
EU FP7 CogX

ICT-215181

May 1 2008 (52months)

DR 4.3:

Planning for Knowledge Changes

Michael Brenner, Richard Dearden, Moritz Göbelbecker,
Charles Gretton, Patrick Eyerich, Thomas Keller, Bernhard
Nebel

Albert-Ludwigs-Universität Freiburg, University of Birmingham

〈brenner@informatik.uni-freiburg.de〉
Due date of deliverable: 31 July 2011
Actual submission date: 29 July 2011
Lead partner: ALU
Revision: v2
Dissemination level: PU

In the CogX project, we want to build autonomous robots that can act in
incompletely known dynamic environments. The goal of WP 4 is to enable
a robot to plan its actions despite initial gaps in its knowledge and despite
uncertainty about action outcomes and about the validity of its models. In
this report, we describe the final version of our switching planner, a system
that toggles between using a fast continual planner to guide the robot’s
general behaviour and a more computationally expensive decision-theoretic
planner to verify assumptions of the continual planner, taking into account
the full, complex sensing model. In addition, we describe several specific
methods, both in the deterministic and the decision-theoretic setting, to
plan for information gathering under uncertainty.

1

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

1 Tasks, objectives, results 4
1.1 Planned work . 4
1.2 Actual work performed . 4

1.2.1 The Switching Planner . 4
1.2.2 Planning of Information Gathering and Dialogue Actions 6

1.3 Relation to the state-of-the-art . 8

2 Annexes 13
2.1 Göbelbecker et al. “A Switching Planner for Combined Task and Observa-

tion Planning” (AAAI 2011) . 13
2.2 Aydemir et al. “Plan-based Object Search and Exploration Using Semantic

Spatial Knowledge in the Real World” (ECMR 2011) 13
2.3 Keller and Eyerich “A Polynomial All Outcome Determinization for Prob-

abilistic Planning” (ICAPS 2011) . 14
2.4 Brenner and Nebel “On Continual Planning with Runtime Variables” . . . 14
2.5 Nunez-Varela et al. “Gaze Allocation During Visually Guided Manipulation” 15

EU FP7 CogX 2

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

Executive Summary

In the reporting period, we have published two articles describing the so-
called switching planner, the main promised result of Task 4.1. In these
articles we detail the theoretical foundations as well as its practical realisa-
tion in the CogX demonstrator “Dora”. With the present report, Task 4.1
can therefore be considered complete (although we will continue studying
the topic).

We have also continued to investigate planning for information gathering
(Task 4.2). The techniques developed in the last year, described in a num-
ber of publications in the annexes of this report, permit planning despite
knowledge gaps and planning for closing them. In particular, by enabling
deterministic planners to reason about uncertainty and sensing actions, the
gap between the “classical” and decision-theoretic approaches used in the
switching planner is diminished.

Role of Planning in CogX

Planning is a crucial capability for any cognitive agent, because it enables
it to act autonomously: rather than just executing pre-defined scripts, a
planning agent can devise its own solutions for the goals it is given or which
it develops. In the CogX project, planning has an additional important role
in detecting and filling gaps in knowledge: information-gathering actions,
e.g. active visual search or asking a question, are planned whenever there is
a knowledge gap crucial for achieving a goal.

Contribution to the CogX scenarios and prototypes

The planners developed in this workpackage are responsible for all behaviour-
related decisions in the CogX prototypes Dora and George.

EU FP7 CogX 3

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

1 Tasks, objectives, results

1.1 Planned work

WP4 provides the CogX robots with capabilities for decision making un-
der incomplete and uncertain knowledge. Although this is a very complex
reasoning task it must be performed in real time to be usable on an in-
teractive robot. This dichotomy puts serious resource constraints on plan-
ning. To address them, in the proposed work we identified a switching
symbolic/decision-theoretic planner as a desirable goal for the project. This
was expressed as Task 4.1.

Task 4.1: A switching symbolic/decision-theoretic planner. In this task
we will look at how to combine these two approaches (symbolic and
decision theoretic) into the switching planner discussed above. The
result should be a planner that can do limited reasoning about belief
states (the representation in terms of epistemic operators is much less
expressive than a full probabilistic belief-state representation) but still
make good decisions, and that will operate in close-to real-time.

While in Task 4.1. the architecture of such a hybrid planning system
is investigated, the goal of Task 4.2. is to study representations and meth-
ods for reasoning about information gathering in incompletely known and
partially observable environments.

Task 4.2: General planning of information gathering and dialogue actions.
The symbolic planner developed in Task 4.1 is limited in that it uses
epistemic operators to represent beliefs, so it can only represent that a
fact is known to be true, known to be false, or unknown. Better plans
can be achieved by representing a much richer set of beliefs, for example
by using probabilistic belief states. . . . In Task 4.2 we will extend the
planning system to allow arbitrary belief states to be reasoned about.
The aim is to produce a planner capable of planning over arbitrary
belief states, but specialised for the requirements of our domain.

1.2 Actual work performed

1.2.1 The Switching Planner

In the reporting period, we have finished building the switching planner,
evaluated it in simulation [1] and fully integrated in into the Dora robot
demonstrator [2] .

At its core, the switching planner is a continual planner, interleaving
planning and execution. The system switches in the sense that planning
and plan execution proceed in interleaved sessions in which the base planner
is either sequential or decision-theoretic (DT). (The base planners have been

EU FP7 CogX 4

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

described in DR.4.2.) The planner is activated when a description of the
current problem state and domain are posted to the sytem in the DTPDDL
language (cf. DR.4.2). The initial planning session is sequential, thus a
serial plan is computed that corresponds to one execution-trace in the un-
derlying decision-process. That trace is a reward-giving sequence of process
actions and assumptive actions. Each assumptive action corresponds to an
assertion about some facts that are unknown at plan time – e.g. that a
box of cornflakes is located on the corner bench in the kitchen. The trace
specifies a plan and characterises a deterministic approximation (see [3]) of
the underlying process in which that plan is valuable. Traces are computed
by the cost-optimising classical planner which trades off action costs, goal
rewards, and determinacy. Execution of a trace proceeds according to the
process actions in the order that they appear in the trace. If, according to
the underlying belief-state, the outcome of the next action scheduled for ex-
ecution is not predetermined above a threshold (here 95%), then the system
switches to a DT session.

Because online DT planning is impractical for the size of problem we are
interested in, DT sessions plan in a small abstract problem defined in terms
of the trace from the proceeding sequential session. This abstract state-space
is characterised by a limited number of propositions, chosen because they
relate evidence about assumptions in the trace. To allow the DT planner to
judge assumptions from the trace, we add disconfirm and confirm actions to
the problem for each of them. Those yield a relatively small reward/penalty
if the corresponding judgement is true/false. Once the DT planner either
confirms or rejects a hypothesis, it returns control back to the continual
planner, which treats the outcome of the DT session like the outcome of any
other action.

Relevant annexes:

• Annex 2.1 consist of a paper (accepted for AAAI 2011) describing the
switching planner in detail as well as the actual variant of DTPDDL
used by the system. Here, the approach is evaluated in simulation,
but on fairly large problems, the number of states ranging from 1021

to more than 1036.

• Annex 2.2 (the paper was accepted for ECMR 2011) presents the
switching planner integrated into an actual robot system correspond-
ing to the CogX demonstrator Dora. The switching planner is used for
a particular task here, so-called Active Visual Search (AVS, i.e. the
problem of determing a series of actions to localise a specific object in
an unknown environment.

EU FP7 CogX 5

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

1.2.2 Planning of Information Gathering and Dialogue Actions

In the reporting period, we have further investigated methods for planning
of information gathering actions and, in general, planning under uncertain
and incomplete knowledge.

As already discussed in the project proposal, the real-time constraints of
planning on a real robot system make full-blown decision-theoretic planning
hard. Two of the papers in this deliverable, attached in Annexes 2.4 and
2.3, therefore investigate how reasoning about information gathering and
uncertainty can be efficiently performed in a deterministic planning setting.

Keller and Eyerich [4] describe a new method for determinising prob-
abilistic planning operators, i.e. for turning a problem of planning under
uncertainty into a deterministic one. Such a determinisation can be used in
a wide variety of ways, ranging from continual replanning approaches such
as the one at the core of our switching planner over heuristics in search al-
gorithms like LAO? to initial guidance for, e.g., the UCT-algorithm as used
in the PROST planner that is briefly described later. Previous determiniza-
tion techniques suffered from potential exponential blowup due to parallel,
conjunctive probabilistic effects. This is overcome by a technique based on
Forked Normal Form, a novel normal form for probabilistic planning where
parallel probabilistic effects are applied sequentially and the exponential
blowup in the determinization is avoided.

This technique has also been incorporated into a novel planning sys-
tem, the PROST planner by Thomas Keller and Patrick Eyerich, which has
recently won the International Probabilistic Planning Competition (IPPC)
held at ICAPS 2011 (we have not written a paper about the planner yet).
PROST is based on a sampling strategy, more specifically on the UCT-
algorithm, which is guided initially by a determinzation based heuristic to
avoid the random walks that typically prevent UCT from converging to a
good strategy fastly.

Somewhat orthogonally, Brenner and Nebel show how branching upon
(and therefore possibly determinisation of) possible outcomes can be avoided
by introducing the concept of runtime variables into the paradigm of Con-
tinual Planning. Essentially, outcomes of planned sensing actions that are
naturally still unknown at planning time can often still be reasoned about
in a sequential plan if properly represented. For example, if a robot plans
to ask a human user for the position of a box of cornflakes, it can plan
to move to that place next without having to branch in advance over all
possible answers. The paper shows how Continual Planning with runtime
variables, in combination with the concept of assertions, can generate series
of sequential plans that solve planning tasks that in non-continual planning
would necessitate plans with conditional branching or even loops.

Finally, Nunez-Varela et al. describe a POMDP approach to reduce un-
certainty about the position of objects in table-top manipulation scenario.

EU FP7 CogX 6

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

While we previously have investigated the POMDP as a model for planning
under observational uncertainty in WP4, this treated systems that have a
single thread of execution. Here, robots are thought of as having multiple
motor systems or multiple threads of execution. Our work extends that of
Ballard and Sprague [5]. The problem domain is one in which the robot has
several motor systems that can alter the physical state of the world (e.g.
manipulators that can pick up and drop objects) and a single perceptual
system. The task of the robot is to move objects from the centre of a table
to containers on either side. Each arm has high and low level controllers
that would enable the completion of the task if the positions of the objects
were precisely known. These controllers are learned using a reinforcement
learning algorithm. The precise position of the objects, is however, uncer-
tain, and the robot can reduce uncertainty about the pose of an object by
looking at it. The resulting observations are integrated using a Bayesian
recursive filter (in this case a particle filter). At execution time the robot
chooses actions for each arm based on its current estimate of the positions
of the objects on the table. It then chooses where to direct its gaze based
on the additional reward it can generate by reducing its uncertainty about
the state of the environment. The gaze choices the robot has are to look
at any of the objects in its visual memory, or at landmark locations in the
scene, such as the centre of the table. When uncertainty in the position of
a target, such as an object, is reduced an action such as picking that object
up becomes more reliable and thus generates a higher level of reward. The
method is computationally equivalent to performing one step lookahead in
a POMDP.

Relevant annexes:

• Annex 2.4 describes (continual) planning for knowledge changes with
runtime variables.

• Annex 2.3 presents the determinisation approach that is used in the
PPDDL version of our PROST planning system.

• Annex 2.5 describes our POMDP approach to gaze control.

• Annex 2.3 in DR.6.3 is also relevant for this task. The paper (submit-
ted to ESSLLI SS 2011) describes how ideas from continual planning,
namely the concept of assertions, can be used in a dialogue system to
model knowledge gaps and enforce their “filling” in later phases of the
dialogue.

• Finally, Annex 2.4 in DR.5.4 is also relevant here. This work facilitates
information gathering actions for the case of learning object models
by providing the quantitative measures for model completeness and

EU FP7 CogX 7

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

information gain of a learning action that are required in order to
plan for knowledge changes.

1.3 Relation to the state-of-the-art

There are still only few integrated robot systems based on domain-independent
planning. Among those that do, the need for a high-level continual plan-
ning and execution monitoring subsystem is widely recognised [6, 7, 8]. Yet,
only few principled approaches to CP have been described [9, 10]. Our own
CP approach is based on the idea of proactive knowledge-gathering : instead
of planning for all possible contingencies, agents try to learn more about
the state of the world directly [11]. In order to enable agents to reason
about how they can gather additional knowledge it is necessary to explicitly
model the agents’ beliefs as well as their sensing capabilities as part of their
formal planning domain [12, 13, 10, 14]. The idea of using runtime vari-
ables for referring to future results of information gathering actions is not
new: Etzioni and colleagues mentioned the use of runtime variables in their
systems [12, 15, 10]. Similarly, Petrick and Bacchus described the use of
0-ary functional fluents as runtime variables [14, 16]. None of the previous
work, however, clearly defined the semantics of planning with them. To our
knowledge, the work by Brenner and Nebel presented in this report is thus
the first to provide such a definition [17], in the context of the Functional
STRIPS language developed by Geffner [18].

One important open research challenge is to combine continual planning
with probabilistic models of noisy sensing. Addressing task and observa-
tion planning specifically, as our own applications of the switching planner
[1, 2], there have been a number of recent developments where the under-
lying problem is modelled as a POMDP. For vision algorithm selection,
Sridharan, Wyatt and Dearden [19] exploit an explicitly modelled hierarchi-
cal decomposition of the underlying POMDP. Doshi and Roy [20] represent
a preference elicitation problem as a POMDP and take advantage of sym-
metry in the belief-space to exponentially shrink the state-space. Although
we have been actively exploring the Doshi and Roy approach [20], those
exploitable symmetries are not present in problems we consider due to the
task planning requirement.

Our switching planner approach can be thought of as an online POMDP
solver that uses a sequential plan to guide the search, rather than (e.g.,
Monte-Carlo) sampling. Also, compared to most online POMDP proce-
dures, which replan at each step, our approach involves relatively little
replanning. In a similar vein, recent online POMDP solution procedures
have been developed which leverage highly approximate value functions –
computed using an offline procedure – and heuristics in forward search [21].
These approaches are applicable in relatively small problems, and can re-
quire expensive problem-specific offline processing in order to yield good be-

EU FP7 CogX 8

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

haviours. A very recent and promising online approach for larger POMDPs
employs Monte-Carlo sampling to break the curse of dimensionality in situ-
ations where goal reachability is easily determined [22].

In the direction of leveraging classical approaches for planning under
uncertainty, the most highlighted system to date has been FF-Replan [23],
the winning entry from the probabilistic track of the 2004 International
Planning Competition. In the continual paradigm, FFRa uses FF to com-
pute sequential plans and execution traces. Also leveraging deterministic
planners in problems that feature uncertainty, Conformant-FF [24] and
T0 [25] demonstrate how conformant planning – i.e., sequential planning
in unobservable worlds – can be modelled as a deterministic problem, and
therefore solved using sequential systems. In this conformant setting, ad-
vances have been towards compact representations of beliefs amenable to
existing best-first search planning procedures, and lazy evaluations of be-
liefs. We consider it an appealing future direction to pursue conformant
reasoning during the sequential sessions we proposed. Most recently this re-
search thread has been extended to contingent planning in fully observable
non-deterministic environments [26].

In order to leverage classical planning for probabilistic domain, most
of the above mentioned systems, in particular those that have successfully
participated in the International Probabilistic Planning Competition, e.g.
FF-Replan [23], FPG [27] or RFF-(BG/PG) [28], make use of a determin-
isation of the probabilistic planning task. Two classes of determinization
strategies have been described: Single outcome determinizations choose one
possible outcome for each probabilistic operator, accepting that solvable
tasks might become unsolvable in the determinization, while all outcome
determinizations preserve solvability by generating all potential outcomes.
The only all outcome determinization used in practice generates one op-
erator for each potential outcome, possibly leading to exponentially many
operators in the determinization [29]. The paper by Keller and Eyerich in
this report provides a polynomial determinisation [4].

References

[1] Moritz Göbelbecker, Charles Gretton, and Richard Dearden. A switch-
ing planner for combined task and observation planning. In Twenty-
Fifth Conference on Artificial Intelligence (AAAI-11), August 2011.

[2] Alper Aydemir, Moritz Göbelbecker, Kristoffer Sjöö, Andrzej Prono-
bis, and Patric Jensfelt. Plan-based object search and exploration us-
ing semantic spatial knowledge in the real world’. In Fifth European
Conference on Mobile Robots (EMCR’11), 2011.

EU FP7 CogX 9

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

[3] Sungwook Yoon, Alan Fern, Robert Givan, and Subbarao Kambham-
pati. Probabilistic planning via determinization in hindsight. In AAAI,
pages 1010–1016, 2008.

[4] Thomas Keller and Patrick Eyerich. A polynomial all outcome deter-
minization for probabilistic planning. In Proceedings of the 21th Inter-
national Conference on Automated Planning and Scheduling (ICAPS).
AAAI Press, june 2011.

[5] Nathan Sprague, Dana Ballard, and Al Robinson. Modeling embodied
visual behaviors. ACM Trans. Appl. Percept., 4, July 2007.

[6] Jeremy L. Wyatt, Alper Aydemir, Michael Brenner, Marc Hanheide,
Nick Hawes, Patric Jensfelt, Matej Kristan, Geert-Jan M. Kruijff,
Pierre Lison, Andrzej Pronobis, Kristoffer Sjöö, Danijel Skočaj, Alen
Vrečko, Hendrik Zender, and Michael Zillich. Self-understanding and
self-extension: A systems and representational approach. IEEE Trans-
actions on Autonomous Mental Development, 2(4):282 – 303, December
2010.

[7] K. Talamadupula, J. Benton, S. Kambhampati, P. Schermerhorn, and
M. Scheutz. Planning for human-robot teaming in open worlds. ACM
Trans. Intell. Syst. Technol., 1:14:1–14:24, December 2010.

[8] D. Kraft, E. Başeski, M. Popović, A. M. Batog, A. Kjær-Nielsen,
N. Krüger, R. Petrick, C. Geib, N. Pugeault, M. Steedman, T. As-
four, R. Dillmann, S. Kalkan, F. Wörgötter, B. Hommel, R. Detry, and
J. Piater. Exploration and planning in a three-level cognitive architec-
ture. In CogSys, 2008.

[9] José A. Ambros-Ingerson and Sam Steel. Integrating planning, execu-
tion and monitoring. In Proceedings of the 7th National Conference of
the American Association for Artificial Intelligence (AAAI-88), pages
83–88, Saint Paul, MI, August 1988.

[10] K. Golden. Leap before you look: Information gathering in the PUC-
CINI planner. In Proceedings of the 4th International Conference on
Artificial Intelligence Planning Systems (AIPS-98), pages 70–77, 1998.

[11] Michael Brenner and Bernhard Nebel. Continual planning and acting
in dynamic multiagent environments. Journal of Autonomous Agents
and Multiagent Systems, 19(3):297–331, 2009.

[12] Oren Etzioni, Steve Hanks, Daniel Weld, Denise Draper, Neal Lesh,
and Mike Williamson. An approach to planning with incomplete in-
formation. In Principles of Knowledge Representation and Reasoning:
Proceedings of the 3rd International Conference (KR-92), pages 115–
125, Cambridge, MA, 1992. Morgan Kaufmann.

EU FP7 CogX 10

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

[13] Hector J. Levesque. What is planning in the presence of sensing? In
Proceedings of the 13th National Conference of the American Associa-
tion for Artificial Intelligence (AAAI-96), pages 1139–1146. MIT Press,
1996.

[14] R. Petrick and F. Bacchus. A knowledge-based approach to plan-
ning with incomplete information and sensing. In Malik Ghallab,
Joachim Hertzberg, and Paolo Traverso, editors, Proceedings of the
Sixth International Conference on Artificial Intelligence Planning Sys-
tems, Toulouse, France, 2002. AAAI Press.

[15] Oren Etzioni, Keith Golden, and Daniel S. Weld. Sound and efficient
closed-world reasoning for planning. 89(1-2):113–148, 1997.

[16] Ronald P. A. Petrick and Fahiem Bacchus. Extending the knowledge-
based approach to planning with incomplete information and sensing. In
Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, Proceed-
ings of the Fourteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2004), June 3-7, 2004, Whistler, British
Columbia, Canada, pages 2–11. AAAI Press, 2004.

[17] Michael Brenner and Bernhard Nebel. On continual planning with
runtime variables. In Gerhard Lakemeyer and Sheila A. McIlraith,
editors, Knowing, Reasoning, and Acting: Essays in Honour of Hector
J. Levesque. College Publications, 2011.

[18] Hctor Geffner. Functional Strips: A more flexible language for planning
and problem solving. In Jack Minker, editor, Logic-Based Artificial
Intelligence. Kluwer, Dordrecht, Holland, 2000.

[19] Mohan Sridharan, Jeremy Wyatt, and Richard Dearden. Planning to
see: Hierarchical POMDPs for planning visual actions on a robot. Artif.
Intell., 174(11):704–725, 2010.

[20] Finale Doshi and Nicholas Roy. The permutable POMDP: Fast solu-
tions to POMDPs for preference elicitation. In AAMAS, 2008.

[21] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online planning
algorithms for POMDPs. J. Artif. Int. Res. (JAIR), 32:663–704, July
2008.

[22] D. Silver and J. Veness. Monte-carlo planning in large POMDPs. In
NIPS, 2010.

[23] Sung Wook Yoon, Alan Fern, and Robert Givan. FF-Replan: A Base-
line for Probabilistic Planning. In Proceedings of the 17th Interna-
tional Conference on Automated Planning and Scheduling (ICAPS),
pages 352–359, 2007.

EU FP7 CogX 11

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

[24] Jörg Hoffmann and Ronen I. Brafman. Conformant planning via heuris-
tic forward search: a new approach. Artif. Intell., 170:507–541, May
2006.

[25] Hector Palacios and Hector Geffner. Compiling uncertainty away in
conformant planning problems with bounded width. J. Artif. Intell.
Res. (JAIR), 35:623–675, August 2009.

[26] Alexandre Albore, Héctor Palacios, and Héctor Geffner. A translation-
based approach to contingent planning. In IJCAI, pages 1623–1628,
2009.

[27] Olivier Buffet and Douglas Aberdeen. FF + FPG: Guiding a policy-
gradient planner. In Proceedings of the 17th International Conference
on Automated Planning and Scheduling (ICAPS), pages 42–48, 2007.

