causal analysis to avoid
adding extraneous actions. However, this is impractical in
general (though approximation methods may be used).

One may consider the idea of adding a small increase
in g-values between a parent and child when there would
otherwise be zero cost. Indeed, this approach has been ap-
plied in the case of planning with action costs (Richter and
Westphal 2008; Keyder and Geffner 2008; Benton, Do, and
Kambhampati 2009). However, this is unlikely to succeed
in general cases. Small increases, given a large enough
fmax, would exhibit the same behavior. Instead, we study
techniques inspired by Sapa and Temporal Fast Downward
(TFD) in the temporal planning setting. These planners
found success when performing “pseudo-multi-objective”
searches.

We developed an approach that applies an additional
heuristic cost related both to the makespan (the objective
function with g-value plateaus) and the number of search
operations left. Specifically, we apply a weighted “cost”
heuristic value, hc(s), which sums the durations of hm(s)
(i.e., the “makespan-to-go”) and use the evaluation func-
tion gm(s) + hm(s) + w ∗ hc(s). As we will see next,
this technique finds some success. The solution differs from
those of Sapa and TFD in that we include a state evaluation
over makespan while adding a cost evaluation on duration,
whereas Sapa uses makespan to calculate its fundamentally
cost-based heuristic and TFD only uses the sum of durations
as an estimate of makespan. From this perspective the tech-
nique is more related to the revised dynamically weighted
A∗ approach by Thayer and Ruml (2009). While such tech-
niques improve performance, they may not work well in ev-
ery domain with g-value plateaus, such as problems with
known solution depths (for example, best-first search for
treewidth (Dow and Korf 2007)).



fc = gc + hc fm = gm + hm fmw = gm + hw

Domain rg rf cov qual rg rf cov qual rg rf cov qual

crewplanning-strips 0.03 0.55 11 6.82 0.98 0.83 4 4.00 0.95 0.09 12 11.99
elevators-numeric 0.06 0.03 4 2.41 0.57 0.27 2 2.00 0.48 0.05 4 3.78
elevators-strips 0.07 0.05 3 1.70 0.53 0.25 3 2.98 0.44 0.04 4 3.92
openstacks-adl 0.15 0.89 30 17.80 1.00 0.88 8 7.58 0.92 0.02 30 28.00
openstacks-strips 0.14 0.88 30 17.12 0.67 0.29 27 20.93 0.71 0.06 30 25.39
parcprinter-strips 0.16 0.08 12 5.68 0.90 0.37 6 5.31 0.76 0.09 6 5.00
pegsol-strips 0.17 0.09 25 18.77 0.85 0.25 22 21.15 0.82 0.08 26 24.04
sokoban-strips 0.28 0.16 11 10.18 0.78 0.32 10 10.00 0.77 0.10 10 9.83
transport-numeric 0.23 0.06 2 1.26 0.74 0.48 3 3.00 0.58 0.09 3 2.78
woodworking-numeric 0.08 0.12 18 14.30 0.72 0.26 18 16.91 0.55 0.04 19 17.64

overall 0.09 0.21 146 96.04 0.84 0.50 103 93.86 0.68 0.07 144 132.37

Table 1: A comparison of the aggregate fraction of zero-cost search operations (rg), the fraction of f -valued children with equal
value to parent (rf ), problems solved (cov) and plan quality according to the IPC-2008 measure (qual, where higher is better
compared against the IPC “reference” plans when available) on the IPC-2008 benchmark domains in the temporal satisficing
track on fc = gc + hc, fm = gm + hm and fmw = gm + hw.

Empirical Evaluation

In addition to confirming the existence of and problems with
g-value plateaus, we ran experiments to test our simple im-
provement that combines a makespan and weighted cost
heuristic using hw = hm(s) + 0.2 ∗ hc(s). With these func-
tions we ran A∗ as before but over the evaluation function
fmw(s) = gm(s) + hw(s).

Our experiments on fmw show that, despite the g-value
plateaus that still remain in the search space, performance
improves dramatically from fm (see Table 1). In fact, in
most instances, openstacks-adl in particular, the planner ap-
pears to be achieving the best of both worlds, with a high
number of problems solved with high quality (and our total
quality reflects this increase). Also, by adding a weighted
hc, in most cases the search spaces have a significant de-
crease in f -value plateaus compared with fc and fm.

Conclusion

This paper points out the problem of g-value plateaus and
shows how they can lead to poor search performance. We
focused particularly on planning for quality solutions using
makespan as a prime example of where the problem oc-
curs and studied one solution to this problem. Our empir-
ical results show that, when facing g-value plateaus, we can
improve performance significantly using a “pseudo-multi-
objective” method that includes a heuristic on a related,
but different objective. However, this approach is not op-
timal and we believe that techniques that focus on identi-
fying g-value plateaus may yield more principled and gen-
eral approaches compatible with both optimal and subopti-
mal search.
Acknowledgments: We extend our thanks to Tuan Nguyen,
William Cushing and Rong Zhou for their helpful discus-
sions. Many thanks also go to Wheeler Ruml, Jordan
Thayer, Sofia Lemons and the anonymous reviewers for
their excellent comments. This research is supported in part
by ONR grants N00014-09-1-0017, N00014-07-1-1049, the
NSF grant IIS-0905672, by the German Research Council
(DFG) as part of the Transregional Collaborative Research
Center “Automatic Verification and Analysis of Complex

Systems” (SFB/TR 14 AVACS) and by the EU as part of
the Integrated Project CogX (FP7-ICT-2xo15181-CogX).

References
Bacchus, F., and Ady, M. 2001. Planning with resources and
concurrency: A forward chaining approach. In Proceedings of
the 17th International Joint Conference on Artificial Intelligence
(IJCAI), 417–424.

Benton, J.; Do, M.; and Kambhampati, S. 2009. Anytime heuris-
tic search for partial satisfaction planning. Artificial Intelligence
Journal 173(5-6).

Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S. 2007.
When is temporal planning really temporal? In Proceedings of
the 20th IJCAI, 1852–1859.

Do, M., and Kambhampati, S. 2003. Sapa: A scalable multi-
objective metric temporal planner. Journal of Artificial Intelli-
gence Research (JAIR) 20:155–194.

Dow, P. A., and Korf, R. E. 2007. Best-first search for treewidth.
In Proceedings of the 22nd Conference on Artificial Intelligence.

Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
context-enhanced additive heuristic for temporal and numeric
planning. In Proceedings of the 19th International Conference
on Automated Planning and Scheduling (ICAPS).

Haslum, P., and Geffner, H. 2001. Heuristic planning with time
and resources. In Proceedings of the 6th European Conference on
Planning.

Hoffmann, J. 2005. Where ‘ignoring delete lists’ works: Local
search topology in planning benchmarks. JAIR 24:685–758.

Keyder, E., and Geffner, H. 2008. The FF(ha) planner for plan-
ning with action costs. In Proceedings of the International Plan-
ning Competition (IPC).

Richter, S., and Westphal, M. 2008. The LAMA planner. using
landmark counting in heuristic search. In Proceedings of the IPC.

Smith, D. E., and Weld, D. S. 1999. Temporal planning with
mutual exclusion reasoning. In Proceedings of the 16th IJCAI,
326–337.

Srivastava, B.; Kambhampati, S.; Nguyen, T.; Do, M.; Gerevini,
A.; and Serina, I. 2007. Domain independent approaches for
finding diverse plans. In Proceedings of the 20th IJCAI.

Thayer, J. T., and Ruml, W. 2009. Using distance estimates in
heuristic search. In Proceedings of the 19th ICAPS.



High-Quality Policies for the Canadian Traveler’s Problem

Patrick Eyerich and Thomas Keller and Malte Helmert
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

{eyerich,tkeller,helmert}@informatik.uni-freiburg.de

Abstract

We consider the stochastic variant of the Canadian Traveler’s
Problem, a path planning problem where adverse weather can
cause some roads to be untraversable. The agent does not
initially know which roads can be used. However, it knows
a probability distribution for the weather, and it can observe
the status of roads incident to its location. The objective is to
find a policy with low expected travel cost.
We introduce and compare several algorithms for the stochas-
tic CTP. Unlike the optimistic approach most commonly con-
sidered in the literature, the new approaches we propose take
uncertainty into account explicitly. We show that this prop-
erty enables them to generate policies of much higher quality
than the optimistic one, both theoretically and experimentally.

Introduction
The Canadian Traveler’s Problem (CTP) was introduced by
Papadimitriou and Yannakakis (1991) as a path planning
problem with imperfect information about the roadmap. It
has drawn considerable attention from researchers in AI
search (e. g., Nikolova and Karger 2008; Bnaya, Felner, and
Shimony 2009) and is closely related to navigation tasks in
uncertain terrain considered in the robotics literature (e. g.,
Koenig and Likhachev 2002; Ferguson, Stentz, and Thrun
2004; Likhachev and Stentz 2006). Informally, the task is
to travel from the initial location to some goal location on
an undirected weighted graph. This is complicated by the
fact that certain roads may be covered by snow and hence be
impassable, and the traversability of a road can only be ob-
served from the two incident locations. The weather remains
static during the agent’s traversal of the graph, so once a road
has been observed, its status is known with certainty. Hence,
the problem is fully deterministic apart from the initial state
uncertainty about which roads are usable.

Many variants of the CTP have been suggested. Papadim-
itriou and Yannakakis (1991) describe an adversarial setting
and a stochastic setting. In the adversarial setting, the ob-
jective is to find a policy that minimizes the worst-case ratio
between the actual travel cost and the optimal travel cost un-
der perfect information. In the stochastic setting, the status
of each road is determined by an independent random choice

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

according to a known probability distribution, and the objec-
tive is to minimize expected travel cost (with some subtleties
discussed in the next section).

This paper deals with the stochastic CTP, which is the
most frequently considered version of the problem and has
itself spawned further variants. For example, Nikolova and
Karger (2008) describe an optimal algorithm for the stochas-
tic CTP on disjoint-path graphs and a recent paper by Bnaya,
Felner, and Shimony (2009) studies a variation of the CTP
where the status of a road may be sensed remotely, at a cost,
and the objective is to minimize the sum of travel cost and
sensing cost. A very similar problem to the stochastic CTP
where blocking probabilities are associated with graph ver-
tices rather than edges is discussed in the robot path plan-
ning community (e. g., Ferguson, Stentz, and Thrun 2004;
Likhachev and Stentz 2006).

Although many papers discuss the stochastic CTP, we
are not aware of any work that makes a significant attempt
at reasoning about the uncertainty that is an integral part
of the problem except for studies of special-case graphs
(Nikolova and Karger 2008) or instances with very low
amounts of uncertainty (Ferguson, Stentz, and Thrun 2004;
Likhachev and Stentz 2006). The predominant approach for
the general stochastic CTP and related problems is the opti-
mistic policy that always follows the shortest path that might
still be traversable under the agent’s current information, no
matter how likely it is for this path to be blocked at some
point.

Our main contribution is that we show that taking uncer-
tainty into account in policies for the CTP leads to signifi-
cant improvements over the optimistic policy. On the the-
oretical side, we show that while the optimistic policy can
be arbitrarily worse than the optimal solution, probabilistic
policies based on the UCT algorithm (Kocsis and Szepesvári
2006) converge to the global optimum. On the empirical
side, we show the advantages of probabilistic approaches
over greedy optimism on a range of benchmark instances.

In the following section, we formalize the problem and
discuss some basic properties. We then present four algo-
rithms for the CTP, including the common optimistic ap-
proach as well as more sophisticated techniques that take
uncertainty into account. This is followed by a theoretical
comparison of the approaches and an empirical evaluation,
after which we conclude.



The Canadian Traveler’s Problem
An instance of the CTP is a 6-tuple I = 〈V,E, p, c, v0, v?〉,
where

• 〈V,E〉 is a connected undirected graph (roadmap) with
vertex set V (locations) and edge set E (roads),

• p : E → [0, 1) defines the blocking probabilities of roads,

• c : E → N0 defines the travel costs of roads, and

• v0, v? ∈ V are the initial and goal locations.

Roads with blocking probability 0 are called guaranteed.
(We do not allow blocking probabilities of 1 because they
cause technical complications in several places, but they can
be equivalently modeled by omitting the respective roads.)

A weather for a CTP instance with roads E is a subset
W ⊆ E representing the roads that are traversable (not
blocked by snow) in that weather. WeatherW is called good
if v0 and v? remain connected when only using roads in W .
Otherwise, W is called bad.

The algorithmic problem considered in this paper is that
of computing a good policy for a CTP instance. As usual for
problems of acting under uncertainty, policies can be repre-
sented as mappings from belief states to actions. In our case,
a belief state is given by the agent’s current location on the
roadmap and its knowledge about traversability of roads: at
each decision step and for each road e, the agent knows e
to be traversable, knows e to be blocked, or does not have
any information about e. While the agent interacts with the
environment, its knowledge about road traversability grows
monotonically because the weather does not change dynam-
ically.

To illustrate the random choices of the environment and
decision steps of the agent that define the belief space of the
problem, the following description shows how a particular
run (a single interaction of the agent with the environment)
on instance I under policy π proceeds:

• Initially, the environment randomly chooses a weather W
by independently marking each road e as blocked with
probability p(e) and as traversable otherwise. The prob-
lem instance is revealed to the agent, but the randomly
chosen weather is not. The agent is initially located at v0.

• At every decision step, all weather information for the
agent’s current location v is revealed, i. e., the agent ob-
serves which of the roads incident to v are blocked.

• If the current agent location v is the goal location, the run
is finished. Otherwise, the agent moves to a new location
according to its policy. It may only move to locations that
are connected to v by a road e which is traversable under
the weather W . This incurs a cost of c(e).

• The cost of the run, denoted by cost(I,W, π), is the sum
over all costs incurred by the agent’s movements.

We are interested in policies of expected low cost, i. e.,
policies that tend to incur a low cost on a typical run. It is
tempting to define the cost of a policy simply as the expected
value for cost(I,W, π), where the expectation is with re-
spect to the random choice of weather (and possibly further
randomization performed by the policy). However, observe

that in case of bad weather it is not possible to complete a
run, which is most naturally modeled as infinite cost for that
run. This implies that if there is a nonzero chance of bad
weather (which is the case iff there exists no path from v0 to
v? consisting only of guaranteed roads) the expected cost of
all policies would be infinite under this definition.

Fortunately, this problem is easy to avoid by instead defin-
ing the cost of the policy as the expected cost for all runs
with good weather, replacing the prior probabilities for the
weather by the posterior probabilities under the condition
that the weather is good. It is not hard to prove that chang-
ing the probabilities in this fashion does not affect a ratio-
nal agent’s decisions. (Put shortly, the important argument
is that it is always rational for the agent to assume that the
weather is good, because the cost of a run in bad weather is
infinite in any case, regardless of the agent’s behavior.)

We thus define the cost of a policy π for instance I as

cost(I, π) =
∑
W⊆E

P (W ) · cost(I,W, π), (1)

where P (W ) is the conditional probability that weather W
is chosen given that some good weather is chosen.

Due to the exponential number of possible weathers, it is
usually impractical to compute the cost of a given policy π
according to Eq. 1. In our empirical experiments we will
estimate cost(I, π) by sampling.

Reasonable Policies and Upper Bound. Finding op-
timal policies for the CTP is difficult. Papadimitriou and
Yannakakis (1991) showed that the problem is contained in
PSPACE and #P-hard, and so far, optimal solutions could
only be generated for instances of trivial size.

However, it is not difficult to provide upper bounds on
the optimal cost, and to find policies that meet these upper
bounds. Let N be the number of locations of a given in-
stance. We can divide each run into phases where a new
phase begins whenever the agent visits some previously un-
visited location for the first time. With N locations, there
can be at most N − 1 such phases in a run. Within a phase
that starts at location v and ends at location v′, the agent only
traverses roads on the known subgraph, i. e., the graph con-
sisting of only those roads the agent knows to be traversable,
by the definition of phases. (New information can only be
obtained when reaching a previously unvisited location, end-
ing the phase.)

We can then demand that movements within a phase are
performed on shortest paths of the known subgraph. We
call policies that satisfy this requirement reasonable. At the
start of the n-th phase, n distinct location have been visited,
and hence at most n roads can be traversed by a reasonable
policy until a new location is reached, ending the phase. We
can thus bound the total number of movements in the run
by

∑N−1
i=1 i = 1

2 (N − 1)N , so that the cost of a reasonable
policy in good weather is bounded by 1

2 (N − 1)NC, where
C is the maximal cost of all roads.

Policies for the CTP
We describe four policies for the CTP: one that ignores the
blocking probabilities in its movement decisions and three
that take them into account.



All four policies can be described in terms of greedy
choices with respect to a cost function Cπ for belief states.
When queried for the next move in belief state b, policy π
computes the costs Cπ(b′) for all successor belief states b′
of b and returns the movements that lead to a successor min-
imizing the sum of Cπ(b′) and the travel cost from b to b′.
To enforce reasonable policies, we define successors of b as
those belief states which can be reached through a shortest
path in the known subgraph that either ends at the goal or at
a location where the agent obtains new information. Once a
policy has committed to a movement sequence, no new cost
values are computed until the sequence has been completed.

The last policy we consider, UCT, does not actually in-
volve separate computations of Cπ(b′) for each successor.
Instead, it only computes Cπ(b), i. e., performs a computa-
tion for the current belief state, which produces cost esti-
mates for all successors as a side effect. We abstract from
this detail in the following discussion.

It is desirable for cost functions to accurately reflect the
actual expected cost to goal. In particular, a policy based
on the optimal cost function C∗ produces optimal behavior.
Therefore, we will theoretically compare policies in terms
of how accurately their cost functions approximate C∗.

Optimism
We begin with the simplest approach, the optimistic policy
(OPT). The optimistic policy is a very common approach to
the CTP (e. g., Bnaya, Felner, and Shimony 2009) and to
robotic motion planning in uncertain environments, where
many papers focus on efficient implementations of the pol-
icy (e. g., Stentz 1994; Koenig and Likhachev 2002).

The optimistic policy is based on what is called the free
space assumption in the robotics literature: as long as it is
possible that a given road is traversable, we assume that it is
traversable. Formally, the optimistic cost function in belief
state b, COPT(b), is the distance from the agent location to
the goal in the optimistic roadmap for b, which is the graph
that includes all roads that are known to be traversable in
b or unknown in b. Finding shortest paths in the optimistic
roadmap is a standard shortest path problem without uncer-
tainty, and hence COPT(b) can be efficiently computed.

A sophisticated implementation of the optimistic policy
might use algorithms like D∗ Lite (Koenig and Likhachev
2002) to speed up distance computations, exploiting that
over the course of a run, an agent solves a sequence of sim-
ilar path planning problems, allowing reuse of information.
Since the focus of this work is on the quality of the policy,
which is not affected by how COPT is computed, our imple-
mentation simply uses Dijkstra’s algorithm.

Hindsight Optimization
The optimistic policy is indeed exceedingly optimistic: its
cost estimates are based on the minimum cost to goal in the
best possible weather given the agent’s knowledge. An al-
ternative approach that is less optimistic but still allows us
to reduce cost estimation to (a series of) shortest path com-
putations in regular graphs is hindsight optimization (HOP).

