
EU FP7 CogX
ICT-215181

May 1 2008 (52months)

DR 5.1:

Continuous learning of basic visual concepts

Danijel Skočaj, Matej Kristan, Alen Vrečko, Aleš Leonardis
and Sergio Roa

University of Ljubljana, DFKI Saarbrücken

〈danijel.skocaj@fri.uni-lj.si〉

Due date of deliverable: 31 July 2009
Actual submission date: 24 July 2009
Lead partner: UL
Revision: final
Dissemination level: PU

While the ability to learn on its own is an important feature of a learning
agent, another, equally important feature is ability to interact with its envi-
ronment and to learn in an interaction with other cognitive agents, humans,
and its environment. In this deliverable we analyze such interactive learn-
ing and define several learning strategies requiring different levels of tutor
involvement and robot autonomy and propose a new formal model for de-
scribing such learning strategies. We also present learning methods designed
to operate in such continuous learning framework that support incremental
learning, detection of knowledge gaps and unlearning. We also show how we
have integrated the developed methods in an overall cognitive system. We
apply the developed methods for learning visual properties of objects, such
as colour and shape, and present the design of a system for learning object
affordances.

1

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

1 Tasks, objectives, results 5
1.1 Planned work . 5
1.2 Actual work performed . 7

1.2.1 Interactive continuous learning framework 7
1.2.2 Learning methods . 9
1.2.3 Integration of visual learning with other subsystems 9
1.2.4 Learning of object affordances . 10

1.3 Relation to the state-of-the-art . 11
1.3.1 Interactive continuous learning framework 11
1.3.2 Learning methods . 13
1.3.3 Integration of visual learning with other subsystems 13
1.3.4 Learning of object affordances . 14

2 Annexes 16
2.1 Skočaj et al. “Formalization of different learning strategies in a continuous

learning framework” . 16
2.2 Kristan et al. “Online Kernel Density Estimation For Interactive Learning” 17
2.3 Kristan et al. “Multivariate Online Kernel Density Estimation using Gaus-

sian Mixture Models” . 18
2.4 Vrečko et al. “A Computer Vision Integration Model for a Multi-modal

Cognitive System” . 19
2.5 Roa et al. “Curiosity-driven acquisition of sensorimotor concepts using

memory-based active learning” . 20
2.6 Roa and Kruijff “Long Short-Term Memory for Affordances Learning” . . . 21

References 22

EU FP7 CogX 2

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

Executive Summary

An important characteristic of a robot that operates in a real-life environ-
ment is the ability to expand its current knowledge - and has to do so
continuously, in a life-long manner. The system has to create and extend
concepts by observing the environment and in an interaction with this en-
vironment as well as with other cognitive agents and humans. Interactive
continuous learning is therefore an essential characteristic of a self-extending
cognitive system. Interactive continuous learning is also the main research
topic of Workpackage 5. In this deliverable we focus on interactive continu-
ous learning of basic visual concepts.

When conducting research on interactive learning it is crucial to have
a real implementation of the learning framework on real robots and to test
its functionality in real-world settings. However, it is of equal importance
also to have formalisms and tools to perform large scale experiments, which
enable development, analysis, and thorough evaluation of related methods.
We therefore made several contributions to both, theoretical and practical
aspects of interactive continuous learning methods.

We have proposed a new model for formalizing learning strategies. We
define a learning strategy as a common strategy of the tutor and the robot
that specifies the behaviour of the robot and the tutor in the continuous
learning process. The formalism takes into account different levels and types
of communication between the robot and the tutor and different actions that
can be undertaken. Using this formalism, we have introduced four learning
strategies that span across the space of possible learning strategies and cover
a major part of its variability; they range across the entire spectrum of
different levels of the tutor involvement and the robot’s autonomy.

In the core of such a learning mechanism is an algorithm, which is able
to continuously learn and update the acquired concepts. Our learning al-
gorithm is based on generative representations based on Kernel density es-
timation. We have significantly improved the underlying KDE methodol-
ogy in several respects compared to our previous work. We have defined a
new multivariate KDE and developed efficient methods for updating, com-
pression, bandwidth selection, unlearning, and recovering from early over-
compression.

We have integrated most of the developed methods in a multi-modal
cognitive system based on CAS. The integration model consists of three
layers that range from low-level visual processing to a higher level interface
between visual and other modalities. A robotic implementation enables us
to conduct system-based research (which would not be possible without an
integrated system) and provides numerous practical problems and challenges
(that do not occur in simulated or isolated environments).

Practical implementations of the methods mentioned above have mainly
addressed the problem of interactive continuous learning of basic visual prop-

EU FP7 CogX 3

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

erties such as colour and shape (although many of the developed methods
are general and can be used in other learning domains as well). In addi-
tion, we have also started addressing the problem of affordance learning.
We have designed a promising learning framework for further work on this
challenging research issue.

Most of the work performed addresses the problem of learning basic
visual concepts in an interaction between a robot and a tutor. The work
has been mainly performed as envisioned in the workplan and forms a solid
basis for further research and extensions in the direction of more general
interactive learning of cross-modal concepts.

Role of Continuous learning of basic visual concepts
in CogX

The main research topic, which is addressed in this deliverable, is inter-
active continuous learning of basic visual concepts. A special attention is
being paid to active learning and learning in an interaction with a tutor (or
environment). In this interaction, the robot first tries to determine its igno-
rance and then plans how to get the information, which would help it to fill
this knowledge gap. Therefore, the main research topic fits very well with
the main motto of the project: to self-understand to be able to self-extend.

Contribution to the CogX scenarios and prototypes

In order to monitor and show progress on interactive continuous learning, we
need a good scenario that encompasses the complexity of the problem and is
able to demonstrate the main characteristics of the developed system. Most
importantly, it should be able to show how the learning improves the perfor-
mance of the system. Having these requirements in mind, we have designed
the George scenario (Interactive cross-modal learning scenario) [33]. This
scenario has been designed as a use case for guiding and testing system-wide
research and for demonstrating methods developed in WP 5 (and also some
other workpackages) in a working system. Therefore, most of the work pre-
sented in this deliverable has been integrated into the overall system, which
is used in the George scenario.