[28] Florent Teichteil-Königsbuch, Guillaume Infantes, and Ugur Kuter.
RFF: A Robust, FF-Based MDP Planning Algorithm for Generating
Policies with Low Probability of Failure, 2008. IPPC Planner Abstract.

[29] Jussi Rintanen. Expressive Equivalence of Formalisms for Planning
with Sensing. In Proceedings of the 13th International Conference on
Automated Planning and Scheduling (ICAPS), pages 185–194, 2003.

EU FP7 CogX 12

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

2 Annexes

2.1 Göbelbecker et al. “A Switching Planner for Combined
Task and Observation Planning” (AAAI 2011)

Bibliography Moritz Göbelbecker, Charles Gretton and Richard Dear-
den. “A Switching Planner for Combined Task and Observation Planning”
In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelli-
gence (AAAI-11)

Abstract From an automated planning perspective the problem of prac-
tical mobile robot control in realistic environments poses many important
and contrary challenges. On the one hand, the planning process must be
lightweight, robust, and timely. Over the lifetime of the robot it must always
respond quickly with new plans that accommodate exogenous events, chang-
ing objectives, and the underlying unpredictability of the environment. On
the other hand, in order to promote efficient behaviours the planning process
must perform computationally expensive reasoning about contingencies and
possible revisions of subjective beliefs according to quantitatively modelled
uncertainty in acting and sensing.

Towards addressing these challenges, we develop a continual planning
approach that switches between using a fast satisficing “classical” planner,
to decide on the overall strategy, and decision-theoretic planning to solve
small abstract subproblems where deeper consideration of the sensing model
is both practical, and can significantly impact overall performance. We
evaluate our approach in large problems from a realistic robot exploration
domain.

Relation to WP The switching planner is the result of our efforts to
make automated planning practically usable for real-time robotics. This
paper thus constitutes the main theoretical result of Task 4.1.

2.2 Aydemir et al. “Plan-based Object Search and Explo-
ration Using Semantic Spatial Knowledge in the Real
World” (ECMR 2011)

Bibliography Alper Aydemir, Moritz Göbelbecker, Kristoffer Sjöö, An-
drzej Pronobis and Patric Jensfelt. “Plan-based Object Search and Ex-
ploration Using Semantic Spatial Knowledge in the Real World” In Fifth
European Conference on Mobile Robots (EMCR’11))

Abstract In this paper we present a principled planner based approach
to the active visual object search problem in unknown environments. We
make use of a hierarchical planner that combines the strength of decision

EU FP7 CogX 13

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

theory and heuristics. Furthermore, our object search approach leverages
on the conceptual spatial knowledge in the form of object cooccurences and
semantic place categorisation. A hierarchical model for representing object
locations is presented with which the planner is able to perform indirect
search. Finally we present real world experiments to show the feasibility of
the approach.

Relation to WP This paper complements Annex 2.1 by showing how
our switching planner is used in practice on a physical robot, namely in the
Dora demonstrator scenario.

2.3 Keller and Eyerich “A Polynomial All Outcome Deter-
minization for Probabilistic Planning” (ICAPS 2011)

Bibliography Thomas Keller and Patrick Eyerich “A Polynomial All Out-
come Determinization for Probabilistic Planning ” In Proceedings of the
21th International Conference on Automated Planning and Scheduling (ICAPS).

Abstract Most predominant approaches in probabilistic planning utilize
techniques from the more thoroughly investigated field of classical planning
by determinizing the problem at hand. In this paper, we present a method
to map probabilistic operators to an equivalent set of probabilistic operators
in a novel normal form, requiring polynomial time and space. From this,
we directly derive a determinization which can be used for, e. g., replan-
ning strategies incorporating a classical planning system. Unlike previously
described all outcome determinizations, the number of deterministic opera-
tors is not exponentially but polynomially bounded in the number of parallel
probabilistic effects, enabling the use of more sophisticated determinization-
based techniques in the future.

Relation to WP This work is part of our investigation of novel ways
for planning under uncertainty in Task 4.2, but also provides groundwork
for probabilistic extensions of our continual planning approach that may be
used in future versions of the switching planner.

2.4 Brenner and Nebel “On Continual Planning with Run-
time Variables”

Bibliography Michael Brenner and Bernhard Nebel “On Continual Plan-
ning with Runtime Variables” In G. and S. A. McIlraith (Eds.) Knowing,
Reasoning, and Acting: Essays in Honour of Hector J. Levesque. College
Publications, 2011.

EU FP7 CogX 14

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

Abstract This article discusses the problem of planning and acting in par-
tially observable environments. In many such domains conditional planning
for all contingencies is prohibitively hard. Therefore we advocate a continual
planning approach, where decisions can, by means of so-called assertions, be
deferred until execution time when more information is available. Addition-
ally, we formalize the notion of runtime variables as functional fluents, which
can act as placeholders for sensing results unknown at planning time. Using
runtime variables and assertions we show how a series of sequential plans
can solve planning tasks that in non-continual planning would necessitate
plans with conditional branching and loops.

Relation to WP The paper is part of our investigation of planning for
information gathering (Task 4.2) in a deterministic planning setting. In such
a setting, runtime variables can conveniently represent future knowledge
changes, i.e. sensing results yet unknown at planning time, without having
to resort to more computationally complex representation schemes.

2.5 Nunez-Varela et al. “Gaze Allocation During Visually
Guided Manipulation”

Bibliography J. Nunez-Varela, P. Mani, B. Ravindran and J. Wyatt
“Gaze Allocation During Visually Guided Manipulation” Technical Report,
University of Birmingham, School of Computer Science.

Abstract In this work we present principled methods for the coordination
of a robot’s oculomotor system with the rest of its body motor systems. The
problem is to decide which physical actions to perform next and where the
robot’s gaze should be directed in order to gain information that is relevant
to the success of its physical actions. Previous work on this problem has
shown that a reward-based coordination mechanism provides an efficient
solution. However, that approach does not allow the robot to move its
gaze to different parts of the scene, it considers the robot to have only
one motor system, and assumes that the actions have the same duration.
The main contributions of our work are to extend that previous reward-
based approach by making decisions about where to fixate the robot’s gaze,
handling multiple motor systems, and handling actions of variable duration.
We compare our approach against two common baselines, random and round
robin gaze allocation. We show how our method provides a more effective
strategy to allocate gaze where is needed the most.

Relation to WP This work was done in the context of Task 4.2 (planning
for information gathering). While we have investigated the POMDP as
a model for planning under observational uncertainty in WP4 previously,
this treated systems that have a single thread of execution. In fact robots

EU FP7 CogX 15

DR 4.3: Planning for Knowledge Changes Brenner, Dearden, Göbelbecker, Gretton, Eyerich, Keller & Nebel

can be thought of as having multiple motor systems or multiple threads of
execution. This paper desribes a model that plans perceptual actions for
robots with multiple motor systems, also based on the POMDP formalism.

EU FP7 CogX 16

A Switching Planner for Combined Task and Observation Planning

Moritz Göbelbecker
Albert-Ludwigs-Universität Freiburg, Germany

goebelbe@informatik.uni-freiburg.de

Charles Gretton, Richard Dearden
University of Birmingham, United Kingdom
{c.gretton,R.W.Dearden}@cs.bham.ac.uk

Abstract
From an automated planning perspective the problem of prac-
tical mobile robot control in realistic environments poses
many important and contrary challenges. On the one hand,
the planning process must be lightweight, robust, and timely.
Over the lifetime of the robot it must always respond quickly
with new plans that accommodate exogenous events, chang-
ing objectives, and the underlying unpredictability of the en-
vironment. On the other hand, in order to promote efficient
behaviours the planning process must perform computation-
ally expensive reasoning about contingencies and possible re-
visions of subjective beliefs according to quantitatively mod-
elled uncertainty in acting and sensing. Towards addressing
these challenges, we develop a continual planning approach
that switches between using a fast satisficing “classical” plan-
ner, to decide on the overall strategy, and decision-theoretic
planning to solve small abstract subproblems where deeper
consideration of the sensing model is both practical, and can
significantly impact overall performance. We evaluate our
approach in large problems from a realistic robot exploration
domain.

Introduction
A number of recent integrated robotic systems incorporate
a high-level continual planning and execution monitoring
subsystem (Wyatt et al. 2010; Talamadupula et al. 2010;
Kraft et al. 2008). For the purpose of planning, sensing is
modelled deterministically, and beliefs about the underlying
state are modelled qualitatively. Both Talamadupula et al.
and Wyatt et al. identify continual planning with probabilis-
tic models of noisy sensing and state as an important chal-
lenge for future research. Motivating that sentiment, plan-
ning according to accurate stochastic models should yield
more efficient and robust deliberations. In essence, the chal-
lenge is to develop a planner that exhibits speed and scalabil-
ity similar to planners employed in existing robotic systems
– e.g., Wyatt et al. use a satisficing classical procedure –
and which is also able to synthesise relatively efficient de-
liberations according to detailed probabilistic models of the
environment.

This paper describes a switching domain independent
planning approach we have developed to address this chal-
lenge. Our planner is continual in the usual sense that plans

Copyright c� 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

are adapted and rebuilt online in reaction to changes to the
model of the underlying problem and/or domain – e.g., when
goals are modified, or when the topological map is altered by
a door being closed. It is integrated on a mobile robot plat-
form that continuously deliberates in a stochastic dynamic
environment in order to achieve goals set by the user, and ac-
quire knowledge about its surroundings. Our planner takes
problem and domain descriptions expressed in a novel ex-
tension of PPDDL (Younes et al. 2005), called Decision-
Theoretic DTPDDL, for modelling stochastic decision prob-
lems that feature partial observability. In this paper we re-
strict our attention to problem models that correspond to
deterministic-action goal-oriented POMDPs in which all ac-
tions have non-zero cost, and where an optimal policy can be
formatted as a finite horizon contingent plan. Moreover, we
target problems of a size and complexity that is challenging
to state-of-the-art sequential satisficing planners, and which
are too large to be solved directly by decision-theoretic (DT)
systems.

Our planner switches, in the sense that the base planning
procedure changes depending on our robot’s subjective de-
grees of belief, and on progress in plan execution. When the
underlying planner is a fast (satisficing) classical planner,
we say planning is in a sequential session, and otherwise it
is in a DT session. A sequential session plans, and then pur-
sues a high-level strategy – e.g., go to the kitchen bench, and
then observe the cornflakes on it. A DT session proceeds in
a practically sized abstract process, determined according to
the current sequential strategy and underlying belief-state.

We evaluate our approach in simulation on problems
posed by object search and room categorisation tasks that
our indoor robot undertakes. Those feature a deterministic
task planning aspect with an active sensing problem. The
larger of these problems features 6 rooms, 25 topological
places, and 21 active sensing actions. The corresponding
decision process has a number of states exceeding 1036, and
high-quality plans require very long planning horizons. Al-
though our approach is not optimal, particularly as it relies
on the results of satisficing sequential planning directly, we
find that it does nevertheless perform better than a purely se-
quential replanning baseline. Moreover, it is fast enough to
be used for real-time decision making on a mobile robot.

Propositionally Factored Decision-Theoretic
Planning

We describe the partially observable propositional proba-
bilistic planning problem, with costs and rewards. We model
a process state s as the set of propositions that are true of
the state. Notationally, P is the set of propositions, p is an
element from that set, and we have s ⊆ P . The underly-
ing process dynamics are modelled in terms of a finite set
of probabilistic STRIPS operators (Boutilier and Dearden
1994) A over state-characterising propositions P . We say
an action a ∈ A is applicable if its precondition pre(a),
a set of propositions, are satisfied in the current state – i.e.,
pre(a) ⊆ s. We denote by µa(ad

i) the probability that na-
ture chooses a deterministic STRIPS effect ad

i , and for all a
we require

�
ad

i
µa(ad

i) = 1.
We are concerned with problems that feature partial ob-

servability. Although we could invoke extended probabilis-
tic STRIPS operators (Rintanen 2001) to model actions and
observations propositionally, we find it convenient for pre-
sentation and computation to separate sensing and action.
Therefore, we suppose a POMDP has a perceptual model
given in terms of a finite set of stochastic senses K, deter-
ministic sensing outcomes Kd, and perceptual propositions
Π, called percepts. In detail, we take an observation o to
be a set of percepts , i.e., o ⊆ Π, and denote by O the set
of observations. The underlying state of the process can-
not be observed directly, rather, senses κ ∈ K effect an
observation o ∈ O that informs what should be believed
about the state the process is in. If action a is applied ef-
fecting a transition to a successor state s�, then an observa-
tion occurs according to the active senses K(a, s�) ⊆ K.
A sense κ is active, written κ ∈ K(a, s�), if the senses’
action-precondition, preA(κ), is equal to a, and the state-
precondition preS(κ) ⊆ P is satisfied by the state s�, i.e.,
preS(κ) ⊆ s�. When a sense is active, nature must choose
exactly one outcome amongst a small set of deterministic
choices Kd(κ) ≡ {κd

1, . . . ,κ
d
k}, so that for each i we have

κd
i ⊆ Π. The probability of the ith element being chosen is

given by ψκ(κd
i), where

�
κd

i
∈Kd(κ) ψκ(κd

i) = 1. The ob-
servation received by the agent corresponds to the union of
perceptual propositions from the chosen elements of active
senses.

A POMDP has a starting configuration that corresponds
to a Bayesian belief-state. Intuitively, this is the robot’s sub-
jective belief about its environment. Formally, a belief-state
b is a probability distribution over process states. We write
b(s) to denote the probability that the process is in s accord-
ing to b, and b0 when discussing the starting configuration.

Costs, Rewards, and Belief Revision
Until now we have discussed the POMDP in terms of propo-
sitions and percepts. In order to address belief revision
and utility it is convenient to consider the underlying de-
cision process in a flat format. This is given by the tuple
�S, b0, A, Pr, R, O, v�. Here, b0 is the initial belief-state, S
is the finite set of reachable propositional states, A is the
finite set of actions, and O is the finite set of reachable ob-

servations. Where s, s� ∈ S , a ∈ A, from µ we have a state
transition function Pr(s, a, s�) giving the probability of a
transition from state s to s� if a is applied. For any s and a we
have

�
s�∈S Pr(s, a, s�) = 1. The function R : S ×A→ �

is a bounded real valued reward function. Therefore a finite
positive constant c exists so that for all s ∈ S and a ∈ A,
|R(s, a)| < c. We model costs as negative rewards. From
ψ we have that for each s� ∈ S and action a ∈ A, an ob-
servation o ∈ O is generated independently according to a
probability distribution v(s�, a). We denote by vo(s

�, a) the
probability of getting observation o in state s�. For s� and a
we have

�
o∈O vo(s

�, a) = 1.
Successive state estimation is by application of Bayes’

rule. Taking the current belief b as the prior, and supposing
action a is executed with perceptive outcome o, the proba-
bility that we are in s� in the successive belief-state b� is:

b�(s�) =
vo(s

�, a)
�

s∈S Pr(s, a, s�)b(s)

Pr(o|a, b)
(1)

where Pr(o|a, b) is a normalising factor, giving the proba-
bility of getting observation o if a is applied to b.

Plan Evaluation
An optimal solution to a finite-horizon POMDP is a contin-
gent plan, and can be expressed as a mapping from obser-
vation histories to actions. Although suboptimal in general,
useful plans can also take a classical sequential format. This
is the case in conformant planning, where the objective is to
find a sequence of actions that achieves a goal —i.e., reaches
a state that satisfies a given Boolean condition— with prob-
ability 1. Generally, whatever the plan format, its value cor-
responds to the expected reward:

VPLAN(b) = E
�N−1�

t=0

R(bt,PLANt) | PLAN, b0 = b

�
(2)

Where bt is the belief-state at step t, PLANt is the action
prescribed at step t, and

R(b, a) =
�

s∈S
b(s)R(s, a).

Planning Language and Notations
We give an overview of the declarative first-order language
DTPDDL, an extension of PPDDL that can express prob-
abilistic models of the sensing consequences of acting, to
quantitatively capture unreliability in perception. There are
straightforward compilations from problems expressed in
DTPDDL to flat state-based (and propositionally factored)
representations of the underlying decision process. Al-
though similar to the POND input language (Bryce, Kamb-
hampati, and Smith 2008), DTPDDL distinguishes itself by
explicitly treating state and perceptual symbols separately,
and by providing distinct declarations for operators (i.e, state
model) and senses (i.e., observation model). In this last re-
spect, DTPDDL admits more compact domain descriptions
where sensing effects are common across multiple opera-
tors. In detail, DTPDDL has perceptual analogues of fluent

and predicate symbols. For example, a simple object search
domain would have:
(:functions
(is-in ?v - visual-object) - location)

(:perceptual-functions
(o-is-in ?v - visual-object) - location)

Where the first fluent symbol models the actual location of
objects, and the second the instantaneous sensing of ob-
jects following application of an action with sensing con-
sequences. To model sensing capabilities, we have operator-
like “sense” declarations, with preconditions expressed us-
ing state and action symbols, and uniformly positive ef-
fects over perceptual symbols. For example, where look-
for-object is the operator that applies an object detection al-
gorithm at a specific place, an object search task will have:
(:sense vision :parameters
(?r -robot ?v -visual-object ?l -location)
:execution (look-for-object ?r ?v ?l)
:precondition (and (= (is-in ?r) ?l))
:effect (and
(when (= (is-in ?v) ?l)
(probabilistic .8 (= (o-is-in ?v) ?l)))
(when (not (= (is-in ?v) ?l))
(probabilistic .1 (= (o-is-in ?v) ?l)))))

I.e., there is a 10% false positive rate, and 20% probability of
a false negative. This representation allows us to represent
actions that have multiple independent observational effects.

The DTPDDL syntax for describing an initial state dis-
tribution is taken verbatim from PPDDL. That distribu-
tion is expressed in a tree-like structure of terms. Each
term is either: (1) atomic, e.g., a state proposition such
as (= (is-in box)office), (2) probabilistic, e.g.,
(probabilistic ρ1(T1)..ρn(Tn)) where Ti are conjunc-
tive, or (3) a conjunct over probabilistic and atomic terms.
The root term is always conjunctive, and the leaves are
atomic. For example, a simplified object search could have:1

(:init (= (is-in Robot) kitchen)
(probabilistic .8 (= (is-in box) kitchen)

.2 (= (is-in box) office))
(probabilistic .3 (= (is-in cup) office)

.7 (= (is-in cup) kitchen)))

The interpretation is given by a visitation of terms: An atom
is visited iff its conjunctive parent is visited, and a conjunc-
tive term is visited iff all its immediate subterms are visited.
A probabilistic term is visited iff its conjunctive parent is
visited, and exactly one of its subterms, Ti, is visited. Each
visitation of the root term according to this recursive defini-
tion defines a starting state, along with the probability that
it occurs. The former corresponds to the union of all visited
atoms, and the latter corresponds to the product of ρi entries
on the visited subterms of probabilistic elements. Making
this concrete, the above example yields the following flat
distribution:

1In PDDL, (:init T1..Tn) expresses the conjunctive root of
the tree – i.e., the root node (and T1..Tn). Also, we shall write
p, rather than (and p), for conjunctive terms that contain a single
atomic subterm.

Probability (is-in Robot) (is-in box) (is-in cup)
.24 kitchen kitchen office
.06 kitchen office office
.56 kitchen kitchen kitchen
.14 kitchen office kitchen

Switching Continual Planner
We now describe our switching planning system that oper-
ates according to the continual planning paradigm. The sys-
tem switches in the sense that planning and plan execution
proceed in interleaved sessions in which the base planner is
either sequential or decision-theoretic. The first session is
sequential, and begins when a DTPDDL description of the
current problem and domain are posted to the system. Dur-
ing a sequential session a serial plan is computed that cor-
responds to one execution-trace in the underlying decision-
process. That trace is a reward-giving sequence of process
actions and assumptive actions. Each assumptive action cor-
responds to an assertion about some facts that are unknown
at plan time – e.g. that a box of cornflakes is located on
the corner bench in the kitchen. The trace specifies a plan
and characterises a deterministic approximation (see (Yoon
et al. 2008)) of the underlying process in which that plan is
valuable. Traces are computed by a cost-optimising classi-
cal planner which trades off action costs, goal rewards, and
determinacy. Execution of a trace proceeds according to the
process actions in the order that they appear in the trace.
If, according to the underlying belief-state, the outcome of
the next action scheduled for execution is not predetermined
above a threshold (here 95%), then the system switches to a
DT session.

Because online DT planning is impractical for the size of
problem we are interested in, DT sessions plan in a small
abstract problem defined in terms of the trace from the pro-
ceeding sequential session. This abstract state-space is char-
acterised by a limited number of propositions, chosen be-
cause they relate evidence about assumptions in the trace. To
allow the DT planner to judge assumptions from the trace,
we add disconfirm and confirm actions to the problem for
each of them. Those yield a relatively small reward/penalty
if the corresponding judgement is true/false. If a judgement
action is scheduled for execution, then the DT session is ter-
minated, and a new sequential session begins.

Whatever the session type, our continual planner main-
tains a factored representation of successive belief-states.
As an internal representation of the (:init) declaration,
we keep a tree-shaped Bayesian network which gets updated
whenever an action is performed, or an observation received.
That belief-state representation is used: (1) as the source
of candidate determinisations for sequential planning, (2) in
determining when to switch to a DT session, and (3) as a
mechanism to guide construction of an abstract process for
DT sessions.

Sequential Sessions
As we only consider deterministic-action POMDPs, all state
uncertainty is expressed in the (:init) declaration. This
declaration is used by our approach to define the starting
state for sequential sessions, and the set of assumptive ac-

tions available to sequential planning. Without a loss of
generality we also suppose that actions do not have nega-
tive preconditions. For a sequential session the starting state
corresponds to the set of facts that are true with probability
1. Continuing our example, that starting state is the single-
ton:

s0 ≡ {(= (is-in Robot) kitchen)}.