At each belief state, the hindsight optimization policy per-
forms a sequence of iterations called rollouts. The number

of rollouts N is a parameter of the algorithm: more rollouts
require more time, but tend to produce more stable cost esti-
mates. In each rollout, we first randomly generate a weather
according to the blocking probabilities of the CTP instance
that is consistent with the agent’s knowledge in the given
belief state b. In other words, we randomly determine the
status of unknown roads using the correct probabilities. If
the resulting weather W is bad, the rollout counts as failed.
Otherwise, the rollout counts as successful and we compute
the distance from the agent’s location to the goal in the sub-
graph of the roadmap that is traversable inW . The hindsight
optimization cost estimate CNHOP(b) for N rollouts is the av-
erage of the computed distances over all successful rollouts.

An alternative and fairly descriptive name for hindsight
optimization is averaging over clairvoyance (Russell and
Norvig 1995). For each weather we consider, we assume
that the agent is “clairvoyant”, i. e., knows ahead of time
which roads are traversable and hence follows the shortest
goal path. Since we do not know the actual weather, we
average over several weathers through stochastic sampling.

Hindsight optimization has recently attracted consider-
able interest in the stochastic planning community (e. g.,
Yoon et al. 2008), where it has served as the basis of some
highly efficient planning systems. It has also been suc-
cessfully used for dealing with hidden information in card
games, including the one-player game Klondike Solitaire
(Bjarnason, Fern, and Tadepalli 2009) and the two-party
games bridge (Ginsberg 1999) and Skat (Buro et al. 2009).

Despite these successes, the approach has well-known
theoretical weaknesses: it often converges to a suboptimal
policy as the number of rollouts approaches infinity. Frank
and Basin (2001) give an example of this for the game of
bridge, and Russell and Norvig (1995) describe a very sim-
ple MDP where HOP fails. In the next section, we give an
example of the suboptimality of the HOP policy for the CTP.

Optimistic Rollout
The assumption of clairvoyance is the Achilles heel of the
hindsight optimization approach. Our next algorithm, op-
timistic rollout (ORO), addresses this issue by modifying
how each rollout is performed. The optimistic rollout policy
computes its cost function CNORO in the same way as hind-
sight optimization, by performing a sequence of N rollouts
and averaging over cost estimates for successful rollouts.

The difference between the two algorithms is in how the
cost estimates of a rollout are computed: in a successful
rollout with weather W , rather than using the clairvoyant
goal distance, ORO simulates the optimistic policy on W
and uses the cost of the resulting run as the rollout cost.
Hence, in each rollout the agent follows a shortest path in
the optimistic graph until it reaches the goal or a road which
is blocked in W . In the latter case, it recomputes the opti-
mistic distances based on the new information and follows
a new path, iterating in this fashion until it reaches the goal.
The total distance traveled then serves as the rollout cost.

Clearly, optimistic rollout is only one representative of a
family of policy rollout algorithms, as any policy could be
used in place of the optimistic policy OPT. We choose OPT
because it offers a good trade-off between speed and quality.



UCT
The final approach we consider is the UCT algorithm (Koc-
sis and Szepesvári 2006). UCT is a state-of-the-art algo-
rithm for many problems of acting under uncertainty, includ-
ing playing Klondike solitaire (Bjarnason, Fern, and Tade-
palli 2009), which like the CTP is a single-agent problem
where the only source of uncertainty is incomplete informa-
tion about the probabilistically selected initial state.

Similar to the previous algorithms, UCT performsN roll-
outs, where N is a parameter. As in the ORO algorithm,
each UCT rollout computes an actual run from the agent lo-
cation to the goal for the given weather, without using infor-
mation that is hidden to the agent, and uses the average cost
of successful rollouts as the overall cost estimate CNUCT(b).
The difference between UCT and ORO is in how the agent’s
movements during each rollout are determined. While each
rollout is independent in ORO, this is not the case in UCT.

Throughout the following description, let b be the belief
state on which the UCT policy is queried. A belief sequence
σ = 〈b, b1, . . . , bi〉 is a sequence of belief states that de-
scribes a possible partial rollout starting from b. We define
• Rk(σ): the number of rollouts among the first k rollouts

for belief state b that start with sequence σ, and
• Ck(σ): the average travel cost to complete these Rk(σ)

rollouts from σ, i. e., the average cost that is incurred on
these rollouts from the end of σ to the goal.
Each UCT rollout starts from belief sequence 〈b〉 and iter-

atively adds successor belief states until the goal is reached.
Let ρ be an unfinished belief sequence for the (k+1)-th roll-
out which ends in belief state bi. We must describe how UCT
picks the next belief state among the successors b′1, . . . , b

′
m

of bi. Let ρi be the sequence 〈ρ; b′i〉, i. e., ρ extended with
b′i. UCT favors successors that led to low cost in previous
rollouts (where Ck(ρi) is low) and have been rarely tried in
previous rollouts (where Rk(ρi) is low). To balance these
criteria, which is the classical trade-off between exploita-
tion and exploration, it picks a candidate ρi maximizing the

UCT formula B
√

logRk(ρ)
Rk(ρi)

− cost(ρ, ρi) − Ck(ρi), where
cost(ρ, ρi) is the travel cost from ρ to ρi and B > 0 is a bias
parameter of which more will be said shortly. IfRk(ρi) = 0,
the value of the formula is considered to be ∞, so that the
firstm rollouts starting with ρ visit each successor once. The
UCT formula is designed to select each successor arbitrarily
often given sufficiently many visits of ρ, yet successors that
have been unpromising in the past are chosen increasingly
more rarely over time.

Blind vs. Optimistic UCT. Note that the UCT algorithm
as described so far does not take into account any problem-
specific information that would bias the rollouts towards the
goal. We call the resulting policy blind UCT (UCTB). Our
experimental results will show that UCTB does not perform
very well on the CTP; it would require a prohibitively large
number of rollouts to converge to a good policy. However,
it is possible to slightly modify the basic UCT algorithm to
provide it with some guidance towards the goal. Specifi-
cally, we implemented the following two modifications that
result in the optimistic UCT policy (UCTO):

• When extending a partial rollout ρ which has several un-
visited successors, break ties in favor of successors with
low COPT value.

• When evaluating the UCT formula, define Rk(σ) and
Ck(σ) as if there had been M additional rollouts for each
successor ρi, each with cost COPT(b′i), where M is an-
other algorithm parameter.
These modifications guide early rollouts towards promis-

ing parts of the belief space while not affecting the behavior
in the limit. Similar extensions to UCT have shown great
success in the game of Go (Gelly and Silver 2007).

In our experiments, we used a value of M = 20, which
was determined empirically. We obtained comparable re-
sults for other values in the range 5–80, but significantly
worse performance for M = 0 or M = 1.

Bias Parameter. To complete our discussion of UCT, we
describe how we choose the bias parameter B which bal-
ances exploration and exploitation. The analysis in the UCT
convergence proof by Kocsis and Szepesvári (2006) sug-
gests that B should be chosen in such a way that it grows
linearly with the optimal cost C∗(b). As the optimal cost is
of course unavailable, we estimate it for the (k + 1)-th roll-
out by the average cost of the previous k rollouts. (This is
undefined for k = 0, but B does not affect the choices of the
first rollout anyway.) For the UCTO variant, we additionally
divide the bias by 10 to further encourage exploitation.

Theoretical Evaluation
We have introduced four different policies for the CTP. (We
treat UCTB and UCTO as a single policy in this section, as
all results apply equally to both). What are their strengths
and weaknesses? How accurately do their cost functions ap-
proximate the true cost C∗? Here we present some formal
answers to these questions. For space reasons, we only pro-
vide proof sketches. We begin with a basic result:

Theorem 1 As the number of rolloutsN approaches∞, the
HOP, ORO and UCT cost functions converge in probability,
and the respective policies converge with probability 1.

Proof sketch: Individual HOP or ORO rollout costs are in-
dependent and identically-distributed bounded random vari-
ables, so the strong law of large numbers applies. (Bound-
edness follows from our discussion of reasonable policies.)

The UCT result is covered by the proof of Theorem 2.
In the rest of this section, we denote the cost functions

to which the N -rollout cost functions converge with C∞HOP,
C∞ORO and C∞UCT and consider the policies in the limit rather
than policies based on a finite number of rollouts. Theorem 1
ensures that these notions are well-defined.

To motivate the ideas underlying our main result, the ex-
ample instance in Fig. 1 illustrates the different pitfalls that
OPT, HOP and ORO fall prey to. We assume that ε is very
small and limit attention to runs where all roads with block-
ing probability ε are traversable and the road with blocking
probability 1− ε is blocked.

The optimistic policy is led astray by the cheap but very
unlikely path that reaches v? via v6. It would follow the path
v0–v5–v6–v5–v?, for a total cost of 170.



v0 v1 v3

v2

v4

v5

v∗

v6

10

20

100

ǫ : 60

ǫ : 60
ǫ : 60

1
2

: 0

1
2 : 0

1
2 : 0

ǫ : 40

ǫ : 70

1−
ǫ

:
0

Figure 1: Example with pitfalls for OPT, HOP and ORO.
Edge labels p : w denote blocking probability p (omitted for
guaranteed roads, i. e., when p = 0) and travel cost w.

Hindsight optimization chooses wrongly because there is
a high probability of a cheap goal path via v1 and any of
the locations v2/v3/v4, but it is not clear which of these three
locations to enter. It would assign a cost of 100 to the v0–v?
choice, a cost close to 90 to the v0–v5 choice (due to path
v0–v5–v?) and a cost close to 75 (= 10 + ( 7

8 · 60 + 1
8 · 100))

to the v0–v1 choice, hence moving to v1 first. At v1 it would
realize the suboptimality of its choice and ultimately reach
the goal via path v0–v1–v0–v5–v? at cost 110.

Optimistic rollout is fooled by the fact that OPT acts sub-
optimally in v5, giving rise to an exaggerated cost estimate
for v5. It would follow the path v0–v? at cost 100.

Finally, UCT converges to the optimal policy, following
the path v0–v5–v? at cost 90. This is a consequence of our
main result, which we now present.
Theorem 2 For all CTP instances I and belief states b:
COPT(b) ≤ C∞HOP(b) ≤ C∞UCT(b) = C∗(b) ≤ C∞ORO(b),

where UCT refers to both policy variants. Moreover, there
are instances where all inequalities are strict and the ratio
between any two different cost functions is arbitrarily large.
Proof sketch: For UCTB, convergence to the optimal cost
function (and hence also to the optimal policy) follows
from a slight generalization of Theorem 6 of Kocsis and
Szepesvári (2006). The modifications to UCTB that give
rise to UCTO do not affect behavior in the limit.
C∗(b) ≤ C∞ORO(b) holds because each ORO rollout corre-

sponds to an actual run of the CTP instance, which cannot
have a lower expected cost than the optimal cost C∗.

To prove COPT(b) ≤ C∞HOP(b) ≤ C∗(b), let I be the given
instance with road set R and let Π be the set of all policies
for I. We can show that for the initial belief state b0:

COPT(b0) = min
π∈Π

min
W⊆R

cost(I,W, π)

C∞HOP(b0) = E[min
π∈Π

cost(I,W, π)]

C∗(b0) = min
π∈Π

E[cost(I,W, π)]

where expected values are w.r.t. the random choice of (good)
weather W . The result for b0 follows from this by simple
arithmetic and readily generalizes to all belief states.

To show arbitrary separation between COPT, C∞HOP, C∗
and C∞ORO, we use augmented versions of the “pitfalls” for
the respective algorithms exemplified in Fig. 1.

OPT HOP ORO UCTB UCTO
20-1 205.9± 7 171.6± 6 176.3± 6 210.7± 7 169.0± 6

20-2 187.0± 5 155.8± 3 150.3± 3 176.4± 4 148.9± 3

20-3 139.5± 6 138.7± 6 134.2± 6 150.7± 7 132.5± 6

20-4 266.2± 9 286.8± 8 264.2± 7 264.8± 9 235.2± 7

20-5 163.1± 7 113.3± 6 113.0± 6 123.2± 7 111.3± 6

20-6 180.2± 6 142.0± 4 134.4± 4 165.4± 6 133.1± 3

20-7 172.2± 5 150.2± 4 168.8± 4 191.6± 7 148.2± 4

20-8 150.1± 6 133.6± 5 137.7± 5 160.1± 7 134.5± 5

20-9 222.0± 5 177.1± 4 176.4± 4 235.2± 6 173.9± 4

20-10 178.2± 6 188.1± 6 166.3± 5 180.8± 7 167.0± 5

50-1 255.5± 10 250.6± 9 214.3± 7 229.4± 12 186.1± 7

50-2 467.1± 11 375.4± 8 406.1± 8 918.0± 16 366.5± 7

50-3 281.5± 9 294.5± 7 268.5± 7 382.1± 15 255.6± 7

50-4 289.8± 9 263.9± 7 241.6± 7 296.6± 12 230.5± 7

50-5 285.5± 10 239.5± 8 229.5± 7 290.8± 11 225.4± 7

50-6 251.3± 10 253.2± 9 238.3± 9 405.2± 21 236.3± 9

50-7 242.2± 9 221.9± 7 209.3± 7 250.5± 11 206.3± 7

50-8 355.1± 11 302.2± 9 300.4± 8 462.6± 15 277.6± 8

50-9 327.4± 13 281.8± 11 238.1± 9 295.2± 18 222.5± 9

50-10 281.6± 8 271.2± 7 249.0± 7 390.8± 15 240.8± 6

∅ 245.1± 2 220.6± 2 210.8± 2 289.0± 3 200.0± 2

Table 1: Average travel costs with 95% confidence intervals
for 1000 runs on roadmaps with 20 (top) and 50 (bottom)
locations. Best results on each graph in bold.

Experimental Evaluation
To evaluate the algorithms empirically, we performed ex-
periments on Delaunay graphs, following the example of
Bnaya, Felner, and Shimony (2009). For each algorithm and
benchmark graph, we performed 1000 runs to estimate the
true policy cost as defined in Eq. 1 with sufficient accuracy.

Main experiment. In our main experiment, we gener-
ated random Delaunay graphs with 20–50 locations. Block-
ing probabilities were chosen uniformly in the range [0, 1),
travel costs uniformly from {1, . . . , 50}. Initial and goal lo-
cations were chosen to be at “opposite ends” of the graph.

We evaluated all policies on these 20 benchmarks, us-
ing 10000 rollouts for the probabilistic algorithms. Table 1
shows the outcome of the experiment. The optimistic UCT
policy dominates, always providing the best results except
for two cases where the difference between UCTO and the
best performance is not statistically significant. In addition
to UCTO, the HOP and ORO policies also significantly out-
perform the optimistic policy, clearly demonstrating the ben-
efit of taking uncertainty into account for the CTP. These
overall results nicely complement our theoretical results. We
conjecture that for some of the graphs where UCTO signif-
icantly outperforms the other policies, it reaches a solution
quality that is unobtainable for HOP and ORO in the limit.

On average, the quality improvement of UCTO over OPT
is larger than 20%, a huge difference. The blind UCT algo-
rithm does not fare well, converging too slowly – a not unex-
pected result, as the initial rollouts of UCTB have to reach
the goal through random walks. The poor performance of
UCTB underlines that these benchmarks are far from trivial.

Rollouts and Scalability. To analyze the speed of con-
vergence and scalability of the probabilistic algorithms, we
performed additional experiments on individual benchmarks
where we varied the rollout number in the range 10–100000.



 0

 100

 200

 300

 400

 500

 600

10 102 103 104 105

av
er

ag
e 

pa
th

 le
ng

th

number of rollouts

OPT
UCTB
HOP
ORO

UCTO

Figure 2: Average travel cost as a function of rollout number
for benchmark instance 50-9.

Algorithm p = 0.1 p = 0.3 p = 0.5 p = 0.6

Always +30.27% +32.88% +39.15% +30.05%

Exp +0.43% −0.39% −6.84% +3.30%

VOI +0.64% −4.70% −2.16% −6.06%

ORO −0.12% −2.12% −5.76% −5.11%

UCTO +0.13% −2.64% −6.95% −7.13%

Table 2: Results for CTP with remote sensing (sensing cost
5), reported as average cost differences compared to OPT
(called “Never” by Bnaya et al.) for the four different graph
classes in the Bnaya et al. benchmark set. Negative numbers
indicate improvements. Best performances in bold.

Figure 2 shows the outcome for benchmark graph 50-9. We
see that apart from UCTB, the probabilistic algorithms al-
ready obtain a better quality than the optimistic policy with
only about 100 rollouts, which require very little compu-
tation. ORO and HOP begin to level off after about 1000
rollouts, where UCTO still continues to improve.

To provide a reference point for evaluation speed, the
UCTO policy with 10000 rollouts requires less than one sec-
ond per decision on our benchmark instances. We do not
have space to report details, but we also performed scaling
experiments on benchmarks with up to 500 locations, which
show that the advantage of UCTO over the optimistic policy
tends to increase on larger instances, while runtime grows
slightly faster than linearly in the problem size.

Remote Sensing. In our last experiment, we evaluated the
performance of our stochastic algorithms on the benchmark
instances of Bnaya et al. These are benchmarks for a differ-
ent problem, a CTP variant where agents may sense the sta-
tus of roads from a distance, at a cost of 5. The policies “Al-
ways”, “Exp”, and “VOI” suggested by Bnaya et al. make
use of these capabilities. To these policies we compare the
solution qualities obtained by our policies when treating the
same benchmarks as regular CTP instances. Thus, we com-
pare policies that attempt to make use of sensing capabilities
intelligently to ones that never perform remote sensing. The
experimental results (Table 2) show that these never-sensing
policies are competitive with the best policies of Bnaya et al.

Conclusion
We investigated the problem of finding high-quality policies
for the stochastic version of the Canadian Traveler’s prob-
lem. In addition to the optimistic policy commonly consid-
ered in the CTP literature, we discussed three policies for the
CTP which take into account blocking probabilities in their
decision-making process.

We studied the convergence properties of these policies
and proved a clear ordering between the underlying cost
functions. Experimentally, we showed that the new poli-
cies, in particular our adaptation of the UCT algorithm, offer
significant improvements over the optimistic policy. These
improvements are large enough to offer competitive perfor-
mance to state-of-the art approaches for the CTP with re-
mote sensing even when performing no sensing at all.

In the future, we want to examine if better initialization
procedures can further improve the convergence behavior of
our UCT-based algorithm. Furthermore, we intend to adapt
our algorithms to related problems such as the CTP with re-
mote sensing and to more general problems such as proba-
bilistic planning.

References
Bjarnason, R.; Fern, A.; and Tadepalli, P. 2009. Lower bounding
klondike solitaire with Monte-Carlo planning. In Proc. ICAPS
2009, 26–33.
Bnaya, Z.; Felner, A.; and Shimony, S. E. 2009. Canadian traveler
problem with remote sensing. In Proc. IJCAI 2009, 437–442.
Buro, M.; Long, J. R.; Furtak, T.; and Sturtevant, N. 2009. Im-
proving state evaluation, inference, and search in trick-based card
games. In Proc. IJCAI 2009, 1407–1413.
Ferguson, D.; Stentz, A.; and Thrun, S. 2004. PAO* for planning
with hidden state. In Proc. ICRA 2004, 2840–2847.
Frank, I., and Basin, D. A. 2001. A theoretical and empirical in-
vestigation of search in imperfect information games. Theoretical
Computer Science 252(1–2):217–256.
Gelly, S., and Silver, D. 2007. Combining online and offline
knowledge in UCT. In Proc. ICML 2007, 273–280.
Ginsberg, M. L. 1999. GIB: Steps toward an expert-level bridge-
playing program. In Proc. IJCAI 1999, 584–593.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-Carlo
planning. In Proc. ECML 2006, 282–293.
Koenig, S., and Likhachev, M. 2002. D* Lite. In Proc. AAAI
2002, 476–483.
Likhachev, M., and Stentz, A. 2006. PPCP: Efficient probabilistic
planning with clear preferences in partially-known environments.
In Proc. AAAI 2006, 860–867.
Nikolova, E., and Karger, D. R. 2008. Route planning under
uncertainty: The Canadian traveller problem. In Proc. AAAI 2008,
969–974.
Papadimitriou, C. H., and Yannakakis, M. 1991. Shortest paths
without a map. Theoretical Computer Science 84(1):127–150.
Russell, S., and Norvig, P. 1995. Artificial Intelligence — A
Modern Approach. Prentice Hall.
Stentz, A. 1994. Optimal and efficient path planning for partially-
known environments. In Proc. ICRA 1994, 3310–3317.
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008. Prob-
abilistic planning via determinization in hindsight. In Proc. AAAI
2008, 1010–1016.