EU FP7 CogX 4

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

1 Tasks, objectives, results

1.1 Planned work

This deliverable mainly tackles the problems addressed in Task 5.1 of the
Workpackage 5:

Task 5.1: Continuous learning of basic visual concepts. Here we
will develop a learning mechanism for learning basic visual con-
cepts grounded to signals. The system will be able to build asso-
ciations between features extracted from input visual data (colour
and depth images) and visual attributes (e.g., colour, shape) and
connecting them using language in a dialogue with the tutor. Ad-
equate mechanisms for unlearning will be investigated as well.

Therefore, the main goal was to develop the theory and methods to be
integrated into a robot capable of interactive continuous learning of simple
visual concepts. The work has been performed in several mutually depen-
dent research lines converging into a single system:

• Interactive continuous learning framework. The primary goal
was to develop (based on our previous work) a general framework
for continuous learning. The main emphasis was supposed to be on
exploring the (continuous) spectrum of different levels of robot au-
tonomy, i.e., the different levels of tutor’s involvement in the learning
process. The learning should be carried out in an interactive way in a
dialogue with the tutor in a mixed initiative settings. In this respect,
we planned to propose and analyse different learning strategies and
develop suitable tools for further research on this topic as well as for
integration in the overall system.

• Learning methods. The aim was to derive a methodology for esti-
mation of generative models from streams of data. We have therefore
planned to evaluate and identify drawbacks of the methodology of one-
dimensional online Kernel Density Estimation (oKDE) [16] and derive
solutions for extension to multiple dimensions. We planned to address
several theoretical and practical issues within this extension.

1. Definition of an online multivariate KDE model of the observed
samples which is general enough to provide summarization of the
past samples and provides means of calculating the KDE from
it. Also the methodology should allow estimation of models that
change with time (i.e., nonstationary distributions).

2. Our previous methodology for oKDE suffers from model degen-
eracy if the initial samples used for learning underestimate the
scale of the model. Therefore, the update rule for each sample as
well as the structure of the KDE model had to be revisited.

EU FP7 CogX 5

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

3. Optimization techniques used for the update rules in the exist-
ing 1D oKDE are time-consuming and are not appropriate when
dealing with high-dimensional data. New, robust, methods whose
implementation does not depend on the dimensionality of the
data, and whose time complexity is appropriate for use with the
highdimensional data. In particular, two optimization techniques
were planned: one for multivariate bandwidth optimization, and
the other for multivariate mixture compression.

4. To measure how the KDE changes during compression (for pre-
venting too much compression) a measure of change was planned
in the form of a multivariate unscented Hellinger distance.

5. While some components in the sample model may be compressed
into single components early on during learning, it may become
apparent with time that these should actually form their own
components. We planned to derive means of detecting such events
and methods to separate these already merged components.

6. To accommodate for the unlearning, we planned to adapt con-
ceptual approaches which were previously designed for the one-
dimensional cases.

• Integration of visual learning with other subsystems. Our pri-
mary goal is to develop a robot that would be able to efficiently acquire
new concepts and to update the existing ones in collaboration with a
human teacher. Therefore we planned to implement the developed
learning methods and strategies on a real robot. When conducting
research on interactive learning it is crucial to have a real implemen-
tation of the learning framework on real robots and to test its func-
tionality in real-world settings. A robotic implementation enables to
conduct system-based research (which would not be possible without
an integrated system) and provides numerous practical problems and
challenges (that do not occur in simulated or isolated environments).

• Learning of object affordances. Visual learning of concepts also
involves the functional characteristics of objects in the environment. A
robot should predict the functionality of an object in order to use it as
tool or means to achieve complex tasks. Thus, we are concerned with
the issue of affordances learning. In [7], the concept of affordance is
defined as “a resource or support that the environment offers an agent
for action, and that the agent can directly perceive and employ”. In
this work, we take into account affordances derived from pushing and
gripping actions on simple objects.

Our first objective was then to use algorithms that allow to predict
action consequences. Thus, we tackled the problem of predicting the

EU FP7 CogX 6

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

behaviour of objects and the state of the environment, after the robot
manipulates them or interacts with them. Therefore, it is important
to use proper representations of sensorimotor information stemming
from different modalities. We have considered different sensors, em-
bodiments and corresponding motoric skills. Moreover, we planned to
evaluate different learning strategies. On the one hand, we can sim-
plify the action perception loop as a one time step ahead prediction
problem. A meta-level reasoning system can decide what action to
take according to a measure of learning progress (interestingness of
the action). On the other hand, we also considered actions that can
produce subsequent behaviours that can be analyzed through a certain
number of time steps. This temporal information have to be stored
and addressed by proper machine learning methods.

We also planned to evaluate feedback mechanisms coming from the
environment and an external agent (i.e. a human tutor) in order to
evaluate the incidence of an external reward signal in the learning loop.

1.2 Actual work performed

In this section we briefly describe the main achievements related to the
topic of this deliverable. For detailed descriptions of the work performed
the reader is referred to the papers attached in the annex of this deliverable.

1.2.1 Interactive continuous learning framework

Our work has concentrated on developing a learning framework for contin-
uous learning in a dialogue with a tutor. In such a framework different
learning strategies can be applied; we have proposed a formal model for for-
malizing learning strategies. We have also introduced four learning strategies
that require different levels of tutor involvement.

We have introduced a new formal model for formalizing learning strate-
gies (Annex 2.1 [32]). We define a learning strategy as a common strategy
of the tutor and the robot that specifies the behaviour of the robot and the
tutor in the continuous learning process. The formalism takes into account
different levels and types of communication between the robot and the tutor
and different actions that can be undertaken. By specifying these actions
and communication levels, the learning strategy can be uniquely defined.
We also propose appropriate performance measures, namely the recognition
score and the tutoring costs. In general, it is very difficult to objectively
compare different (incompatible) learning processes; the presented formal-
ism makes this comparisons straightforward. This will allow us to analyse
different learning strategies, to efficiently combine them and to find a way
how to exploit the properties of the individual strategy best.