To represent state assumptions we augment the problem
posed during a sequential session with an assumptive action
A◦(ρi; Ti) for each element, ρi(Ti), of each probabilistic
term from (:init). Here, A◦(ρi; Ti) can be executed if no
A◦(ρj ; Tj), j �= i, has been executed from the same prob-
abilistic term, and, either (probabilistic ..ρi (Ti)..) is
in the root conjunct, or it occurs in Tk for some executed
A◦(ρk; Tk). We also add constraints that forbid scheduling
of assumptions about facts after actions with preconditions
or effects that mention those facts. For example, the robot
cannot assume it is plugged into a power source immediately
after it unplugs itself. Executing A◦(ρi; Ti) in a state s ef-
fects a transition to a successor state sTi , the union of s with
atomic terms from Ti, and of course annotated with auxiliary
variables that track the applicability of assumptive actions.
For example, consider the following sequential plan:

A◦(.8; (= (is-in box) kitchen));
A◦(.3; (= (is-in cup) office));
(look box kitchen); (look cup office);
(report box kitchen); (report cup office)

Applying the first action in s0 yields a state in which the
following facts are true:
{(= (is-in Robot) kitchen), (= (is-in box) kitchen)}
In the underlying belief-state, this is true with probability
0.8. The assumed state before the scheduled execution of
action (look box kitchen) is:
{(= (is-in Robot) kitchen), (= (is-in box) kitchen),
(= (is-in cup) office)}

Which is actually true with probability 0.24 according to the
underlying belief.

To describe the optimisation criteria used during sequen-
tial sessions we model A◦(ρi; Ti) probabilistically, suppos-
ing that its application in state s effects a transition to sTi

with probability ρi, and to s⊥ with probability 1− ρi. State
s⊥ is an added sink. Taking ρi to be the probability that the
ith sequenced action, ai, from a trace of state-action pairs
�s0, a0, s1, a1, .., sN � does not transition to s⊥, then the op-
timal sequential plan has value:

V ∗ = max
N

max
s0,a0,..,sN

�

i=1..N−1

ρi

�

i=1..N−1

R(si, ai),

DT Sessions
When an action is scheduled whose outcome is uncertain ac-
cording to the underlying belief-state, the planner switches
to a DT session. That plans for small abstract processes
defined according to the action that triggered the DT ses-
sion, the assumptive actions in the proceeding trace, and
the current belief-state. Targeted sensing is encouraged by
augmenting the reward model to reflect a heuristic value of
knowing the truth about assumptions. In detail, all rewards

from the underlying problem are retained. Additionally, for
each relevant assumptive action A◦(ρi; Ti) in the current
trace, we have a disconfirm action A•(ρi; Ti) so that for all
states s:

R(s, A•(ρi; Ti)) =

�
$(Ti) if Ti �⊆ s

$̂(Ti) otherwise

where $(Ti) (resp. $̂(Ti)) is a small positive (negative) nu-
meric quantity which captures the utility the agent receives
for correctly (incorrectly) rejecting an assumption. In terms
of action physics, a disconfirm action can only be executed
once, and otherwise is modelled as a self-transformation.
We only consider relevant assumptions when constructing
the abstract model. If ã is the action that switched the sys-
tem to a DT session, then an assumption A◦(ρi; Ti) is rel-
evant if it is necessary for the outcome of ã to be deter-
mined. For example, taking the switching action ã to be
(look box kitchen) from our earlier sequential plan ex-
ample, we have that A◦(.3; (= (is-in cup)office)) is
not relevant, and therefore we exclude the corresponding
disconfirm action from the abstract decision process. Given
ã, we also include another once-only self-transition action
A.pre(ã), a confirmation action with the reward property:

R(s, A.pre(ã)) =

�
$(pre(ã)) if pre(ã) ⊆ s

$̂(pre(ã)) otherwise

Execution of either a disconfirmation or the confirmation
action returns control to a sequential session, which starts
anew from the underlying belief-state.

Turning to the detail of (dis-)confirmation rewards, in our
integrated system these are sourced from a motivational sub-
system. In this paper, for A•(ρi; Ti) actions we set $(x) to
be a small positive constant, and have $̂(x) = −$(x)(1 −
ρ)/ρ where ρ is the probability that x is true. For A.pre(ã)

actions we have $̂(x) = −$(x)ρ/(1− ρ).
In order to guarantee fast DT sessions, those plan in an ab-

stract process determined by the current trace and underly-
ing belief-state. The abstract process posed to the DT plan-
ner is constructed by first constraining as statically false all
propositions except those which are true with probability 1,
or which are the subject of relevant assumptions. For ex-
ample, taking the above trace with assumptive action proba-
bilities changed to reflect the belief-state in Fig. 1B, given
switching action “(look box kitchen)” the underlying be-
lief in Fig. 1B would determine a fully constrained belief
given by Fig. 1A. Next, static constraints are removed, one
proposition at a time, until the number of states that can be
true with non-zero probability in the initial belief of the ab-
stract process reaches a given threshold. In detail, for each
statically-false proposition we compute the entropy of the
relevant assumptions of the current trace conditional on that
proposition. Let X be a set of propositions and 2X the pow-
erset of X , then taking

χ = {
�

x∈X�∩X

x ∧
�

x∈X\X�

¬x | X � ∈ 2X},

we have that χ is a set of conjunctions each of which cor-
responds to one truth assignment to elements in X . Where

(A) Fully constrained belief (C) Partially constrained belief
(:init (=(is-in Robot)kitchen)
(.6(=(is-in box)kitchen)))

(:init (=(is-in Robot)kitchen)
(.6(and(=(is-in box)kitchen)

(.9(=(is-in milk) kitchen))
.1(=(is-in milk)office))

.4(and(=(is-in box)office)
(.1(=(is-in milk)kitchen))
.9(=(is-in milk)office)))

(B) Underlying DTPDDL belief

(:init (=(is-in Robot)kitchen)
(.6(and(=(is-in box)kitchen)

(.9(=(is-in milk)kitchen))
.1(=(is-in milk)office))

.4(and(=(is-in box)office)
(.1(=(is-in milk)kitchen))
.9(=(is-in milk)office)))

(.6(=(is-in cup)office)
.4(=(is-in cup)kitchen)))

Figure 1: Simplified examples of belief-states from DT ses-
sions.

p(φ) gives the probability that a conjunction φ holds in the
belief-state of the DTPDDL process, the entropy of X con-
ditional on a proposition y, written H(X|y), is given by
Eq. 3.

H(X|y) =
�

x∈χ,y�∈{y,¬y}

p(x ∧ y�) log2

p(y�)

p(x ∧ y�)
(3)

A low H(X|y) value suggests that knowing the truth value
of y is useful for determining whether or not some assump-
tions X hold. When removing a static constraint on propo-
sitions during the abstract process construction, yi is consid-
ered before yj if H(X|yi) < H(X|yj). For example, if the
serial plan assumes the box is in the kitchen, then proposi-
tions about the contents of kitchens containing a box, e.g.
(= (is-in milk)kitchen), are added to characterise
the abstract process’ states. Taking a relevant assumption X
to be (= (is-in box)kitchen), in relaxing static con-
straints the following entropies are calculated:

.47 = H(X|(=(is-in milk)office))
= H(X|(=(is-in milk)kitchen))

.97 = H(X|(=(is-in cup)office))
= H(X|(=(is-in cup)kitchen))

Therefore, the first static constraint to be relaxed
is for (=(is-in milk)office), or equivalently
(=(is-in milk)kitchen), giving a refined abstract
belief state depicted in Fig. 1C. Summarising, if for Fig.1B
the DT session is restricted to belief-states with fewer than
8 elements, then the starting belief-state of the DT session
does not mention a “cup”.

Evaluation
We have implemented our switching approach in the MAP-
SIM environment (Brenner and Nebel 2009), using DLIB-
ML (King 2009) for belief revision. Sequential sessions use
a modified version of Fast Downward (Helmert 2006), and
DT sessions use our own contingent procedure. Since most
of the problems we consider are much larger than any avail-
able DT planner can solve directly, for comparison purposes
we also implemented a simple dual-mode replanning base-
line approach. Here, when a switching action is scheduled
for execution the DT session applies a single entropy reduc-
tion action, whose execution can provide evidence regarding

the truth value of a relevant assumption. Control is then im-
mediately returned to a new sequential session.

We evaluate our approaches in robot exploration tasks
from home and office environments. Spatially, these con-
sist of rooms (office/kitchen/etc), and an underlying topo-
logical map over smaller areas of space, called places, and
connectivity between those. The mobile robot and visual
objects inhabit the topological places. Objects indicate the
category of space they inhabit – e.g., spoons are likely to
be in kitchens. By examining view cones at places for par-
ticular objects, the robot is able to: (1) categorise space at
high (room) and low (place) levels, and (2) find objects for
the user, exploiting information about object co-occurrence
and room categories for efficiency. Also, in the presence of
a person, the robot can ask about the category of the current
room.

We compare switching to the baseline in several realistic
tasks, with the number of rooms ranging from 3 (12-places,
16-objects, |states| > 1021) to 6 (26-places, 21-objects,
|states| > 1036). We also compare those systems with near
optimal policies computed using Smith’s ZMDP for small 2
room problems (4-places, 3-objects, |states| � 5000). Our
evaluation considers 3 levels of reliability in sensing: reli-
able sensors have a .1 probability of a false negative, semi-
reliable have a chance of 0.3 of false negative and 0.1 of
false positive, and noisy sensors with probabilities of 0.5 and
0.2 respectively. Each object class is assigned one sensor
model – e.g. cornflakes may be harder to detect than re-
frigerators. We performed several experiments with differ-
ent levels of reliability for sensing the target object(s), while
keeping sensing models for non-target objects constant.

Our evaluation examines DT sessions with initial belief-
states admitting between 20 and 100 abstract states with
non-zero probability. We run 50 simulations in each config-
uration, and have a timeout on each simulation of 30 minutes
(1800 seconds)2. The continual planning times are reported
in Fig. 2, and the quality data in Fig. 3. For each task, the
goal is to find one or more objects and report their position
to a user. Usually there is a non-zero probability that no plan
exists, as the desired object might not be present in the en-
vironment. In these experiments we only allocate reward on
the achievement of all goals, therefore we find it intuitive to
report average plan costs and the success rates in problems
that admit a complete solution (i.e., positive reward scaled
by a constant factor). The exception occurs for items f and g
of Fig. 3, where we report expected discounted rewards (not
plan costs).

We find that if sensing is reliable, then little is gained
using DT sessions, as the greedy approach of the baseline
is sufficient. As sensing degrades DT sessions prove more
useful. Here, time spent on DT planning increases steeply
as the abstraction becomes more refined, which is compen-
sated for by fewer planning sessions overall. More detailed
abstractions lead to a better overall success rate, particularly
for tasks d and e. Speaking to the effectiveness of our en-
tropy heuristic for abstraction refinement, we see relatively

2All experiments were conducted on a 2.66GHz Intel Xeon
X5355 using one CPU core.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

ti
m

e
[s

ec
]

a) Object search task (3 rooms/1 goal)

sequential planner
contingent planner

noisyreliable

 0

 100

 200

 300

 400

 500

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

ti
m

e
[s

ec
]

b) 3 rooms/2 goals

noisyreliable

 0

 100

 200

 300

 400

 500

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

ti
m

e
[s

ec
]

c) 6 rooms/1 goal

 0
 100
 200
 300
 400
 500
 600
 700
 800

cp dt
 2

0
dt

 5
0

dt
 1

00

ti
m

e
[s

ec
]

d) 6 rooms/2 goals

 0
 100
 200
 300
 400
 500
 600

cp dt
 2

0
dt

 5
0

dt
 1

00

ti
m

e
[s

ec
]

e) 3 rooms/3 goals

Figure 2: Average runtime

high success rates irrespective of the level of refinement.
Comparing finally to the best ZMDP policy, although produc-
ing relatively costly plans, the continual planners performed
quite well, especially in terms success rate. A key source of
inefficiency here, is due to sequential sessions always being
optimistic, and refusing to abandon the search.

Related Work
Addressing task and observation planning specifically, there
have been a number of recent developments where the un-
derlying problem is modelled as a POMDP. For vision algo-
rithm selection, Sridharan, Wyatt, and Dearden (2010) ex-
ploit an explicitly modelled hierarchical decomposition of
the underlying POMDP. Doshi and Roy (2008) represent a
preference elicitation problem as a POMDP and take ad-
vantage of symmetry in the belief-space to exponentially
shrink the state-space. Although we have been actively ex-
ploring the Doshi and Roy approach, those exploitable sym-
metries are not present in problems we consider due to the
task planning requirement. Also, our approach is in a sim-
ilar vein to dual-mode control (Cassandra, Kaelbling, and
Kurien 1996), where planning switches between entropy and
utility focuses.

There has also been much recent work on scaling of-
fline approximate POMDP solution procedures to medium-
sized instances. Recent contributions propose more effi-
cient belief-point sampling schemes (Kurniawati et al. 2010;
Shani, Brafman, and Shimony 2008), and factored repre-

 0
 50

 100
 150
 200
 250
 300

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00
 0

 0.2

 0.4

 0.6

 0.8

 1

p
la

n
 c

o
st

s

su
cc

es
s

ra
ti

o

a) Object search task (3 rooms/1 goal)
plan costs

success ratio

noisyreliable

 0

 100

 200

 300

 400

 500

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00
 0

 0.2

 0.4

 0.6

 0.8

 1

p
la

n
 c

o
st

s

su
cc

es
s

ra
ti

o

b) 3 rooms/2 goals

noisyreliable

 0

 100

 200

 300

 400

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00

cp dt
 2

0
dt

 5
0

dt
 1

00
 0

 0.2

 0.4

 0.6

 0.8

 1

p
la

n
 c

o
st

s

su
cc

es
s

ra
ti

o

c) 6 rooms/1 goal

 0
 100
 200
 300
 400
 500

cp dt
 2

0
dt

 5
0

dt
 1

00

p
la

n
 c

o
st

s
d) 6 rooms/2 goals

 0
 100
 200
 300
 400
 500

cp dt
 2

0
dt

 5
0

dt
 1

00
 0
 0.2
 0.4
 0.6
 0.8
 1

su
cc

es
s

ra
ti

o

e) 3 rooms/3 goals

 0
 10
 20
 30
 40
 50
 60

zm
dp

cp dt
 2

0
dt

 5
0

dt
 1

00

re
w

ar
d

f) Small problem / semi-reliable

-50
-40
-30
-20
-10

 0
 10
 20
 30
 40

zm
dp

cp dt
 2

0
dt

 5
0

dt
 1

00
 0
 0.2
 0.4
 0.6
 0.8
 1

su
cc

es
s

ra
ti

o

g) Small problem / noisy

Figure 3: Average plan costs and number of successful runs.

sentations with procedures that can efficiently exploit struc-
tures in those representations (Brunskill and Russell 2010;
Shani et al. 2008). Offline domain independent systems
scale to logistics problems with 222 states (Shani et al.
2008), taking over an hour to converge, and around 10 sec-
onds on average to perform each Bellman backup. Brunskill
and Russell are able to solve problems with approximately
1030 states, by further exploiting certain problem features –
e.g., problems where no actions have negative effects. Mov-
ing someway towards supporting real-time decision making,
recent online POMDP solution procedures have been devel-
oped which leverage highly approximate value functions –
computed using an offline procedure – and heuristics in for-
ward search (Ross et al. 2008). These approaches are ap-
plicable in relatively small problems, and can require ex-
pensive problem-specific offline processing in order to yield
good behaviours. A very recent and promising online ap-
proach for larger POMDPs employs Monte-Carlo sampling
to break the curse of dimensionality in situations where goal
reachability is easily determined (Silver and Veness 2010).
Our approach can also be thought of as an online POMDP
solver that uses a sequential plan to guide the search, rather

than (e.g., Monte-Carlo) sampling. Also, compared to most
online POMDP procedures, which replan at each step, our
approach involves relatively little replanning.

In the direction of leveraging classical approaches for
planning under uncertainty, the most highlighted system to
date has been FFRa (Yoon, Fern, and Givan 2007); The
winning entry from the probabilistic track of the 2004 Inter-
national Planning Competition. In the continual paradigm,
FFRa uses FF to compute sequential plans and execution
traces. More computationally expensive approaches in this
vein combine sampling strategies on valuations over runtime
variables with deterministic planning procedures (Yoon et
al. 2008).

Also leveraging deterministic planners in problems that
feature uncertainty, CONFORMANT-FF (Hoffmann and
Brafman 2006) and T0 (Palacios and Geffner 2009) demon-
strate how conformant planning – i.e., sequential planning
in unobservable worlds – can be modelled as a determinis-
tic problem, and therefore solved using sequential systems.
In this conformant setting, advances have been towards com-
pact representations of beliefs amenable to existing best-first
search planning procedures, and lazy evaluations of beliefs.
We consider it an appealing future direction to pursue con-
formant reasoning during the sequential sessions we pro-
posed. Most recently this research thread has been extended
to contingent planning in fully observable non-deterministic
environments (Albore, Palacios, and Geffner 2009).

Concluding Remarks
We have addressed a key challenge, specifically that of high-
level continual planning for efficient deliberations accord-
ing to rich probabilistic models afforded by recent inte-
grated robotic systems. We developed a system that can plan
quickly given large realistic probabilistic models, by switch-
ing between: (a) fast sequential planning, and (b) expensive
DT planning in small abstractions of the problem at hand.
Sequential and DT planning is interleaved, the former identi-
fying a rewarding sequential plan for the underlying process,
and the latter solving small sensing problems posed during
sequential plan execution. We have evaluated our system
in large real-world task and observation planning problems,
finding that it performs quickly and relatively efficiently.
Acknowledgements: The research leading to these results has
received funding from the European Community’s Seventh Frame-
work Programme [FP7/2007-2013] under grant agreement No.
215181, CogX.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A translation-based
approach to contingent planning. In IJCAI, 1623–1628.
Boutilier, C., and Dearden, R. 1994. Using abstractions for
decision-theoretic planning with time constraints. In Proceedings
of the Twelfth National Conference on Artificial Intelligence, 1016–
1022.
Brenner, M., and Nebel, B. 2009. Continual planning and acting in
dynamic multiagent environments. Journal of Autonomous Agents
and Multiagent Systems 19(3):297–331.
Brunskill, E., and Russell, S. 2010. RAPID: A reachable anytime
planner for imprecisely-sensed domains. In UAI.

Bryce, D.; Kambhampati, S.; and Smith, D. E. 2008. Sequen-
tial monte carlo in reachability heuristics for probabilistic planning.
Artif. Intell. 172:685–715.
Cassandra, A. R.; Kaelbling, L. P.; and Kurien, J. A. 1996. Act-
ing under uncertainty: Discrete bayesian models for mobile-robot
navigation. In IROS, 963–972.
Doshi, F., and Roy, N. 2008. The permutable POMDP: Fast solu-
tions to POMDPs for preference elicitation. In AAMAS.
Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Brafman, R. I. 2006. Conformant planning via
heuristic forward search: a new approach. Artif. Intell. 170:507–
541.
King, D. E. 2009. Dlib-ml: A machine learning toolkit. J. Mach.
Learn. Res. (JMLR) 10:1755–1758.
Kraft, D.; Başeski, E.; Popović, M.; Batog, A. M.; Kjær-Nielsen,
A.; Krüger, N.; Petrick, R.; Geib, C.; Pugeault, N.; Steedman, M.;
Asfour, T.; Dillmann, R.; Kalkan, S.; Wörgötter, F.; Hommel, B.;
Detry, R.; and Piater, J. 2008. Exploration and planning in a three-
level cognitive architecture. In CogSys.
Kurniawati, H.; Du, Y.; Hsu, D.; and Lee, W. S. 2010. Motion
planning under uncertainty for robotic tasks with long time hori-
zons. The International Journal of Robotics Research.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty away in
conformant planning problems with bounded width. J. Artif. Intell.
Res. (JAIR) 35:623–675.
Rintanen, J. 2001. Complexity of probabilistic planning under
average rewards. In IJCAI, 503–508.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-draa, B. 2008. Online
planning algorithms for POMDPs. J. Artif. Int. Res. (JAIR) 32:663–
704.
Shani, G.; Poupart, P.; Brafman, R.; and Shimony, S. E. 2008. Ef-
ficient add operations for point-based algorithms. In ICAPS, 330–
337.
Shani, G.; Brafman, R. I.; and Shimony, S. E. 2008. Prioritizing
point-based pomdp solvers. IEEE Transactions on Systems, Man,
and Cybernetics, Part B 38(6):1592–1605.
Silver, D., and Veness, J. 2010. Monte-carlo planning in large
POMDPs. In NIPS.
Sridharan, M.; Wyatt, J.; and Dearden, R. 2010. Planning to see:
Hierarchical POMDPs for planning visual actions on a robot. Artif.
Intell. 174(11):704–725.
Talamadupula, K.; Benton, J.; Kambhampati, S.; Schermerhorn, P.;
and Scheutz, M. 2010. Planning for human-robot teaming in open
worlds. ACM Trans. Intell. Syst. Technol. 1:14:1–14:24.
Wyatt, J. L.; Aydemir, A.; Brenner, M.; Hanheide, M.; Hawes,
N.; Jensfelt, P.; Kristan, M.; Kruijff, G.-J. M.; Lison, P.; Pronobis,
A.; Sjöö, K.; Skočaj, D.; Vrečko, A.; Zender, H.; and Zillich, M.
2010. Self-understanding and self-extension: A systems and rep-
resentational approach. IEEE Transactions on Autonomous Mental
Development 2(4):282 – 303.
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008. Proba-
bilistic planning via determinization in hindsight. In AAAI, 1010–
1016.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-replan: A baseline
for probabilistic planning. In ICAPS, 352–.
Younes, H. L. S.; Littman, M. L.; Weissman, D.; and Asmuth, J.
2005. The first probabilistic track of the international planning
competition. J. Artif. Intell. Res. (JAIR) 24:851–887.

1

Plan-based Object Search and Exploration Using
Semantic Spatial Knowledge in the Real World

Alper Aydemir∗ Moritz Göbelbecker† Andrzej Pronobis∗ Kristoffer Sjöö ∗ Patric Jensfelt∗
∗Centre for Autonomous Systems, Royal Institute of Technology, Stockholm, Sweden

†Institut für Informatik, Albert-Ludwigs-Universität Freiburg, Germany

Abstract— In this paper we present a principled planner based
approach to the active visual object search problem in unknown
environments. We make use of a hierarchical planner that com-
bines the strength of decision theory and heuristics. Furthermore,
our object search approach leverages on the conceptual spatial
knowledge in the form of object cooccurences and semantic
place categorisation. A hierarchical model for representing object
locations is presented with which the planner is able to perform
indirect search. Finally we present real world experiments to
show the feasibility of the approach.

Index Terms— Active Sensing, Object Search, Semantic Map-
ping, Planning

I. INTRODUCTION

Objects play an important role when building a seman-
tic representation and an understanding of the function of
space [14]. Key tasks for service robots, such as fetch-and-
carry, require a robot to successfully find objects. It is evident
that such a system cannot rely on the assumption that all object
relevant to the current task are already present in its sensory
range. It has to actively change its sensor parameters to bring
the target object in its field of view. We call this problem
active visual search (AVS).