Creating Dynamic Story Plots with Continual Multiagent Planning

Michael Brenner
Albert-Ludwigs-Universität

Freiburg, Germany
brenner@informatik.uni-freiburg.de

Abstract
An AI system that is to create a story (autonomously or in in-
teraction with human users) requires capabilities from many
subfields of AI in order to create characters that themselves
appear to act intelligently and believably in a coherent story
world. Specifically, the system must be able to reason about
the physical actions and verbal interactions of the characters
as well as their perceptions of the world. Furthermore it must
make the characters act believably–i.e. in a goal-directed yet
emotionally plausible fashion. Finally, it must cope with (and
embrace!) the dynamics of a multiagent environment where
beliefs, sentiments, and goals may change during the course
of a story and where plans are thwarted, adapted and dropped
all the time. In this paper, we describe a representational
and algorithmic framework for modelling such dynamic story
worlds, Continual Multiagent Planning. It combines contin-
ual planning (i.e. an integrated approach to planning and ex-
ecution) with a rich description language for modelling epis-
temic and affective states, desires and intentions, sensing and
communication. Analysing story examples generated by our
implemented system we show the benefits of such an inte-
grated approach for dynamic plot generation.

Introduction
To tell a story is a challenging task that involves many (if
not most) aspects of human intelligence. If the storyteller
is an AI system it must effectively simulate a coherent story
world and control a number of virtual characters in a man-
ner that seems believable to humans, much as in the Turing
Test. Thus, creating believable stories, whether interactively
or not, can be considered an “AI-complete” task and requires
methods from many subfields of AI, e. g., planning, virtual
agents and multiagent systems, reasoning about beliefs and
intentions, affective computing, and dialogue systems.

Among these methodologies, planning has probably re-
ceived the most attention in story generation (Meehan 1977;
Lebowitz 1985; Riedl and Young 2004; Si, Marsella, and
Riedl 2008). Its relevance results from the structural simi-
larity between plans and plots, both of which describe tem-
poral and causal relations between events. Indeed, temporal-
causal coherence, as modeled by the semantics of classical
STRIPS-like planning formalisms, can be considered a nec-
essary condition for stories (at least non-postmodern ones).

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Yet, Planning research follows a different research agenda
than Narrative Intelligence and therefore has developed rep-
resentations and algorithms that are only of limited use to
plot creation. As a result, while plans are used in story-
telling systems, many interesting aspects of narrative, e. g.,
motivation and emotion, must be handled outside the plan-
ner. While this is fine in itself, it prevents long-time plotting,
usually done by a planner, from taking these aspects into ac-
count, e. g. say, planning for motivation changes based on
emotional reactions to events. Therefore, in this work, we
try to integrate ideas from many of the AI fields mentioned
above directly into the planning formalism and algorithm to
make it directly suitable for narrative generation.

The paper is structured as follows. We first review rele-
vant work in fields outside narrative research. Then we de-
scribe a planning formalism that integrates many of these
relevant aspects. We then describe a planning algorithm us-
ing this representation, Continual Multiagent Planning, and
briefly present our implementation. Analysing a story gener-
ated by our program we discuss the benefits of our approach.
We conclude with a discussion of its relation to previous
work in narrative generation and its possible future uses and
extensions.

Related Work I
Our work integrates ideas from several subfields of AI,
in particular classical and distributed planning, multiagent
systems, knowledge representation and reasoning (mainly
about perceptions, beliefs, and emotions) and dialogue sys-
tems. Due to space limits, we can only discuss few prototyp-
ical inspirations here. At the end of the paper, we will relate
our approach to previous work in storytelling research.

Most stories feature several characters and can thus be re-
garded as multiagent environments. To model the beliefs of
different agents (and their reasoning about each other) we
will integrate multiagent epistemic modalities into the plan-
ning representation (Fagin et al. 1995). Additionally, simi-
larly to BDI models of multiagent cooperation, we will ex-
plicitly model the desires and intentions of different agents
(Grosz and Kraus 1996). In order to describe how charac-
ters gather new information, we will need to model commu-
nication and perception as well. Here, we are inspired by
approaches to collaborative dialogue (Lochbaum 1998) and
planning with sensing (Petrick and Bacchus 2002).



Algorithmically, our work is based on the intuition that
the dynamics of plots are hard to describe naturally with a
single plan. Often, plots depend on plans failing or being
thwarted, then being dropped or adapted, and finally succeed
or fail (where which is which often lies in the eye of the be-
holder), i.e. as a series of planning and execution cycles per-
formed by the characters. Therefore, what we develop is a
Distributed Continual Planning (DCP) method (DesJardins
et al. 1999; Brenner and Nebel 2009).

Modelling Story Worlds in a Multiagent
Planning Formalism

Story worlds usually are multiagent environments. To de-
scribe plausible behaviour in such worlds, we need to rea-
son about their dynamics. Thus, we must be able to repre-
sent not only the physical actions that agents can perform,
but also their perceptual and communicative capabilities as
well as their (mutual) beliefs and (joint) goals. To do this in
a domain-independent fashion, we use a formal descripition
language, the Multiagent Planning Language MAPL (Bren-
ner and Nebel 2009). In this section, we present MAPL in-
formally and discuss the extensions made for this paper.

MAPL is a multiagent variant of PDDL (Planning Do-
main Definition Language), the de facto standard language
for classical planning. Instead of propositions, MAPL uses
multi-valued state variables (MVSVs). For example, a state
variable color(ball) would have exactly one of its possible
domain values red, yellow, or blue, as compared to the three
semantically unrelated propositions (color ball red), (color
ball yellow), (color ball blue). MVSVs have successfully
been used in classical planning in recent years,but they also
provide distinct benefits when representing story worlds: a)
Incomplete knowledge can be expressed by adding an un-
known value to the domain of a MVSV, b) this idea can be
extended to model beliefs and mutual beliefs among char-
acters (Fagin et al. 1995) c) knowledge-seeking actions
can be modelled as supplying a yet unknown MVSV value.
Thus, sensing and communicative acts are modelled like wh-
questions (what colour? where? etc.), d) due to the mutual
exclusivity of MVSV values, they are well suited for Initial
State Revision (Riedl and Young 2006).

In addition to the usual preconditions and effects, MAPL
actions have a controlling agent who executes the action.
MAPL assumes that the controlling agents are fully au-
tonomous when executing actions, i. e. there is no external
synchronization or scheduling component. Consequently,
an action will only be executed if, in addition to its pre-
conditions being satisfied, the controlling agent knows that
they hold. Implicitly, all MAPL actions are extended with
such knowledge preconditions. Similarly, implicit com-
mitment preconditions describe, intuitively, that if action a
controlled by agent A is included in agent B’s plan, this can
only be done if A has agreed to perform a.

MAPL models three different ways to affect the beliefs
of agents: sensing, copresence, and communication. Sensor
models describe under which conditions the current value of
a MVSV can be perceived. Copresence models are multia-
gent sensor models that induce mutual belief about the per-

ceived state variable. Informally, agents are copresent when
they are in a common situation where they can not only per-
ceive the same things but also each other. Communicative
acts in MAPL include declarative statements, questions, re-
quests, and acknowledgments. While declarative statements
change the belief state of another agent similarly to sensory
actions, the other types of communicative acts affect aspects
of the agent that are typically considered static in AI Plan-
ning, namely the goals of agents.

MAPL goals are first-order formulae, like in PDDL. For
storytelling we mostly use them in a specific conditional
form: By introducting a new MAPL keyword, “currently”,
we can refer to the current state of the world and the agents’
beliefs about it in such a conditional goal formula. MAPL
also has temporary subgoals (TSGs), which must be sat-
isfied at some point in the plan, but may be violated in
the final state. TSGs are represented as explicit symbols
in MAPL and thus can be reasoned about by a planner.
In particular, they can be active or inactive. This is also
true for conditional goals, whose antecedent (condition) may
hold in the current state or not. Both kinds of goal activa-
tion mimic how commitment turns desires into intentions in
BDI models of human practical reasoning (Bratman, Israel,
and Pollack 1988; Cohen and Levesque 1990). Through-
out, the paper we will often refer to activated goals as inten-
tions. Assertions are counterfactual statements, e. g., “If I
knew where to find a sword, I could slay the dragon”, that
the continual planner may use as temporary subgoals in or-
der to gather missing information necessary to achieving its
main goal. Assertions enable the agent to postpone plan-
ning for subproblems until it has gained more knowledge,
i. e. by partially executing a plan and then switching back to
more detailed planning. Thus, assertions encourage proac-
tive goal-driven information gathering (Brenner and Nebel
2009), which for plot generation often seems to be a desir-
able character trait.

MAPL plans are partially ordered, using different kinds
of causal links. This is advantageous for plot generation
because plans provide explanations for the behaviour of the
characters. In contrast to other plan-based approaches we
will not use plans directly to represent the whole plot. Since
during a continual planning episode usually multiple plans
are being generated, executed, and revised, we consider as
the plot the execution history of the episode, annotated with
relevant (possibly false) beliefs and goals. This plot graph
comprises a totally ordered “fabula”, i. e. the sequence of
events that occur. Yet, it also uses explanations from plans
and plan monitoring to relate actions to each other by various
types of causal links. Such causally annotated histories can
be naturally regarded as plots in the sense of E. M. Forster
(Forster 1927) and provide ample information for discourse
generation, i. e. the presentation of the plot.

Continual Multiagent Planning
How can we generate MAPL plot graphs? The method
presented in this section, Continual Multiagent Planning
(CMP), is a distributed algorithm, i. e. it describes planning
by multiple agents, who all have different motivations and
beliefs about the world. Being fully distributed, it can be ap-



plied to large interactive environments, e. g., multiplayer on-
line role-playing games. However, it also models planning
for multiple agents, since even the individual agents’ plans
may involve several agents if that is necessary to achieve her
goals. For storytelling, this means that CMP allows for both
character-centric and author-centric plot generation.

The CMP algorithm is shown in algorithm 1 (its subpro-
cedures will only be presented informally). CMP extends
Continual Collaborative Planning (CCP), an approach de-
veloped in the context of situated human-robot interaction
(Brenner and Nebel 2009). Like in CCP, CMP agents de-
liberately switch between planning, (partial) plan execution,
monitoring, plan adaptation and communication. However,
CMP agents are not required to be benevolent and always
willing to adopt any TSGs proposed by other agents – luck-
ily, since this would prevent conflict, intrigue and drama in
the generated plots.

Algorithm 1 CMP AGENT(S, G)

P = ∅
Received no message:

if S satisfies G do
return “goal reached”

else
P = MONITORINGANDREPLANNING(S, G, P )

if P = ∅ then
return “cannot achieve goal G”

else
e = EXECUTENEXTACTION(S, P )
(S, P ) = STATEESTIMATION(S, e)

Received (tell-val vx) from agent a:
add v

.
=x to S

Received request(sg) from agent a:
if cooperative(self, a) 6∈ S then

send “will not adopt request sg” to a
P = MONITORINGANDREPLANNING(S, G ∪ sg, ∅)
if P = ∅ then

send “cannot execute request sg” to a
else

add sg to G as temporary subgoal
send “accept request sg” to a

When used for centralised planning (i. e. one planner con-
trols all agents) or when no communication is taking place,
a CMP agent alternates between (re-)planning and execu-
tion. Subprocedure MONITORINGANDREPLANNING first
determines whether a new planning phase should be trig-
gered, either because the agent has sensed an external event
that has invalidated its previous plan, or because her goals
themselves have changed, or because of an assertion that
was previously used to advance planning despite missing in-
formation and whose detailed planning is now triggered be-
cause additional knowledge has become available (Brenner
and Nebel 2009). If, for any of the above reasons, planning
is triggered the agent replans for those parts of its plan that
are no longer valid. The details of the actual (re)planning are
irrelevant for the purpose of this paper (any state-of-the-art
PDDL planner may be adapted for the purpose); it results in
an asynchronous MAPL plan that specifies actions for (pos-
sibly) several agents and the causal and temporal relation

between them necessary for achieving the planning agent’s
goal. If the plan involves other agents than the planning
agent or those characters she can directly control, the new
plan must ensure that they are commited to the (sub)goals
their actions contribute to. In the original CCP the new plan
would have included maximally one negotiate plan(a) ac-
tion for each agent a appearing in the plan, since all agents
were supposed to be cooperative and their exact role in the
plan could freely be discussed in the negotation phase. This
is different in CMP, where the planning agent must consider
different options for making a commit to a subgoal. This
can either be done by negotiation as before, if a is known to
be cooperative, or by some form of persuasion, i. e. indirect
activation of a conditional goal of a. For example, a hunter
may present a bear with a honey comb to raise its appetite
and make it walk into a trap. Indirect activation may also
be recursive, e. g., when a bank robber r threatens a bank
clerk c, thereby making cooperative(c,r) true and thus make
c open for “requests” in the next step.

As soon as a CMP agent has found (or repaired)
a valid plan it enters the execution phase (function
EXECUTENEXTACTION). First, an action e on the first level
of the plan, i. e. one whose preconditions are satisfied in
the current state, is chosen non-deterministically. If the ac-
tion is executable by the CMP agent himself (this includes
communicative actions), it is executed. If not, the planning
agent tries to determine whether the action was executed
by its controlling agent, i. e. it actively observes changes in
the environment relevant for its plans. In both cases, the
CMP agent will try to update its knowledge about the world
state based on the expected effects and the actual perceptions
made (function STATEESTIMATION).

Implementation In our view plots do not only con-
sist of plans, but also of their execution, and the resulting
re-evaluation of beliefs, goals, and plans by all character
agents. Such an approach can best be implemented in a sim-
ulation environment. This is most obvious in interactive nar-
rative, where some characters are not controlled by the sys-
tem, but by human users. Yet simulation is also a convenient
way to compute the complex results of several characters
acting simultaneously in a common environment, observing
and influencing each other constantly, even if controlled by a
single “author”. Therefore we have implemented MAPSIM,
a software environment that automatically generates mul-
tiagent simulations from MAPL domains. In other words,
MAPSIM interprets the MAPL domain both as the planning
domain for each CMP character, but also as an executable
model of the environment, so that it can determine the re-
sults of the execution of the characters’ actions.

Note that while for generating the story analysed in the
following section, we invoked MAPSIM non-interactively
to emphasise the autonomy of the approach, MAPSIM can
also be used interactively. Human users may “play” the
role of any character and send MAPL commands to the
simulation directly.



Figure 1: A story in the Quests domain non-interactively
created by MAPSIM.

1 This is a story about Smaug, King Arthur and Prince
Valiant.

2 King Arthur was in the castle. 3 The treasure was in the
cave. 4 King Arthur rode to the cave. 5 King Arthur saw
that Smaug was in the cave.
6 King Arthur rode to the castle. 7 King Arthur saw that
Prince Valiant was in the castle. 8 ’Please bring me the
treasure, Prince Valiant,’ King Arthur said. 9 ’As you
wish, King Arthur,’ Prince Valiant replied. 10 ’Where is
the treasure, King Arthur?’ Prince Valiant asked. 11 ’The
treasure is in the cave, Prince Valiant,’ King Arthur said.
12 ’Thank you,’ Prince Valiant said.
13 Prince Valiant rode to the cave. 14 Prince Valiant saw
that Smaug was in the cave. 15 Smaug tried to kill Prince
Valiant - but failed! 16 Prince Valiant saw that Smaug was
not dead. 17 Prince Valiant killed Smaug.
18 Prince Valiant took the treasure. 19 Prince Valiant rode
to the castle. 20 Prince Valiant gave King Arthur the trea-
sure. 21 ’Thank you for bringing me the treasure, Prince
Valiant,’ said King Arthur.
22 King Arthur and Prince Valiant lived happily ever after.
Smaug did not.

Analysis of a Worked Example
In order to show the benefits of our integrated approach, we
will now analyse a story generated by MAPSIM. It is repro-
duced in figure 1. During the creation of the story a total of
20 different plans were created by the three characters and
the simulation itself. On a 1.6 GHz Intel Pentium and 1GB
RAM the total planning time was less than 500ms.

As input, MAPSIM was given a formal MAPL domain
description and individual goals and beliefs for each of the
three characters as well as the true initial world state. The
resulting plot graph is (for reasons of space) only shown
partly in figure 2. It roughly corresponds to lines 9–15 of
figure 1 and gives an impression of the MAPL representa-
tion of the plot. The first and last line of figure 1 have no
direct correspondence in the plot graph, but are directly pro-
duced by MAPSIM: In line 1 the characters are introduced,
whereas in line 22 MAPSIM reports on which of the agents
have achieved their goal and which have not.1

Multimodal interaction Note first that characters’ be-
haviour as generated by CMP seamlessly interleaves phys-
ical action, sensing, and communication, e. g. in lines 6–
8. Due to the explicit representation of epistemic states
and information-gathering actions, the characters will plan

1Obviously the textual output could be vastly improved, e. g.,
by proper generation of referring expressions. This output was gen-
erated using action-specific English templates that the MAPL do-
main can be annotated with. This way, plot graphs from arbitrary
domains can quickly be rendered into a readable natural-language
output.

which gaps in their knowledge they need to fill in order to
further detail their plans. This may result in active observa-
tion (as in line 5, where Arthur checks whether the cave is
empty) or in information-seeking subdialogues (as in lines
10–12).

Plan dynamics When Arthur arrives at the cave, he ob-
serves that the dragon, Smaug, is there. Arthur knows that he
cannot take the treasure while the dragon is present. Thus,
CMP detects, in its monitoring phase, that Arthur’s plan has
become invalid. Arthur generates a new plan, this time a
multiagent plan in which Valiant is supposed to help him
get the treasure. Switching to the new plan, Arthur leaves
the cave and returns to the castle. We claim that it would be
quite difficult to describe the plot so far with a single plan, let
alone generate it with a single planner run. Continual plan-
ning, on the other hand, seems like the natural way to model
how a character reacts to the obstactles she encounters.

A form of proactive continual planning is exemplified in
lines 8-13. Prince Valiant initially does not know the lo-
cation of the treasure. Thus he could normally not find a
plan to get it and therefore would have to decline Arthur’s
request. However, the planning domain contains a counter-
factual assertion stating, informally: “If I knew where the
treasure was, I could make a plan to bring it somewhere
else”. Using this assertion, Valiant is able to deliberately
postpone part of the planning process and first engage in the
short subdialogue of lines 10–12 in order to gather the miss-
ing information (Brenner and Nebel 2009). The semantics
of assertions is such that, when the missing information be-
comes available, a new planning phase is triggered. It pro-
vides Valiant with a more detailed plan – which he executes
until he also encounters Smaug and must again extend the
plan to include fighting the dragon. In a different setting
(“If I knew where the grail was...”) satisfying the replanning
condition of the assertion, i. e. closing the knowledge gap,
may be the more complex part and constitute most of the
resulting plot.