EU FP7 CogX 7

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

Considering different levels of interaction between the tutor and the
robot, various learning strategies are possible. We identify four such strate-
gies:

• Tutor driven. The tutor drives the learning by describing the obser-
vation and giving all available information to the robot.

• Tutor supervised. The robot establishes transparency, i.e., it enables
the tutor to asses its current knowledge; in this way, the tutor detects
its ignorance, and helps the robot to update or unlearn the current
representations accordingly.

• Tutor assisted. The robot tries to interpret the current observation; if
it succeeds to do this reliably, it updates the current model, otherwise
asks the tutor for the correct interpretation.

• Tutor unassisted. The system updates the model with the automat-
ically obtained interpretation of the visual input without any tutor’s
assistance.

The presented four learning strategies span across the entire space of pos-
sible learning strategies and cover a major part of its variability. They
require different levels of self-reflection and self-understanding in order to
enable reliable self-extension. We have discussed different properties of these
strategies and we have performed a thorough evaluation. For performing
large scale experiments and evaluating different learning strategies we have
been developing Interactive Continuous Learning Simulator. This simula-
tion environment uses as observations the features that were automatically
extracted from the previously captured, automatically processed and man-
ually labeled real data; the tutor is replaced by an omniscient oracle, which
has the ground truth data available. The simulator enables large scale ex-
periments and a thorough evaluation and comparison of different learning
methods and strategies. The presented learning strategies are described in
Annex 2.1 [32].

The formalism we have proposed is very general and can support any
learning algorithm that fulfills certain requirements (it is incremental, it sup-
ports unlearning, and it has a certain level of self-understanding ; it should
be able to estimate whether its current knowledge suffices to interpret the
current observation, or it should ask the tutor for help). The goal of such
an algorithm is to continuously learn and update the acquired concepts, i.e.,
to find associations between the words spoken by the tutor (and related
amodal concepts) and features, which are automatically extracted from the
observations. Such an algorithm is in the core of the continuous learning
framework, which communicates with the tutor, performs recognition, and
updates the representations according to the current learning strategy. Our
learning algorithm is based on generative representations based on Kernel

EU FP7 CogX 8

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

density estimation. We have made significant improvements to this algo-
rithm. Several of these advances are described in the next subsection. See
also Annex 2.2 [16].

1.2.2 Learning methods

We have successfully derived the new methodology required for multivariate
online Kernel Density Estimation.

1. The new multivariate KDE was defined through a multivariate direct
model of observed samples, which allows efficient compression of the
observed data and allows calculation of the KDE, thus providing a
generative model of data.

2. A new multivariate bandwidth selection rule was derived which does
not require numeric optimization as in previous methods but can be
calculated analytically. The bandwidth selection rule is parameterized
to take into account the possible nonstationarity of the underlying
distribution.

3. A structured optimization for compression of KDE was derived, which
generalizes to multivariate cases.

4. A version of a multivariate unscented Hellinger distance was derived.

5. Means for recovering from early over-compression have been derived.

6. We have extended and implemented the unlearning procedures devel-
oped originally for 1D approaches to the multivariate case.

The new methodology is described in detail in Annex 2.3 [15].

1.2.3 Integration of visual learning with other subsystems

The integration of the visual system into a multi-modal cognitive system is
conceived within the integration space defined by the CAS (CoSy Architec-
ture Schema) [11, 12]. The integration can be divided to three distinct levels
that gradually adapt the sensorial visual input to a more generic form of in-
formation, which can be used for comparing and binding to the information
from other modalities:

• the lower, quantitative layer deals directly with the sensorial input and
provides quantitative analysis of the scene as a whole,

• the middle, qualitative layer performs qualitative analysis of selected
regions of the scene,

EU FP7 CogX 9

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

• the upper, interface layer exchanges information with other modali-
ties.

The visual learning system, implemented as a single component in the
Visual Subarchitecture, is on the integration level upgraded with three dis-
tinct cross-modal learning mechanisms: implicit learning, explicit learning
and clarification-based learning. These mechanisms show how a single learn-
ing method can be used, based on cross-modal information, in very different
situations, for different types of learning.

Through the Binding and Motivation subachitectures, the visual learning
is integrated with other subsystem, such as the Communication SA. In this
way, we can conduct not only component-based research, but also system-
wide research on interactive visual learning.

The model for integration of the visual subsystem into a multi-modal
cognitive system is described in detail in Annex 2.4 [38].

1.2.4 Learning of object affordances

In order to evaluate possible prediction learning mechanisms, we first de-
signed a simple scenario when a robot is acting in an environment with
static cubic obstacles and cubic objects. The robot is equipped with a grip-
per, wheels, vision and proximity sensors. In this case, the features to be
extracted are 2-dimensional in a simulated environment. A sketch of the
scenario can be observed in the Annex 2.5 [28]. We use a learning approach
through which we obtain a prediction of the current sensory state at the
time step following an action performed by the robot in the environment.
For this, we use Memory based learners (KD Tree algorithm) that can pre-
dict a sensory state given a sensorimotor state in the previous time step.
These learners are also biased in some clusters of the sensorimotor space. A
sensorimotor state is represented as a vector consisting of a concatenation of
sensory and motor information. A learning progress measure was obtained
by evaluating a history of errors. Tnis measure is used to explore actions
that are interesting for the robot, implementing in this way a kind of curios-
ity driven active learning mechanism. Moreover, other feedback signals are
also incorporated in the loop, like a feedback signal coming from a human
tutor and punishment signals when pushing obstacles (i.e. colliding).

We also employed a meta-learning approach, where a learner is special-
ized in some region of the sensorimotor space. A space is split into 2 regions
after some time period using a variance measure. The idea is to split the
space into clusters, so that the learners become specialized in those regions
and the robot enters in different stages of development. For instance, after
trying to cross an obstacle for some time and the learning progress does not
increase anymore, then the robot switches to an other action. The results
are shown in the Annex 2.5 [28]. The results show that the robot find in-

EU FP7 CogX 10

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

teresting sources of learning and the combination of feedback signals and
learning progress influence the selection of actions.