Although researchers began working on the problem of
visually finding a relatively small sized object in a large
environment as early as 1976 at SRI [4], the issue is often
overlooked in the field. A common stated reason for this is that
the underlying problems such as reliable object recognition
and mapping are posing hard enough challenges. However as
the field furthers in its aim to build robots acting in realistic
environments, this assumption need to be relaxed. The main
contribution of this work a method to relinquish the above
mentioned assumption.

A. Problem Statement

We define the active visual object search problem as an
agent localizing an object in a known or unknown 3D envi-
ronment by executing a series of actions with the lowest total
cost. The cost function is often defined as the time it takes to
complete the task or distance traveled.

Let the environment be Ω and Ψ being the search space
with Ψ ⊆ Ω. Also let Po(Ψ) be the probability distribution
for the position of the center of the target object o defined as
a function over Ψ. The agent can execute a sensing action s in

This work was supported by the SSF through its Centre for Autonomous
Systems (CAS), and by the EU FP7 project CogX.

the reachable space of Ψ. In the case of a camera as the sensor,
s is characterised by the camera position, (xc, yc, zc), pan-tilt
angles (p, t), focal length f and a recognition algorithm a;
s = s(xc, yc, zc, p, t, f, a). The part of Ψ covered by s is
called a viewcone. In practice, a has an effective region in
which reliable recognition or detection is achieved. For the
ith viewcone we call this region Vi.

Depending on the agent’s level of a priori knowledge of Ψ
and P (Ψ) there are three extreme cases of the AVS problem.
If both Ψ and P (Ψ) is fully known then the problem is that
of sensor placement and coverage maximization given limited
field of view and cost constraints.

If both Ψ and P (Ψ) is unknown then the agent has an
additional explore action as well. An exhaustive exploration
strategy is not always optimal, i.e. the agent needs to select
which parts of the environment to explore first depending on
the target object’s properties. Furthermore the agent needs to
trade-off between executing a sensing action and exploration
at any given point. That is, should the robot search for the
object o in the partially known Ψ or explore further. This is
classically known as the exploration vs. exploitation problem.

When P (Ψ) is unknown (i.e. uniformly distributed) but Ψ
is known (i.e. acquired a priori), the agent needs to gather
information about the environment similar to the above case.
However in this case, the exploration is for learning about
the target object specific characteristics of the environment.
Knowing Ψ also means that the robot can reason whether or
not to execute a costly search action at the current position,
or move to another more promising region of space. The rare
case where P (Ψ) is fully known but Ψ is unknown is not
practically interesting to the scope of this paper.

So far, we have examined the case where the target object is
an instance. The implication of this is that P (Ψ)+P (Ω\Ψ) =
1, therefore observing Vi has an effect on P (Ψ\Vi). However
this is not necessarily true if instead the agent is searching for
any member of an object category and the number of them is
not known in advance. Therefore knowing whether the target
object is a unique instance or a member of an object category
is an important factor in search behavior.

Recently there’s an increasing amount of work on acquiring
semantic maps. Semantic maps have parts of the environ-
ment labeled representing various high level concepts and
functions of space. Exploring and building a semantic map
while performing AVS contributes to the estimation of P (Ψ).
The semantic map provides information that can be exploited
by leveraging on common-sense conceptual knowledge about

2

indoor environments. This knowledge describes, for example,
how likely it is that plates are found in kitchens, that a mouse
and a computer keyboard occur in the same scene and that
corridors typically connect multiple rooms. Such information
offers valuable information in limiting the search space. The
sources for those can be from online common-sense databases
or world wide web among others. Acknowledging the need
to limit the search space and integrate various cues to guide
the search, [4] proposed indirect search. Indirect search as
a search strategy is a simple and powerful idea: it’s to find
another object first and then use it to facilitate finding the target
object, e.g. finding a table first while looking for a landline
phone. Tsotsos [13] approached the problem by analyzing the
complexity of the AVS problem and showed that it is NP-hard.
Therefore we must adhere to a heuristics based solution. Ye
[15] formulated the problem in probabilistic framework.

In this work we consider the case where Ψ and P (Ψ)
are both unknown. However, the robot is given probabilistic
default knowledge about the relation betweeen objects and the
occurences of objects in difference room category following
our previous work [1, 6].

B. Contributions

The contributions of this work are four fold. First we pro-
vide the domain adaptation of a hierarchical planner to address
the AVS problem. Second we show how to combine semantic
cues to guide the object search process in a more complex and
larger environment then found in previous work. Third, we
start with an unknown map of the environment and provide
an exploration strategy which takes into account the object
search task. Four, we present real world experiments searching
for multiple objects in a large office environment, and show
how the planner adapts the search behavior depending of the
current conditions.

C. Outline

The outline of this paper is as follows. First we present
how the AVS problem can be formulated in a principled way
using a planning approach (Section II). Section III provides
the motivation for and structure of various aspects of our
spatial representation. Finally we showcase the feasibility of
our approach in real worl experiments (Section IV) and .

II. PLANNING

For a problem like AVS which entails probabilistic action
outcomes and world state, the robot needs to employ a planner
to generate flexible and intelligent search behavior that trade
off exploitation versus exploration. In order to guarantee
optimality a POMDP planner can be used in, i.e. a decision
theoretic planner that can accurately trade different costs
against each other and generate the optimal policy. However,
this is only tractable when a complex problem like AVS is
applied to very small environments. Another type of planner
are the classical AI planners which requires perfect knowledge
about the environment. This is not the case since both Ψ and
P (Ψ) are unknown.
A variation of the classical planners are the so called continual
planners that interleave planning and plan monitoring in order
to deal with uncertain or dynamic environments[3]. The basic

idea behind the approach is to create an plan that might reach
the goal and to start executing that plan. This initial plan takes
into account success probabilities and action costs however it
is optimistic in nature. A monitoring component keeps track
of the execution outcome and notified the planner in the
event of the current plan becoming invalid (either because the
preconditions of an action are no longer satisfied or the plan
does not reach the goal anymore). In this case, a new plan
is created with the updated current state as the initial state
and execution starts again. This will continue until either the
monitoring component detects that the goal has been reached
or no plan can be found anymore.

In this paper we will make use of a so called switching
panner. It combines two different domain independent planners
for different parts of the task: A classical continual planner to
decide the overall strategy of the search (for which objects to
search in which location) and a decision theoretic planner to
schedule the low level observation actions using a probabilistic
sensing model. Both planners use the same planning model
and are tightly integrated.

We first give a brief description of the switching planner.
We focus on the use of the planner in this paper and instead
refer the reader to [5] for a more details description. We will
also present the domain modeling for the planner, and give
further details on various aspects of knowledge that planner
makes use of.

A. Switching Planner

1) Continual Planner (CP): We build our planning frame-
work on an extended SAS+[2] formalism. As a base for
the continual planner, we use Fast Downward[7]. Because
our knowledge of the world and the effects of our actions
are uncertain we associate a success probability p(a) with
every action a. In contrast to more expressive models like
MDPs or even POMDPs, actions don’t have multiple possible
outcomes, they just can succeed with probability p(a) or fail
with probability of 1− p(a).

The goal of the planner is then to find a plan π that reaches
the goal with a low cost. In classical planning the cost function
is usually either the number of actions in a plan or the sum
of all action’s costs. Here we chose a function that resembles
the expected reward adjusted to our restricted planning model.
With p(π) =

∏
a∈π p(a) as the plans total success probability

and cost(π) =
∑
a∈π cost(a) as the total costs, we get for the

optimal plan π∗:

π∗ = argmin
π

cost(π) +R(1− p(π))

where a is an action and the constant R is the reward the
planner is given for achieving the goal. For small values of R
the planner will prefer cheaper but more unlikely plans, for
larger values more expensive plans will be considered.
Assumptions The defining feature of an exploration problem
is that the world’s state is uncertain. Some planning frame-
works such as MDPs allow the specification of an initial
state distribution. We choose not to do this for two different
reasons: a) having state distributions would be a too strong
departure from the classical planning model and b) the typical
exploration problems we deal with have too many possible

3

states to express explicitly. We therefore use an approach we
call assumptive actions that allow the planner to construct parts
of the initial state on the fly, and which allows us to map the
spatial concepts to the planning problem in an easy way.

2) Decision Theoretic (DT) Planner: When the continual
planner reaches a sensing action (e.g. search location1 for a
object2), we create a POMDP that only contains the parts
of the state that are relevant for that subproblem with. This
planner can only use MOVE and PROCESSVIEWCONE actions
explained in Section II-B.2. The DT planner operates in
a closed-loop manner, sending actions to be executed and
receiving observations from the system. Once the DT planner
either confirms or rejects a hypothesis, it returns control back
to the continual planner, which treats the outcome of the DT
session like the outcome of any other action.
B. Domain Modeling

We need to discretize the involved spaces (object location,
spatial model and actions) to make a planner approach ap-
plicable to the AVS problem. Most methods make use of
discretizations as a way to handle the NP-hard nature of the
problem.

1) Representing space: For the purposes of obstacle avoid-
ance, navigation and sensing action calculation, Ψ is repre-
sented as a 3D metric map. Ψ discretised into i volumetric
cells so that Ψ = c0...ci. Each cell represents the occupancy
with the attributes OCCUPIED, FREE or UNKOWN as well as
the probability of target object’s center being in that cell.

However, further abstraction is needed to achieve reliable
and fast plan calculation as the number of cells can be high.
For this purpose we employ a topological representation of Ψ
called place map, see Fig 1(a). In the place map, the world is
represented by a finite number of basic spatial entities called
places created at equal intervals as the robot moves. Places are
connected using paths which are discovered by traversing the
space between places. Together, places and paths represent the
topology of the environment. This abstraction is also useful
for a planner since metric space would result in a largely
intractable planning state space.

The places in the place map are futher segmented into
rooms. In the case of indoor environments, rooms are usu-
ally separated by doors or other narrow openings. Thus, we
propose to use a door detector and perform reasoning about
the segmentation of space into rooms based on the doorway
hypotheses. We use a template-based door detection algorithm
which matches a door template to each acquired laser scan.
This creates door hypotheses which are further verified by the
robot passing through a narrow opening.

In addition, unexplored space is represented in the place
map using hypothetical places called placeholders defined in
the boundary between free and unknown space in the metric
map.

We represent object locations not in metric coordinates but
in relation to other known objects or rooms to achieve further
abstraction. The search space is considered to be divided into
locations L. A location is either a room R or a related space.
Related spaces are regions connected with a landmark object
o, either in or on the landmark (see [1] for more details). The
related space “in” o is termed Io and the space “on” o Oo.

2) Modeling actions: The planner has access to three
physical actions: MOVE can be used to move to a place
or placeholder, CREATEVIEWCONES creates sensing actions
for an object label in relation to a specified location, PRO-
CESSVIEWCONE executes a sensing action. Finally, the virtual
SEARCHFOROBJECT action that triggers the decision theoretic
planner.

3) Virtual objects: There are two aspects of exploration in
the planning task: we’re searching for an (at that moment)
unknown object, which may include the search for support
objects as an intermediate step. But the planner may also need
to consider the utility of exploring its environment in order to
find new rooms in which finding the goal object is more likely.

Because the planners we use employ the closed world as-
sumption, adding new objects as part of the plan is impossible.
We therefore add a set of virtual objects to the planning
problem that can be instantiated by the planner as required by
the plan. This approach will fail for plans that require finding
more objects than pre-allocated, but this is not a problem in
practice. The monitoring component tries to match new (real)
objects to virtual objects that occur in the plan. This allows
us to deliver the correct observations to the DT planner and
avoid unnecessary replanning.

4) Probabilitic spatial knowledge: The planner makes use
of the following probabilistic spatial knowledge in order to
generate sensible plans:
• Pcategory(roomi) defines the distribution over room cat-

egories that the robot has a model for, for a given room
integrated over places that belongs to roomi. The planner
uses this information to decide whether to plan for a
SEARCHFOROBJECT action or explore the remaining
placeholders.

• Pcategory(placeholderi) represents the probability distri-
bution of a placeholder turning into a new room of a
certain category upon exploration. Using this distribution,
the planner can choose to explore a placeholder instead
of another, or plan to launch search altogether.

• P (ObjectAtL) gives the probability of an object o being
at location L.

More details about calculation of these probabilities are further
explained in Section III.

III. SPATIAL REPRESENTATION

5) Conceptual Map: All higher level inference is performed
in the so called conceptual map which is represented by a
graphical model. It integrates the conceptual knowledge (food
items are typically found in kitchens) with instance knowledge
(the rice package is in room4). We model this in a chain
graph [8], whose structure is adapted online according to the
state of underlying topological map. Chain graphs provide a
natural generalisation of directed (Bayesian Networks) and
undirected (Markov Random Fields) graphical models, allow-
ing us to model both “directed” causal as well as “undirected”
symmetric or associative relations.

The structure of the chain graph model is presented in Fig. 2.
Each discrete place is represented by a set of random variables
connected to variables representing semantic category of a
room. Moreover, the room category variables are connected

4

(a)

(b)

Fig. 1. (a) A place map with several places and 3 detected doors shown as
red. (b) Shows two placeholders with different probabilities for turning into
new rooms: one of them is behind a door hypothesis therefore having a higher
probability of leading into a new room. Colors on circular discs indicates the
probability of room categories as in a pie chart: i.e. the bigger the color is
the higher the probability. Here green is corridor, red is kitchen and blue is
office.

by undirected links to one another according to the topology
of the environment. The potential functions φrc(·, ·) represent
the type knowledge about the connectivity of rooms of certain
semantic categories.

To compute Pcategory(roomi) each place is described by
a set of properties such as size, shape and appearance of
space. These are are based on sensory information as proposed
in [12]. We extend this work by also including presence of a
certain number of instances of objects as observed from each
place as a properties (due to space limitations we refer to [11]
for more details). This way object presence or absence in a
room also affects affects room category. The property variables
can be connected to observations of features extracted directly
from the sensory input. Finally, the functions ps(·|·), pa(·|·),
poi(·|·) utilise the common sense knowledge about object,
spatial property and room category co-occurrence to allow for
reasoning about other properties and room categories.

For planning, the chain graph is the sole source of belief-
state information. In the chain graph, belief updates are event-
driven. For example, if an appearance property, or object de-
tection, alters the probability of a relation, inference proceeds
to propagate the consequences throughout the graph. In our
work, the underlying inference is approximate, and uses the
fast Loopy Belief Propagation [9] procedure.

A. Object existence probabilities

To compute the P (ObjectAtL) value used in active visual
search in this paper, objects are considered to be occurring:

1) independently in different locations L
2) independently of other objects in the same location

Fig. 2. Schematic image of chain graph

3) as Poisson processes over cells c0...ci per location L
In other words, each location has the possibility of containing,
independently of all other locations, a number nc of objects
of a class c with probability

P (nc = k) =
λk
L,ce

−λL,c

k!
(1)

where λL,c is the expected number of objects of class c in the
location L. The probability of at least one object in a location
is

P (nc > 0) = 1− P (nc = 0) = 1− e−λi,c (2)

Because of the independence assumptions, the λ values for
a location and all its subordinate locations can simply be added
together to obtain the distribution of the number of objects of
that class occurring in that whole hierarchy.

1) Exploration: In addition to making inferences about
explored space, the conceptual map can provide predictions
about unexplored space. To this end, we extend the graph by
including the existence of placeholders. For each placeholder
a set of probabilities is generated that the placeholder will lead
to a room of a certain category.

This process is repeated for each placeholder and consists
of three steps. In the first step, a set of hypotheses about the
structure of the unexplored space is generated. In case of our
implementation, we evaluate 6 hypotheses: (1) placeholder
does not lead to new places, (2) placeholder leads to new
places which do not lead to a new room, (3) placeholder leads
to places that lead to a single new room (4) placeholder leads
to places that lead a room which is further connected to another
room, (5) placeholder leads to a single new room directly,
and (6) placeholder leads to a new room directly which
leads to another room. In the second step, the hypothesized
rooms are added to the chain graph just like regular rooms
and inference about their categories is performed. Then, the
probability of any of the hypothesized rooms being of a certain
category is obtained. Finally, this probability is multiplied
by the likelihood of occurrence of each of the hypothesized
worlds estimated based on the amount of open space behind
the placeholder and the proximity of gateways. A simple
example is shown in Fig. 1(b)

5

IV. EXPERIMENTS

Experiments were carried out on a Pioneer III wheeled
robot, equipped with a Hokuyo URG laser scanner, and a
camera mounted at 1.4 m above the floor. Experiments took
place in 12x8 m environment with 3 different rooms, kitchen,
office1, office2 connected by a corridor. The robot had models
of all objects it searches for before each search run. 3 different
objects (cerealbox, stapler and whiteboardmarkers) were used
during experiments. The BLORT framework was used to
detect objects [10].

To highlight the flexibility of the planning framework
evaluated the system with 6 different starting positions and
tasked with finding different objects in an unknown environ-
ment. We refer the reader to http://www.csc.kth.se/

˜aydemir/avs.html for videos. Each sub-figure in Fig. 3
shows the trajectory of the robot. The color coded trajectory
indicates the room category as perceived by the robot: red is
kitchen, green is corridor and blue is office. The two green
arrows denote the current position and the start position of
the robot.

In the following we give a brief explanation for what
happened in the different runs.

• Fig. 3(a) Starts: corridor, Target: cerealbox in kitchen
The robot starts by exploring the corridor. The robot finds
a doorway on its left and the placeholder behind it has a
higher probability of yielding into a kitchen and the robot
enters office1. As the robot acquires new observations the
CP’s kitchen assumption is violated. The robot returns
to exploring the corridor until it finds the kitchen door.
Here the CP’s assumptions are validated and the robot
searches this room. The DT planner plans a strategy of
first finding a table and then the target object on it. After
finding a table, the robot generates view cones for the
Otable,cornflakes location. The cerealbox object is found.

• Fig. 3(b) Starts: office2, Target: cerealbox in kitchen
Unsatisfied with the current room’s category, the CP
commits to the assumption that exploring placeholders in
the corridor will result in a room with category kitchen.
The rest proceeds as in Fig. 3(a).

• Fig. 3(c) Starts: corridor Target: cerealbox in kitchen
The robot explores until it finds office2. Upon entry
the robot categorises office2 as kitchen but after further
exploration, office2 is categorised correctly. The robot
switches back to exploration and since the kitchen door
is closed, it passes kitchen and finds office1. Not satisfied
with office1, the robot gives up since all possible plans
success probability are smaller than a given threshold
value.

• Fig. 3(d) Starts: office1 Target:stapler in office2
After failing to find the object in office1 the robot notices
the open door, but finding that it is kitchen-like decides
not to search the kitchen room. This time the stapler
object is found in office2

• Fig. 3(e) Starts: kitchen Target: cerealbox in kitchen
As before it tries locating a table, but in this case all
table objects have been eliminated beforehand; failing
to detect a table the robot switches to looking for a

counter. Finding no counter either, it finally goes out in
the corridor to look for another kitchen and upon failing
that, gives up.

• Fig. 3(f) Starts: corridor Target: whiteboardmarker in
office1
The robot is started in the corridor and driven to the
kitchen by a joystick; thus in this case the environment
is largely explored already when the planner is activated
and asked to find a whiteboardmarker object. The part
of the corridor leading to office2 has been blocked. The
robot immediately finds its way to office1 and launches
a search which results in a successful detection of the
target object.

In the following, we describe the planning decisions in more
detail for a run similar to the one described in Fig. 3(a), with
the main difference being that the cereals could not be found
in the end due to a false negative detection.

The first plan, with the robot starting out in the middle of
the corridor, looks as follows:

ASSUME-LEADS-TO-ROOM place1 kitchen
ASSUME-OBJECT-EXISTS table IN new-room1 kitchen
ASSUME-OBJECT-EXISTS cerealbox ON new-object1 table kitchen
MOVE place1
CREATEVIEWCONES table IN new-room1
SEARCHFOROBJECT table IN new-room1 new-object1
CREATEVIEWCONES cerealbox ON new-object1
SEARCHFOROBJECT cerealbox ON new-object1 new-object2
REPORTPOSITION new-object2

Here we see several virtual objects being introduced: The
first action assumes that place1 leads to a new room new-
room1 with category kitchen. The next two assumptions hy-
pothesize that a table exists in the room and that cornflakes
exist on that table. The rest of the plan is rather straightfor-
ward: create view cones and search for the table, then create
view cones and search for the cereal box.

Execution of that plan leads to frequent replanning, as the
first assumption is usually too optimistic: most placeholders
do not directly lead to a new room, but require a bit more
exploration.

After following the corridor, the robot does find the office,
and returns to the corridor to explore into the other direction.
It finally finds a room which has a high likelihood of being a
kitchen.

ASSUME-CATEGORY room3 kitchen
ASSUME-OBJECT-EXISTS table IN room3 kitchen
ASSUME-OBJECT-EXISTS cerealbox ON new-object1 table kitchen
MOVE place17
MOVE place18
MOVE place16
CREATEVIEWCONES table IN room3
SEARCHFOROBJECT table IN room3 new-object1
CREATEVIEWCONES cerealbox ON new-object1
SEARCHFOROBJECT cerealbox ON new-object1 new-object2

The new plan looks similar to the first one, except that
we do not assume the existence of a new room but the

6

(a) (b) (c)

(d) (e) (f)

Fig. 3. Trajectories taken by the robot in multiple experiments

category of an existing one. Also, the robot cannot start
creating view cones immediately because a precondition of
the CREATEVIEWCONES action is that the room must be fully
explored, which involves exploring all remaining placeholders
in the room.

After view cones are created, the decision theoretic planner
is invoked. We used a relatively simple sensing model, with a
false negative probability of 0.2 and a false positive probability
of 0.05 – these are educated guesses, though. The DT planner
starts moving around and processing view cones until it
eventually detects a table and returns to the continual planner.
At this point the probability of the room being a kitchen
is so high, that it considered to be certain by the planner.
With lots of the initial uncertainty removed, the final plan is
straightforward:

ASSUME-OBJECT-EXISTS cerealbox ON object1 table kitchen
CREATEVIEWCONES cerealbox ON object1
SEARCHFOROBJECT cerealbox ON object1 new-object2
REPORTPOSITION new-object2

During the run, the continual planner created 14 plans in
total, taking 0.2 – 0.5 seconds per plan on average. The DT
planner was called twice, and took about 0.5 – 2 seconds per
action it executed.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a planning approach to
the active object search. We made use of a switching planner,
combing a classical continual planner with a decision theoretic
planner. We provide a model for the planning domain appro-
priate for the planner and show by experimental results that
the system is able to search for objects in a real world office
environment making use of both low level sensor perceipt and
high level conceptual and semantic information. Future work
includes incorporating 3D shape cues to guide the search and
a specialized planner for the AVS problem.