Goal dynamics The standard use of continual planning
is to adapt plans to changing conditions in the outside world
or an agent’s belief about it. However, in real life (and
thus in stories) motivations change, too. CMP agents can
adopt temporary subgoals, e. g., when accepting a request
by another agent, as in lines 9 and 12 of figure 1. Such
changing goals usually lead to more substantial changes in
the plot than mere plan adaptation for the same goal. Only
after Arthur’s request (line 8), Valiant gets involved in the
story at all. In particular, this prompts a nice example of
mixed-initiative behaviour (line 10), where Valiant immedi-
ately asks back to get more information necessary to achieve
his new goal.

Characterisation by affective goal activation As noted
above, changes in an agent’s goals may lead to substantial
changes in her behaviour. Indeed, it can be argued that a
character is better characterised by her motivations than her
(fairly volatile) current state of knowledge. However, a com-
plex character has many motivations. Depending on her in-
ternal (or some external) context, motivations may be ac-
tive (i. e. they drive her current behaviour) or inactive. Such
context-dependent goal activation allows for a more fine-



Beginning

King_Arthur: execute 'King_Arthur: move_to cave'

 

Prince_Valiant: achieved 'Kval Prince_Valiant pos(treasure)' Prince_Valiant: execute 'Prince_Valiant: move_to cave'

Smaug failed execution 'Smaug: kill Prince_Valiant'

pos(Prince_Valiant) = cave  

Prince_Valiant: execute 'Prince_Valiant: kill Smaug'

Prince_Valiant: execute 'Prince_Valiant: move_to castle'

pos(Prince_Valiant) = cave

Prince_Valiant: execute 'Prince_Valiant: grasp treasure'

pos(Prince_Valiant) = cave ¬dead(Smaug)

pos(Prince_Valiant) = cave

pos(Prince_Valiant) = cave

 

Prince_Valiant: execute 'Prince_Valiant: give treasure King_Arthur'

 pos(Prince_Valiant) = castle

pos(Prince_Valiant) = cave 

pos(treasure) = Prince_Valiant

King_Arthur: achieved 'pos(treasure) = King_Arthur'

pos(treasure) = King_Arthur

Prince_Valiant: achieved 'pos(treasure) = King_Arthur'

pos(treasure) = King_Arthur

King_Arthur: execute 'King_Arthur: move_to castle'

 pos(King_Arthur) = cave

pos(King_Arthur) = castle

King_Arthur: request Prince_Valiant 'Prince_Valiant: give treasure King_Arthur'

 

Prince_Valiant: accept_request 'Prince_Valiant: give treasure King_Arthur'

 D King_Arthur pos(treasure) = King_Arthur

Prince_Valiant: request King_Arthur 'tell_val pos(treasure)'

 I Prince_Valiant pos(treasure) = King_Arthur

D Prince_Valiant Kval Prince_Valiant pos(treasure)D Prince_Valiant Kval Prince_Valiant pos(treasure) King_Arthur: tell_val 'Prince_Valiant pos(treasure) = cave'

 

Kval Prince_Valiant pos(treasure)  

B Smaug stronger(Smaug Prince_Valiant)

Figure 2: Plot graph (excerpt) for the Quest story generated by MAPSIM. Legend: temporal links (bold black), causal links
(black), threat prevention links (blue), false belief links (red), TSG achievement (olive box). For clarity, causal links with facts
that are true at the beginning have been omitted.

grained characterisation. e. g., in our story, the dragon will
only want to kill humans when they have entered its lair.

Using MAPL’s currently keyword, we can refer to the
current state in a goal formula and describe the conditions
for goal activation and deactivation.Several such conditional
goals can be defined for a character. Together they can de-
fine a multi-faceted personality whose concrete intentions
may change depending on the current situation, but who will
show consistent behaviour in similar situations.

It is important for storytelling that the conditional goals
characterising an agent can refer to emotions or mental
attitudes directed towards other agents and objects, e. g.,
angry(a), loves(a,b), etc. For example, if the dragon
only attacked intruders when angry, but was willing to share
the treasure when happy, another story might tell how Prince
Valiant charmed the dragon and thus could acquire the trea-
sure without violence. This also opens CMP for use in af-
fective storytelling (Pizzi and Cavazza 2007).

Beliefs, desires, intentions Through MAPL’s commit-
ment preconditions CMP enforces characters to commit to
a goal/desire before they can actively pursue it, i.e. make
it an intention first (Bratman, Israel, and Pollack 1988;
Cohen and Levesque 1990). In the multiagent case this
means that if character A is not directly controllable by an-
other agent B, B must first somehow persuade A to commit
to a new goal before B can assume A’s working towards it.
In our story, Arthur knows that he cannot “use” Valiant in his
plan to get the treasure unless Valiant commits to that goal
himself, i. e. makes it an intention of his own. Here, CMP

finds a plan for Arthur to achieve this using a simple request
(lines 8–9), since in the MAPL description Valiant has been
modelled as being cooperative towards Arthur. On the other
hand, before CMP could include actions of the dragon into
Arthur’s plans, it would first have to indirectly activate one
of the dragon’s own desires.

False beliefs are important for plots, as they result in
misunderstandings, in misguided or unsuccessful behaviour.
Again, continual planning can be used to reason about the
consequences of believing something wrongly. To show
this, the example domain is set up such that the “stronger”
character always wins a fight. Here, Smaug falsely believes
to be stronger than Prince Valiant and attacks him (line 15),
which eventually leads to his own death.

Chekhov’s gun The plot graph describes which facts
and objects are used in the plot. Those facts should be men-
tioned so that the reader/player can follow the reasoning of
the characters. Crucially, the plot graph does not only point
to preconditions of actions that characters actually perform,
but also to those beliefs never used in an executed plan (be-
cause of the plan or the belief becoming obsolete first), but
that are necessary to explain the changing motivations and
plans of the characters.

Related Work II
Having presented our approach to planning for storytelling,
we can finally relate it to existing storytelling systems
(again, only few representative ones). It should be kept in
mind, though, that we do not claim this to be a full sto-



rytelling framework, but only to provide planning repre-
sentations and algorithms appropriate for being used inside
such a system. MAPSIM is only a research prototype and a
domain-independent testbed to evaluate variants of CMP.

CMP, when used by individual agents in a multiagent sim-
ulation like MAPSIM, works as a character-centric approach
to storytelling (in contrast to author-centric and story-centric
approaches (Mateas and Sengers 1999)) in the tradition of
Meehan’s Tale-Spin (Meehan 1977). However, since the
intentions of several characters are reasoned about explic-
itly and individually in each plan, it also integrates aspects
of author-centric approaches. In this respect, our approach
seems closest to Fabulist (Riedl and Young 2004). When
CMP is used in the context of a simulation its capabil-
ity to deliberately devise plans that may fail and to reason
about dynamic goals of characters makes it quite suitable to
be used for dynamic, interactive storytelling like Emergent
Narrative (EM) (Aylett 1999).

Thus, MAPL and CMP integrate features of both author-
centric and character-centric approaches. It would be of
great interest to evaluate their use in Interactive Storytelling
frameworks that strive for a similar integration, e. g., (Si,
Marsella, and Riedl 2008; Porteous and Cavazza 2009).

Discussion
The main contribution of this article is an integration of
models and methods from a number of AI subfields into
a representational (MAPL) and algorithmic (CMP) frame-
work that is well-suited for an “AI-complete” task like sto-
rytelling. Providing both a rich representation language
for reasoning about multi-character environments and a dis-
tributed algorithm for planning by multiple agents, it com-
bines aspects of both character-centric and author-centric
approaches to storytelling. A specific emphasis has been
put on enabling the generation of dynamic plots, in which
beliefs, motivations and character traits may change. We
believe that, due to a decade-long focus on planning as an
isolated one-shot problem, these dynamics have been insuf-
ficiently studied in both planning and storytelling research
– despite the fact that plot twists and character development
are often said to be what makes a story “interesting”.

Interestingness or, more technically, plot quality is not an
explicit concept anywhere in our approach. Thus it is not
surprising that we cannot reliably claim that our approach
will generate interesting stories. To this end, we will have
to extend the approach by an author or, even better, reader
model. In future work, we will investigate how a CMP au-
thor agent can try to achieve plot goals by means of ini-
tial state revision (Riedl and Young 2006) and late com-
mitment (Swartjes and Vromen 2007), concepts inspired by
game-mastering in pen-and-paper roleplaying games. CMP
supports these ideas almost directly, because it can reason
about possible MVSV values that have not yet been sensed
by any of the characters. In further work, we will consider
reader models of plot quality, i. e. subjective, externally de-
fined metrics for plot graphs. Given such a metric, we can
iteratively use the author agent to generate series of slightly
modified stories, i. e. we can mimic the process of story re-
vision in a form of local search in the space of plot graphs.

At first glance, creating believable interactions between
characters in a story world may seem remote from more “se-
rious” AI topics like robotics. However, this paper was in-
spired by our work on human-robot collaboration and will
in turn most certainly find itself being integrated into robots
again now.

Acknowledgments
This research was supported by the EU as part of the Inte-
grated Project CogX (FP7-ICT-2xo15181-CogX).

References
Aylett, R. 1999. Narrative in virtual environments - towards emer-
gent narrative. In Proc. AAAI Narrative Intelligence Symposium.
Bratman, M. E.; Israel, D. J.; and Pollack, M. E. 1988. Plans
and resource-bounded practical reasoning. Computational Intel-
ligence 4:349–355.
Brenner, M., and Nebel, B. 2009. Continual planning and act-
ing in dynamic multiagent environments. Journal of Autonomous
Agents and Multiagent Systems 19(3).
Cohen, P. R., and Levesque, H. J. 1990. Intention is choice with
commitment. Artificial Intelligence 42(213–261).
DesJardins, M.; Durfee, E.; C. Ortiz, J.; and Wolverton, M. 1999.
A survey of research in distributed, continual planning. The AI
Magazine.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning About Knowledge. MIT Press.
Forster, E. M. 1927. Aspects of the Novel. San Diego: Harcourt.
Grosz, B. J., and Kraus, S. 1996. Collaborative plans for complex
group action. Artificial Intelligence 86.
Lebowitz, M. 1985. Story-telling as planning and learning. Poet-
ics 14:483–502.
Lochbaum, K. E. 1998. A collaborative planning model of inten-
tional structure. Computational Linguistics.
Mateas, M., and Sengers, P. 1999. Narrative intelligence. In Proc.
Narrative Intelligence Symposium.
Meehan, J. R. 1977. Tale-spin, an interactive program that writes
stories. In Proc. IJCAI.
Petrick, R., and Bacchus, F. 2002. A knowledge-based approach
to planning with incomplete information and sensing. In Proc.
AIPS-02.
Pizzi, D., and Cavazza, M. 2007. Affective storytelling based
on character’s feeling. In Proc. AAAI Symposium on Intelligent
Narrative Technologies.
Porteous, J., and Cavazza, M. 2009. Controlling narrative gener-
ation with planning trajectories: the role of constraints. In Proc.
ICIDS.
Riedl, M. O., and Young, R. M. 2004. An intent-driven planner
for multi-agent story generation. In Proc. AAMAS.
Riedl, M. O., and Young, R. M. 2006. Story planning as
exploratory creativity: Techniques for expanding the narrative
search space. New Generation Computing 24(3).
Si, M.; Marsella, S. C.; and Riedl, M. O. 2008. Integrating story-
centric and character-centric processes for authoring interactive
drama. In Proc. AIIDE.
Swartjes, I., and Vromen, J. 2007. Emergent story generation:
Lessons from improvisational theater. In Proc. AAAI Fall Sympo-
sium on Intelligent Narrative Technologies.



Coordinated Exploration with Marsupial
Teams of Robots using Temporal Symbolic Planning

Kai M. Wurm Christian Dornhege Patrick Eyerich Cyrill Stachniss Bernhard Nebel Wolfram Burgard

Abstract— The problem of autonomously exploring an envi-
ronment with a team of robots received considerable attention
in the past. However, there are relatively few approaches to
coordinate teams of robots that are able to deploy and retrieve
other robots. Efficiently coordinating the exploration with such
marsupial robots requires advanced planning mechanisms that
are able to consider symbolic deployment and retrieval actions.
In this paper, we propose a novel approach for coordinating
the exploration with marsupial robot teams. Our method
integrates a temporal symbolic planner that explicitly considers
deployment and retrieval actions with a traditional utility-based
assignment procedure. Our approach has been implemented
and evaluated in several simulated environments and with
varying team sizes. The results demonstrate that our proposed
method is able to coordinate marsupial teams of robots to
efficiently explore unknown environments.

I. INTRODUCTION

The problem of autonomously exploring an environment
is one of the fundamental problems for autonomous mobile
robots. There are several applications in which robots have
been designed to explore their environment such as planetary
exploration or in disaster missions. Using a coordinated team
of robots instead of a single robot offers advantages such as
fault tolerance or performance gains. The problem of multi-
robot exploration with homogeneous robots is relatively well
understood. Popular approaches to coordinate such teams
estimate the cost and the expected information gain of
exploring a target location to find optimal assignments of
robots to targets [3, 20, 24].

In several exploration scenarios, however, one needs to
consider heterogeneous teams of robots with different ca-
pabilities. For a task such as the autonomous exploration
of lunar craters [1], one can imagine robots that approach
the crater and then deploy a specialized robot which de-
scents into the crater. Robots that are able to deploy and
retrieve other robots have also been referred to asmarsupial
robots [17]. Such heterogeneous robots typically require
to carefully plan deployment and retrieval actions and to
properly take into account the different properties of the
robots such as their sensor setup, their size and payload,
their maximum traveling speed, or the type of terrain they
are able to traverse.

This paper addresses the problem of coordinating a team
of marsupial robots that explore an unknown environment.

All authors are with the University of Freiburg, Department of Computer
Science, D-79110 Freiburg, Germany.

This work has been supported by the German Research Foundation (DFG)
under contract number SFB/TR-8 and by the EU as part of the Integrated
Project CogX (FP7-ICT-2xo15181-CogX).

Fig. 1. An exploring robot (white circle) has to choose between three
possible actions: explore targett1, explore targett3, or deploy a smaller
robot atm1 to let it exploret2 in the red (dark) area.

From a conceptual point of view, the ability to deploy
and retrieve robots by other autonomous robots introduces
corresponding symbolic actions which need to be considered
in addition to classical exploration actions which typically
seek for optimal assignments of robots to target locations
(see Fig. 1 for an illustration). Unfortunately, it is not
straightforward to map such actions to a cost or utility
matrix as they are used by the popular target assignment
approaches [3, 16, 19, 24].

The problem of planning and executing actions such as
deployment and retrieval in an exploration scenario has previ-
ously been approached using manually designed strategies [4,
17, 18]. Such designed hand-crafted strategies, however, are
specific to a certain type of environment and it is unclear
whether they are able to efficiently coordinate large teams of
robots. The contribution of this paper is a novel coordination
approach for multi-robot exploration that assigns robots to
exploration targets and additionally plans symbolic actions
such as deployment and retrieval actions. To achieve this, we
integrate a temporal symbolic planner and a traditional path
planner for coordinated exploration. In this way, we obtain
a more general robot coordination approach that is able to
efficiently solve the exploration tasks.

II. RELATED WORK

Several previous approaches consider the task of coor-
dinating the actions of a team of equally equipped (ho-
mogeneous) robots exploring an unknown environment. In
this setting, the coordination task is often formulated as
an assignment problem where the robots are assigned to
exploration targets. Different methods have been presented
to determine such an assignment. Burgardet al. [3] present
an iterative assignment method based on the estimated cost
of reaching a target and visibility constraints of robots inthe



team. Koet al. [16] and Stachniss [19] present approaches
that uses the Hungarian method to compute the assignments
of frontier cells [23] to robots. Zlot and colleagues [24]
propose an architecture in which the exploration is guided
by a market economy. They consider sequences of potential
target locations for each robot and trade tasks between
the robots using single-item first-price sealed-bid auctions.
Such auction-based techniques have also been applied by
Berhaultet al. [2] to assign robots to bundles of targets so
that synergy effects between targets are taken into account.
In a previous work, we present an approach that uses a
segmentation of the environment [22]. By assigning robots
to unexplored segments instead of frontier targets, a more
balanced distribution of the robots over the environment is
achieved and the overall exploration time is reduced.

An approach towards cooperation in heterogeneous robot
systems is presented by Singh and Fujimura [18]. If a robot
is too big to pass through a narrow passage, it informs
other robots about this task. Howardet al. [14] present an
incremental deployment approach that explicitly deals with
obstructions, i.e., situations in which the path of one robot
is blocked by another. A further heterogeneous system is
presented by Grabowski and Navarro-Serment [10]. In this
system, however, coordination is performed manually.

Whenever small robots with low traveling speeds or lim-
ited power resources are used in a heterogeneous robot team,
it is favorable to have larger robots, themarsupial robots,
transport the smaller ones to avoid a serious penalty in
exploration time or power consumption [17]. Denner and
Papanikolopoulos present a deployment method for such a
marsupial team that explicitly takes power constraints into
account [6]. Murphyet al. [17] present a physical imple-
mentation of a marsupial system and describe heuristics to
deploy the micro-rover. Kadioglu and Papanikolopoulos [15]
present a further physical implementation. In [4], a team of
legged robots is deployed by a carrier robot in a rescue sce-
nario. In all of the previously described exploration systems,
deployment and retrieval in marsupial teams is determined
by heuristics. In contrast to that, the approach presented in
this paper explicitly takes these actions into account when
coordinating the exploration.

Domain independent planning is a thoroughly investigated
sub-field in artificial intelligence. A classical planning prob-
lem consists of a set of state-variables with finite domains,
an initial state, a set of actions and a set of goal states. An
action is defined by a precondition and its effects, which
is a set of variable assignments. A solution for a classical
planning problem is then a finite sequence of actions from
the initial state to a goal state. There are several efficient
planning systems for classical planning problems [12, 13].

When temporal constraints are specified by admitting
actions to have variable durations and to be executed con-
currently, one refers to that astemporal planning. Several
efficient approaches for temporal planning have been pre-
sented [7, 9]. The predominant approach of solving planning
problems is forward search guided by a heuristic using A∗

or similar algorithms. Most approaches to temporal planning

actions

sensor

data

map

action

costs

PDDL

description

meeting pts

map

targets

module

call

states

Fig. 2. System overview.

allow the usage of numerical state variables. In contrast
to binary and multi-valued state variables, numeric state
variables have an infinite continuous value domain. While
numeric state variables lead to undecidability even when used
in a very limited form [11], they are considered to be of high
importance when modeling real world domains.

The work described in this paper builds upon TFD/M [5], a
variant of the temporal fast downward planning system [7].
TFD/M is an efficient planning approach that searches di-
rectly in the space of time-stamped states. It additionally
supports the use of external modules via state variables
whose values are calculated by sub-processes during the
planning process. By means of sub-processes, we combine
temporal planning with path planners traditionally used for
multi-robot coordination.

III. COORDINATED EXPLORATION
WITH MARSUPIAL TEAMS

Throughout this paper, we assume global and unlimited
communication between the robots and employ a centralized
approach. Furthermore, all robots are assumed to have known
relative positions. To achieve this in our experiments, the
robots actually start from the same place in the environment.