We designed a more complex scenario (a 3-dimensional simulated en-
vironment) where a robotic arm interacts with a polyflap, which is a 3-D
object of polygonal shape (convex or concave, regular or irregular) that is
folded. The idea is to predict object affordances when pushing actions are
considered. The robotic arm approaches the object at different positions and
then a pushing action is performed. We consider sensory features like poses
of objects and arm body parts, and motor features like a velocity profile and
a direction angle for pushing. For this problem, we want to predict subse-
quent sensorimotor feature vectors during this interaction. The scenario can
be observed in the Annex 2.6 [27].

Thus, we use machines, i.e., Recurrent Neural Networks (RNNs) and
more specifically Long Short-Term Memory (LSTM), that can predict spatio-
temporal sequences, and this can be seen as a time-series prediction or re-
gression problem. In practice, the actions considered are pushing actions
and the purpose is to predict the object’s behaviour (the consequences of
performing such actions). These sensorimotor features can be simulated us-
ing a vector for each time frame (see Annex 2.6 [27] for details). The features
are selected in order to achieve a level of discriminatory power so that learn-
ing algorithms have a chance to converge and do proper generalizations. We
use initially gradient-based methods for offline learning.

For the purpose of testing the convergence ability of the LSTM machines
we are performing offline experiments. In a preliminary experiment we ob-
tained the results described in Annex 2.6 [27]. We expect to improve these
results by modifying the network topology and feature encoding. However,
it is still expected that due to the nature of gradient descent learning, a
considerable number of training epochs and samples have to be used for
offline experiments. In future experiments, we want to include active learn-
ing techniques driven by e.g. curiosity and the knowledge acquired during
offline learning.

1.3 Relation to the state-of-the-art

In this section we discuss how our work is related to, and goes beyond the
current state-of-the-art.

1.3.1 Interactive continuous learning framework

A tutor’s involvement by interaction plays an important role in the learning
process in cognitive agents. Studies of human infants, for example [26],
indicate that being able to exploit the expertise of others and to take a lead
in the interaction are critical parts of learning. Weng et al. [39] propose
that similar measures should be undertaken in machine learning scenarios

EU FP7 CogX 11

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

as well. Building on a similar assumption, Thomaz [37] casts the machine
learning problem as a strongly involved interaction between the human and
the machine, emphasizing the importance of the learner’s transparency. A
strong collaboration between the tutor and the machine is also supported
by the results of Nagai et al. [23] who propose a learning model for joint
attention in a tutor-learner scenario.

Our work is based on similar assumptions. The main emphasis is on
continuous learning in a collaboration between a robot and a tutor. In our
system, however, we utilize, in a unified framework, continuous online learn-
ing of qualitative object properties in a setting with no negative examples
where every sample can be labelled with multiple concept labels. Further-
more, our system facilitates unlearning and error-recovery as well. The
system is completely integrated in a large scale heterogeneous cross-modal
artificial system that on one the hand provides useful multimodal informa-
tion for the learning subsystem, and on the other hand, uses the knowledge
and information provided by the learning subsystem to accomplish given
tasks.

Researchers have dealt with various levels of tutor involvement in the
process of learning in machines. At one extreme is an example in which
the tutor is absent and the agent has to learn on its own starting from
little or no prior knowledge, e.g., [21, 24]. Some works focus on scenarios
in which the machine passively observes the human tutor, e.g. [18, 19, 17,
4]. Another level of tutor involvement is teaching by directly influencing
the actions of the machine, e.g., [20, 36]. Another example is the work of
Arsenic [2] in which the tutor initially guides the robot’s learning of actions
and as the knowledge gets grounded, the robot can act by itself. Kaplan
et al. [14] explored animal training techniques to teach a robot to perform
complex tasks. An example where the tutor plays an oracle was explored
by Schohn and Cohn [31] – in that scenario, the agent provides some level
of transparency by identifying the relevant examples and querying the tutor
for the required labels.

Learning in cognitive robots can be described in terms of different levels
of tutor involvement as well as levels of learner responsiveness and learner
transparency. As noted above, several researchers have dealt with scenar-
ios with various levels of the tutor-learner interaction, leading to different
learning strategies. Accounting for the levels of interaction, we identify four
major learning strategies, that span across the entire space of possible learn-
ing strategies and cover a major part of its variability. We also define for-
mal model of specifying these strategies, which enables to discuss, analyze,
and evaluate different interactive learning strategies in a more principled
way [32].

EU FP7 CogX 12

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

1.3.2 Learning methods

To the best of our knowledge, the developed oKDE is the first online multi-
variate Kernel Density Estimator, which can be calculated even by starting
from as few as two observations and allows updating by one sample at a time.
We have conducted several benchmark experiments to evaluate the perfor-
mance of oKDE by building multivariate generative models from streaming
data, building generative models from streaming nonstationary sources, and
building multivariate generative models from streaming data for classifica-
tion. Results of estimating the multivariate stationary generative models
have shown that in comparison to the state-of-the-art batch multivariate
Kernel Density Estimators [9, 8, 22] the proposed oKDE outperforms, or
reaches comparable performance in terms of the approximation errors in
the model. The results of estimation of nonstationary distributions show
that the proposed approach outperforms sliding-window-batch state-of-the-
art KDEs in terms of approximation error. The results from a classification
experiment on the letter data-set [3] show that the oKDE outperforms a
K-nearest-neighbor classifier, produces similar classification results to the
recently proposed batch KDE [22] and the one-against-the-rest support vec-
tor machine with an rbf kernel (see [22]). It is important to stress that while
the errors are comparable to the state-of-the-art, the oKDE, in contrast to
the state of the art, reaches these low errors in an online fashion from ob-
serving only a single sample at a time and builds models of significantly
lower complexity than the state of the art batch methods, thus being very
appropriate for online estimation of generative models as well as classifiers.