REFERENCES

[1] Alper Aydemir, Kristoffer Sjöö, John Folkesson, and Patric Jensfelt.
Search in the real world: Active visual object search based on spatial
relations. In IEEE International Conference on Robotics and Automation
(ICRA), May 2011.

[2] C. Bäckström and B. Nebel. Complexity results for SAS+ planning.
Comp. Intell., 11(4):625–655, 1995.

[3] Michael Brenner and Bernhard Nebel. Continual planning and acting in
dynamic multiagent environments. Journal of Autonomous Agents and
Multiagent Systems, 19(3):297–331, 2009.

[4] Thomas D. Garvey. Perceptual strategies for purposive vision. Technical
Report 117, AI Center, SRI International, 333 Ravenswood Ave., Menlo
Park, CA 94025, Sep 1976.

[5] Moritz Göbelbecker, Charles Gretton, and Richard Dearden. A switching
planner for combined task and observation planning. In Twenty-Fifth
Conference on Artificial Intelligence (AAAI-11), August 2011.

[6] Marc Hanheide, Charles Gretton, Richard W Dearden, Nick A Hawes,
Jeremy L Wyatt, Andrzej Pronobis, Alper Aydemir, Moritz Göbelbecker,
and Hendrik Zender. Exploiting Probabilistic Knowledge under Uncer-
tain Sensing for Efficient Robot Behaviour. In Proc. Int. Joint Conf. on
Artificial Intelligence (IJCAI), 2011.

[7] Malte Helmert. The fast downward planning system. Journal of Artificial
Intelligence Research, 26:191–246, 2006.

[8] S. L. Lauritzen and T. S. Richardson. Chain graph models and their
causal interpretations. J. Roy. Statistical Society, Series B, 64(3):321–
348, 2002.

[9] J. M. Mooij. libDAI: A free and open source C++ library for discrete
approximate inference in graphical models. J. Mach. Learn. Res.,
11:2169–2173, August 2010.

[10] T. Mörwald, J. Prankl, A. Richtsfeld, M. Zillich, and M. Vincze. BLORT
- The blocks world robotic vision toolbox. In Workshop on Best Practice
in 3D Perception and Modeling for Mobile Manipulation at ICRA 2010,
2010.

[11] Andrzej Pronobis and Patric Jensfelt. Hierarchical multi-modal place
categorization. In submitted to ECMR’11, 2011.

[12] Andrzej Pronobis, Oscar M. Mozos, Barbara Caputo, and Patric Jensfelt.
Multi-modal semantic place classification. The International Journal of
Robotics Research (IJRR), Special Issue on Robotic Vision, 29(2-3):298–
320, February 2010.

[13] J. K. Tsotsos. On the relative complexity of active vs. passive visual
search. International Journal of Computer Vision, 7(2):127–141, 1992.

[14] S. Vasudevan and R. Siegwart. Bayesian space conceptualization and
place classification for semantic maps in mobile robotics. Robot. Auton.
Syst., 56:522–537, June 2008.

[15] Yiming Ye and John K. Tsotsos. Sensor planning for 3d object search.
Comput. Vis. Image Underst., 73(2):145–168, 1999.

A Polynomial All Outcome Determinization for Probabilistic Planning

Thomas Keller and Patrick Eyerich
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

{tkeller,eyerich}@informatik.uni-freiburg.de

Abstract
Most predominant approaches in probabilistic planning uti-
lize techniques from the more thoroughly investigated field
of classical planning by determinizing the problem at hand.
In this paper, we present a method to map probabilistic oper-
ators to an equivalent set of probabilistic operators in a novel
normal form, requiring polynomial time and space. From
this, we directly derive a determinization which can be used
for, e. g., replanning strategies incorporating a classical plan-
ning system. Unlike previously described all outcome deter-
minizations, the number of deterministic operators is not ex-
ponentially but polynomially bounded in the number of par-
allel probabilistic effects, enabling the use of more sophisti-
cated determinization-based techniques in the future.

Introduction
Most probabilistic planning systems that have successfully
participated in the International Probabilistic Planning Com-
petition, e.g. FF-Replan (Yoon, Fern, and Givan 2007), FPG
(Buffet and Aberdeen 2007) or RFF-(BG/PG) (Teichteil-
Königsbuch, Infantes, and Kuter 2008), invoke a procedure
called determinization of the probabilistic planning task.

Two classes of determinization strategies have been de-
scribed: Single outcome determinizations choose one possi-
ble outcome for each probabilistic operator, accepting that
solvable tasks might become unsolvable in the determiniza-
tion, while all outcome determinizations preserve solvabil-
ity by generating all potential outcomes. The only all out-
come determinization used in practice generates one oper-
ator for each potential outcome, possibly leading to expo-
nentially many operators in the determinization (Rintanen
2003). While Rintanen briefly mentions a solution to this
problem, it has never been described in detail, a shortfall
made up for with this paper by introducing the forked nor-
mal form (FNF) and a polynomial determinization based on
FNF where operators are split into several deterministic ones
that are applied sequentially to simulate one outcome.

After presenting our formal framework, we show how to
split operators while preserving task equivalence, and how
to generate a set of operators in FNF with size polynomial
in the number of probabilistic effects. We continue by dis-
cussing the derived determinization, and finally point out the
benefit with a short experiment.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Probabilistic Planning
Definition 1. A (fully-observable) probabilistic planning
task T is a 4-tuple 〈V, s0, S?, O〉, where V is a set of finite-
domain state variables v with domain Dv; s0, the initial
state, is a valuation over V ; S?, the goal, is a condition
over V , a logical formula over atoms of the form v=d
(v ∈ V, d ∈ Dv); and O is a set of operators, 3-tuples
o = 〈pre(o), eff(o), c(o)〉 with precondition pre(o), a con-
dition over V ; effect eff(o); and cost c(o) ∈ N0. Effects of
operators o ∈ O are recursively defined by:
• > is the empty effect.
• v�x with v ∈ V, x ∈ Dv is an atomic effect.
• e1 ∧ e2 is an conjunctive effect if e1 and e2 are effects.
• c� e is a conditional effect if c is a condition and e is an

effect.
• p1e1| . . . |pnen is a probabilistic effect if e1, . . . , en are

effects, 0 < p1, . . . , pn ≤ 1, and
∑n
i=1 pi = 1.

An effect e without probabilistic effects is deterministic.
An effect e is in unary conditionality normal form (UCNF) if
e′ is atomic for all c� e′ in e; it is in unary non-determinism
normal form (1ND) if e is of the form p1e1| . . . |pnen with
deterministic e1, . . . , en (Rintanen 2003), the normal form
the most common all outcome determinization is based on.
We prohibit effects that assign multiple values to the same
v as semantics might become ambiguous. To measure plan
quality we use costs, but our results also hold for planning
problems based on rewards (Condon 1992). In the follow-
ing, we refer to valuations s over V as the states of T .

The successor set suc(s, o) of applying an operator o in a
state s is a set of state/probability pairs defined as in Rinta-
nen’s definition of operator application (2003).
Definition 2. A probabilistic transition system T is a 5-tuple
〈S,O,∆, s0, G〉 where S is a set of states; O is a set of
operators; for each o ∈ O there is a δo ∈ ∆ that is a partial
function mapping states to probability distributions over S;
s0 ∈ S is the initial state; and G ⊆ S is the set of goal
states. States with more than one applicable operator are
called decision states dec(T), and sucdec(s) = (suc(s) ∩
dec(T)) ∪ {sucdec(s

′)|s′ ∈ suc(s) \ dec(T)} ⊆ dec(T) is
the recursively defined set of decision successors.

A planning task T = 〈V, s0, S?, O〉 induces a transition
system T = 〈S,O,∆, s0, G〉, where S is the set of states of

V ; for each o ∈ O there is a δo ∈ ∆ defined for all states
s where s |= pre(o) mapping s to a probability distribution
induced by suc(s, o); and G = {s ∈ S|s |= S?}. A policy π
is a mapping from states to operators. We refer to the set of
all policies in a transition system T as Π(T).

Since we compare planning tasks where the application
of an operator in one task is matched to the application of a
sequence of operators in the other (i.e. there is no one-to-one
correspondence between transitions), we need our definition
of equivalence to be more general than usual. We achieve
this by exploiting the fact that a policy π naturally induces a
probability distribution over costs απ(s) for each state s:
Definition 3. Two transition systems T1 and T2 are equiv-
alent (T1≡T2) if there are two bijective mappings σ :
dec(T1) � dec(T2) and θ : Π(T1) � Π(T2) s.t. for all
π ∈ Π(T1) and s ∈ dec(T1) we have απ(s) = αθ(π)(σ(s)).

Operator Splitting
A determinization based on 1ND leads to exponentially
many operators if conjunctions of probabilistic effects are
present. The main idea of our determinization is to split
these, creating one operator per conjunctive element. In this
section, we show how to split deterministic operators and
enforce their sequential application, and how to prevent non-
equivalent transformation due to conditional effects.

Operator splitting leads to intermediate states in the trans-
formed task where only parts of the original operator’s ef-
fects have been applied. To control correct operator appli-
cation we introduce a variable vaux and extend all precondi-
tions of operators such that vaux=0 is requested. In interme-
diate states we require different, unique values for vaux and
thereby enforce sequential application in an equivalence-
preserving way for effects not containing conditional effects.
Note that intermediate states are no decision states due to the
uniqueness of the values for vaux, a property that also holds
in the rest of this paper.
Example 1. An operator o = 〈v0=2, v1�4 ∧ v2�0, c(o)〉
can be split into o′1 = 〈v0=2∧vaux=0, v1�4∧vaux�1, c(o)〉
and o′2 = 〈vaux=1, v2�0 ∧ vaux�0, 0〉.

This transformation can lead to a non-equivalent task if a
variable v occurs both in an effect condition c and an atomic
effect, and if that operator is split s.t. the assignment of v is
applied before c is checked. To avoid this, we show how to
transform a planning task T = 〈V, s0, S?, O〉 into an equiv-
alent planning task T� = 〈V ∪ V � ∪ {vaux}, σ(s0), S? ∪
{vaux=0}, O� ∪ O?〉, where no variable occurs both in ef-
fect conditions and atomic effects.
Theorem 1. All planning tasks can be normalized in poly-
nomial time and space to equivalent planning tasks where no
variable occurs both in effect conditions and atomic effects.
Proof: Let # : O → {1, . . . , |O|} ⊂ N be bijective, V �
be a set of variables with one variable v� for each v ∈ V ,
and the operators o� = 〈pre(o�), eff(o�), c(o)〉 and o? =
〈pre(o?), eff(o?), 0〉 for each o ∈ O be s.t.

pre(o�) = pre(o) ∧ vaux=0

eff(o�) =
∧

v∈V

v��val(v) ∧ vaux�#(o)

pre(o?) = vaux=#(o)

eff(o?) = eff(o)[V/V �] ∧ vaux�0

where val(v) ∈ Dv is the value of v and eff(o)[V/V �] is
equal to eff(o) except that all occurrences of all v ∈ V in
effect conditions are replaced by their corresponding v� ∈
V �. As polynomial time and space transformation from T
to T� is obvious we focus on the proof of equivalence with

σ(s) = s ∪ {(v, 0)|v ∈ V � ∪ {vaux}}, and
θ(π)(σ(s)) = o� ⇔ π(s) = o

in the following. To show that σ is bijective, it is suf-
ficient to show that σ(s1) 6= σ(s2) unless s1 = s2 for
s1, s2 ∈ dec(T) and that dec(T �) ⊆ {σ(s)|s ∈ dec(T)}.
The former follows directly from the definition of σ, while
the latter is not as obvious: We prove it by showing that
there is no s� ∈ dec(T �) for which there is no s ∈ dec(T)
with σ(s) = s�. Following the definition of σ, we must
thus show that s�(v) = 0 for all v ∈ V � ∪ {vaux} and all
s� ∈ dec(T �). Let s� ∈ S� be a state with s�(v) 6= 0 for
some v ∈ V � ∪ {vaux}. The definition of pre(o�) directly
shows that s� 6|= pre(o�) for all o� ∈ O�. Additionally, if
s� |= pre(o?) it follows that s� 6|= pre(o′?) for o?, o′? ∈ O?
by definition of #(o) and pre(o?). For this reason there is at
most one operator o with s� |= o, and thus s� /∈ dec(T �).

The bijectivity of θ on dec(T) and dec(T�) is given as
π(s�) /∈ O? for all s� ∈ dec(T �) because s� 6|= o? for
all o? ∈ O? for all policies π. To verify that T≡T�, we
first show that for each policy π in T it holds that απ(s) =
αθ(π)(σ(s)) for all states s ∈ dec(T), which is given iff for
all s ∈ dec(T) and all sequences of operators leading from
s to any s′ ∈ sucdec(s), there is a sequence of operators
from σ(s) to σ(s′) that induces the same probability and
cost (and vice versa). Let o1, . . . , ok ∈ O be the sequence of
operators to reach an s′ from s with probability p and cost
c. Then the sequence o1�, o1?, . . . , ok�, ok? leads from σ(s)
to σ(s′) with probability p, as the o� are deterministic and
the transition probabilities from the o? and o are equal, and
cost c, as c(o) = c(o�) + c(o?) by definition of the cost
functions of o� and o?. As all sequences of operators in T�
from any s� ∈ dec(T) to any s′� ∈ sucdec(s�) must be of
the form o1�, o1?, . . . , ok�, ok? by definition of eff(o�), pre(o?)
and #(o), the opposite direction holds as well.

Forked Normal Form
So far we restricted our analysis to deterministic operators,
but the procedure to normalize operators with conditional
effects is applicable to operators with probabilistic effects
as well, resulting in a set of deterministic operators O� and
a set of arbitrary operators O?. Without loss of generality,
we also assume that eff(o?) is in UCNF for all o? ∈ O?

(possible in polynomial time and space: Rintanen 2003), and
that all instances of the left-hand side of the equivalence

p1(p
′
1e

′
1| . . . |p′je′j)| . . . |piei ≡ p1p′1e′1| . . . |p1p′je′j | . . . |piei

are additionally replaced by the right-hand side (obviously
possible in polynomial time and space), resulting in effects
of the form

∧

i

pi1ei1| . . . |pinieini ∧
∧

j

ej ,

where the eik are effects of that form themselves and the ej
are conditional effects ej = c� e′ with atomic effects e′.
Definition 4. An effect e is in forked normal form (FNF) if
it is deterministic or of the form

(p1e1| . . . |piei| . . . |pnen) ∧
∧

j

ej ,

where all ei and ej are conditional effects c�e′ with atomic
effects e′. An operator o is in FNF if eff(o) is in FNF.

While there are effects that cannot be transformed into a
single effect in FNF, it is interesting nevertheless as there is a
polynomial time algorithm to transform a planning task T�
(created from an arbitrary planning task T) into an equiv-
alent planning task Tψ = 〈V ∪ V � ∪ {vaux}, σ(s0), S? ∪
{vaux=0}, O�∪Oψ〉, where all operators are in FNF, and the
number of operators is polynomially bounded in the number
of probabilistic effects in o? ∈ O?.

All oψ ∈ Oψ that are created by Algorithm 1 from o? ∈
O? have 3 important commonalities besides being in FNF:
• pre(oψ) = vaux=#(oψ), where #(oψ) is unique.
• eff(oψ) =

∧
i ei ∧ (p1vaux�x1| . . . |pnvaux�xn), where

x1, . . . , xn ∈ N are pairwise distinct.
• c(o) = 0 (costs are covered by the procedure described earlier).
To create an operator oψ we need to know its determinis-
tic effects ei, its index #(oψ), the probabilities pi, and the
values xi assigned to vaux. While the first three pieces of
information are known when an effect is met the first time
(lines 2–4), the last is not available before all children have
been created as their index corresponds to these values. Due
to this, Algorithm 1 maintains a directed acyclic graph of
FNF-nodes that correspond to the operators in FNF, as de-
picted in Figure 1. Once all children have been generated
recursively (lines 6–8) they are appended to all leaves (lines
9–10) and oψ is added (line 11).
Theorem 2. Each planning task can be normalized in poly-
nomial space and time to an equivalent planning task where
all operators are in FNF.
Proof sketch: Our procedure creates one operator for each
probabilistic outcome, needing polynomial space, and is ob-
viously computable in polynomial time. Equivalence of T�
and Tψ can be shown analogously to the proof of Theorem
1 by using the same mappings σ and θ and the same proper-
ties of decision states. Due to limited space, we sketch the
algorithm’s behavior in an example instead.
Example 2. Consider the following eff(o?) for o? ∈ O?:(

0.5(s�0 ∧ (0.3 t�1 | 0.7u�3) ∧ (0.6 v�0 | 0.4w�4))
∣∣

0.5(x�1)
)
∧ (0.5 y�2 | 0.5 z�1) ∧ q�2

Let 1 be the first generated index. The effects in FNF, cre-
ated from the directed acyclic graph in Figure 1, include:

eff(o1ψ) = q�2 ∧ (0.5vaux�2|0.5vaux�7)

eff(o2ψ) = s�0 ∧ (0.3vaux�3|0.7vaux�4)

eff(o3ψ) = t�1 ∧ (0.6vaux�5|0.4vaux�6)

eff(o4ψ) = u�3 ∧ (0.6vaux�5|0.4vaux�6)

. . .

eff(o9ψ) = z�1 ∧ vaux�0

Algorithm 1: Algorithm creating a set of operators in FNF.

def buildFNF(effect)1
if effect is conditional then2

return FNFNode({effect},nextIndex())3
result = FNFNode(effect.detEffs(),nextIndex())4
for eff in effect.probEffs() do5

children = {}6
for out in eff.outcomes() do7

children.add(〈buildFNF(out), eff.prob(out)〉)8
for leaf in result.leaves() do9

leaf.setChildren(children)10
createOperator(leaf,children)11

return result12

q�2
11

s�0

22

x�1

27

0.
5

0
.5

t�1

43

u�3

44

0.
3

0.7

v�0

55

w�4

56

0
.6

0.4

0.
6

0
.4

y�2
38

z�1

39
0

.5

0.5

0.
5

0
.5

0
.5

0
.5

Figure 1: Directed acyclic graph created by Algorithm 1 for
eff(o?) in Example 2, each FNF-node corresponding to an opera-
tor in FNF and containing its deterministic effects. Numbers in the
upper left corner denote the values of vaux in preconditions, and la-
bels give transition probabilities. Numbers in the upper right corner
denote the values of vaux in preconditions in the determinization.

Determinization
A deterministic planning task is a planning task in which
all operators are deterministic. Our definition of a deter-
minization, which transforms a probabilistic planning task
to a deterministic one, captures the same semantics as that
of a compilation by Little and Thiébaux (2007).

Definition 5. A sequence t = 〈o0, . . . , on〉 of operators oi ∈
O is a trajectory in T = 〈S,O,∆, s0, G〉, if o0 is applicable
in s0 and there are states si ∈ S s.t. δoi−1

(si−1)(si) > 0 for
1 ≤ i ≤ n+ 1 and sn+1 ∈ G and oi is applicable in si. The
cost of t is cost(t) =

∑n
i=0 c(oi).

Definition 6. A planning task T d = 〈V d, sd0, Sd? , Od〉 is a
determinization of a planning task T = 〈V, s0, S?, O〉 if it
is deterministic and for each trajectory td in T d there is a
trajectory t in T s.t. cost(td) = cost(t). If there also is a
trajectory td in T d for each trajectory t in T s.t. cost(t) =
cost(td), T d is an all outcome determinization of T .

Given a planning task Tψ as created by Algorithm 1, we
can directly generate an all outcome determinization T d of
Tψ. Due to limited space we only give a brief description

of the determinization process. Operators o� ∈ O� are al-
ready deterministic, and all operators oψ ∈ Oψ are either
deterministic or it holds that pre(oψ) = vaux=#(oψ) and
eff(oψ) =

∧
i ei ∧ (p1vaux�x1| . . . |pnvaux�xn). Note that

assignments of the form vaux�0 only occur in deterministic
operators which remain unchanged.

Let Ep be the set that contains the probabilistic part ep
of eff(oψ) for all oψ ∈ Oψ, i.e., assignments of the form
(p1vaux�x1| . . . |pnvaux�xn) (note that ep is equal for oψ ∈
Oψ that were created from FNF-nodes that share their chil-
dren). Furthermore, let #det : Ep � {1, . . . , |Ep|} be bijec-
tive. To determinize we simple replace the probabilistic part
ep of each operator oψ ∈ Oψ with the deterministic effect
vaux�#det(ep), thereby creating a deterministic operator.
Example 3. In Figure 1, the numbers on the upper right cor-
ner of the nodes indicate the new values of vaux when apply-
ing this procedure to Example 2, creating amongst others:

eff(o1d) = q�2 ∧ vaux�2

eff(o2d) = s�0 ∧ vaux�4

eff(o3d) = t�1 ∧ vaux�5

eff(o4d) = u�3 ∧ vaux�5
The resulting planning task T d is an all outcome deter-
minization of Tψ and thus, with our former results, of T .

Experiments
While the standard benchmarks of the latest IPPCs do not
make intensive use of parallel probabilistic effects, we be-
lieve this feature to be significant in probabilistically inter-
esting planning problems. One example is the Canadian
Traveler’s Problem (CTP), a path planning problem in an
undirected graph where each edge has a weight and a prob-
ability of being traversable (Papadimitriou and Yannakakis
1991). Whether an edge is blocked or not is revealed to
the agent only if it is located in an adjacent node, so the
agent has to reason about the expected cost of paths. Re-
cently, several high-quality domain-dependent strategies for
solving the CTP have been proposed (Eyerich, Keller, and
Helmert 2010). With the help of parallel probabilistic effects
we can encode the CTP very concisely in PPDDL, requiring
only one schematic operator changing both the agent’s loca-
tion and determining presence or absence of roads.

Table 1 compares the determinizations based on Rinta-
nen’s 1ND normal form (1NDD) and on the forked normal
form proposed in this paper (FNFD). For three instances of
the CTP with an increasing number of nodes and operators
we denote the number of generated deterministic operators,
the blowup factor relative to the number of probabilistic op-
erators (indicated by � in the table), and the average number
of conditional or atomic effects in the generated operators.