A marsupial team consists of two types of robots that
explore the environment. We considern carrier robots.
Each carrier initially carriesm smaller robots calledrovers
which can be deployed and retrieved by the carriers. The
key challenge is to generate exploration targets, to plan
trajectories for the carriers and rovers, and to schedule
deployment and retrieval actions at meeting points in the
environment. Especially for efficient retrieval, one needsto
consider the time the individual robots need to carry out their
actions. This together with the fact that the robots operatein
parallel makes our problem atemporalplanning problem.

A. Overview of the Exploration Framework

The architecture of our exploration system is displayed
in Fig. 2. The robots provide the sensor data and states
of the platforms (such as their positions, whether they



Fig. 3. Example of the costs that have to be considered. Dottedlines
illustrate the estimated path costs between the robot posep and the different
target positionsti, the costs between meeting pointsmi and robot pose or
targets positions, and costs between target positions. Forthe sake of better
visibility we did not display all costs in this figure.

are docked, etc.) to the centralized coordination system.
We use the sensor measurements of the robots to build
a grid map distinguishing free, occupied, and unexplored
areas. Based on this map, we extract relevant locations in
the environment. We then use this information to generate
a problem description in thePlanning Domain Definition
Language(PDDL) [8], which serves as input for the temporal
planner. In conjunction with a regular path planner such as
A∗, the temporal planner computes action sequences for the
robots that are send to the individual vehicles. The loop
depicted in Fig. 2 is constantly executed. Whenever new
information about the environment arrives, e.g., new sensor
data is perceived or the robots moved, we generate a new
plan.

B. Target Locations and Travel Cost

In this work, we model the fact that different robots may
have different navigation capabilities and that certain areas
of the environment can only be explored by the rovers
and others only by carriers. We furthermore assume that
the robots are able to determine based on their sensor
observations which areas are traversable by which robot,
for example based on techniques developed in our previous
work [21].

To identify potential target locations, a set of exploration
targetsT is generated from the partially explored grid map.
In addition to this, a set of meeting pointsM is determined.
These meeting points are situated between those parts of the
environment that can only be traversed by the rovers and
the parts that can only be traversed by the carriers. They are
used for deployment and retrieval of the rovers (see Fig. 3
for an illustration).

There are two basic types of actions a carrier can perform:
exploring a target or visiting a meeting point to deploy or
retrieve a rover (see Fig. 1). While deployment and retrieval
are assumed to have constant costcdep , the cost of traveling
between two locations in the environment is defined as the
estimated path cost. This cost depends on the path length
as well as on the traversability constraints and travel speed
of the corresponding robot. Lettype be a robot type (here:
carrier or rover),x a location in the environment andt ∈

{T ∪M} a target. We define the cost for reachingt as:

Ctype(x, t) (1)

=







est. path cost(x, t) , if robots of typetype

can reacht from x

∞ , otherwise.

Finally, the exploration task is assumed to be completed
as soon as the set of exploration targetsT is empty.

C. Formulating the Exploration Problem as a Temporal
Planning Problem

A wide range of problem types can be modeled as a
general planning problem, ranging from transportation prob-
lems and single-player games to combinatorial problems.
In recent years, thePlanning Problem Definition Language
(PDDL) [8] has been established as the prevalent planning
language. In this paper we use PDDL/M [5], an extension to
PDDL allowing for the definition of external modules.

The problem of multi-robot exploration with marsupial
robots is a temporal planning problem. The reasons for this
are mainly the facts that the actions of the individual robots
have an individual duration and that the problem is inherently
highly parallel. Especially for the efficient retrieval of rovers,
the time the individual robots need to carry out their actions
needs to be considered.

To generate a PDDL task description, we need to define
(i) the objects involved in the planning process, (ii) the
predicates that define the state of the planner, (iii) actions
that change the predicates, and (iv) start and goal states.

First, we define what type of objects are involved. In
the exploration scenario, possible objects are robots that
can be either rovers or carriers and locations that can be
meeting points or exploration targets. Fig. 4 (left) illustrates
the corresponding PDDL statements. Second, we specify the
predicates that define the internal states. The major predicates
we use to describe the exploration problem are

(at ?r - robot ?x - location)
which describes if the robotr is at positionx.

(on ?e - rover ?c - carrier)
is used to determine if a rovere is docked to a carrierc. For
each targett ∈ T , we also define if it has been explored

(explored ?t - target).
Additionally, we use a numeric fluent

(num docked ?c - carrier)
that contains the number of rovers that are docked to a
carrierc.

Third, the actions that change the predicates have to be
provided. We need four actions in our setting, namelydock,
undock, move, and explore. The actionsdock and undock
require that the carrier and the rover are at the same meeting
point (seeat predicate). For docking, the number of docked
rovers has to be lower than the carrier’s capacity and the
action changes a rover’s state from being at a meeting point
to being on a carrier (seeon predicate).

The other two actionsmoveandexploremodel the possible
motions of the robots. Themoveaction moves a robot to a



meeting point for deployment or retrieval while theexplore
action moves the robot to a target and explores it. For the
moveandexploreactions, we utilize the module interface [5]
of our planning approach to define the duration. Instead of
specifying a constant duration or a fixed formula, we call an
external module that determines the duration and the actual
cost for taking the action. In our setting, the external module
is realized by a traditional A∗ path planner that plans the
optimal trajectory of the robot to the given target location
based on the current occupancy grid map constructed by the
robots so far. Fig. 4 (middle) depicts the PDDL statements
that describe the action explore. The term[pathCost ?r
?s ?g] represents the call of the external module.

Finally, the initial state of the current planning procedure
and the goal state need to be specified. For the situation
depicted in Fig. 1 this is exemplified in Fig. 4 (right).

D. The TFD/M planning system

The PDDL description forms the input to the TFD/M
planner. Based on this description, the temporal planner
computes concurrent action sequences for the robots. TFD/M
is a domain-independent progression search planner built on
top of the planning systemFast Downward[12]. It extends
the original system to support durative actions, numeric and
object fluents, and external modules.

TFD/M solves a planning problem in three phases: First,
the PDDL planning task is translated from its binary encod-
ing into a more concise representation using finite-domain
variables. This enables the use of heuristics employing hier-
archical dependencies between state variables which leads
to an increased search performance. In the second step,
efficient internal data structures for the heuristic and the
search component are generated. The most important ones
are domain transition graphs for each variable that encode
how state variables can change their values and the causal
graph that represents the hierarchical dependencies between
different state variables. Finally, a best-first progression
search is performed, guided by a numeric temporal variant
of the context-enhanced additive heuristic.

In contrast to many other temporal planning systems,
TFD/M does not split the search in an action selection
and a scheduling phase but searches directly in the space
of time-stamped states. This typically leads to plans of
significantly higher quality [7]. Note, however, that due to
the inadmissibility of the heuristic evaluation function,the
first plan that is generated is not necessarily optimal.

TFD/M does not terminate after a solution was generated,
but is implemented as an anytime algorithm. By producing a
potentially non-optimal solution quickly, the search space can
be pruned to those time-stamped states which can potentially
be extended to solutions of a lower overall execution time
than the best solution found so far. If all states in the resulting
state space are expanded, the produced solution is guaranteed
to be optimal.

TFD/M features semantic attachments that are a means
of evaluating components of the planning task externally.
TFD/M implements this as a module interface for predicates,

numerical effects, and durations. In our case, durations of
actions are specified as a module call in the planning task
description. When expanding actions in the search phase the
planner detects these module calls and executes the dynamic
library associated with the module call which in turn will
retrieve the real costs computed by the A* path planner.

For further details on TFD/M, we refer the reader to our
previous work [5, 7].

IV. EXPERIMENTAL EVALUATION

The approach described above has been implemented and
evaluated thoroughly using a multi-robot simulation system.
The experiments have been designed to show that explicitly
planning symbolic action sequences leads to a significantly
more efficient coordination approach than using a heuristic
extension of previous coordination approaches.

A. Simulation System

To quantitatively evaluate our coordination approach, we
developed a simulation system that is able to simulate large
teams of marsupial robots. In our current system, we also
simulate laser range sensors. Sensor and odometry noise are
not considered since we focus on the coordination aspects
of the problems. The environment is modeled by a grid map
with additional traversability information. The maximum
sensor range and traveling speed of carriers and rovers can
be specified.

B. Baseline Approach

The baseline approach that we apply to compare our
algorithm against is a heuristic extension of a method that as-
signs robots to target locations based on cost estimates [19].
This approach deploys the rovers heuristically and does not
consider them in the target assignment. Thereby the carriers
can be assigned to all targets independent of whether they
are accessible to them or not. The selection is carried out
depending on the estimated costs. If a carrier is assigned
to a target that it cannot explore itself it will move to the
nearest connecting meeting point and deploy a rover there.
This rover will then explore the targets reachable from the
meeting point. As soon as it has finished exploring them, it
will return to the meeting point. As already mentioned, we
assume a limited number of rovers per carrier. If a carrier
needs to deploy a rover but has none available, our heuristic
requires the carrier to first retrieve a rover.

C. Comparison of Baseline Solution With Our Approach

We evaluated robot teams of varying sizes and different
environments have been used in the simulation.

Two of the environments we used to evaluate our approach
can be seen in Fig. 5. The office environment resembles
a typical office building with two corridors and a number
of rooms. Some of the rooms can only be explored by
rovers. The maze environment features a central area that
can only be explored by rovers but in contrast to the office
environment has multiple meeting points that can be used
for deployment.



(:types
robot
carrier rover - robot
location
target meeting - location )

(:predicates
(at ?r - robot ?x - location)
(on ?e - rover ?c - carrier)
(explored ?t - target)
(can_explore ?r - robot ?t - target) )

(:durative-action explore
:parameters (?r - robot

?s - location ?g - target)
:duration (= ?duration

[pathCost ?r ?s ?g])
:condition (and (at start (at ?r ?s))

(at start (not (explored ?g)))
(at start (can_explore ?r ?g)) ... )

:effect
(and
(at start (not (at ?r ?s)))
(at end (at ?r ?g))
(at start (explored ?g))
... ))

(:init
(at robot0 p)
(on robot1 robot0)
(can_explore robot0 t1)
(can_explore robot1 t2)
(can_explore robot0 t3)

)
(:goal (and

(explored t1)
(explored t2)
(explored t3)

))

Fig. 4. Examples for PDDL definitions. Left: definition of the required types and predicates. Middle: definition of the explore action. Right: Example
that shows how to specify the current state of the world for the TFD/M planner (see scene shown in Fig. 1).

Fig. 5. Our simulated experiments: office (left) and maze (right). White
areas can only be traversed by carriers while red (dark) areas can only be
explored by rovers.

 0

 10

 20

 30

 40

 50

 60

 70

 1  2  3  4  5  6

co
or

di
na

tio
n 

qu
al

ity

number of carriers

heuristic
our approach

Fig. 7. Coordination quality in the office environment over 30runs using
two rovers per carrier. The higher the value, the better the coordination. The
error bars indicate the 95% significance interval. Note thatsimilar results
were obtained for the maze environment.

In both environments, we simulated 30 exploration runs
using our approach and the baseline method with random
initial robot positions. Exploration targets were determined
using the frontiers approach and neighboring exploration
targets were clustered using visibility constraints similar to
the approach proposed by Burgardat al. [3].

An overview of the results obtained in these environments
is given in Fig. 6. It can be seen that our approach explores
the environment significantly faster than the baseline method
in all configurations. It can also be seen that using more
than three carriers improves the overall exploration time only
marginally. The number of rovers for which this effect occurs
clearly depends on the structure of the environment and the
number of areas that can be explored by rovers only.

As a further benchmark, we computed the coordination

quality as defined in [24]:

Q =
1

A

n
∑

i=1

di, (2)

whereA is the total area of the environment anddi denotes
the distance traveled by roboti. This measure can intuitively
be understood as the area each robot explores per movement.

The results in Fig. 7 show that our approach reaches a
significantly higher coordination quality. Especially larger
teams of robots are coordinated more efficiently, so that
unnecessary movement is avoided. This is especially relevant
if the robots have limited power resources so that they can
only travel a limited distance until they run out of battery
power.

D. Limitations of the Approach

The planning system described in this paper generates
sequences of actions for the robots to explore the environ-
ment given the current knowledge about the world. While the
robots move, their state changes and new information about
the environment may be perceived. Therefore, we execute
the planning cycle (see Fig. 2) in a continuous loop and use
the solution the anytime planner reports. If more than one
solution is found we set the timeout to 30 s.

We analyzed our approach with up to 24 robots (6 carriers
plus 18 rovers). However, for significantly larger teams, the
planning problem becomes large so that the solution reported
by the anytime planner after 30 s may be sub-optimal.

V. CONCLUSION

In this paper, we presented a novel approach to coordinate
autonomous exploration with marsupial robots. Our approach
combines traditional approaches for homogeneous teams
that coordinate rovers by solving an assignment problem
that maximizes a given evaluation function with a tempo-
ral planner that explicitly deals with the deployment and
retrieval of small rovers. Our approach has been imple-
mented and thoroughly tested in extensive simulation runs.
The experimental results demonstrate that our approach can
effectively coordinate large teams of robots and significantly
outperforms a handcrafted strategy.

In addition to that, our planning framework adds a sub-
stantial degree of flexibility to our system. For example, ad-
ditional constraints such as power constraints for individual
robots can be specified by adding adequate predicates to



 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

tim
e 

st
ep

s

#carriers

#rovers

1 2 3 4 5 6

heuristic
our approach

 0

 50

 100

 150

 200

 250

 300

 350

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

tim
e 

st
ep

s

#carriers

#rovers

1 2 3 4 5 6

heuristic
our approach

Fig. 6. Exploration time obtained with our approach compared to the heuristic in the maze environment (top) and in the office environment (bottom).
The error bars indicate the 95% significance interval.

the problem description. Furthermore, other temporal actions
such as recharging batteries or deploying sensor nodes can
be integrated in a straightforward way.

REFERENCES

[1] European Space Agency. ESA’s lunar robotics challenge website.
http://www.esa.int/esaCP/SEMGAASHKHFindex 0.html, 2008.

[2] M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby,
P. Griffin, and A. Kleywegt. Robot exploration with combinatorial
auctions. InProc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), pages 1957–1962, 2003.

[3] W. Burgard, M. Moors, C. Stachniss, and F. Schneider. Coordinated
multi-robot exploration.IEEE Transactions on Robotics, 21(3):376–
378, 2005.

[4] F. Dellaert, T. Balch, M. Kaess, R. Ravichandran, F. Alegre,
M. Berhault, R. McGuire, E. Merrill, L. Moshkina, and D. Walker.
The Georgia Tech yellow jackets: A marsupial team for urban search
and rescue. InAAAI Mobile Robot Competition Workshop, 2002.

[5] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel.
Semantic attachments for domain-independent planning systems. In
Proc. of the Int. Conf. on Automated Planning and Scheduling
(ICAPS), pages 114–121, 2009.

[6] A. Drenner and N. Papanikolopoulos. A Framework for Large-Scale
Multi-Robot Teams.Modeling and Control of Complex Systems, page
297, 2007.

[7] P. Eyerich, R. Mattm̈uller, and G. R̈oger. Using the context-enhanced
additive heuristic for temporal and numeric planning. InProc. of
the Int. Conf. on Automated Planning and Scheduling (ICAPS), pages
130–137, 2009.

[8] M. Fox and D. Long. Pddl2.1: an extension to pddl for expressing
temporal planning domains.Journal of Artificial Intelligence Research
(JAIR), 20(1):61–124, 2003.

[9] A. Gerevini, A. Saetti, and I. Serina. An approach to efficient planning
with numerical fluents and multi-criteria plan quality.Artificial
Intelligence., 172(8-9):899–944, 2008.

[10] R. Grabowski, L.E. Navarro-Serment, C.J.J. Paredis, and P.K. Khosla.
Heterogeneous teams of modular robots for mapping and exploration.
Autonomous Robots, 8(3):293–308, 2000.

[11] M. Helmert. Decidability and undecidability results for planning with
numerical state variables. InProc. of the Int. Conf. on Artificial
Intelligence Planning and Scheduling, pages 44–53, 2002.

[12] M. Helmert. The fast downward planning system.Journal of Artificial
Intelligence Research, 26:191–246, 2006.

[13] J. Hoffmann and B. Nebel. The ff planning system: Fast plan
generation through heuristic search.Journal of Artificial Intelligence
Research, 14:253–302, 2001.

[14] A. Howard, M.J. Mataríc, and S. Sukhatme. An incremental deploy-
ment algorithm for mobile robot teams. InProc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), pages 2849–2854,
2002.

[15] E. Kadioglu and N. Papanikolopoulos. A method for transporting a
team of miniature robots. InProc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), pages 2297–2302, 2003.

[16] J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai. Apractical,
decision-theoretic approach to multi-robot mapping and exploration.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pages 3232–3238, 2003.

[17] R.R. Murphy, M. Ausmus, M. Bugajska, T. Ellis, T. Johnson, N. Kel-
ley, J. Kiefer, and L. Pollock. Marsupial-like mobile robot societies.
In Proceedings of the annual conference on Autonomous Agents, page
365, 1999.

[18] K. Singh and K. Fujimura. Map making by cooperating mobile robots.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
pages 254–259, 1993.

[19] C. Stachniss.Robotic Mapping and Exploration, volume 55 ofSTAR
Springer tracts in advanced robotics. Springer, 2009.

[20] C. Stachniss, O. Martinez Mozos, and W. Burgard. Efficient explo-
ration of unknown indoor environments using a team of mobile robots.
Annals of Mathematics and Artificial Intelligence, 52:205ff, 2009.

[21] K.M. Wurm, R. Kuemmerle, C. Stachniss, and W. Burgard. Improving
robot navigation in structured outdoor environments by identifying
vegetation from laser data. InProc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2009.

[22] K.M. Wurm, C. Stachniss, and W. Burgard. Coordinated multi-robot
exploration using a segmentation of the environment. InProc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2008.

[23] B. Yamauchi. Frontier-based exploration using multiplerobots. In
Proc. of the Second International Conference on AutonomousAgents,
pages 47–53, Minneapolis, MN, USA, 1998.



[24] R. Zlot, A.T. Stenz, M.B. Dias, and S. Thayer. Multi-robot exploration
controlled by a market economy. InProc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2002.



Partial Weighted MaxSAT for Optimal Planning

Nathan Robinson†, Charles Gretton‡, Duc Nghia Pham†, and Abdul Sattar†

†ATOMIC Project, Queensland Research Lab, NICTA and
Institute for Integrated and Intelligent Systems, Griffith University, QLD, Australia

‡ School of Computer Science, University of Birmingham

Abstract. We consider the problem of computing optimal plans for proposi-
tional planning problems with action costs. In the spirit of leveraging advances
in general-purpose automated reasoning for that setting, we develop an approach
that operates by solving a sequence of partial weighted MaxSAT problems, each
of which corresponds to a step-bounded variant of the problem at hand. Our ap-
proach is the first SAT-based system in which a proof of cost-optimality is ob-
tained using a MaxSAT procedure. It is also the first system of this kind to incor-
porate an admissible planning heuristic. We perform a detailed empirical eval-
uation of our work using benchmarks from a number of International Planning
Competitions.

1 Introduction

Recently there have been significant advances in the direction of optimal planning pro-
cedures that operate by making multiple queries to a decision procedure, usually a
Boolean SAT procedure. For example, the work of Hoffman et al. [1] answers a key
challenge from Kautz [2] by demonstrating how existing SAT-based planning tech-
niques can be made effective solution procedures for fixed-horizon planning with met-
ric resource constraints. In the same vein, Russell & Holden [3] and Giunchiglia &
Maratea [4] develop optimal SAT-based procedures for net-benefit planning in fixed-
horizon problems. In that case actions can have costs and goal utilities can be inter-
dependent. Moreover, in the direction of improving the scalability and efficiency of
SAT-based approaches in step-optimal (and indeed fixed-horizon) planning, Robinson
et al. [5] presents an encoding of step-bounded planning problems that shows signifi-
cant performance gains over previous results. Large performance gains have also been
demonstrated where efficient and sophisticated query strategies are employed [6, 7].
Summarising, in the settings of step-optimal and fixed-horizon planning, recent works
have demonstrated that SAT-based techniques inspired by systems like BLACKBOX [8]
continue to dominate other approaches.