1.3.3 Integration of visual learning with other subsystems

The problem of integrating vision with other modalities and amodal concepts
is in its core a symbol grounding problem, introduced by Harnad in [10].
Similar problems have been very often addressed in the literature, e.g. by
Chella et al [1, 6] and Roy [30, 29]. Our approach differs from the work of
the authors mentioned above in that we seek solutions within a much wider
and general cognitive framework, determined by CAS [11, 12], which also
assumes continuous and parallel execution. The integration of the visual
subsystem into the framework is very generic and can work with minimal
modifications with an arbitrary set of other modalities, using high-level, a-
modal entity representations. The visual-linguistic instantiation we describe,
is just one example of possible cross-modal combinations. In this sense a
similar approach is followed in [5]. Focusing on visual-linguistic integration,
the main advantage of our work is in new kinds of cross-modal learning
mechanisms (implicit and explicit learning, clarification-based learning).

EU FP7 CogX 13

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

1.3.4 Learning of object affordances

In altricial species [35], the interaction with the environment plays an im-
portant role for the acquisition of sensorimotor abilities, and for the hi-
erarchical acquisition of more complex skills based on the ones previously
acquired. This introduces us to the concept of affordance, which is for in-
stance referred to learning about and from actions performed by an agent
on an object. Taking into account that the environment and the physical
characteristics (embodiment) of a robot has a complex structure, we have to
think of proper scenarios where we can test machine learning techniques and
theories useful for that kind of learning problems. In [34], simple scenarios
using 3-dimensional objects called polyflaps were proposed. The objective is
to steadily increase the complexity of the space of actions and the structure
of the environment. That would allow us to evaluate algorithms that can
be useful for compositional (hierarchical) skills development.

It is also important to identify the kind of perceptions that can drive
learning for an autonomous robot. Based on the way children acquire learn-
ing skills at early stages of development, the work presented in [25] describe a
system in which the robot has an intrinsic motivation for learning, based on
the interestingness of the situations it discovers. For this task, a simple in-
trinsic reward mechanism is employed, which is proportional to the increase
of the error rate of some classifier trying to predict the consequences of the
robot actions at a given time. The robot was able to identify affordances
as correlations between its space and actions and its consequences in the
environment. In this work, classifiers are used for prediction and the robot
is equipped with real-valued sensors and actions comprising its sensorimotor
space. After training, there are different classifiers specialized (biased) in
some regions of the state space. A statistical mechanism to split the state
space into regions is implemented to support the specialization of the clas-
sifiers. In our work (Annex 2.5 [28]) we developed similar meta-learning
techniques. We considered a more complex sensorimotor space and we used
additionally external reward signals, like a feedback from a human tutor.
We applied a memory based algorithm called KD Tree. We found that by
adding an external signal, the robot is able to accomplish a task expected by
the human tutor in less time steps. Moreover, including other punishment
signals for collisions also allow that the robot does not get stuck at some
places. However, if we want the robot to achieve complex skills that involve
many time steps, we have to consider algorithms that can process temporal
information. The learning machines described in [25, 28] can predict only
short-term consequences of actions and only allow a reactive decision making
loop.

Therefore, we are designing scenarios (e.g. involving a robotic arm and
polyflaps) where we are dealing with a spatio-temporal prediction prob-
lem. Then, it is important to introduce machines that can process temporal

EU FP7 CogX 14

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

information. Such machines can be Recurrent Neural Networks (RNNs),
and more specifically Long Short-Term Memory (LSTM) machines [13],
which have been shown to learn over more extended periods of time when
a gradient-based algorithm is used for learning. By using Recurrent Neu-
ral Networks (RNNs), it is possible to evaluate the certainty of the ma-
chine to predict action consequences over several periods of time. In this
work (Annex 2.5 [28]) we are considering LSTMs, that allow us to predict
action consequences over a more extended time period. The characteristics
of these machines also allow us to implement algorithms that infer temporal
dependencies among actions and events occurring at different time steps.

EU FP7 CogX 15

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

2 Annexes

2.1 Skočaj et al. “Formalization of different learning strate-
gies in a continuous learning framework”

Bibliography D. Skočaj, M. Kristan and A. Leonardis: “Formalization of
different learning strategies in a continuous learning framework” Submitted,
2009

Abstract While the ability to learn on its own is an important feature of a
learning agent, another, equally important feature is ability to interact with
its environment and to learn in an interaction with other cognitive agents
and humans. In this paper we analyze such interactive learning and define
several learning strategies requiring different levels of tutor involvement and
robot autonomy. We propose a new formal model for describing the learning
strategies. The formalism takes into account different levels and types of
communication between the robot and the tutor and different actions that
can be undertaken. We also propose appropriate performance measures and
show the experimental results of the evaluation of the proposed learning
strategies.

Relation to WP Interactive continuous learning is the main topic of
WP 5. In this paper we discuss several learning strategies and propose a
formal model for defining such strategies, which serves as a solid basis for
further research in this WP.

EU FP7 CogX 16

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

2.2 Kristan et al. “Online Kernel Density Estimation For
Interactive Learning”

Bibliography M. Kristan, D. Skočaj and A. Leonardis: “Online Kernel
Density Estimation For Interactive Learning” Submitted, 2009

Abstract In this paper we propose a Gaussian-kernel-based online kernel
density estimation which can be used for applications of online probability
density estimation and online learning. Our approach generates a Gaus-
sian mixture model of the observed data and allows online adaptation from
positive examples as well as from the negative examples. The adaptation
from the negative examples is realized by a novel concept of unlearning in
mixture models. Low complexity of the mixtures is maintained through a
novel compression algorithm. In contrast to the existing approaches, our
approach does not require fine-tuning parameters for a specific application,
we do not assume specific forms of the target distributions and temporal
constraints are not assumed on the observed data. The strength of the
proposed approach is demonstrated with examples of online estimation of
complex distributions, an example of unlearning, and with an interactive
learning of basic visual concepts.