It can be seen that FNFD generally generates far fewer op-
erators than 1NDD. Since 1NDD is exponential in the num-
ber of parallel probabilistic effects it highly depends on aver-
age and maximal branching factor, which explains why the
blowup factor in the problem with 50 nodes (standard devi-
ation of 4.8) is larger than in the problem with 100 nodes
(standard deviation of 3.7). In contrast to that, FNFD de-
pends only linearly on the average number of parallel prob-
abilistic effects.

Nodes/Ops # Roads Det. Ops �Effects

20/98 4.9± 3.7
1122 �11.4 3.7
6008 �61.3 21.9

50/278 5.56± 4.8
3550 �12.8 3.7

29744 �107.0 25.3

100/568 5.68± 3.7
7348 �12.9 3.7

55160 �97.0 23.7

Table 1: Determinizations based on 1ND (white) and FNF (light
gray) on three instances of the CTP with different number of nodes,
operators and adjacent roads (with the standard deviation). We
state the number of generated deterministic operators (the blowup
factor relative to the number of original operators is indicated by �)
and the average number of effects of the generated operators.

Furthermore, the deterministic operators generated by
1NDD contain a lot of redundancy which is reflected in their
average number of effects. In contrast to that, the operators
generated by FNFD have a constant average number of ef-
fects (3.7) for all problems in the CTP.

Conclusion
In this paper, we have presented FNF, a normal form for
probabilistic planning, and a polynomial time and space pro-
cedure to map planning tasks to equivalent tasks where all
operators are in FNF. Each generated operator can directly
be transformed into a single deterministic operator, thereby
gaining an all outcome determinization without the expo-
nential blowup resulting from previous determinizations.
The results of our experiment emphasize the advantages of
our FNF-based determinization.

We will further use FNF to implement a UCT-based
domain-independent planning system, providing us with a
second advantage: The structure of the graph depicted in
Figure 1 can be used in the UCT rollouts to quickly generate
nodes that correspond to intermediate states and where prob-
abilistic outcomes are sampled sequentially, thereby avoid-
ing the generation of the possibly exponentially many suc-
cessor nodes when applying an operator that is not in FNF.

References
Buffet, O., and Aberdeen, D. 2007. FF + FPG: Guiding a policy-
gradient planner. In ICAPS, 42–48.
Condon, A. 1992. The Complexity of Stochastic Games. Informa-
tion and Computation 96(2):203–224.
Eyerich, P.; Keller, T.; and Helmert, M. 2010. High-Quality Poli-
cies for the Canadian Traveler’s Problem. In AAAI, 51–58.
Little, I., and Thiébaux, S. 2007. Probabilistic Planning vs. Re-
planning. In ICAPS Workshop on IPC.
Papadimitriou, C. H., and Yannakakis, M. 1991. Shortest Paths
Without a Map. TCS 84(1):127–150.
Rintanen, J. 2003. Expressive Equivalence of Formalisms for Plan-
ning with Sensing. In ICAPS, 185–194.
Teichteil-Königsbuch, F.; Infantes, G.; and Kuter, U. 2008. RFF: A
Robust, FF-Based MDP Planning Algorithm for Generating Poli-
cies with Low Probability of Failure. IPPC Planner Abstract.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A Baseline
for Probabilistic Planning. In ICAPS, 352–359.

1
On Continual Planning with Runtime Variables
MICHAEL BRENNER AND BERNHARD NEBEL

ABSTRACT. This article discusses the problem of planning and acting in partially
observable environments. In many such domains conditional planning for all contin-
gencies is prohibitively hard. Therefore we advocate a continual planning approach,
where decisions can, by means of so-called assertions, be deferred until execution time
when more information is available. Additionally, we formalize the notion of runtime
variables as functional fluents, which can act as placeholders for sensing results un-
known at planning time. Using runtime variables and assertions we show how a series
of sequential plans can solve planning tasks that in non-continual planning would ne-
cessitate plans with conditional branching and loops.

1 Introduction
In his 1996 article “What is Planning in the Presence of Sensing?” Hector Levesque dis-
cusses the Airport example, in which a traveler must find a way onto flight 123 at the local
airport. To do this, she must find out the boarding gate for the flight and move there. In
such a scenario execution-time sensing must be taken into account already during planning
because the agent’s behavior will be influenced by the outcome of the sensing action. It is
widely accepted that solutions for this or similar problems must be conditional plans that
branch over the possible sensor outcomes or even more general structures like policies or
finite-state controllers. In 1996 Hector noted: “There clearly is no sequence of actions that
can be shown to achieve the desired goal; which gate to go to depends on the (runtime)
result of checking the departure screen”.

The above statement is obviously true—if by “actions” we mean fully instantiated ac-
tions as typically used in classical propositional planning. However, consider how a human
would probably represent her “recipe” for getting onto flight 123 in some arbitrary imper-
ative programming language:

gate = read-departure-screen(flight123)
move-to(gate)
board(flight123)

This is a sequence of actions; however, it makes use of one the most basic concepts of
imperative programming, namely a runtime variable gate. If our planning model allowed
for such runtime variables, it would be possible to find a sequential plan to achieve the
goal. It is true, however, that not all problems of planning with sensing can be solved using
sequential plans and runtime variables—sometimes different sensing results will require
different reactions. For instance, big international airports, such as Frankfurt or Toronto,
usually have several terminals, so that getting to the gate for flight 123 may or may not

Michael Brenner and Bernhard Nebel

involve a transfer to another terminal. This surely cannot be expressed with a sequential
plan, can it?

Our approach to Levesque’s Airport Example is based on the observation that when
people find their way around an airport they do act in a goal-directed, planful way, yet they
do not seem to branch over all possible conditions in advance. This does not mean that they
randomly explore the airport or make guesses about the departure gate that they must revoke
when they find them violated. Rather, they rely on additional domain knowledge stating,
e.g., that there will be signs to guide them to any gate—even if this includes transfer to
another terminal. As a result, a typical passenger at Frankfurt airport with little information
about the airport’s terminals, gates, and layout may still confidently follow the following
plan:

gate = read-departure-screen(flight123)
follow-signs(gate)
board(flight123)

This plan (or program) not only features the runtime variable gate, but also a call to
a subroutine follow-signs(). Execution of the subroutine, i.e. actually following the
signs will most likely involve moving around the airport and reading signs repeatedly. In-
terestingly, those details are usually not planned for in advance by humans and indeed often
cannot be, because the planning domain is incompletely specified at planning time. In the
Airport example, a traveler usually neither knows the number of possible gates nor the
layout of an airport before getting there.

Instead, at planning time the human relies on the “contract”1 of the subroutine, i.e.
the yet unspecified subplan follow-signs(gate): she knows that, once she is at the
airport and has found out her gate, she will be able to find her way to that gate. In other
words, although the subplan named follow-signs(gate) is not yet concretized, it is
already characterized by a Hoare triple {P}follow-signs(gate){Q}[Hoare 1969]:
If certain preconditions P are guaranteed to hold before the subplan, it guarantees that
certain postconditions Q can be achieved.

We will call such unspecified subplans assertions. The notion is inspired by the use of
the same term in computer programming, where a programmer asserts that certain condi-
tions must hold at a certain point in the program execution. An assertion is characterized
by its pre- and postconditions, exactly like normal actions in the domain. However, like
subroutines in a program or methods in Hierarchical Task Networks it will be replaced by a
concretized plan before being executed. Note, however, that in both programming and hi-
erarchical planning this concretization is assumed to be given in advance. In our approach,
as in the Airport example, it is the agent itself that will fill in the details of the plan as soon
as the missing information becomes available. The task is thus not decomposed hierarchi-
cally, but temporally: parts of the planning problem that cannot be solved yet are postponed
and plan execution is started early in order to gather additional knowledge. Planning and
execution are thus integrated and interleaved deliberately by the agent—a process that we
call Continual Planning.

Interestingly, the assertion follow-signs(gate) is used like any normal action in the
above plan, which therefore remains sequential. Likewise, when the assertion is expanded,

1This terminology is borrowed from the programming language Eiffel and its principle of “Design by Con-
tract” [Meyer 1992].

On Continual Planning with Runtime Variables

i.e. replaced by a more concrete subplan2 once the agent reads the departure screen, this
new plan is again a sequential one. By then the agent will know the concrete departure gate
and must only find one plan for how to reach it. It is the great advantage of this form of
continual planning that branching over possible contingencies is thus avoided. Instead, a
series of sequential plans is generated and executed.

The remainder of the paper is structured as follows. In the following section, we will
discuss related approaches to planning with partial observability. Section 3 presents our
continual planning formalism and algorithm. In Section 4 we show how an extended ver-
sion of Levesque’s Airport example can be solved by continual sequential planning, which
otherwise would require plans with conditional branches and loops. We conclude with a
brief discussion of future work.

2 Related Work
Planning with sensing actions has been extensively studied in the planning literature
[Levesque 1996; Golden and Weld 1996; Weld, Anderson, and Smith 1998; Bonet and
Geffner 2000; Petrick and Bacchus 2002; Petrick and Bacchus 2004]. Usually, this is
done in a conditional planning setting. Unfortunately, conditional planning with partial ob-
servability is of prohibitively high computational complexity, even in relation to classical
planning [Rintanen 2004].

Additionally, it is widely acknowledged that, as stated in the textbook by Russell and
Norvig, “even the best-laid plans of mice, men and conditional planning agents frequently
fail” [Russell and Norvig 2003]. Practical planning agents must therefore be extended with
capabilities for execution monitoring and plan adaption or replanning in order to be able
to react quickly to unexpected circumstances and events [Fritz and McIlraith 2007]. Such
agents are sometimes called continual planning agents, because they continually switch be-
tween plan execution and replanning until they have reached their goal. In accordance with
Russell and Norvig’s textbook we will, however, refer to such agents as replanning agents
and reserve the term continual planning agent to agents that can deliberately switch to plan
execution during the planning process, i.e. even before a plan has fully been elaborated.

Continual planning agents try to evade the complexity of conditional planning by not
only planning for information gathering, but by actually performing information gathering
before planning for all future contingencies. Possibly the earliest approach so tightly inte-
grating planning, monitoring, execution and information gathering was the IPEM system
[Ambros-Ingerson and Steel 1988]. In this, as well as in later systems like Sage [Knoblock
1995], execution is integrated into a partial-order planning algorithm by treating unexe-
cuted actions in the plan as a special kind of “flaw” that the planner has to resolve by
executing the action at some point. It is not clear in these earlier approaches, however, if or
how a planner can decide that it is necessary or helpful to start execution before a complete
plan has been found.

In the present work, assertions are used to ensure the planner that it can safely switch to
execution before having a detailed plan in order if necessary to proactively gather relevant
information. The notion of assertions was developed in our previous work [Brenner and
Nebel 2009]. However, there we used a different model for the symbolic effects of sens-
ing actions which, in a nutshell, just stated that the value of a fluent would be known after
a sensing action, similarly to corresponding models in epistemic logic [Fagin, Halpern,

2This plan may also contain assertions, but must have at least an executable prefix (cf. Section 3).

Michael Brenner and Bernhard Nebel

Moses, and Vardi 1995]. Assertions then used knowledge preconditions to make state-
ments about the planning domain such as “If I knew my gate, I could find a plan to get on
my flight”. However, normal operators do not have knowledge preconditions, but refer to
concrete facts in the current situation for testing applicability. When sensing operators are
only modeled in terms of their epistemic effects, their results cannot be used to make these
preconditions true. Therefore, in this work, we use a different model for sensing, based on
runtime variables.

Etzioni and colleagues first used runtime variables to refer to sensing results in a plan
that will only become known at execution time [Etzioni, Hanks, Weld, Draper, Lesh, and
Williamson 1992; Etzioni, Golden, and Weld 1997; Golden 1998]. Similarly, Petrick and
Bacchus used 0-ary functional fluents as runtime variables [Petrick and Bacchus 2002;
Petrick and Bacchus 2004]. While these approaches successfully made use of runtime
variables, they did not clearly define the semantics of planning with them. Here, we provide
such a definition in the context of the Functional STRIPS language developed by Geffner
[Geffner 2000].

Assertions are similar to schemata or “methods” in Hierarchical Task Networks (HTNs)
[Yang 1997; Erol, Hendler, and Nau 1996; Nau, Cao, Lotem, and Munoz-Avila 1999; Nau,
Au, Ilghami, Kuter, Murdock, Wu, and Yaman 2003] in that they will be decomposed into
more concrete subplans until the goal can be reached. The purpose of both approaches
is different, though: While HTNs essentially provide search guidance for a planner by
explicitly decomposing a problem into (ideally) independent subtasks, assertions enable the
planner to decompose the problem temporally into different planning and execution phases.
As a result, where HTN planners generate abstraction hierarchies, continual planning with
assertions generates a series of non-hierarchical plans.

While HTN domain designers need to explicitly provide method decompositions, no
pre-defined abstraction hierarchies are required in continual planning. Rather, the designer
only specifies conditions for the existence of (sub-)plans in a particular domain, much like a
programmer specifying the “contract” of a procedure in programming languages like Eiffel
[Meyer 1992]. The planner itself then finds expansions for assertions, i.e. it synthesizes
concrete subprograms once the preconditions of the “contract” are satisfied.

Our approach is also related to work on integrating planning into Golog-like action lan-
guages [Giacomo, Lesperance, and Levesque 2000; De Giacomo, Lesprance, Levesque,
and Sardiña 2002], in particular to our previous work on integrating a planner with In-
diGolog [Classen, Eyerich, Lakemeyer, and Nebel 2007]. IndiGolog programs, like contin-
ual planning agents, can interleave planning, acting and information gathering, so that the
results of sensing actions can be reacted to immediately. Previously, we have shown how
planning subproblems can be extracted from an IndiGolog program at runtime and solved
by a planning system [Classen, Eyerich, Lakemeyer, and Nebel 2007]. These calls to an
external planner replace the generic forward-search operator achieve (or search), which is
used to refer to some yet unspecified solution to a subproblem in an IndiGolog program—
which is exactly the role of an assertion in a continual plan. Thus, where achieve enables
an IndiGolog programmer to hand over some control to an autonomous planner, assertions
can be said to enable the domain designer of a planning domain to specify some additional
domain information, namely about the solvability of subproblems, to the planner.

On Continual Planning with Runtime Variables

3 Planning Model
Our planning language is a variation of Geffner’s Functional STRIPS [Geffner 2000], a
typed first-order language with name, type and function symbols without quantifiers or
variables. Relations are not explicit in the language, but can be expressed by using func-
tions with a Boolean codomain. To simplify the presentation, we will use standard rela-
tional notation in our examples anyway, i.e. we will write, e.g., ¬connected(pos(), dest)
instead of connected(pos(), dest) = ⊥ when comparing or connected(pos(), dest) := ⊥
when assigning.

Name symbols are assumed to be non-fluent, i.e. they are fixed names of objects inter-
preted under the unique name assumption; therefore we will simply equate name symbols
with their denotations in the following. Function symbols are fluent, i.e. their denotation
depends on the state they are interpreted in. Terms and formulas must obey the usual for-
mation rules (“well-formedness”). For a term t and formula f , we write ts and fs(ts) to
denote their interpretations in state s (but omit the superscript s if it is irrelevant or obvious
from context).

3.1 Tasks
We can now define the tasks a continual planning agent is supposed to solve.

DEFINITION 1. A continual planning task is a tuple T = 〈T , F,O, s0, s∗〉 where

• T is a set of types, where each type t is associated with a set of names, called its
domain Dt. C = ∪t∈T Dt is the set of all names.

• F is a set of function symbols. Each f ∈ F has an associated signature f : Dt1 ×
· · · × Dtn → Dtn+1 (with n ≥ 0 and ti ∈ T). Df = Dt1 × · · · × Dtn is called the
domain of f , andDtn+1 is called the codomain of f and referred to by codomain(f).

• A state s is an interpretation of the language that is defined by the names C and
function symbols F over C. Since, as stated above, we treat names as their own in-
terpretations, the state s is represented by the interpretations of each function symbol
f over its domain Df , i.e. the values w ∈ codomain(f).

• A belief state b is a set of states representing the states the agent assumes to be
possible. A set of belief states B will be called belief set and represents the possible
beliefs the agent can have - given the sensing actions the agent performed.

• O is a set of operators of the form 〈param, pre, eff , sense〉.

– param is a list of typed schema variables. They can be used in the rest of the
operator definition as place holders for fluents.

– In analogy to Functional STRIPS [Geffner 2000], the precondition pre is a
conjunction of conditions of the form t = w. With t and w be well-formed
terms3 .

– The effect eff is a list of conditional updates (c → e) where c is an effect
condition with the same restrictions as a precondition and e is an atomic update
of the form t := w, and t and w are terms of the same type.

3Terms are built in the usual manner using function and name symbols of compatible types and arities [Geffner
2000].

Michael Brenner and Bernhard Nebel

– sense is the sensed fluent in a sensing action, otherwise it is unspecified.

Every operator o is declared to belong to one of the following three disjoint sets:

– the set of sensing operators Os(o ∈ Os iff sense is specified for o)

– the set of assertions Oa,

– the set of standard operators Oo,

The induced set of actions A is the set of parameter-free operators generated by
substituting all possible functional fluent expressions for the scheme variables in the
operators. This set is potentially infinite. The sets Ao, Aa, and As are defined
analogously to the corresponding sets of operators.

• s0 is a singleton belief set, called the initial belief set. It is specified by a conjunction
of expressions of the kind t = c, with t being some term of our language and c a
name. Since s0 is singleton, it denotes the unique belief state, where for each fluent
either the value is known or it can be any value of the domain of the fluent.

• s∗ is a formula describing the goal condition, which we will assume to have a form
like a precondition of an action, i.e., a conjunction of fluent equations.

Since continual planning alternates between planning and plan execution, we will need
to distinguish between the semantics of the physical and the symbolic execution of an
action, the latter describing the state transitions reasoned about in the planning process
under incomplete knowledge, the former modeling the actual results of executing the action
in a particular world state.

Furthermore, for the symbolic execution, we will distinguish between execution in the
full belief set space and a simplified model, which is defined below.

In order to do so, we have to define what it means that a condition ϕ of an action a is
satisfied by a belief set B, a belief state b and a classical state s. A state s satisfies ϕ, in
symbols s |= ϕ, if s satisfies ϕ classically. A belief state b satisfies ϕ, symbolically b||=ϕ,
if for all s ∈ b we have s |= ϕ. That is, regardless of what we consider as possible, the con-
dition is true. Finally, a condition φ is satisfied by the current belief set B, symbolically
B|||=ϕ, iff all b ∈ B satisfy ϕ.

DEFINITION 2. The symbolic execution over the full belief set space is defined as fol-
lows:

• Standard actions and assertions a ∈ Ao ∪ Aa can only be executed if the precon-
ditions are satisfied by B. The next belief set consists of all belief states that result
from executing a in each of the belief states. Executing an action a in a belief state b
is simply the execution on each state s ∈ b, which means the application of all con-
ditional effects of a in s, i.e., if the effect condition is satisfied in s, then the effect is
made true in the resulting state.

• A sensing action follows the same execution model except that right in the beginning,
before the effects of a are applied, the sensing of the fluent f of type t in sense takes
place. This results in splitting each belief state into ‖Dt‖ belief states, such that for
each ci ∈ Dt that is possible for f in the belief state b, there is a belief state bi that
satisfies f = ci and is otherwise identical to the original belief state b. After that the

On Continual Planning with Runtime Variables

effects of the sensing action are applied. The resulting belief set contains all belief
states generated in this way.

Based on these definitions, we say that a plan P is a successful plan for a planning task
T = 〈T , F,O, s0, s∗〉 if the actions in P sequentially executed on the belief set s0 lead to
a belief set B that satisfies s∗.

Domains: Egg: egg0, egg1
Pen: pen1, pen2, pen3
Object; egg0, pen1, sample
Color: red, blue, green

Fluents: color : Object→ Color
sampleColor : ∅ → Color

Action: paint-egg(egg:Egg, pen:Pen)
Prec: ∅
Post: color(egg) := color(pen)

Sensor: sense-color(obj:Object, col():Color)
Sense: color(obj)
Prec: ∅
Post: col() := color(obj)

Init: color(pen1)=green, color(pen2)=blue, color(pen3)=red

Goal: color(egg0)=color(sample), color(egg1)=color(sample)

Figure 1. Easter eggs continual planning domain

An example planning domain and task is shown in Figure 1 (syntactically, we follow
Geffner’s Functional Strips [Geffner 2000]). In this task, easter eggs must be painted in
some sample color which must be determined by sensing first. In our framework, the goal
is achieved without branching by the following plan:

sense-color(sample, sampleColor())
paint-egg(egg0, sampleColor())
paint-egg(egg1, sampleColor())

A more elaborate example will be discussed in Section 4.

3.2 A Simplified Execution Model
Our planning language gives us only limited ways of expressing uncertainty and knowledge
gathering. In particular, because we stick to linear plans, we cannot branch on sensed
values in the plan (we will later discuss how assertions can mitigate this restriction). On the
positive side, a more compact representation of belief sets seems possible in our framework.

Michael Brenner and Bernhard Nebel

DEFINITION 3. The special value u does not belong to a type and denotes the unknown
value. For any type t, Dt

u = Dt ∪ {u} and Cu = ∪t∈T Dt
u

A simplified belief state is a singleton set containing one state that is an interpretation
of all the fluents over Cu such that for all fluents that are interpreted as u, all values of the
codomain of the fluent are possible.

A condition ϕ is satisfied by a simplified belief state b = {s} iff none of the subterms in
ϕ are interpreted as u in s and ϕ is classically satisfied by the state s.

Using this notion of simplified belief set, we can express the initial belief set that con-
tains only one belief state as one interpretation. All fluents that have a value assigned have
that value, all others have the value u.

Without sensing and without conditional effects, such a simple execution model would
be actually equivalent to one that is executed over full belief sets. This can be shown by a
simple compilation to standard basic STRIPS [Nebel 2000].

Domains: Type1: 1, 2

Fluents: right, wrong, do, done: ∅ → Bool
a: ∅ → Type1

Action: case()
Prec: ∅
Post: a()=1→ right(), a()=2→ right(), a()=1→ ¬wrong(),

> → do()

Action: unsound()
Prec: wrong(), do()
Post: done()

Init: ∅
Goal: right()

Figure 2. Small example demonstrating incompleteness and unsoundness

When the planning language contains conditional effects, planning with respect to sim-
plified belief sets becomes incomplete with respect to planning over the full belief set space,
as is demonstrated by the artificial planning task in Figure 2. In order to achieve the goal
right(), the action case is sufficient in the full belief set space. Under the simplified model,
however, the conditional effects are not activated, because the conditions are not satisfied.