Considering the planning literature more generally, numerous distinct criteria for
plan optimality have been proposed. These include: (1) Minimise makespan (a.k.a. step-
optimality); The objective is to find a plan of minimal length. (2) Minimise plan cost;
Each action has a numeric cost, a plan’s cost is the sum of the costs of its constituent
actions, and an optimal plan has minimal cost. (3) Maximise net-benefit; States (resp.
actions) have rewards (resp. costs), and an optimal plan is a sequence of actions ex-
ecutable from the starting state that induces a behaviour of maximal utility – These



problems are sometimes called oversubscribed, and were recently shown to be equiv-
alent (using a compilation) to the cost-optimising setting [9]. One key observation to
be made is that the above optimality criteria are often conflicting. For example, a plan
with minimal makespan is not guaranteed to be cost- or utility-optimal. Indeed, in the
general case there is no link between the number of plans steps (planning horizon) and
plan quality.

Existing SAT-based planning procedures are limited to makespan-optimal and fixed-
horizon settings – i.e., either the objective is to minimise the number of plan-steps, or
valid optimal solutions are constrained to be of, or less than, a fixed length. Thus, the
use of SAT-based techniques is limited in practice. For example, optimal SAT-based
planning procedures were unable to participate effectively at the International Plan-
ning Competition (IPC) in 2008 due to the adoption of a single optimisation crite-
ria (cost-optimality). This paper overcomes that restriction, developing COS-P, the
fist sound and complete cost-optimal planning procedure based solely on a Boolean
SAT(isfiability) procedure. Thus, we open the door to leveraging SAT technology in
planning settings with arbitrary optimisation criteria.

The remainder of this paper is organised as follows. We first give an overview of
optimal propositional planning with action costs, delete relaxations of that problem, and
the partial weighted MaxSAT optimisation problem. We then describe our approach
in detail, developing compilations to partial weighted MaxSAT of the fixed-horizon
planning problem, and of the fixed horizon problem with a relaxed suffix. Following this
we develop our novel MaxSAT solution procedure PWM-RSAT. We then empirically
evaluate our approach on planning benchmarks from a number of IPCs. Finally we
discuss some related work and propose some interesting directions for future research.

2 Background and Notations
2.1 Propositional planning with action costs

A propositional planning problem with costs is a 5-tuple Π = 〈P,A, s0,G, C〉. Here,
P is a set of propositions that characterise problem states; A is the set of actions that
can induce state transitions; s0 ⊆ P is the starting state; And G ⊆ P is the set of
propositions that characterise the goal. The function C : A → <+

0 is a bounded cost
function that assigns a non-negative cost-value to each action. This value corresponds
to the cost of executing the action.

Each action a ∈ A is described in terms of its preconditions pre(a) ⊆ P , positive
effects eff•(a) ⊆ P , and negative effects eff◦(a) ⊆ P . An action a can be executed at a
state s ⊆ P when pre(a) ⊆ s. We writeA(s) for the set of actions that can be executed
at state s – Formally, A(s) ≡ {a|a ∈ A, pre(a) ⊆ s}. When a ∈ A(s) is executed at
s the successive state is (s ∪ eff•(a))\eff◦(a). Actions cannot both add and delete the
same proposition – i.e., eff•(a) ∩ eff◦(a) ≡ ∅.1 A state s is a goal state iff G ⊆ s.

Usually any two actions a1, a2 ∈ A are permitted to be executed instantaneously
in parallel at a state provided any serial execution of the actions is valid and achieves
an identical outcome. When two actions cannot be executed in parallel we say they

1 In practice this case is given a special semantics, the details of which shall not be considered
further here.



conflict. Supposing non-conflicting actions can be executed instantaneously in parallel,
a plan π is a discrete sequence of time-indexed sets of non-conflicting actions which,
when applied to the start state, lead to a goal state. We say a plan is serial (a.k.a. linear
plan), denoted π, if each time-indexed set contains one action. Finally, where Ai is the
set of actions at step i of π = [A1,A2, ..,Ah], the cost of π, written C(π), is:

C(π) =
∑h
i=1

∑
a∈Ai C(a)

A number of different conditions for plan optimality can be defined. In particular, a
plan is parallel step-optimal if no shorter plan of the same parallel format exists. The
definition for serial step-optimality is identical, but also respects the condition that a
valid plan has only one action executed at each step. A plan π∗ is cost-optimal if there
is no plan π s.t. C(π) < C(π∗). Finally, we draw the reader’s attention to the fact that
the definition of cost-optimality is not dependent on the plan format.

2.2 The relaxed planning problem

A delete relaxationΠ+ of a planning problemΠ is an equivalent problem in all respects
except the definition of actions. In particular, the set of actions A+ in Π+ comprises
the elements a ∈ A from Π altered so that eff◦(a) ≡ ∅. The relaxed problem has two
key properties of interest here. First, the cost of an optimal plan from any reachable
state in Π is greater than or equal to the cost of the optimal plan from that state in Π+.
Consequently relaxed planning can yield a useful admissible heuristic in search. For
example, a best-first search such as A∗ can be heuristically directed towards an optimal
solution by using the costs of relaxed plans to arrange the priority queue. Second, al-
though NP-hard to solve optimally in general [10], in practice optimal solutions to the
relaxed problem Π+ are more easily computed than for Π .

2.3 Partial weighted MaxSAT

A Boolean SAT problem is a decision problem, instances of which are typically ex-
pressed as a CNF propositional formula. A CNF corresponds to a conjunction over
clauses, each of which corresponds to a disjunction over literals. A literal is either a
proposition (i.e., Boolean variable symbol) or its negation. Where |= denotes semantic
entailment for propositional logic, a solution associated with a formula φ is an assign-
ment (a.k.a. valuation) V of truth values to propositions with the property V |= φ.

A Boolean MaxSAT problem is an optimisation problem related to SAT. In practice
a problem instance is again typically expressed as a CNF, however the objective now is
to compute a valuation that maximises the number of satisfied clauses. In detail, writing
κ ∈ φ if κ is a clause in formula φ, and taking V |= κ to have numeric value 1 when
valid, and 0 otherwise, a solution V∗ to a MaxSAT problem has the property:

V∗ = arg maxV
∑
κ∈φ(V |= κ)

A weighted MaxSAT problem [11], denoted ψ, is a MaxSAT problem where each
clause κ ∈ ψ has a bounded positive numerical weight ω(κ). The optimal solution V∗
to some ψ satisfies the following equation:

V∗ = arg maxV
∑
κ∈ψ ω(κ)(V |= κ)

Finally, the partial weighted MaxSAT problem [12] is a variant of weighted MaxSAT
that distinguishes between hard and soft clauses. Only soft clauses are given a weight.



In these problems a solution is valid iff it satisfies all hard clauses. Therefore we have a
notion of satisfiability. In particular, if the hard problem fragment of a partial weighted
MaxSAT formula is unsatisfiable, then we say the formula is unsatisfiable. The defini-
tion of satisfiable follows naturally. An optimal solution to a partial weighted MaxSAT
problem is an assignment V∗ that is both valid and satisfies the above equation.

3 COS-P

We now describe COS-P, our planner that operates by iteratively solving variants of
n-step-bounded instances of the problem at hand for successively larger n. Solutions
to the intermediate step-bounded instances are obtained by compiling them into equiv-
alent partial weighted MaxSAT problems, and then using our own MaxSAT procedure
PWM-RSAT to compute their optimal solutions.

COS-P compiles and solves two variants, VARIANT-I and VARIANT-II, of the inter-
mediate instances. Those are characterised in terms of their optimal solutions. Adopting
the notation Πn for the n-step-bounded variant of Π , VARIANT-I admits optimal solu-
tions that correspond to minimal cost plans in the parallel format for Πn. VARIANT-II
admits optimal plans with the following structure. Each has a prefix which corresponds
to n sets of actions fromΠn.2 Plans can have an arbitrary length suffix (including length
0) comprised of actions from the delete relaxation Π+.

Both variants can be categorised as direct, constructive, and tightly sound. They are
direct because we have a Boolean variable in the MaxSAT problem for every action
and state proposition at each plan step. They are constructive because any satisfying
model and its cost in the MaxSAT instances corresponds to a plan and its cost in the
source problem. Critically, our compilations are tightly sound, in the sense that every
plan with cost c in the source planning problem has a corresponding satisfying model
of cost c in the MaxSAT encoding and vice versa. This permits two key observations
about VARIANT-I and VARIANT-II. First, when both variants yield an optimal solution,
and both those solutions have identical cost, then the solution to VARIANT-I is a cost-
optimal plan for Π . Second, if Π is soluble, then there exists some n for which the
observation of global optimality shall be made by COS-P. Finally, we have that COS-
P is a sound and complete optimal planning procedure for propositional problems with
action costs.

For the remainder of this section we present the compilation for VARIANT-I and
VARIANT-II. In the following section we describe the MaxSAT procedure PWM-RSAT
that we developed for use by COS-P.
3.1 VARIANT-I: bounded cost-optimal planning
We now describe a direct compilation of the bounded propositional planning problem
with action costs to a partial weighted MaxSAT formula ψ. The source of our com-
pilation is the plangraph. This is an obvious choice because reachability and needed-
ness analysis performed during construction of the plangraph yields important mutex
constraints between action and propositional variables [13]. Such constraints are not
deduced independently by modern SAT procedures such as RSAT2.02 [14].

2 i.e., an n-step plan prefix in the parallel format.



Below, we develop our compilation in terms of a list of 6 Schemata. The first 5
schemata capture the hard logical planning constraints, and Schema 6 reflects the action
costs. Overall, the schemata we develop below make use of the following propositional
variables. For each action occurring at a step t = 0, .., n− 1 (excluding noop actions),
we have a variable at. We define a fluent to be a state proposition whose truth value
can be modified by action executions. For each fluent occurring at step t = 0, .., n we
have a variable pt. Also, we have make(p) ≡ {a|a ∈ A, p ∈ eff•(a)}, and break(p) ≡
{a|a ∈ A, p ∈ eff◦(a)}. Below we avoid annotating variables with their time index if
it is clear from the context. Lastly, all constraints are hard unless stated otherwise.

1. Goal and start state axioms: We have a unit clause containing p0 for every p ∈ s0
and pn for every p ∈ G.

2. Precondition and effect axioms: For every action a at each plan step t, we have
clauses that require: (i) the action implies its precondition, (ii) the action implies its
positive effects, and (iii) the action implies its negative effects:

[at →
∧
p∈pre(a) p

t] ∧ [at →
∧
p∈eff•(a) p

t+1] ∧ [at →
∧
p∈eff◦(a) ¬p

t+1]

3. Mutex axioms: For every pair of mutex symbols (actions or fluents) p1 and p2 at
step t, we have a clause: ¬pt1 ∧ ¬pt2

4. At least one action axioms: Where At is the set of actions at step t, we have a
clause that requires at least one action be executed at step t:

∨
at∈At a

t

5. Frame axioms: These constrain how the truth values of fluents change over suc-
cessive plan steps. For each proposition pt, t > 0 we include the following clauses:

[pt → (pt−1 ∨
∨
a∈make(p) a

t−1)] ∧ [¬pt → (¬pt−1 ∨
∨
a∈break(p) a

t−1)]

6. Action cost axioms (soft): Finally, we have a set of soft constraints for actions.
In particular, for each action variable at such that C(a) > 0, we have a unit clause
κi := {¬at} with weight ω(κi) = C(a).
3.2 VARIANT-II: n-step with a relaxed suffix

We now describe a direct compilation of the problem Πn from the previous section,
along with the addition of a causal encoding of the delete relaxation, that we make
available from step n.3 From hereon we refer to the latter as the relaxed suffix.

Our encoding of the relaxed suffix is causal in the sense developed in [15] for their
ground parallel causal encoding of propositional planning in SAT. This requires addi-
tional variables to those developed for VARIANT-I. In particular, for each fluent p and
relaxed action a ∈ A+ we have corresponding variables p+ and a+. That p+

i is true
intuitively means: (1) That pni was false (see VARIANT-I), and (2) That pi ∈ G, or p+

i is
the cause of another fluent p+

j in a relaxed suffix to the goal. That a+ is true means that
a is executed in the relaxed suffix. We also require a set of causal link variables. These
are best introduced in terms of a recursively defined set S∞ as follows.

S0 ≡ {K(pi, pj)|a ∈ A+, pi ∈ pre(a), pj ∈ eff•(ai)}
Si+1 ≡ Si ∪ {K(pj , pl)|K(pj , pk),K(pk, pl) ∈ Si}

For each K(pi, pj) ∈ S∞ we have a corresponding variable. Intuitively, if proposition
K(pi, pj) is true then pi is the cause of pj in the plan suffix.

VARIANT-II includes all schemata from VARIANT-I except the goal axioms of
Schema 1. We also suppose Schema 6 is now inclusive of a+ symbols. Additionally
we have the following Schemata.

3 In VARIANT-II goal constraints from Schema 1 are omitted from Πn.



7. Relaxed goal axioms: For each fluent p ∈ G we assert that it is either achieved at
the planning horizon n, or using a relaxed action inA+. This is expressed with a clause:

pn ∨ p+

8. Relaxed fluent support axioms: For each fluent p we have a clause:
p+ → (

∨
a∈make(p) a

+)

9. Causal link axioms: For all fluents pi, taking all a ∈ make(pi) and pj ∈ PRE(a),
we have the following clause: (p+

i ∧ a+)→ (pnj ∨ K(p+
j , p

+
i ))

This constraint asserts that if action a+
1 is executed, then its preconditions must be true

at horizon n, or be supported by some other action a+
2 with p2 ∈ eff•(a2).

10. Causality implies cause and effect axiom: For each causal link variableK(p+
1 , p

+
2 )

we have a clause: K(p+
1 , p

+
2 )→ (p+

1 ∧ p
+
2 )

11. Transitive closure and anti-reflexivity axioms: For causal link variableK(p+, p+)
we have a unit clause containing that variable negated. For pairs of causal link variables
(K(p+

1 , p
+
2 ), K(p+

2 , p
+
3 )): (K(p+

1 , p
+
2 ) ∧ K(p+

2 , p
+
3 ))→ K(p+

1 , p
+
3 )

12. Only necessary relaxed fluent axioms: For each fluent p we have a constraint:
¬p+ ∨ ¬pn

13. Relaxed action cost dominance axioms: Let
−→
P be a set of non-mutex fluents

at horizon n. Relaxed action a+
1 is redundant in an optimal solution to a VARIANT-

II instance, if the fluents in
−→
P are true at horizon n and there exists a relaxed ac-

tion a+
2 such that: (1) cost(a2) ≤ cost(a1), (2) pre(a2)\

−→
P ⊆ pre(a1)\

−→
P , and (3)

eff•(a1)\
−→
P ⊆ eff•(a2)\

−→
P . For relaxed action a+ that is redundant for

−→
P1 and not

redundant for any
−→
P2, if |

−→
P2| < |

−→
P1| we have a clause:4 (

∧
p∈
−→
P1
pn)→ ¬a+

The schemata we have given thus far are theoretically sufficient for our purpose.
However, in a relaxed suffix most causal links are not relevant to the relaxed cost
of reaching the goal from a particular state at horizon n. For example, in a logistics
problem, if a truck t at location l1 needs to be moved directly to location l2, then
the fact that the truck is at any other location should not support it being at l2 – i.e.
¬K(at(t, l3), at(t, l2)), l3 6= l1.

The following schemata provide a number of layers that actions and fluents in the
relaxed suffix can be assigned to. Fluents and actions are forced to occur as early in the
set of layers as possible and are only assigned to a layer if all supporting actions and
fluents occur at earlier layers. The orderings of fluents in the relaxed layers is used to
restrict the truth values of the causal link variables. The admissibility of the heuristic
estimate of the relaxed suffix is independent of the number of relaxed layers.

We pick an horizon k > n and generate a copy a+l of each relaxed action a+ at each
layer l ∈ {n, ..., k−1} and a copy p+l of each fluent p+ at each layer l ∈ {n+1, ..., k}.
We also have an auxiliary variable aux(p+l) for each fluent p+l at each suffix layer
n + 1, ..., k. Intuitively, proposition aux(p+l) says that p is false at every layer in the
relaxed suffix from n to l.5

14. Layered relaxed action axioms: For each layered relaxed action a+l we have a
clause: a+l → a+

15. Layered relaxed actions only once axioms: For each relaxed action a+ and pair
of layers l1, l2 ∈ {n, ..., k − 1}, where l1 6= l2, we have: ¬a+l1 ∨ ¬a+l2

4 In practise we limit |
−→
P1| to 2.

5 There are no cost constraints associated with the layered copies of relaxed action variables.



16. Layered relaxed action precondition axioms: For each layered relaxed action
a+l1 we have a set of clauses: a+l1 →

∧
p∈PRE(a)

∨
l2∈{n,...,l1} p

+l2

17. Layered relaxed action effect axioms: For each layered relaxed action a+l1 and
p ∈ ADD(a) there is a clause: (a+l1 ∧ p+)→

∨
l2∈n+1,...,l+1 p

+l2

18. Layered relaxed action as early as possible axioms: For each layered relaxed
action a+l1 , if l1 = n, we have a clause: a+ →

∨
p∈PRE(a) ¬pn ∨ a+n

if l1 > n, we add: a+ →
∨
l2∈n,...,l1−1 a

+l2 ∨
∨
p∈PRE(a) aux(p

+l1) ∨ a+l1

19. Auxiliary variable axioms: For each auxiliary variable aux(p+l1) there is a set
of clauses: aux(p+l1)←→ (pn ∧

∧
l2∈{n+1,...,l1} ¬p

+l2)

20. Layered fluent axioms: For each layered fluent p+l we add: p+l → p+

21. Layered fluent frame axioms: For each layered fluent p+l there is a clause:
p+l →

∨
a∈make(p) a

+l−1

22. Layered fluent as early as possible axioms: For each layered fluent p+l1 there is
a set of clauses: p+l1 →

∧
a∈make(p)

∧
l2∈n,...,l1−2 ¬a+l2

23. Layered fluent only once axioms: For each fluent p and pair of layers l1, l2 ∈
{n+ 1, ..., k}, where l1 6= l2, there is a clause: ¬p+l1 ∨ ¬p+l2

24. Layered fluents prohibit causal links axioms: For each layered fluent p+l1
1 and

fluent p2 such that p1 6= p2 and ∃K(p+
2 , p

+
1 ) there is a clause:

p+l1
1 → (

∨
l2∈{n+1,...,l−1} p

+l2
2 ∨ ¬K(p+

2 , p
+
1 ))

4 PWM-RSat

We find that branch-and-bound procedures for partial weighted MaxSAT [11, 12] are
ineffective at solving our direct encodings of bounded planning problems. Thus, taking
the RSAT2.02 codebase as a starting point, we developed PWM-RSAT, a more efficient
optimisation procedure for this setting. An outline of the algorithm is given in Algo-
rithm 1. Based on RSAT [16], PWM-RSAT can broadly be described as a backtracking
search with Boolean unit propagation. It features common enhancements from state-of-
the-art SAT solvers, including conflict driven clause learning with non-chronological
backtracking [17, 18], and restarts [19].