Relation to WP This article addresses a Gaussian-kernel-based online
kernel density estimation which can be used for applications of online prob-
ability density estimation and online learning. This methodology defines a
theoretical background necessary to implement some of the learning strate-
gies defined in WP 5. It has been studied on the examples of online estima-
tion of complex distributions, in the cases which required unlearning, and
in the context of an interactive learning of basic visual concepts.

EU FP7 CogX 17

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

2.3 Kristan et al. “Multivariate Online Kernel Density Es-
timation using Gaussian Mixture Models”

Bibliography M. Kristan, D. Skočaj and A. Leonardis: “Multivariate On-
line Kernel Density Estimation using Gaussian Mixture Models” Technical
Report LUVSS-TR-04/09, Submitted, 2009

Abstract We propose an approach for online kernel density estimation
(KDE) that can be used in applications in which models have to be built
from continuously arriving data. In these situations, one requirement is that
the models enable online adaptation and the other is that they maintain low
(or bounded) complexity which does not scale linearly with the observed
data samples. Our approach meets both of these requirements. We build
a non-parametric model of the data itself and use this model to calculate
the corresponding KDE. The dominant parameter in the KDE is the kernel
bandwidth and we propose an automatic bandwidth selection rule, which
can be computed directly from the non-parametric model of the data. Low
complexity of the model is maintained through a novel compression scheme.
We compare the online KDE to some state-of-the-art batch KDEs on exam-
ples of estimating stationary as well as non-stationary distributions and on
an example of classification. The results show that the online KDE achieves
comparable performance to the batch approaches, while producing models
with significantly lower complexity and allowing online updating using only
a single observation at a time.

Relation to WP The paper addresses the multivariate extension of the
online kernel density estimation (KDE) that can be used in applications in
which models have to be built from continuously arriving data and does not
require stationarity of the data sources. This is one of the main objectives
of WP 5 and the proposed method enables an online adaptation while main-
taining low (or bounded) complexity which grows sub-linearly with respect
to the observed data samples.

EU FP7 CogX 18

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

2.4 Vrečko et al. “A Computer Vision Integration Model
for a Multi-modal Cognitive System”

Bibliography A. Vrečko, D. Skočaj, N. Hawes and A. Leonardis: “A
Computer Vision Integration Model for a Multi-modal Cognitive System”.
Accepted at 2009 IEEE/RSJ International Conference on Intelligent RObots
and Systems, 2009

Abstract We present a general method for integrating visual components
into a multi-modal cognitive system. The integration is very generic and
can combine an arbitrary set of modalities. We illustrate our integration
approach with a specific instantiation of the architecture schema that focuses
on integration of vision and language: a cognitive system able to collaborate
with a human, learn and display some understanding of its surroundings. As
examples of cross-modal interaction we describe mechanisms for clarification
and visual learning.

Relation to WP The paper evaluates the continuous visual learning
strategies that are the main topic of WP 5 in a cross-modal context. It ad-
dresses the questions like which architecture elements are required to support
such learning strategies on the cross-modal level and how different strategies
reflect in cross-modal information flow.

EU FP7 CogX 19

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

2.5 Roa et al. “Curiosity-driven acquisition of sensorimotor
concepts using memory-based active learning”

Bibliography S. Roa, G.-J. Kruijff, and H. Jacobsson: “Curiosity-driven
acquisition of sensorimotor concepts using memory-based active learning”.
In Proceedings of the 2008 IEEE International Conference on Robotics and
Biomimetics, pages 665-670, 2008.

Abstract Operating in real-world environments, a robot will need to con-
tinuously learn from its experience to update and extend its knowledge. The
paper focuses on the specific problem of how a robot can efficiently select
information that is ”interesting”, driving the robot’s ”curiosity.” The paper
investigates the hypothesis that curiosity can be emulated through a com-
bination of active learning, and reinforcement learning using intrinsic and
extrinsic rewards. Intrinsic rewards quantify learning progress, providing
a measure for ”interestingness” of observations, and extrinsic rewards di-
rect learning using the robot’s interactions with the environment and other
agents. The paper describes the approach, and experimental results ob-
tained in simulated environments. The results indicate that both intrinsic
and extrinsic rewards improve learning progress, measured in the number
of training cycles to achieve a goal. The approach presented here extends
previous approaches to curiosity-driven learning, by including both intrinsic
and extrinsic rewards, and by considering more complex sensorimotor input

Relation to WP This work is related to the tasks 5.1 and 5.3. In 5.1 one
of the tasks is the acquisition of knowledge from data. In this case, we are
not only restricted to data coming from vision but from other modalities.
The task 5.3 is related to active learning. We design a feedback loop between
sensing and acting for the robot to decide what to do on the basis of different
drives (e.g. curiosity, external feedback).

EU FP7 CogX 20

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

2.6 Roa and Kruijff “Long Short-Term Memory for Affor-
dances Learning”

Bibliography S. Roa and G.-J. Kruijff: “Long Short-Term Memory for
Affordances Learning”. Submitted, 2009

Abstract This paper addresses the problem of sensorimotor learning from
the perspective of affordances learning of simple objects. We are develop-
ing a scenario where a robotic arm interacts with a polyflap, a simple 3-
dimensional geometrical object. We perform experiments with a simulated
arm using a physics simulator, but we plan to use also a real arm. The robot
interacts with the object by pushing it in different ways. We use Recurrent
Neural Networks to predict the arm and object poses during this interaction,
given a discrete set of random actions that the robot can produce.

Relation to WP This work is related to tasks 5.1 and 5.3. We use fea-
tures from different modalities in order to make predictions about an object’s
behaviour given some robot action. We are exploring the problem of affor-
dance learning, i.e., relations between actions on objects and corresponding
consequences.

EU FP7 CogX 21

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

References

[1] E. Ardizzone, A. Chella, M. Frixione, and S. Gaglio. Integrating sub-
symbolic and symbolic processing in artificial vision. Journal of Intel-
ligent Systems, 1(4):273–308, 1992.

[2] A. M. Arsenic. Developmental learning on a humanoid robot. In IEEE
International Joint Conference on Neural Networks, 2004.