Furthermore, one has to be careful to avoid the traps of being unsound with respect
to the belief set model. For example, if we consider the initial description {wrong} and
the goal {done}, then there is no plan for the full belief set space. However, the plan
〈case,unsound〉 seems to achieve the goal under the simplified belief set space because
none of the conditional effects in the action case are executed.

In order to avoid unsoundness, uncertainty has to be propagated over conditional effects.
So, execution over simplified belief sets differs as follows: if a fluent has the value u and
this fluent is part of an effect condition, then the effect fluent will become unknown as well.

On Continual Planning with Runtime Variables

This leads in general to the fact that less actions can be applied and that less fluents will
have a known value.

PROPOSITION 4 (Soundness of the simplified model). Any successful plan that can be
executed over the simplified belief set space is a successful plan over the full belief set
space.

While this simplification reduces the number of states we have to store exponentially,
the belief set still contains a number of states that is exponential in the number of sensing
actions. However, do we really need to track all of these states? Wouldn’t it be enough
to simply remember that the value of a fluent is known after a sensing action has been
executed on this fluent? For instance, we could introduce another special domain element k
that could be (implicitly) assigned when a fluent is sensed and tested afterwards, e.g., with
an expression such as departure(flight123) = k. In fact, this was the intended semantics of
the approach described in an earlier paper of ours [Brenner and Nebel 2009] (where we did
not deal with functional fluents, though).

It is to be expected that this move, again, introduces incompleteness. However, even
worse, it does not even allow to execute our examples, because they rely on the equality
between two fluents, e.g., gate() equaling departure(flight123), of which the concrete value
is unknown at planning time. Similarly, our plan for the easter eggs example of Figure 1
would not ensure that eggs and sample object share the same color in the final state.

Another idea might be to introduce a new anonymous object for each value sensed. Such
a move would make our examples executable. Again, such a model would not be complete
with respect to the simplified belief model. For instance, in some task there may be a
number of different persons, with each person’s age being known. If we sense a particular
person, we should know the age of the person as well. This is true for the semantics
of Definition 2. However, if during the simplified symbolic execution a new anonymous
object is introduced for the person seen, the value for her age will be unknown.

Things are even worse. Namely, introducing anonymous objects can make planning
unsound with respect to the full belief set model, provided we can introduce unlimited many
new anonymous objects. As sketched in Figure 3, we could simulate a Turing machine and
solve the Halting Problem on the empty tape by planning in the execution model with
anonymous objects.

Of course, the number of new anonymous objects could be restricted, but it is not clear
whether this will lead to soundness. For this reason, as a compromise between efficiency
and completeness, we adapted the simplified belief set space as described above. While it
seems obvious that this simplified model is easier to implement, the question of whether
there is indeed a reduction in computational complexity for planning has still to be resolved.

3.3 Continual Planning with Assertions
We can now describe how planning, i.e. reasoning about the symbolic execution of actions,
can lead to physically achieving a goal.

In the following, we will refer to the symbolic execution of an action a or a plan P
in the simplified belief set state B as project(B, a) respectively as project(B,P). This
is to be contrasted with the physical execution of actions. These always take place in a
single simplified belief state b and consist of checking the preconditions and executing the
(conditional) effects. In case of sensing actions, one particular value is nondeterministically
chosen. We denote the physical execution of an action a in a simplified belief state b by
execute(s, a) and, respectively, the physical execution of a plan P by execute(s, P).

Michael Brenner and Bernhard Nebel

Domains: Cell: cell0
Char: 1, 0, *
State: q0, q1, q2, . . . , qf

Fluents: next : Cell→ Cell
prev : Cell→ Cell
cont : Cell→ Char
head: ∅ → Cell
state: ∅ → State
init: ∅ → Bool

Sensor: fresh(cell:Cell)
Sense: next(cell)
Prec: init()
Post: prev(next(cell)) := cell, char(next(cell)) := *

Action: switch-to-computation()
Prec: init()
Post: ¬ init()

Action: rule1()
Prec: cont(head()) = 1, state() = qi
Post: cont(head()) := 0, head() := next(head()), state() = qk

...

Init: cont(cell0) = *, init(), head() = cell0, state() = q0

Goal: state() = qf

Figure 3. Turing machine encoding

Assertions cannot be executed physically, i.e. execute(s, a) is undefined for any asser-
tion a, even if its preconditions are satisfied in s. This crucial semantic difference between
project() and execute will lead to the intended “expansion” of assertions during continual
planning: CP algorithms must take into account that assertions can never be selected for
physical execution, therefore they must make sure that assertions never appear first in a
plan (in the case of partially ordered plans, they must never be ordered immediately after
the init action). Additionally, after an action is physically executed and removed from the
plan monitoring must check if this constraint is violated in the updated plan. In that case,
a new planning phase is triggered in which the assertion is not allowed to be used at the
beginning of the plan any more.

Algorithm 3.3 shows the basic continual planning algorithm. Here, PLANNER is a
generic planning algorithm computing valid, i.e. symbolically executable, plans and en-
suring that every plan P returned by PLANNER({b}, G) does not start with an expandable

On Continual Planning with Runtime Variables

Algorithm 1 Generic continual planning algorithm.
P ← 〈 〉
while b 6 ||= s∗ do
P ← PLANNER({b}, G)
if P = failure then

return “No solution from b”
while PLANISVALID(b, P) do
a← POP(P)
b← EXECUTEACTION(a, b)

return “Goal reached”

assertion a, i.e. {b} does not satisfy pre(a). Similarly, PLANISVALID is a generic plan
monitoring procedure [Russell and Norvig 2003]. It checks if the plan P updated after its
first action has been executed does not begin with an expandable assertion and, if that is
not the case, computes project({b}, P) to verify whether the state resulting from symbolic
execution of the updated plan P still satisfies the goal.

Algorithm 3.3 will produce a sequence of belief states and plans that we call a CP trace.

DEFINITION 5 (CP trace). Let 〈T , F,O, s0, s∗〉 be a continual planning task. T =
〈b0, P0, . . . , Pn−1, bn〉 is a sequence alternating belief states and plans and is a called a
CP trace if

• project({bi}, Pi)|||= s∗, i.e. Pi symbolically executed in {bi} achieves s∗

• bi+1 = execute(si, a) where a = P [0], i.e. bi+1 results from physically executing
the first action of P in bi.

While it would be desirable that all CP traces for a goal G generated by Algorithm 3.3
always end in a goal state, in general this can be guaranteed only if assertions are expanded
in a side-effect free manner.

PROPOSITION 6 (Soundness). Let 〈T , F,O, s0, s∗〉 be a continual planning task and b
the simple belief state representing s0. Then Algorithm 3.3 generates a CP trace T =
〈b0, P0, . . . , Pn−1, bn〉 such that bn satisfies s∗, provided for each assertion it is always
possible to find a plan that makes the effects of the assertions in all plan Pi true and does
not change anything else.

Obviously, enforcing complete absence of side effects is a rather strong limitation of
applicability. However, in practice we can mitigate the restriction: We can determine those
potential side effects that would be harmful to the plan suffix by regressing from the goal,
and then force the planner to not achieve these when expanding assertions. How this affects
soundness is a topic of future work. In particular, we are interested in describing structural
properties of domains that guarantee soundness of planning with assertions.

4 Worked Example
Let’s step through Hector Levesque’s Airport example once more, modeled as a continual
planning problem, as shown in Figure 4. In the beginning, the agent is situated at gate0,
not knowing at which gate her flight, flight123, departs. At gate0 there is a big screen
indicating the departing gates for all flights, as indicated by the precondition of action

Michael Brenner and Bernhard Nebel

Domains: Gate : gate0, gate1, gate2, gate3, . . .
Flight: flight123, flight456, flight789, . . .

Fluents: departure : Flight→ Gate
pos : ∅ → Gate
connected : Gate × Gate→ Bool
direction : Gate × Gate→ Gate
gateA, viaA : ∅ → Gate

Action: move-to(dest:Gate)
Prec: connected(pos(), dest)
Post: pos() := dest

Action: board(flight:Flight)
Prec: pos() = departure(flight)
Post: pos() := flight

Assertion: follow-signs(dest:Gate, via:Gate)
Prec: connected(pos(), via), direction(pos(), dest) = via
Post: pos() := dest

Sensor: read-departure-screen(flight:Flight,gate():Gate)
Sense: departure(flight)
Prec: pos() = gate0
Post: gate() := departure(flight)

Sensor: read-sign(dest:Gate,via():Gate)
Sense: direction(pos(), dest)
Prec: ∅
Post: via() := direction(pos(), dest),

connected(pos(), via()), connected(via(), pos())

Init: pos() := gate0

Goal: pos() = flight123

Figure 4. Airport continual planning domain

read-departure-screen. This situation is described by the Init: statement of Figure 4, which
defines the initial belief set {b0}.

Using the PLANNER of Algorithm 3.3 the agent comes up with the following plan P0:

read-departure-screen(flight123, gateA())
read-sign(gateA(), viaA())
follow-signs(gateA(), viaA())
board(flight123, gateA())

On Continual Planning with Runtime Variables

The first two actions in this plan are sensing actions, with fluents gateA() and viaA()
acting as runtime variables that represent the values sensed in the remainder of the plan.
The first action, read-departure-screen(flight123, gate()) equates gate() with the departing
gate for flight 123. Next, the agent will sense where to go next in direction of gate(). To
enable this, the planning domain models “signs” with the function fluent direction. It is
assumed to map pairs (src,dest) to the position closest to src on the way to dest. Thus, the
second action, read-sign(gateA(), viaA()), determines the gate via() closest to the current
position on the path to gateA().

After the two sensing actions, follow-signs(gateA(), viaA()) asserts that the agent will be
able to find a path to gateA(), i.e. a subplan that will be continually developed after the agent
has found out her concrete gate and while she is following the signs around the airport.
Based on the postcondition of this assertion, the agent can safely plan to board(flight123,
gateA()) in the last step.

Having produced an initial plan that “hides” all contingencies and future plan variants,
the agent can follow Algorithm 3.3 and switch to plan execution. When she physically
executes read-departure-screen(flight123) she has reached belief state b1 in the CP trace,
in which she will know the actual departure gate. Let’s assume this is gate37. The flu-
ents departure(flight123) and gateA() both have this value in b1. Likewise, when follow-
signs(gateA(), viaA()) is executed, via() is assigned a value, e.g. gate1, that corresponds to
the one of direction(gate0,gate37).

After their physical execution both sensing actions have been removed from the plan.
We have reached belief state b2 in the CP trace and the current plan looks like this (to
clarify the presentation, the runtime variable fluents have been replaced with their values):

follow-signs(gate37, gate1)
board(flight123, gate37)

This plan, however, is no longer accepted by PLANISVALID, because it starts with an
assertion. Thus, the agent enters a new planning phase, which produces the plan P2:

move-to(gate1)
read-sign(gate37, viaA())
follow-signs(gate37, viaA())
board(flight123, gate37)

As can be seen, the original assertion follow-signs(gate37, gate1) has been expanded
into a new subplan that starts with executable actions again. Note also that by deferring
choices until the value of departure(flight123) was known, the continual planning agent
avoided branching and can immediately commit to one specific more detailed plan now,
namely the one having gate37 as the boarding gate.

Since P2 contains an assertion again, it can obviously still not be the final, fully exe-
cutable plan in the CP trace. Most interestingly, P2 uses the same assertion, follow-signs,
as the previous plans again. It is obvious that the continual planner will loop through a cycle
of producing similar plans and executing their prefixes until the agent has moved to a gate
adjacent to gate37. This loop, however, is not explicit in the plan, as would be the case,
e.g., in the approaches to planning with loops developed by Hector Levesque [Levesque
2005; Hu and Levesque 2009]. Instead, it is continually created by the continual planning

Michael Brenner and Bernhard Nebel

algorithm through the interleaving of planning with acting. Again, this phenomenon can be
described with an analogy from computer programming: The continual planning algorithm
creates looping behavior through recursion.

5 Discussion and Future Work
The conventional approach to incomplete knowledge and sensing is to employ conditional
plans (or policies) in order to deal with contingencies after sensing actions. Since this
is computationally infeasible in many applications, we instead proposed to rely on linear
plans and defer decisions as much as possible to the execution time when more information
is available [Brenner and Nebel 2009]. The tool to delay such planning time decisions
are assertions, which are basically abstract actions that can be expanded into subplans at
execution time. On top of that, we propose here to employ runtime variables to deal with
values that only become known at runtime. This devices permits us to deal with a number
of scenarios introduced in the literature dealing with incomplete knowledge and sensing.

In order to formalize the relationship between plans interpreted on the symbolic level
and plans that are executed and replanned while being executed, we developed formal
execution models for the symbolic and physical execution and showed that the planning
process is sound under some severe restrictions.

A number of questions remain unanswered at this point. In particular,

• we would like to determine the precise computational complexity for verifying and
generating plans under the different symbolic execution models;

• we are interested in devising efficient data structures for representing the simplified
belief set space;

• we intend to identify more properties of domain structures that guarantee soundness
of abstract plans;

• and finally, we want to evaluate the proposed approach empirically..

Acknowledgements
This work has been supported by the European Commission as part of the Integrated Project
CogX (FP7-ICT-2xo15181-CogX), by the German Research Foundation (DFG) as part of
the collaborative research center SFB/TR-14 AVACS, and by the German Space Agency
(DLR) as part of the project KontiPlan.

References
Ambros-Ingerson, J. A. and S. Steel [1988, August). Integrating planning, execution

and monitoring. In Proceedings of the 7th National Conference of the American
Association for Artificial Intelligence (AAAI-88), Saint Paul, MI, pp. 83–88.

Bonet, B. and H. Geffner [2000]. Planning with incomplete information as heuristic
search in belief space. In Proceedings of the 5th International Conference on Artifi-
cial Intelligence Planning Systems (AIPS-00), pp. 52–61. AAAI Press, Menlo Park.

Brenner, M. and B. Nebel [2009]. Continual planning and acting in dynamic multiagent
environments. Journal of Autonomous Agents and Multiagent Systems 19(3), 297–
331.

On Continual Planning with Runtime Variables

Classen, J., P. Eyerich, G. Lakemeyer, and B. Nebel [2007]. Towards an integration of
Golog and planning. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI-07), pp. 1846–1851. AAAI Press.

De Giacomo, G., Y. Lesprance, H. Levesque, and S. Sardiña [2002, April). On the se-
mantics of deliberation in indigolog – from theory to implementation. In D. Fensel,
F. Giunchiglia, D. McGuinness, and M. A. Williams (Eds.), Proceedings of Eighth
International Conference in Principles of Knowledge Representation and Reasoning
(KR-2002), Toulouse, France, pp. 603–614. Morgan Kaufmann.

Erol, K., J. Hendler, and D. Nau [1996]. Complexity results for hierarchical task-
network planning. Annals of Mathematics and Artificial Intelligence 18, 69–93.

Etzioni, O., K. Golden, and D. S. Weld [1997]. Sound and efficient closed-world rea-
soning for planning. Artificial Intelligence 89(1-2), 113–148.

Etzioni, O., S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson [1992]. An ap-
proach to planning with incomplete information. In Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the 3rd International Conference (KR-92),
Cambridge, MA, pp. 115–125. Morgan Kaufmann.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi [1995]. Reasoning About Knowledge.
MIT Press.

Fritz, C. and S. A. McIlraith [2007]. Monitoring plan optimality during execution.
In Proceedings of the 17th International Conference on Automated Planning and
Scheduling (ICAPS-07), Providence, Rhode Island, USA. Morgan Kaufmann.

Geffner, H. [2000]. Functional Strips: A more flexible language for planning and prob-
lem solving. In J. Minker (Ed.), Logic-Based Artificial Intelligence. Dordrecht, Hol-
land: Kluwer.

Giacomo, G. D., Y. Lesperance, and H. J. Levesque [2000]. Congolog, a concurrent
programming language based on the situation calculus. Artificial Intelligence 121(1-
2), 109–169.

Golden, K. [1998]. Leap before you look: Information gathering in the PUCCINI plan-
ner. In Proceedings of the 4th International Conference on Artificial Intelligence
Planning Systems (AIPS-98), pp. 70–77.

Golden, K. and D. Weld [1996]. Representing sensing actions: The middle ground re-
visited. In Principles of Knowledge Representation and Reasoning: Proceedings of
the 5th International Conference (KR-96). Morgan Kaufmann.

Hoare, C. A. R. [1969, October). An axiomatic basis for computer programming. Com-
munications of the ACM 12, 576–580.

Hu, Y. and H. J. Levesque [2009]. Planning with loops: Some new results. In Pro-
ceedings of the ICAPS 2009 Workshop on Generalized Planning: Macros, Loops,
Domain Control. September 20th, 2009, Thessaloniki, Greece.

Knoblock, C. A. [1995]. Planning, executing, sensing, and replanning for information
gathering. In C. Mellish (Ed.), Proc. the Fourteenth International Joint Conference
on Artificial Intelligence, San Francisco, pp. 1686–1693. Morgan Kaufmann.

Levesque, H. J. [1996]. What is planning in the presence of sensing? In Proceedings of
the 13th National Conference of the American Association for Artificial Intelligence
(AAAI-96), pp. 1139–1146. MIT Press.

Michael Brenner and Bernhard Nebel

Levesque, H. J. [2005]. Planning with loops. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI-05), Edinburgh, Scotland, UK, pp.
509–515. Professional Book Center.

Meyer, B. [1992, October). Applying ”Design by Contract”. Computer 25, 40–51.

Nau, D., Y. Cao, A. Lotem, and H. Munoz-Avila [1999, August). SHOP: Simple hi-
erarchical ordered planner. In T. Dean (Ed.), Proceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI-99), Stockholm, Sweden. Morgan
Kaufmann.

Nau, D. S., T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman [2003].
SHOP2: An HTN planning system. Journal of Artificial Intelligence Research 20,
379–404.

Nebel, B. [2000]. On the compilability and expressive power of propositional planning
formalisms. Journal of Artificial Intelligence Research 12, 271–315.

Petrick, R. and F. Bacchus [2002]. A knowledge-based approach to planning with in-
complete information and sensing. In M. Ghallab, J. Hertzberg, and P. Traverso
(Eds.), Proceedings of the Sixth International Conference on Artificial Intelligence
Planning Systems, Toulouse, France. AAAI Press.

Petrick, R. P. A. and F. Bacchus [2004]. Extending the knowledge-based approach to
planning with incomplete information and sensing. In S. Zilberstein, J. Koehler, and
S. Koenig (Eds.), Proceedings of the Fourteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2004), June 3-7, 2004, Whistler, British
Columbia, Canada, pp. 2–11. AAAI Press.

Rintanen, J. [2004]. Complexity of planning with partial observability. In S. Zilber-
stein, J. Koehler, and S. Koenig (Eds.), Proceedings of the Fourteenth International
Conference on Automated Planning and Scheduling (ICAPS 2004), June 3-7, 2004,
Whistler, British Columbia, Canada, pp. 345–354. AAAI Press.

Russell, S. and P. Norvig [2003]. Artificial Intelligence: A Modern Approach (Second
ed.). Englewood Cliffs, NJ: Prentice-Hall.

Weld, D. S., C. R. Anderson, and D. E. Smith [1998]. Extending Graphplan to handle
uncertainty and sensing actions. In Proceedings of the 15th National Conference of
the American Association for Artificial Intelligence (AAAI-98), Madison, WI, pp.
897–904. MIT Press.

Yang, Q. [1997]. Intelligent Planning: A decomposition and abstraction based ap-
proach. Springer-Verlag.

Gaze Allocation During Visually Guided
Manipulation

Technical Report

Jose Nunez-Varela¹, Priya A. Mani², B. Ravindran², Jeremy
L.Wyatt¹

¹School of Computer Science
University of Birmingham

²Department of Computer Science and Engineering
IIT Madras

April 2011

Abstract

In this work we present principled methods for the coordination of a robot’s

oculomotor system with the rest of its body motor systems. The problem is to

decide which physical actions to perform next and where the robot’s gaze should be

directed in order to gain information that is relevant to the success of its physical

actions. Previous work on this problem has shown that a reward-based coordination

mechanism provides an efficient solution. However, that approach does not allow the

robot to move its gaze to different parts of the scene, it considers the robot to have

only one motor system, and assumes that the actions have the same duration. The

main contributions of our work are to extend that previous reward-based approach

by making decisions about where to fixate the robot’s gaze, handling multiple motor

systems, and handling actions of variable duration. We compare our approach

against two common baselines, random and round robin gaze allocation. We show

how our method provides a more effective strategy to allocate gaze where is needed

the most.

1

Contents

1 Introduction 3

1.1 Problem Definition . 3

1.2 Related Work . 3

1.3 Contributions . 4

1.4 Modelling Decision Problems . 6

2 Coordinating Gaze and Actions 7

2.1 How the System Works . 7

2.2 Learning Phase . 7

2.3 Execution Phase . 8

2.3.1 Physical Action Selection . 9

2.3.2 Perceptual Coordination . 9

2.3.3 Image Processing . 11

3 Experiments 14

3.1 Learning Phase . 15

3.2 Results of the Execution Phase . 16

4 Conclusions and Future Work 18

2

1 Introduction

1.1 Problem Definition

Real-world tasks require robots to act under uncertain and incomplete information. In

this work we show how a robot should act to reduce that uncertainty by controlling its

gaze in a principled way. Here, we consider a robot that has an oculomotor system and

multiple motor systems. By oculomotor system we mean a system capable of moving the

robot’s cameras to specific fixation points (e.g. an object in the scene). These movements

represent perceptual actions. Once a fixation is made, it is then possible to process

the visual input to extract information. The robot’s motor systems are for example, its

arms, hands, legs, etc. Each motor system is capable of performing physical actions (e.g.

grasping an object with the hand). The main problem is that all motor systems are

running simultaneously and each of them might require the use of the oculomotor system

in order to gather information relevant to the success of its physical actions. Therefore,

a coordination mechanism must be defined in order to allocate the control of gaze to the

motor system which most needs it.

The robot also needs to deal with the fact that cameras are limited and noisy. They

are limited because it is not possible to get a full view of the world, but just a part of it,

thus the robot needs to decide where to look. They are noisy due to a number of factors,

e.g. resolution, illumination, quality of the camera, etc. This noise adds uncertainty to

the information the robot is trying to extract.