Algorithm 1 outlines two variants of PWM-RSAT for solving VARIANT-I and
VARIANT-II formulas: lines 5-6 will only be invoked if the input formula is a VARIANT-
II encoding. These lines prevent the solver from exploring assignments implying that
the same state occurs at more than one planning layer.

Apart from the above difference, the two variants of PWM-RSAT work as follows.
At the beginning of the search, the current partial assignment V of truth values to vari-
ables in ψ is set to empty and its associated cost c is set to 0. We use ĉ to track the best
result found so far for the minimum cost of satisfying ψ∞ given ψ+. V∗ is the total
assignment associated with ĉ. Initially, V∗ is empty and ĉ is set to an input non-negative
weight bound ĉI (if none is known then ĉ = ĉI := ∞). Note that the set of asserting
clauses Γ is initiated to empty as no clauses have been learnt yet.

The solver then repeatedly tries to expand the partial assignment V until either the
optimal solution is found or ψ is proved unsatisfiable (line 4-21). At each iteration, a
call to SatUP(V, ψ, κ) applies unit propagation to a unit clause κ ∈ ψ and adds new
variable assignments to V . If κ is not a unit clause, SatUP(V, ψ, κ) returns 1 if κ is



Algorithm 1 Cost-Optimal RSat —- PWM-RSAT

1: Input:
- A given non-negative weight bound ĉI . If none is known: ĉI :=∞
- A CNF formula ψ consists of the hard clause set ψ∞ and the soft clause set ψ+

2: c← 0; ĉ← ĉI ;
3: V,V∗ ← []; Γ ← ∅;
4: while true do
5: if solving Variant-II && duplicating-layers(V) then
6: pop elements from V until ¬duplicating-layers(V); continue;
7: c←

∑
κ∈ψ+ ω(κ)SatUP(V, ψ, κ);

8: if c ≥ ĉ then
9: pop elements from V until c < ĉ; continue;

10: if ∃κ ∈ (ψ∞ ∧ Γ ) s.t. ¬SatUP(V, ψ∞ ∧ Γ, κ) then
11: if restart then V ← []; continue;
12: learn clause with assertion levelm; add it to Γ ;
13: pop elements from V until |V| = m;
14: if V = [] then
15: if V∗ 6= [] then return 〈V∗, ĉ〉 as the solution;
16: else return UNSATISFIABLE;
17: else
18: if V is total then
19: V∗ ← V ; ĉ← c;
20: pop elements from V until c < ĉ;
21: add a new variable assignment to V ;

satisfied by V , and 0 otherwise. The current cost c is also updated (line 7). If c ≥ ĉ, then
the solver will perform a backtrack-by-cost to a previous point where c < ĉ (line 8-9).

During the search, if the current assignment V violates any clause in (ψ∞ ∧ Γ ),
then the solver will either (i) restart if required (line 11), or (ii) try to learn the conflict
(line 12) and then backtrack (line 13). If the backtracking causes all assignments in V to
be undone, then the solver has successfully proved that either (i) (V∗, ĉ) is the optimal
solution, or (ii) ψ is unsatisfiable if V∗ remains empty (line 14-16). Otherwise, if V does
not violate any clause in (ψ∞ ∧ Γ ) (line 17), then the solver will heuristically add a
new variable assignment to V (line 21) and repeat the loop in line 4. Note that if V is
already complete, the better solution is stored in V∗ together will the new lower cost ĉ
(line 19). The solver also performs a backtrack by cost (line 20) before trying to expand
V in line 21.

5 Experimental Results
We implemented both COS-P and PWM-RSAT in C++. We now discuss our experi-
mental comparison of COS-P with IPC baseline planner BASELINE,6 and a version of
COS-P called H-ORACLE. The latter is given (by an oracle) the shortest horizon that
yields a globally optimal plan. Planning benchmarks included in our evaluation include:
IPC-6: ELEVATORS, PEG SOITAIRE, and TRANSPORT; IPC-5: STORAGE, and TPP; IPC-
3: DEPOTS, DRIVERLOG, FREECELL, ROVERS, SATELLITE, and ZENOTRAVEL; and
IPC-1: BLOCKS, GRIPPER, and MICONIC. We also developed our own domain, called
FTB, that demonstrates the effectiveness of the factored problem representations em-
ployed by SAT-based systems such as COS-P. This domain has the following impor-
tant properties: (1) it has exponentially many states in the number of problem objects,
(2) if there are n objects, then the branching factor is such that a breadth-first search

6 The de facto winning entry at the last IPC.



encounters all the states at depth n, and (3) all plans have length n, and plan optimal-
ity is determined by the first and last actions (only) of the plan. This domain cripples
state-based systems such as HSP, BASELINE, and GAMER, either because they are do-
ing a non-factored forward heuristic search, or because —i.e., in the case of GAMER
and BASELINE— they perform a breadth-first search. Finally, experiments were run on
a cluster of AMD Opteron 252 2.6GHz processors, each with 2GB of RAM. All plans
computed by COS-P, H-ORACLE, and BASELINE were verified by the Strathclyde
Planning Group plan verifier VAL, and computed within a timeout of 30 minutes.

The results of our experiments are summarised in Table 1. For each domain there is
one row for the hardest problem instance solved by each of the three planners. Here, we
measure problem hardness as the time it takes each solver to return the optimal plan. In
some domains we also include additional instances. Using the same experimental data
as for Table 1, Figure 1 plots the cumulative number of instances solved over time by
each planning system, supposing invocations of the systems on problem instances are
made in parallel. It is important to note that the size of the CNF encodings required
by COS-P (and H-ORACLE) are not prohibitively large – i.e, where the SAT-based
approaches fail, this is typically because they exceed the 30 minutes timeout, and not
because they exhaust system memory.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0.01  0.1  1  10  100  1000  10000

P
ro

bl
em

s 
so

lv
ed

Planning time (s)

Problems solved in parallel

Baseline
Horizon Oracle

COS-P

Fig. 1. The number of problems solved in parallel after a given planning time for each approach.

COS-P outperforms the BASELINE in the BLOCKS and FTB domains. For example,
on BLOCKS-18 BASELINE takes 39.15 seconds while COS-P takes only 3.47 seconds.
In other domains BASELINE outperforms COS-P, sometimes by several orders of mag-
nitude. For example, on problem ZENOTRAVEL-4 BASELINE takes 0.04 seconds while
COS-P takes 841.2. More importantly, we discovered that it is relatively easy to find
a cost-optimal solution compared to proving its optimality. For example, on MICONIC-
23 COS-P took 0.53 seconds to find the optimal plan but spent 1453 seconds proving
cost-optimality. More generally, this observation is indicated by the performance of
H-ORACLE.

Overall, we find that clause learning procedures in PWM-RSAT cannot exploit the
presence of the very effective delete relaxation heuristic from Π+. Consequently, a
serious bottleneck of our approach comes from the time required to solve VARIANT-II



Table 1. C∗ is the optimal cost for each problem. All times are in seconds. For BASELINE t is the solution time. For
H-ORACLE, n is the horizon returned by the oracle and t is the time taken to find the lowest cost plan at n. For COS-P, tt
is the total time for all SAT instances, tπ is the total time for all SAT instances where the system was searching for a plan,
while t∗ is the total time for all SAT instances where the system is performing optimality proofs. ‘-’ indicates that a solver
either timed out or ran out of memory.

BASELINE H-ORACLE COS-P
Problem C∗ t n t n tt tπ t∗

blocks-17 28 39.83 28 0.59 28 3.61 3.61 0
blocks-18 26 39.15 26 0.53 26 3.47 3.47 0
blocks-23 30 - 30 4.61 30 32.11 32.11 0
blocks-25 34 - 34 3.43 34 29.49 29.49 0
depots-7 21 98.08 11 64.79 - - - -
driverlog-3 12 0.11 7 0.043 7 484.8 0.08 484.7
driverlog-6 11 9.25 5 0.046 - - - -
driverlog-7 13 100.9 7 1.26 - - - -
elevators-2 26 0.33 3 0.01 3 14 0.01 13.99
elevators-5 55 167.9 - - - - - -
elevators-13 59 28.59 10 378.6 - - - -
freecell-4 26 47.36 - - - - - -
ftb-17 401 38.28 17 0.08 17 0.27 0.09 0.18
ftb-30 1001 - 25 0.7 25 1.95 0.7 1.24
ftb-38 601 - 33 0.48 33 1.65 0.49 1.15
ftb-39 801 - 33 0.7 33 2.35 0.67 1.69
gripper-1 11 0 7 0.02 7 15.7 0.14 15.56
gripper-3 23 0.05 15 34.23 - - - -
gripper-7 47 73.95 - - - - - -
miconic-17 13 0 11 0.07 11 785.4 0.30 785.1
miconic-23 15 0.04 10 0.12 10 1454 0.53 1453
miconic-33 22 2.19 17 2.17 - - - -
miconic-36 27 9.62 22 1754 - - - -
miconic-39 28 10.61 24 484.1 - - - -
pegsol-7 3 0 12 0.08 12 1.63 0.23 1.41
pegsol-9 5 0.02 15 7.07 15 416.6 12.25 404.4
pegsol-13 9 0.14 21 1025 - - - -
pegsol-26 9 42.44 - - - - - -
rovers-3 11 0.02 8 0.1 8 53.21 0.08 53.13
rovers-5 22 164.1 8 69.83 - - - -
satellite-1 9 0 8 0.08 8 0.92 0.1 0.82
satellite-2 13 0.01 12 0.23 - - - -
satellite-4 17 6.61 - - - - - -
storage-7 14 0 14 0.45 14 1.16 1.16 0
storage-9 11 0.2 9 643.2 - - - -
storage-13 18 3.47 18 112.1 18 262.8 262.8 0
storage-14 19 60.19 - - - - - -
TPP-5 19 0.15 7 0.01 - - - -
transport-1 54 0 5 0.02 5 0.27 0.03 0.24
transport-4 318 47.47 - - - - - -
transport-23 630 0.92 9 1.28 - - - -
zenotravel-4 8 0.04 7 1.07 7 843.7 2.47 841.2
zenotravel-6 11 8.77 7 54.35 - - - -
zenotravel-7 15 5.21 8 1600 - - - -

instances. On a positive note, those proofs are possible, and in domains such as BLOCKS
and FTB, where the branching factor is high and useful plans long, the factored problem
representations and corresponding solution procedures in the SAT-based setting payoff.
Moreover, in fixed-horizon cost-optimal planning, the SAT approach continues to show
good performance characteristics in many domains.



6 Concluding Remarks

In this paper we demonstrate that a general theorem-proving technique, particularly
a DPLL procedure for Boolean SAT, can be modified to find cost-optimal solutions
to propositional planning problems encoded as SAT.7 In particular, we modified SAT
solver RSAT2.02 to create PWM-RSAT, an effective partial weighted MaxSAT proce-
dure for problems where all soft constraints are unit clauses. This forms the underlying
optimisation procedure in COS-P, our cost-optimal planning system that, for succes-
sive horizon lengths, uses PWM-RSAT to establish a candidate solution at that horizon,
and then to determine if that candidate is globally optimal. Each candidate is a minimal
cost step-bounded plan for the problem at hand. That a candidate is globally optimal is
known if no step-bounded plan with a relaxed suffix has lower cost. To achieve that, we
developed a MaxSAT encoding of bounded planning problems with a relaxed suffix.
This constitutes the first application of causal representations of planning in proposi-
tional logic [15].

Existing work directly related to COS-P includes the hybrid solver CO-PLAN [20]
and the fixed-horizon optimal system PLAN-A. Those systems placed 4th and last re-
spectively out of 10 systems at IPC-6. CO-PLAN is hybrid in the sense that it proceeds
in two phases, each of which applies a different search technique. The first phase is
SAT-based, and identifies the least costly step-optimal plan. PLAN-A also performs
that computation, however assumes that a least cost step-optimal plan is globally op-
timal – Therefore PLAN-A was not competitive because it could not find globally op-
timal solutions, and thus forfeited in many domains. The first phase of CO-PLAN and
the PLAN-A system can be seen as more general and efficient versions of the system
described in [21]. The second phase of CO-PLAN breaks from the planning-as-SAT
paradigm. It corresponds to a cost-bounded anytime best-first search. The cost bound
for the second phase is provided by the first phase. Although competitive with a number
of other competition entries, CO-PLAN is not competitive in IPC-6 competition bench-
marks with the BASELINE – The de facto winning entry, a brute-force A∗ in which the
distance-plus-cost computation always takes the distance to be zero.

Other work related to COS-P leverages SAT modulo theory (SMT) procedures to
solve problems with metric resource constraints [22]. SMT-solvers typically interleave
calls to a simplex algorithm with the decision steps of a backtracking search, such as
DPLL. Solvers in this category include the systems LPSAT [22], TM-LPSAT [23],
and NUMREACH/SMT [1]. SMT-based planners also operate according to the BLACK-
BOX scheme, posing a series of step-bounded decision problems to an SMT solver until
an optimal plan is achieved. Because they are not globally optimal, existing SMT sys-
tems are not directly comparable to COS-P.

The most pressing item for future work is a technique to exploit SMT —and/or
branch-and-bound procedures from weighted MaxSAT— in proving the optimality of
candidate solutions that PWM-RSAT yields in bounded instances. We should also ex-
ploit recent work in using useful admissible heuristics for state-based search when eval-
uating whether horizon n yields an optimal solution [24].

7 This was supposed to be possible, although in a very impractical sense (final remarks of [4]).



Acknowledgements: NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications and the Digital Economy
and the Australian Research Council through the ICT Centre of Excellence program.
This work was also supported by EC FP7-IST grant 215181-CogX.

References
1. Hoffmann, J., Gomes, C.P., Selman, B., Kautz, H.A.: Sat encodings of state-space reacha-

bility problems in numeric domains. In: Proc. IJCAI. (2007)
2. Kautz, H.A.: Deconstructing planning as satisfiability. In: Proc. AAAI. (2006)
3. Russell, R., Holden, S.: Handling goal utility dependencies in a satisfiability framework. In:

Proc. ICAPS. (2010)
4. Giunchiglia, E., Maratea, M.: Planning as satisfiability with preferences. In: Proc. ICAPS.

(2007)
5. Robinson, N., Gretton, C., Pham, D.N., Sattar, A.: Sat-based parallel planning using a split

representation of actions. In: Proc. ICAPS. (2009)
6. Streeter, M., Smith, S.: Using decision procedures efficiently for optimization. In: Proc.

ICAPS. (2007)
7. Rintanen, J.: Evaluation strategies for planning as satisfiability. In: Proc. ECAI. (2004)
8. Kautz, H., Selman, B.: Unifying SAT-based and graph-based planning. In: Proc. IJCAI.

(1999)
9. Keyder, E., Geffner, H.: Soft goals can be compiled away. Journal of Artificial Intelligence

Research 36(1) (2009)
10. Bylander, T.: The computational complexity of propositional strips planning. Artificial

Intelligence 69 (1994) 165–204
11. Josep Argelic and, C.M.L., Manya, F., Planes, J.: The first and second max-sat evaluations.

Journal on Satisfiability, Boolean Modeling and Computation 4 (2008) 251–278
12. Fu, Z., Malik, S.: On solving the partial max-sat problem. In: SAT 2006. (August 2006)

252–265
13. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelligence

(90) (1997) 281–300
14. Rintanen, J.: Planning graphs and propositional clause learning. In: Proc. KR. (2008)
15. Kautz, H., McAllester, D., Selman, B.: Encoding plans in propositional logic. In: Proc. KR.

(1996)
16. Pipatsrisawat, K., Darwiche, A.: Rsat 2.0: SAT solver description. Technical Report D–153,

Automated Reasoning Group, Computer Science Department, UCLA (2007)
17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an

Efficient SAT Solver. In: Proc. DAC. (2001)
18. Marques-Silva, J.P., Sakallah, K.A.: Grasp - a new search algorithm for satisfiability. In:

Proc. ICCAD. (1996)
19. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proc. IJCAI. (2007)
20. Robinson, N., Gretton, C., Pham, D.N.: Co-plan: Combining SAT-based planning with

forward-search. In: Proc. IPC-6. (2008)
21. Büttner, M., Rintanen, J.: Satisfiability planning with constraints on the number of actions.

In: Proc. ICAPS. (2005)
22. Wolfman, S.A., Weld, D.S.: The LPSAT engine and its application to resource planning. In:

Proc. IJCAI. (1999)
23. Shin, J.A., Davis, E.: Processes and continuous change in a sat-based planner. Artif. Intell.

166(1-2) (2005) 194–253
24. Helmert, M., Domshlak, C.: Landmarks, critical paths and abstractions: What’s the differ-

ence anyway? In: Proc. ICAPS. (2009)



Robot Control Using a Switching
Classical/Decision-Theoretic Planner

Richard Dearden∗ Charles Gretton∗ Michael Brenner†

Moritz Göbelbecker†

July 30, 2010

Abstract

Planning problems where the state of the world cannot be determined with
certainty but must be inferred from observations are traditionally represented as
partially observable Markov decision problems (POMDPs). However algorithms
that operate on POMDPs are restricted to very small problems due to their com-
putational cost. In this paper we describe an approach to plan in these domains by
combining a classical planner and a POMDP planner. The approach builds plans
as if the world was observable at execution time using the classical planner. These
plans include assertions that state variables have particular values. When execu-
tion of the plan reaches one of these variables, the POMDP planner is called to
generate a plan to determine the value of the variable. This plan can then be exe-
cuted, the value determined, and the classical plan can then continue executing if
the value determined was the one desired, or if the variable was found to have a
different value, replanning occurs. We show how this approach can generate plans
in domains that are much too large for POMDP planners to solve directly.

1 Introduction
Real-world robotic planning contains many sources of uncertainty, including unpre-
dictable action effects (particularly for actions such as dialogue), unknown world state,
and the lack of a closed world assumption. In typical hierarchical robotic architec-
tures for planning, such as 3T [1], this uncertainty is removed as much as possible
from the planner’s consideration by hand-building a set of low-level reactive control
policies. For example, a high-level action “goto-door” might be implemented with a
control policy that drives the robot forwards a small distance at a time until the door
is reached. This approach works particularly well for removing uncertainty in action
effects.

For state uncertainly, a similar approach may be taken in which, when the high-level
planner needs to know the value of a particular state variable, a lower-level routine
∗School of Computer Science, University of Birmingham, UK, {rwd,grettonc}@cs.bham.ac.uk
†Albert Ludwig University,

1



attempts to discover the value. In this paper we explore how such a routine can be
generated automatically when needed.

An alternative approach to planning with uncertainty in state and action effects is
to use a decision-theoretic planning approach such as a POMDP solver [6, 2, 4]. For
quite specialised tasks such as observation planning (see [7] for example) this approach
can be very successful. However, for more realistic problems the state space is simply
too large for the state of the art in POMDP solvers.

Our approach is to build a planner that switches between classical and decision-
theoretic planning depending on the situation. The idea is to represent the problem in
a rich enough language that a POMDP solver could solve the problem, but to derive a
classical planning problem from that representation. We then construct a plan for the
classical planning problem which may involve actions that observe the value of partic-
ular state variables. Each of these observation actions corresponds to an invocation of
the POMDP planner but on a much reduced state space from the original problem.