[3] A. Asuncion and D.J. Newman. UCI machine learning repository.
http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007.

[4] A. Billard and K. Dautenhahn. Experiments in learning by imitation
- grounding and use of communication in robotic agents. Adaptive
Behavior, 7(3/4):415–438, 1999.

[5] B. Bolder, H. Brandl, M. Heracles, H. Janssen, I. Mikhailova,
J. Schmüdderich, and C. Goerick. Expectation-driven autonomous
learning and interaction system. In IEEE-RAS International Confer-
ence on Humanoid Robots, to appear 2008.

[6] A. Chella, M. Frixione, and S. Gaglio. A cognitive architecture for
artificial vision. Artif. Intell., 89(1-2):73–111, 1997.

[7] J. J. Gibson. The theory of affordances. In R. Shaw and J. Brans-
ford, editors, Perceiving, Acting, and Knowing: Toward an Ecological
Psychology, pages 67–82. Lawrence Erlbaum, 1977.

[8] M. Girolami and C. He. Probability density estimation from optimally
condensed data samples. 25(10):1253–1264, 2003.

[9] P. Hall, S. J. Sheater, M. C. Jones, and J. S. Marron. On optimal data-
based bandwidth selection in kernel density estimation. Biometrika,
78(2):263–269, 1991.

[10] S. Harnad. The symbol grounding problem. Physica D, 42(1-3):335–
346, June 1990.

[11] N. Hawes, A. Sloman, J. Wyatt, M. Zillich, H. Jacobsson, G.-J. Kruijff,
M. Brenner, G. Berginc, and D. Skočaj. Towards an integrated robot
with multiple cognitive functions. In AAAI, pages 1548–1553. AAAI
Press, 2007.

[12] N. Hawes, J. Wyatt, and A. Sloman. Exploring design space for an
integrated intelligent system. Knowledge Based Systems, To Appear.

[13] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, pages 1735–1780, 1997.

EU FP7 CogX 22

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

[14] F. Kaplan, P-Y. Oudeyer, E. Kubinyi, and A. Miklosi. Taming robots
with clicker training : a solution for teaching complex behaviors. In
European workshop on learning robots, LNAI, Springer, 2001.

[15] M. Kristan, D. Skočaj, and A. Leonardis. Multivariate online kernel
density estimation using gaussian mixture models. In Technical Report
LUVSS-TR-04/09, Submitted, 2009.

[16] M. Kristan, D. Skočaj, and A. Leonardis. Online kernel density esti-
mation for interactive learning. Submitted, 2009.

[17] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching: Extract-
ing reusable task knowledge fromvisual observation of human perfor-
mance. IEEE Transactions on Robotics and Automation, 10:799822,
1994.

[18] Y. Lashkari, M. Metral, and P. Maes. Collaborative interface agents.
In National Conference on Artificial Intelligence, 1994.

[19] H. Lieberman, editor. Your Wish is My Command: Programming by
Example. Morgan Kaufmann, San Francisco, 2001.

[20] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild. Giving advice
about preferred actions to reinforcement learners via knowledge-based
kernel regression. In National Conference on Artificial Intelligence,
2005.

[21] J. Mugan and B. Kuipers. Towards the application of reinforcement
learning to undirected developmental learning. In International Con-
ference on Epigenetic Robotics, 2008.

[22] J. M. L. Murillo and A. A. Rodriguez. Algorithms for gaussian band-
width selection in kernel density estimators. 2008.

[23] Y. Nagai, M. Asada, and K. Hosoda. Developmental learning model for
joint attention. In IEEE/RSJ International Conference on Intelligent
Robots and System, 2002.

[24] P. Y. Oudeyer and F. Kaplan. Intelligent adaptive curiosity: a source
of self-development. In International Workshop on Epigenetic Robotics,
pages 127–130, 2004.

[25] P-Y. Oudeyer, F. Kaplan, and V. V. Hafner. Intrinsic motivation sys-
tems for autonomous mental development. IEEE Transactions on Evo-
lutionary Computation, 11(1), 2007.

[26] D. Pea, Roy. Distributed cognitions: Psychological and educational con-
siderations, chapter Practices of distributed intelligence and designs for
education. Cambridge University Press, New York, 1993.

EU FP7 CogX 23

DR 5.1: Continuous learning of basic visual concepts D. Skočaj et. al.

[27] S. Roa and G.-J. Kruijff. Long short-term memory for affordances
learning. Submitted, 2009.

[28] S. Roa, G.-J. Kruijff, and H. Jacobsson. Curiosity-driven acquisition
of sensorimotor concepts using memory-based active learning. In Pro-
ceedings of the 2008 IEEE International Conference on Robotics and
Biomimetics, pages 665–670, 2008.

[29] D. K. Roy. Learning visually-grounded words and syntax for a scene de-
scription task. Computer Speech and Language, 16(3-4):353–385, 2002.

[30] D. K. Roy and A. P. Pentland. Learning words from sights and sounds:
a computational model. Cognitive Science, 26(1):113–146, 2002.

[31] G. Schohn and D. Cohn. Less ismore: Active learning with support
vector machines. In International Conference on Machine Learning,
2000.

[32] D. Skočaj, M. Kristan, and A. Leonardis. Formalization of different
learning strategies in a continuous learning framework. In Submitted,
2009.

[33] D. Skočaj, A. Vrečko, M. Kristan, and S. Roa. George scenario, in-
teractive cross-modal learning; year 1. Technical report, University of
Ljubljana, DFKI, 2009.

[34] A. Sloman. Polyflaps as a domain for perceiving, acting and learning
in a 3-D world. In Position Papers for 2006 AAAI Fellows Symposium,
Menlo Park, CA, 2006. AAAI.

[35] A. Sloman and J. Chappell. The altricial-precocial spectrum for robots.
In Proceedings IJCAI’05, pages 1187–1192, Edinburgh, 2005. IJCAI.