Our proposed coordination framework is implemented using the iCub simulator [Metta

et al., 2008] (Fig. 1). The iCub is a humanoid robot with multiple motor systems and an

oculomotor system. To test our approach we have defined a task that consists in picking

up objects from the table top and then placing them inside one of the containers, as shown

in Fig. 1. Objects reachable by the right arm are placed inside the right container, and

objects reachable by the left arm are placed inside the left container. Once an object is

put inside a container it disappears and another object will appear on the table. Also,

every 60 seconds a new object will appear on the table. The robot does not know the

locations of objects and containers. The robot needs to fixate on an object/container in

order to get an estimate of its true location. The only known location to the robot is the

table’s centre.

1.2 Related Work

Current research on visual perception has focused on active vision and attentional systems

[Frintrop, 2006], where image processing techniques identify regions of interest so that the

3

Figure 1: Snapshot of the iCub Simulator. The task is to pick up and place objects from the
table top into the containers.

robot can move the camera to get different images of one object. Although these systems

provide a good way to decide where to direct the gaze, they normally fail to incorporate

information about the task being performed.

In [Sprague et al., 2007], Sprague and Ballard developed a reward-based perceptual

coordination mechanism for a simulated human-agent. The agent is capable of performing

a set of behaviours simultaneously thanks to the fact that all behaviours share the same set

of actions. Each behaviour has an associated visual routine that updates the information

needed by that behaviour. However, only one visual routine can be executed every time

step, thus the agent has to decide which is the best visual routine to execute at any step.

The key idea is to select the visual routine which will minimise the uncertainty associated

to the behaviour that is likely to lose more reward. Their results show that a reward-based

approach provides an effective way to coordinate perception and actions. However, there

are several restrictions in their approach. First, the agent’s eyes remain fixed, they do

not consider the fact that eyes can move. Second, the agent is restricted to have only one

motor system that works across all behaviours. Third, they assume that physical actions

have the same duration.

1.3 Contributions

We follow Sprague and Ballard’s idea of a reward-based approach, but we extend their

approach by:

4

� Considering an oculomotor system capable of moving the robot’s cameras.

� Considering multiple motor systems.

� Considering actions with variable duration.

Figure 2: Sprague and Ballard’s approach handles several behaviours but only one motor
system with actions of same duration.

Figure 3: Our approach handles multiple motor systems with actions of variable duration.

Fig. 2 shows a graphical representation of Sprague and Ballard’s system having mul-

tiple behaviours but with only one motor system and actions with the same duration. In

contrast our proposed system, shown in Fig. 3, has multiple motor systems and allows

actions with variable duration. Each block in the figure represents an individual action.

To summarise, our system lets the robot make three different kinds of decisions:

� Decide which motor system should take control over the oculomotor system (gaze

allocation).

� Given the selected motor system, decide which perceptual action is to be executed

(i.e. where to look).

� Decide which physical action to perform for each motor system.

5

1.4 Modelling Decision Problems

A common approach for modelling decision making problems is to use Markov decision

processes (MDPs) [Puterman, 1994]. Sprague and Ballard’s modelled each behaviour as

an MDPs, and their task is learnt via reinforcement learning (RL) [Sutton and Barto,

1998]. During execution time, their perceptual coordination mechanism is formalised

as a partially observable MDP (POMDP) [Kaelbling et al., 1998], in order to handle

uncertainty. Nevertheless, a full POMDP solver is not required, only a one-step look-

ahead is needed. In order to keep track of the uncertainty they use Kalman filters [Thrun

et al., 2008].

The issues with MDPs are that they assume that actions have the same duration and

are executed sequentially. As stated above, we want to consider actions that have variable

duration to represent what really happens in real-world tasks. For instance, the time it

takes to reach for an object is different to the time it takes to grasp it. Thus, instead of

using MDPs we model our problems using semi-MDP (SMDP) [Puterman, 1994], which

allow us to model actions with variable duration. These temporally extended actions

are modelled as options [Sutton et al., 1999]. Options are high-level actions where it is

possible to “look” inside them, since each option is composed of single-step actions.

Also, by having multiple motor systems, physical actions can be executed in parallel

instead of sequentially. In order to exploit the parallelism provided by the multiple motor

systems, we decompose the task and model each motor system separately, then each motor

system learns its corresponding task via RL.

To handle uncertainty we also formalise the problem as a POMDP and use a one-

step look-ahead algorithm. This uncertainty is represented as probability distributions.

However, instead of using Kalman filters, we make use of particle filters [Thrun et al.,

2008]. Kalman filters require the definition of a number of parameters that sometimes

might be difficult to calculate. For instance, they require the definition of a model to

predict the state of the variable being tracked. On the other hand, particle filters are

non-parameterised methods that are more flexible at the moment of tracking uncertainty.

In the next section (Section 2), we describe the theory behind our proposed framework.

Section 3 presents the experiments and the results obtained, and Section 4 provides some

final remarks and future work.

6

2 Coordinating Gaze and Actions

2.1 How the System Works

Fig. 4 illustrates the interaction between the different components in our system. The

system works in the following way:

1. Learning phase: The robot first learns via RL how to perform a particular task,

keeping the learnt policy in memory. Learning occurs in a completely observable

manner, i.e. perceptual actions are not involved.

2. Execution phase: During execution uncertainty is taken into account, thus the

robot should now keep an estimate of the true state of some variable, where this

estimate is represented by probability distributions. In our task, the location of

objects and containers is the uncertain state variable. This uncertainty is tracked

using particle filters for each object/container in the world. The information about

objects/containers and its corresponding particle filter are kept in a visual memory.

(a) Physical action selection: Is in charge of selecting physical actions for each

motor system. The selected actions are sent to the corresponding motor system

and are executed in parallel. Actions will likely change the state of the world

and that of the robot.

(b) Perceptual coordination: Allocates gaze to the motor system that most

needs perception, i.e. the motor system that is more likely to lose reward if it

is not given access to perception. Then it selects the best perceptual action for

that motor system, where each perceptual action represents a fixation point.

The perceptual action makes the oculomotor system move the cameras towards

a specific part of the world.

(c) Image processing: Once gaze is fixated on a particular point (e.g. an object),

this module extracts information from the visual input to update the current

state kept in visual memory. In our task, objects are detected and an estimate

of their location is calculated, this new estimate updates its corresponding

particle filter.

2.2 Learning Phase

The robot first learns the task in a completely observable manner. For our task this

means that all objects’ locations are known to the robot. Learning the task is achieved

via reinforcement learning [Sutton and Barto, 1998]. In particular, we make use of the

7

Figure 4: Interaction of the system’s components.

SMDP Q-learning algorithm [Bradtke and Duff, 1995]. Recall that we model our problem

as an SMDP because we are considering temporally extended actions (from now on these

extended actions will be called options as in [Sutton et al., 1999]). Each motor system

learns an independent policy that can be executed in parallel.

Each motor system ms ∈ MS, where MS is the set of motor systems, is modelled

as a tuple 〈Sms,Oms, Tms,Rms〉, where Sms is the set of states, Oms is the set of options,

Tms : Sms × Oms × Sms × N � [0, 1] is the transition probability distribution, where N
is the set of natural numbers representing the time it takes to execute each option, and

Rms : Sms×Oms � Rms is the reward function. The goal of the learning phase is to learn

a policy πms : Sms � Oms, that defines a mapping from states to options.

Following [Sutton et al., 1999], each option is modelled as O = 〈M, I, β〉, where

M = 〈S,A, T ,R〉 is an MDP, I ⊆ S is the initiation set where the option can start, and

β : S � [0, 1] defines a termination condition. Options can be learnt or planned. However,

in our case, options are defined as commands provided by the motor controllers available

to the iCub [Pattacini et al., 2010].

2.3 Execution Phase

Once the task has been learnt and its policy is in the robot’s memory, we incorporate

uncertainty to the problem by not letting the robot know the locations of objects and

containers in advance. For a given object, its location is represented as a probability dis-

tribution over the possible locations the object might be in. This probability distribution

is tracked using a particle filter, thus each object/container has an associated particle

8

filter.

2.3.1 Physical Action Selection

During the execution phase, the robot needs to select options for each one of its motor

systems. This selection has to take place based on uncertain information. In our case,

options are selected based on the current belief the robot has about the locations of objects

and the containers. We make use of the Q-MDP algorithm, which was formulated to find

approximate solutions to POMDPs [Cassandra, 1998]. As mentioned above, we do not

solve a full POMDP, we are just interested in using a one-step look-ahead strategy to

decide which option to select next. For each motor system, the robot selects an option

according to:

oms = arg max
o∈Oms

∑

s∈Sms

bel(s)Qms(s, o), (2.1)

where oms represents the option with the highest expected reward for motor systemms,

according to the belief bel(s) of being in state s, and Qms(s, o) is the Q-value taken from

the policy πms. Because we assume that motor systems are independent of each other,

options for different motor systems can be executed in parallel without any problem.

In our case, particle filters are used to represent the belief bel(s) of being in state s.

They approximate this posterior via a finite number of values, each corresponding to an

instance of the state space. The following equation redefines (2.1) in terms of particle

filters:

oms = arg max
o∈Oms

1

M

∑

g

Q(g, o)weight(g), (2.2)

where M is the number of particles, g refers to an individual particle, and weight(g)

defines the weight given to that particle. Each particle represents a particular location

where the object might be in. The weight associated with each particle represents the

belief about the location defined by the particle. The higher the weight, the more certain

we are about being close to the true location.

2.3.2 Perceptual Coordination

The selection of good options depends almost completely on having the correct state

information. By gathering information with sensors we can reduce this state uncertainty.

But only some information needs to be known to complete each step of the task, and the

robot can choose which information to gather by pointing its cameras. In our task, the

9

more the robot looks at an object, the more certain the robot will be about the object’s

location.

Since there is only one oculomotor system, then it must be shared amongst all the

motor systems. This is why it is essential to have a good coordination mechanism for the

selection of perceptual actions. Our coordination works in the following way:

1. We assume some visual memory about where objects and containers are relative to

the robot that explicitly quantifies the state uncertainty.

2. Each object/container listed in visual memory represents a fixation point, i.e. a

perceptual action p, that can be chosen by the coordination mechanism. Thus, a

set P of perceptual actions is created.

3. For each motor system we work out the benefit for that motor system of each fixation

point. We allocate the cameras to the motor system msE that will benefit the most.

This is done by calculating:

msE = arg max
ms∈MS

{gainms} , (2.3)

where MS is the set of motor systems, and gainms represents the gain that results

if motor system ms is given access to perception. The gain of each motor system is

computed as:

gainms = max
pj∈P
{V pj

ms} − max
oi∈Oms

{V oi
ms} , (2.4)

where pj is a particular perceptual action, and P is the set of all possible perceptual

actions. The left hand side calculates the expected values V
pj
ms for motor system ms

assuming perceptual action p is taken. The right hand side calculates the expected

values V oi
ms of each option when no perceptual action is executed, i.e. it calculates

the value of an option with the current uncertainty. The difference between the

maximum of these two values tells us how much we gain if we let this motor system

to control the oculomotor system.

To calculate V oi
ms we use the equation:

V oi
ms =

∑

s∈Sms

bel(s)Qms(s, oi), (2.5)

which is very similar to (2.1), except that here we are calculating the value of an

specific option oi. To calculate V
pj
ms we follow:

10

V pj
ms =

∑

ω

[
P (ω | bel, pj) max

o∈Oms

∑

s∈Sms

belω,pj(s)Qms(s, o)

]
, (2.6)

where P (ω | bel, pj) is the probability of making an observation ω given the current

belief bel and perceptual action pj. belω,pj(s) is the belief that results assuming

we have taken perceptual action pj and ω is the observation that results from this

action. The main idea is that this equation performs a one-step look-ahead to

determine what the value would be if a particular perceptual action is taken.

4. Once a motor system msE is selected using (2.3), we choose to execute a particular

perceptual action pE such that:

pE = arg max
pj∈P

{
V pj
msE

}
(2.7)

Again, since we are considering particle filters to track the uncertainty, we need to

redefine (2.5) and (2.6). To calculate V oi
ms using particle filters we follow the equation:

V oi
ms =

1

M

∑

g

Qms(g, oi)weight(g), (2.8)

again M is the number of particles, g is a particle, and weight(g) is the weight of that

particle. To calculate V
pj
ms we use the equation:

V pj
ms =

1

L

∑

l

max
o∈Oms

(
1

M

∑

g

Qms(g, o)weight(g, l)

)
, (2.9)

where L is the number of observations, and l is a particular observation (similarly to

ω in (2.6)); weight(g, l) represents the weight of the particle g after having observed l. To

generate these observations we randomly select a subgroup of particles from the current

particle filter, and then we sample a number of observations from each of these selected

particles. All these observations will form a set of size L.

Because the location of an object is distributed amongst the particles, the fixation

point is calculated as the mean of the particles. Gaze movements are performed using the

iCub oculomotor controller.

2.3.3 Image Processing

Once a perceptual action is chosen and executed, the robot’s gaze will be fixating at some

object/container. This is when visual input is read from the cameras and processed in

order to make a new observation about the state of the world. At the moment we do

11

not perform an image processing algorithm per se; thanks to the simulator we can use a

“fake” image processing routine to know which objects are currently being seen by the

robot’s cameras. However, it is important to note that even though the true object’s

location could be given by the simulator, the robot receives a noisy location to simulate

the uncertainty present in the cameras and the image processing algorithms.

This noise is given by an observation model represented as a bivariate Gaussian dis-

tribution. This model was learnt offline in the following way:

� An object was placed in 15 different location on the table.

� On each location the robot performed a gaze pattern of 20 camera movements.

Thus we had 20 images per location, i.e. 300 images. The gaze pattern consisted in

moving the gaze across the table following a “mowing the lawn” strategy.

� Each image was processed with an object detection algorithm in order to locate the

object within the image. At the end we obtained a file with 261 image coordinates1.

Whenever the object was in the image it was detected.

� Using these image coordinates we used triangulation to determine the 3D coordi-

nates with respect to the robot’s frame.

� Figure 5 shows a plot of these 261 points after triangulation. It shows the 3D

coordinates as seen from above with respect to the object’s centre located at (0,0).

Units are in centimetres, and the object size is 2 x 2 x 2 cm.

� Finally, these points were fit into a bivariate Gaussian distribution. Figure 6 shows

the distribution, and figure 7 shows the top view. The mean is located in (0,0),

where the object’s centre is, and the covariance matrix is given by:

Σ =

[
0.6896 −0.0557

−0.0557 1.3596

]

In principle, objects appearing on the table are static. Nevertheless, sometimes whilst

manipulating one object other objects can be hit and moved out of their original place.

Therefore, the robot cannot assume that an object will remain in the same position all the

time. Thus if an object that we have previously seen, is not seen again for a determined

amount of time (3 seconds in our case), Gaussian noise is added to its current estimate.

The same happen to the container’s location, the robot needs to look the container in

order to place an object.

1It’s less than 300 because in some images the object was not present.

12

Figure 5: Raw data obtained just after image processing and triangulation. Coordinate (0,0)
is where the object’s centre is. Units are in centimetres.

Figure 6: Bivariate Gaussian distribution obtained by fitting the points after triangulation.
Units are in centimetres.

13

Figure 7: Top view of the same observation model. Units are in centimetres.

To illustrate how the particle filters work, figure 8 shows a top view of an object with

the initial set of particles assigned to its location. Then, figure 9 shows what happens when

the robot fixates on the object and a new observation occurs. Here the new observation

updates the position of the particles so that the uncertainty about the object’s location

is reduced.

Figure 8: Top view of an object with the initial distribution of particles.

3 Experiments

The previous section formalised the problem and described the theory behind our coor-

dination mechanism. In this section we will present some experiments and results from

the implementation of our coordination mechanism. As mentioned above, the system was

14

Figure 9: Top view of an object with the distribution of particles after an observation has
occurred.

implemented and experiments were carried out using the iCub simulator [Metta et al.,

2008]2. The iCub simulator (see Fig. 1) is an open source research platform specifically

designed for the iCub robot.

The robot has the task of picking up objects from the table top and then placing

them inside one of the containers. Objects can have different features, such as type

(cubes, cylinders and spheres), colour, orientation, location and size. However, we are

only concerned with the location at the moment. Objects reachable by the right arm are

placed inside the right container, and objects reachable by the left arm are placed inside

the left container. Once an object is put inside a container it disappears and another

object will appear on the table. Also, every 60 seconds a new object will appear on the

table. The only known location to the robot is the table’s centre.

3.1 Learning Phase

We start by modelling and learning the task. Two motor systems are considered: the right

and left arm/hand. Thus we define the set of motor systems asMS = {right arm, left arm}.
We define a factorised state space (which is the same for both arms: Sright arm and

Sleft arm) as shown in Table 1.

Table 2 defines the set of options available for both arms (Oright arm and Oleft arm).

Next to each option is the average time (in seconds) it takes to complete. These times

were obtained by executing the option for 100 times and then averaging the time it took to

complete. It is important to note that for option graspObject we use a special command,

defined in the simulator, that makes the hand act like a magnet. By doing this we avoid,

at least for now, the problem of controlling the individual fingers. As mentioned before, all

2The next step is to test our system in the real robot as well.

15

Table 1: Factorised state space for right and left arm

State Variable State Value

armPosition {onObject, onTable, onContainer, outside}
handStatus {grasping, empty}
tableStatus {objectsOnTable, empty}

Table 2: Options for right and left arms and their average time

Options Average time (secs)

moveToObject 8.7
moveToTable 7.5

moveToContainer 7.3
graspObject 6.3

releaseObject 1.0
noAction 0.0

these options are performed using the controllers developed for the iCub robot [Pattacini

et al., 2010].

In order to minimise the task’s completion time, the reward function is defined such

that the robot receives a reward of -1 unit after every decision epoch, and -3 units for

every wrong option taken. Since both arms are independent, the high level policy learnt

for one arm can be used for the other as well.

3.2 Results of the Execution Phase

Once a policy is learnt we can start the execution phase. To test how effective our

approach is, we compared it against two perceptual strategies:

� Random gaze allocation: It creates a set of fixation points based on the list of

objects/containers and the table’s centre. Then it randomly selects one of those

fixation points.

� Round robin gaze allocation: It creates a set of fixation points in the same way

as the random strategy. The robot will go through the list fixating on each object,

container and table one by one.

For each approach we performed 30 trials of 10 minutes each. At the end of each trial

we counted the number of objects correctly placed inside the containers, and the number

of options executed for the right and left arm.

16

Figure 10: Comparison between the three gaze allocation strategies in terms of the average
number of objects correctly placed. The error bars represent 95% confidence intervals.

Figure 11: Comparison between the three gaze allocation strategies in terms of the average
number of options performed by the right and left arms. The error bars represent 95% confidence
intervals.

17

Fig. 10 compares the three strategies in terms of the average number of objects

correctly placed inside the containers at the end of 10 minutes. The error bars in the graph

represent 95% confidence intervals. Our reward-based approach is capable of placing in

average almost five objects more than random, and around three objects more than round

robin. It is important to note that the error bars show that our approach is fairly constant,

it does not vary as much as the other two methods. This high variation results because in

some runs random and round robin performed very poorly and in other runs performed

well. The problem is that most of the times gaze is directed where no relevant information

can be gathered3.

Fig. 11 shows precisely the consequences of not having correct information when it

is needed. The graph compares the three strategies in terms of the average number of

options performed by the right and left arms during the 10 minute trials. The error bars

in the graph represent 95% confidence intervals. Here there is a big difference not clearly

seen in the previous graph. Random and round robin perform far more options than our

approach. For example, if the arm is reaching for an object but its location is not certain,

the option will fail and will keep trying until more information is gathered or it will try

to reach for another object.

Furthermore, we also compared the outcomes using the unpaired T-test and the Mann-

Whitney U-test. Both tests show that the results are statistically significant at 0.01 level

of significance.

4 Conclusions and Future Work

The problem of how to coordinate gaze and actions in a robot was posed in terms of

a reward-based decision making framework, where camera movements are selected such

that they increase the expected return on the task achieved by the motor systems.

The results show that our coordination mechanism outperforms two gaze allocation

strategies: random and round robin gaze allocation. Our approach is capable of placing

more objects on average. It also makes the arms to execute fewer options by helping in

gathering information that is relevant to the completion of the task.

Currently, we are working on several extensions to the system presented here:

� Our system assumes the motor systems to be independent of each other. We are

now working on a concurrent coordination mechanism where motor systems interact

with each other. For instance, when switching an object from one hand to the other.

3A video illustrating these problems can be found here: http://www.cs.bham.ac.uk/~jin803/
videos/jnunez gaze control.wmv

18

� Instead of allocating the gaze to a specific motor system, in some cases gaze could

also be allocated in such a way that it is useful for a subset of motor systems.

� We plan to add uncertainty to other object features, not just its location. For

instance, a correct grasp depends on having information about location, orientation

and type of object.

� We are also interested in implementing real visual routines during execution time.

This visual processing module should be capable of extracting object’s features and

handling occlusions.

These extensions will enable our approach cover a broader class of problems.

5 Acknowledgements

We gratefully acknowledge support for this research under the EU FP7 IP project CogX:

Cognitive Systems that Self-Understand and Self- Extend (ICT-215181), UKIERI grant

SA08-031 and CONACYT studentship 179604.

References

S. Bradtke and M. Duff. Reinforcement learning methods for continuous-time markov

decision problems. Advances in Neural Information Processing Systems, 8:393–400,

1995.

A. R. Cassandra. Exact and Approximate Algorithms for Partially Observable Markov

Decision Processes. PhD thesis, Brown Univ., Rhode Island, May 1998.

S. Frintrop. VOCUS: A Visual Attention System for Object Detection and Goal-Directed

Search. Springer-Verlag, New York, NY, 2006.

L. P. Kaelbling et al. Planning and acting in partially observable stochastic domains.

Artificial Intelligence, 101(1-2):99–134, 1998.

G. Metta et al. The icub humanoid robot: An open platform for research in embodied

cognition. In Proc. ACM 8th Workshop on Performance Metrics for Intelligent Systems,

pages 50–56, Gaithersburg, MD, USA, August 2008.

U. Pattacini et al. An experimental evaluation of a novel minimum-jerk cartesian con-

troller for humanoid robots. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 1668–1674, Taipei, Taiwan, October 2010.

19

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley-Interscience, New York, NY, 1994.

N. Sprague, D. Ballard, and A. Robinson. Modeling embodied visual behaviors. ACM

Transactions on Applied Perception, 4:–, 2007.

R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press

Cambridge, Cambridge, MA, 1998.

R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for

temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211,

1999.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press Cambridge, Cam-

bridge, MA, 2008.

20