The classical planner we use is Continual Planning [3], which generates a straight
line plan for the original problem but may replan if the world doesn’t match the as-
sumptions it made in constructing that plan. One can think of this as contingency
planning where only a single branch is planned for, and if at execution time a different
branch should be followed, replanning is triggered to generate that branch. Most of
the replanning points occur when a state variable is observed. Thus the overall flow
of execution typically consists of executing a fragment of a classical plan, followed by
some decision-theoretic plan to observe a variable. After this, some replanning may
occur, and then the process repeats until the goal is reached.

In the following section we briefly present the Continual Planner we use for gen-
erating classical plans. After that we briefly describe the POMDP planner we use. In
Section 4 we describe the original input language and how that gets translated into
a classical planning language. Finally, we put everything together in Section 5 and
present some variations on the algorithm and difficulties with the current approach in
Sections 6 and 7.

2 Continual Planning
Instead of considering many possible futures in advance, an agent may execute parts
of its plan in order to gather additional information, thereby reducing the number of
possible contingencies that it has to take into account for the remaining planning. This
technique of interleaving planning, plan execution and execution monitoring is called
Continual Planning (CP). Our CP approach is based on the idea of active knowledge-
gathering: instead of planning for possible contingencies, agents try to learn more
about the state of the world directly. In order to enable agents to reason about how they
can gather additional knowledge it is necessary to explicitly model the agents’ beliefs
as well as their sensing capabilities as part of their formal planning domain. Agents
can then plan how to extend their knowledge. In contrast to Contingent Planning ap-
proaches which have used similar ideas, we do not want the planning process to branch
over the possible outcomes of sensing actions. Instead we want to enable a planner to
postpone the decision of what exactly to do with that knowledge to the moment where

2



the actual perception has been made. In other words, we want to “hide” a conditional
subplan until the agent has enough information to plan its details. For this purpose, we
introduced the concept of assertions. Assertions are specific actions, defined normally
in the planning domain. However, assertions cannot be directly executed. Instead, the
domain designer asserts that the effects of the assertion can be achieved by a subplan
if its preconditions are satisfied.

3 The Decision-Theoretic Planner
The current de facto model for probabilistic decision-theoretic planning with partial ob-
servability is the POMDP. For our purposes, a POMDP is a six-tuple 〈S,A,Pr,R,O, v〉.
Here, S,A, Pr, and R are states, actions, state-transition function, and reward function,
respectively – They provide an MDP-based specification of the underlying world state,
dynamics, and reward. O is a set of observations. For each s ∈ S and action a ∈ A, an
observation o ∈ O is generated independently according to some probability distribu-
tion v(s, a). We denote vo(s, a) the probability of getting observation o in state s. For
s and a we have the following constraint:∑

o∈O
vo(s, a) = 1

The optimal solution to a finite-horizon POMDP problem can be expressed as a
policy µ : O∗ → PA where µa(o0, .., ot) is the probability that we execute action
a given observation history o0, .., ot.1 In practice for the problems we are interested
in solving with the decision-theoretic planner the policies are quite short and so we
generate them using an implementation of LAO* [5] modified to work on POMDPs.

Hansen and Zilberstein’s LAO* algorithm is a generalisation of AO* that can be
used to solve Markov decision problems (MDPs) where the start state is given, but is
particularly suited to stochastic shortest path problems—MDPs with absorbing goal
states where the object is to reach the goal state with the lowest expected cost. Figure
1 is a high-level description of the LAO* algorithm. Essentially it works by alternat-
ing between expanding the current search graph (Steps 1–5) and performing dynamic
programming to determine which actions to perform in that graph (Steps 6–11). Note
that the value iteration in Step 7 may result in G+ changing (because the best action
for a state changes), so at each iteration the set of states on which value iteration is
performed may change.

The advantage of LAO* is that it rarely adds all the states in the MDP to the explicit
graph, and adds even fewer of them to G+. This means that with a good heuristic it
can solve extremely large MDPs. As we will see in the next section, this is potentially
important in our case as the state space is the cross product of the belief states reachable
under the low-level policy for each ROI.

1Such a policy can oftentimes be compactly represented as a tree or algebraic decision diagram (ADD).

3



Require: G is the explicit graph (the current search graph), initially containing only
the start state. G+ is the subset of G that currently looks best.

Require: h(s) is a heuristic for the state values
Require: goal(s) is true if s is a goal state

1: while there are unexpanded nodes in G+ do
2: Expand one of the unexpanded nodes s in G+ by adding all its successors s′ to

G.
3: ∀s′, if goal(s′) then f(s′) = 0 else f(s′) = h(s′).
4: Run value iteration on s and all its ancestors in G+.
5: end while
6: Perform value iteration on G+.
7: if the error between successive iterations of value iteration falls below ε then
8: Return G∗

9: else
10: Goto Step 1.
11: end if

Figure 1: The LAO* algorithm.

4 Input Language
The complete switching planner system uses a variant of the standard PPDDL1.0 plan-
ning language [8] that supports decision-theoretic problem definitions, which we call
decision-theoretic PDDL (DTPDDL). For lack of space we will leave out the complete
language definition and give a small example from a simplified version of the Dora
domain here.
( d e f i n e ( domain cogx )

( : r e q u i r e m e n t s : mapl : a d l : o b j e c t−f l u e n t s : p a r t i a l−o b s e r v a b i l i t y )

( : t y p e s
p l a c e room − o b j e c t
r o b o t − a g e n t
r o b o t − movable
p l a c e l a b e l − o b j e c t

)

( : c o n s t a n t s
k i t c h e n o f f i c e l i b r a r y − p l a c e l a b e l

)

( : p r e d i c a t e s
( c o n n e c t e d ? n1 − p l a c e ? n2 − p l a c e )
( v i s i t e d ? r − r o b o t ? p − p l a c e )

)

( : f u n c t i o n s
( l a b e l ? p − p l a c e ) − p l a c e l a b e l
( i s−i n ? r − movable ) − p l a c e

)

( : a c t i o n sense−p l a c e l a b e l
: a g e n t ( ? a − r o b o t )
: p a r a m e t e r s ( ? l o c − p l a c e )
: p r e c o n d i t i o n (= ( i s−i n ? a ) ? l o c )
: e f f e c t ( )

)

4



( : o b s e r v e p l a c e l a b e l
: a g e n t ( ? a − r o b o t )
: p a r a m e t e r s ( ? l o c − p l a c e ? n − p l a c e l a b e l )
: e x e c u t i o n ( sense−p l a c e l a b e l ? a ? l o c )
: e f f e c t ( and ( when (= ( l a b e l ? l o c ) ? n )

( p r o b a b i l i s t i c 0 . 7 ( o b s e r v e d ( l a b e l ? l o c ) ? n ) ) )
( when ( n o t (= ( l a b e l ? l o c ) ? n ) )

( p r o b a b i l i s t i c 0 . 1 ( o b s e r v e d ( l a b e l ? l o c ) ? n ) ) ) )
)

( : a c t i o n move
: a g e n t ( ? a − r o b o t )
: p a r a m e t e r s ( ? t o − p l a c e )
: v a r i a b l e s ( ? from − p l a c e )
: p r e c o n d i t i o n ( and

(= ( i s−i n ? a ) ? from )
( o r ( c o n n e c t e d ? from ? t o )

( c o n n e c t e d ? t o ? from ) ) )
: e f f e c t ( a s s i g n ( i s−i n ? a ) ? t o )

)

)

Here, we have only two actions, a MOVE action that gets the robot from place
to place and a SENSE-PLACELABEL action that makes observations of the room the
robot is in. These observations are modelled using the PLACELABEL observation which
states that 70 percent of the time the true label of the room will be returned, but 10
percent of the time an incorrect label will be returned.

In addition to the domain definition we also need to define a planning problem as
follows:
( d e f i n e ( problem c o g x t a s k )

( : domain cogx )

( : o b j e c t s r o b o t 0 − r o b o t
p l a c e 0 p l a c e 1 p l a c e 2 − p l a c e

)

( : i n i t ( c o n n e c t e d p l a c e 0 p l a c e 1 )
( c o n n e c t e d p l a c e 1 p l a c e 0 )
( c o n n e c t e d p l a c e 1 p l a c e 2 )
( c o n n e c t e d p l a c e 2 p l a c e 1 )
(= ( i s−i n r o b o t 0 ) p l a c e 0 )

)

( : g o a l ( f o r a l l ( ? p − p l a c e ) ( k v a l r o b o t 0 ( l a b e l ? p ) ) ) )
)

Here we define the objects in the world, the initial state (the connections between
rooms and the location of the robot) and the goal, which in this case is to know the
label for all the places in the world.

5 The Switching Planner
As we said above, in typical robotic systems, decision-making is accomplished by a
three level architecture such as 3T [1] with a classical planner at the highest level,
simple control sequences at the lowest level and a middle level that translates the high-
level actions into alternative sequences of controllers. The reason such an architecture

5



is favoured is that the high-level planner typically cannot cope with uncertainty in the
world, so the rest of the architecture is designed to remove as much of that uncertainty
as possible. Typically it is assumed that this uncertainty is in the form of uncertain
action effects.

In our domain we find ourselves with a much harder kind of uncertainty to handle,
namely uncertainty in the state of the world. The Dora domain involves trying to find
objects that are in unknown locations and trying to explore the world and learn more
about it. These problems are inherently ones where the robot has only partial informa-
tion about the state of the world at any time. The actions that are available to us from
the rest of the robotic system (for example, driving actions) of course contain the same
kinds of low-level control as would be found in a 3T system, but these aren’t generally
useful for removing state uncertainty. Instead, what we need are information gathering
actions such as visual search and dialogue that allow us to reduce our uncertainty about
the state variables we care about.

The intuition behind our switching planner is to think of the actions provided by the
rest of the system as the low-level actions in a three level robotic architecture, to use a
classical planner (continual planning) at the high-level as normal, but to automatically
generate the middle layer of the architecture on the fly using the decision-theoretic
planner.

To do this, we require a representation of the actions given to the overall planning
system that is rich enough to represent all the details we need for this middle layer.
That means that the representation must contain observations of the world state, and
those observations can be unreliable. The decision-theoretic planning domain defini-
tion language (DTPDDL) presented in Section 4 provides a common language for both
planners from which classical planning actions suitable for CP can be extracted, but
which can also be used by the decision-theoretic planner.

The overall architecture of the switching planner is given in Figure 2. The input is
a problem specification in DTPDDL made up of three parts:

• A domain definition that specifies the actions, which at present is pre-built, but
which in the future will be learned from experience.

• An initial state that comes from working memory (specifically the binder).

• A goal or goals, which come from the motivation subarchitecture.

The planning problem is translated into a form that CP can plan with, and CP generates
a plan. This plan contains no branching points, but instead it contains points where
domain variables are observed and a particular value is assumed. Thus we can think of
it as a branching plan—with branches that depend on the values of domain variables at
execution time—where only one branch at each branch point has actually been planned
for. If a different branch is needed during execution, then the planner may be called
again to replan for that branch.

During execution of the CP plan, when a domain variable is observed, the plan
executor needs a way to determine the value of that variable. When the value isn’t
known with certainty, then the decision-theoretic planner is called to determine the
value. It is given the same DTPDDL domain definition and the current initial state,

6



DTPDDL
Planning problem

Domain
description 
(pre-built, at 

this point)

Goals
(from 

motivation)

Initial state
(from working

memory)

Continual Planner

Decision-theoretic
 Planner

Straight line plan
Observation

Plan Execution

Policy for achieving 
observation

R
ep

la
nn

in
g

Figure 2: The architecture of the switching planner.

but the goal is to determine with sufficient confidence the value of the variable. The
decision-theoretic planner produces a plan for this very small problem, which can then
be executed to find out the value. At that point, the plan executor can either continue
with the CP plan, or if necessary trigger CP to replan.

As an example, consider the problem definition we gave above. Here the problem
was to determine the label on each of the three rooms. The DTPDDL problem is
translated into a deterministic problem domain that CP can plan with as shown below:
( d e f i n e ( domain cogx )

( : r e q u i r e m e n t s : mapl : a d l : o b j e c t−f l u e n t s )

( : t y p e s p l a c e room − o b j e c t
r o b o t − a g e n t
r o b o t − movable
p l a c e l a b e l − o b j e c t

)

( : p r e d i c a t e s ( c o n n e c t e d ? n1 − p l a c e ? n2 − p l a c e )
)

( : f u n c t i o n s ( i s−i n ? r − movable ) − p l a c e
( l a b e l ? p − p l a c e ) − p l a c e l a b e l

)

( : c o n s t a n t s k i t c h e n l i b r a r y o f f i c e − p l a c e l a b e l
)

)

7



( : a c t i o n sense−p l a c e l a b e l
: a g e n t ( ? a − r o b o t )
: p a r a m e t e r s ( ? l o c − p l a c e )
: p r e c o n d i t i o n (= ( i s−i n ? a ) ? l o c )
: e f f e c t
: s e n s e ( l a b e l ? l o c ) ; ; == ( k v a l ? a ( l a b e l ? l o c ) )

)

( : a c t i o n move
: a g e n t ( ? a − r o b o t )
: p a r a m e t e r s ( ? t o − p l a c e )
: v a r i a b l e s ( ? from − p l a c e )
: p r e c o n d i t i o n ( and (= ( i s−i n ? a ) ? from )

( o r ( c o n n e c t e d ? from ? t o )
( c o n n e c t e d ? t o ? from )

)
)

: e f f e c t ( a s s i g n ( i s−i n ? a ) ? t o )
)

)

CP then plans for this problem (with the same initial state), and produces the fol-
lowing plan:
( sense−p l a c e l a b e l r o b o t 0 p l a c e 0 )
( move r o b o t 0 p l a c e 1 p l a c e 0 )
( sense−p l a c e l a b e l r o b o t 0 p l a c e 1 )
( move r o b o t 0 p l a c e 2 p l a c e 1 )
( sense−p l a c e l a b e l r o b o t 0 p l a c e 2 )

Each of the SENSE-PLACELABEL actions is an observation of the label of a room,
and triggers a call to the decision-theoretic planner with the original DTPDDL domain
but with the following action added:
( : a c t i o n commit−l a b e l−p l a c e 0

: p a r a m e t e r s ( ? v a l − p l a c e l a b e l )
: p r e c o n d i t i o n ( n o t ( commit ted ( l a b e l p l a c e 0 ) ) )
: e f f e c t ( and ( commit ted ( l a b e l p l a c e 0 ) )

( when (= ( l a b e l p l a c e 0 ) ? v a l )
( i n c r e a s e ( reward ) 100)

( when ( n o t {= ( l a b e l p l a c e 0 ) ? v a l ) )
( d e c r e a s e ( reward ) 100)

)
)

)

This extra action is specific to the first execution of SENSE-PLACELABEL, and al-
lows the decision-theoretic planner to accumulate reward by committing to the room
having the specified label.

The decision-theoretic planner now generates a plan for this domain, which consists
of multiple executions of SENSE-PLACELABEL until the likelihood according to the
belief state of one of the labels is sufficiently high that the reward is maximised. This
plan can then be executed and CP will then move on to the next step in the plan. In this
case, since the robot doesn’t have anything to do depending on the label of each room,
there are no branch points in the CP plan, so no replanning occurs.

8



6 Variations
The version of the switching planner we have described above only triggers the decision-
theoretic planner when execution reaches a point at which a variable is observed. This
is efficient in the sense that only observations that are actually executed get planned for,
but it is inefficient in that the policy for determining the value of the variable is only
generated once execution reaches that point. An alternative is to perform some or all
of the decision-theoretic planning in advance. This has the advantage that the compu-
tation is being performed while the CP plan is executing. If the CP plan contains move
actions for example, then a significant amount of planning can be accomplished with
no time penalty. However, this approach requires the state on reaching the observation
in the CP plan to be determined. This can be done by simulating the CP plan using the
full DTPDDL representation of the actions, but if those actions are non-deterministic,
there may be several possible initial states for the decision-theoretic planner. If all of
these are planned for, the cost of planning may be very high.

These issues produce an interesting space of possible pre-planning strategies which
we are in the process of exploring. The first option is whether to pre-plan the decision-
theoretic problems in advance, and if so, how many of them to plan. The second is
whether to plan for every possible initial state, or only some subset chosen on the basis
of their likelihood. All of this is of course dependent on the amount of planning time
available.

7 Disadvantages of this Approach
The approach we describe is necessary in that somehow we need to determine the
values of the variables CP plans to observe. However, it has a number of disadvantages.

The first disadvantage is that because CP has no concept of probability, the plans it
builds are designed to be short, rather than being likely to succeed without replanning.
Thus, if CP is asked to plan to find the kitchen, it will build a plan that goes to the
nearest room with an unknown label, observe that it is a kitchen, and finish. If we
already have a lot of evidence that the room is not a kitchen, we have no way of telling
CP that perhaps going to a different room would be better.

The second problem is that it may be impossible to observe the value of a variable
CP asks for. At present we force the decision-theoretic planner to commit to the most
likely value for a variable after a fixed number of steps (that is, it can only build n-step
plans). This may lead to errors where the planner thinks a variable has a particular value
while working memory records the value as still uncertain. We are investigating ways
to overcome this such as allowing the decision-theoretic planner to return UNKNOWN
as its answer, which would then trigger replanning in CP. However, it is hard in this
circumstance to stop CP finding exactly the same plan again.

A final issue is that we cannot evaluate the quality of the plans we find. This is
because CP doesn’t actually generate the whole plan, only a single branch of it. If we
had access to the complete branching plan, we could start to think about plan quality
over the whole plan, not just the decision-theoretic part. We are planning to investigate
this issue in more depth in Year 3.

9



The ideal solution to all these problems would be to run the decision-theoretic
planner on the original planner. However, as we pointed out above, the whole point
of this approach is to keep computation times manageable. We simply can’t produce
acceptable real-time performance with the decision-theoretic planner, so the problems
we describe here are the trade-off we have to make for acceptable performance. One
possibility we will investigate in Year 3 is to use the decision-theoretic planner on other
parts of the plan where plan quality will make a significant difference. However, in
general, working out which of the parts of the problem would benefit from a decision-
theoretic solution is as hard as solving the planning problem with the decision-theoretic
planner.

Acknowledgements
This research was supported by the EU as part of the Integrated Project CogX (FP7-
ICT-2xo15181-CogX).

References
[1] R. P. Bonasso, D. Kortenkamp, and T Whitney. Using a robot control architecture

to automate space shuttle operations. In Proceedings of IAAI, 1997.

[2] Xavier Boyen and Daphne Koller. Tractable inference for complex stochastic pro-
cesses. In UAI, pages 33–42. AUAI Press, 1998.

[3] M. Brenner and B. Nebel. Continual planning and acting in dynamic multiagent
environments. Journal of Autonomous Agents and Multiagent Systems, 2009. to
appear.

[4] Zhengzhu Feng and Eric Hansen. Approximate planning for factored pomdps. In
In Proceedings of the Sixth European Conference on Planning. Springer, 2001.

[5] Eric Hansen and Schlomo Zilberstein. LAO*: A heuristic search algorithm that
finds solutions with loops. Artificial Intelligence, 129, 2001.

[6] E. J. Sondik. The Optimal Control of Partially Observable Markov Decision Pro-
cesses. PhD thesis, Stanford, California, 1971.

[7] Mohan Sridharan, Jeremy Wyatt, and Richard Dearden. Planning to see: Hier-
archical POMDPs for planning visual actions on a robot. To appear in Artificial
Intelligence Journal, 2010.

[8] H. L. S. Younes and M. Littman. PPDDL1.0: An extension to PDDL for expressing
planning domains with probabilistic effects. Technical Report CMU-CS-04-167,
School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, 2004.

10