[36] W. D. Smart and L. P. Kaelbling. Effective reinforcement learning
for mobile robots. In IEEE International Conference on Robotics and
Automation, page 34043410, 2002.

[37] A. L. Thomaz. Socially Guided Machine Learning. PhD thesis, Mas-
sachusetts Institute of Technology, 2006.

[38] A. Vrečko, D. Skočaj, N. Hawes, and A. Leonardis. A computer vision
integration model for a multi-modal cognitive system. In Accepted at
2009 IEEE/RSJ International Conference on Intelligent RObots and
Systems, 2009.

[39] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur,
and E. Thelen. Autonomous mental development by robots and ani-
mals. Science, 291(5504):599 – 600, 2001.

EU FP7 CogX 24

Formalization of different learning strategies

in a continuous learning framework

Danijel Skočaj Matej Kristan Aleš Leonardis
University of Ljubljana

Faculty of Computer and Information Science
Tržaška 25, SI-1001 Ljubljana, Slovenia

{danijel.skocaj,matej.kristan,ales.leonardis}@fri.uni-lj.si

Abstract

While the ability to learn on its own is an
important feature of a learning agent, an-
other, equally important feature is ability to
interact with its environment and to learn in
an interaction with other cognitive agents and
humans. In this paper we analyze such in-
teractive learning and define several learning
strategies requiring different levels of tutor in-
volvement and robot autonomy. We propose a
new formal model for describing the learning
strategies. The formalism takes into account
different levels and types of communication
between the robot and the tutor and different
actions that can be undertaken. We also pro-
pose appropriate performance measures and
show the experimental results of the evalua-
tion of the proposed learning strategies.

1. Introduction

An important characteristic of a robot that operates
in a real-life environment is the ability to expand its
current knowledge. The system has to create and
extend concepts by observing the environment – and
has to do so continuously, in a life-long manner.

As an example of such a learning framework, we
need look no further than at the successful appli-
cation of continuous learning in human beings. As
humans, we can learn, for example, a new visual con-
cept (e.g., an object category, an object property, an
action pattern, an object affordance, etc.) by en-
countering a few examples of one. Later, as we come
across more instances, different to the original ex-
amples, we not only recognise them, but also update
our representation of learned visual concepts based
on the salient properties of the new examples and
without having visual access to the previous exam-
ples. In this way, we update or enlarge our ontology
in an efficient and structured way by encapsulating
new information extracted from the perceived data,
which enables adaptation to new visual inputs and
the handling of novel situations we may encounter.

Since humans are social beings this learning often
takes place not in isolation, but rather in communi-
cation with other people. This communication can
facilitate learning by exposing the knowledge that
other possess also to the learner. It is very important
for a robot, which is supposed to operate in a real
world environment, to possess similar capabilities as
well. The robot should be able to learn by interacting
with the environment and with other knowledgable
cognitive systems (e.g., a tutor), which may facilitate
the learning process and make it robust and reliable.

In this paper we focus on such interactive contin-
uous learning, where the robot is learning and con-
tinuously updating its knowledge autonomously or
in a dialogue with a tutor. With respect to this,
several learning strategies can be used, ranging from
completely tutor driven to completely unsupervised
(Fig. 1). The robot keeps continuously learning while
communicating with the tutor with different levels of
tutor involvement and different levels of robot auton-
omy, which may lead to different levels of certainty
or ambiguity of the learned representations.

For performing a thorough analysis and evaluation
of various learning strategies, it is necessary to for-
mally describe the learning process and defined per-
formance metrics. In this paper we propose such a
formalism for specifying different learning strategies.
In the proposed formal framework we also define four
learning strategies ranging from tutor driven to tutor
unassisted learning.

The paper is organised as follows. In the next
section we first describe the related work. In Sec-
tion 3. we then describe four learning strategies and
in Section 4. the general formal model of learning
strategies. This is followed by experimental evalua-
tion of the presented learning strategies. The paper
concludes with a final discussion and outlook.

Figure 1: Different levels of communication between the

tutor and the robot during a continuous learning process.

2. Related work

A tutor’s involvement by interaction plays an impor-
tant role in the learning process in cognitive agents.
Studies of human infants, for example (Pea, 1993),
indicate that being able to exploit the expertise of
others is a critical part of learning. Another point is
the capability of the infants to take lead in the inter-
action, which is a foundation for many situated learn-
ing activities. Weng et al. (Weng et al., 2001) pro-
pose that similar measures should be undertaken in
machine learning scenarios, in which the tutor should
mentally rise the developmental robot through real-
time interaction. This assumption is supported in
the theory of cognitive development proposed by Vy-
gotsky (Vygotsky, 1962), which states that social in-
teractions are of essential importance for the devel-
opment of individual intelligence. Building on a sim-
ilar assumption, Thomaz (Thomaz, 2006) casts the
machine learning problem as a strongly involved in-
teraction between the human and the machine. As
a feature of strong interaction (Thomaz, 2006) pro-
pose that the tutor has to have a level of insight
into what the learner knows and which parts of the
knowledge are ambiguous – the learner should be
transparent in that respect to the tutor. The im-
portance of a strong collaboration between the tutor
and the machine is supported by the results of Na-
gai et al. (Nagai et al., 2002) who propose a learn-
ing model for joint attention in tutor-learner sce-
nario. An involved interaction as a dialogue based
learning scenario was also presented by Roy et. al
(Roy and Pentland, 2002, Roy, 2002). Their system
in (Roy and Pentland, 2002) was designed to learn
word forms and visual attributes from speech and
video recordings, and subsequently, Roy extended
this work for generating spoken descriptions of scenes
(Roy, 2002).

Researchers have dealt with various levels of tu-
tor involvement in the process of learning in ma-
chines. At one extreme is an example in which
the tutor is absent and the agent has to learn
on its own starting from a very small or no
prior knowledge, e.g., (Mugan and Kuipers, 2008,
Oudeyer and Kaplan, 2004). Some works fo-
cus on scenarios in which the machine pas-
sively observes the human tutor. These in-
clude, for instance, implicit or explicit teaching
for graphical user interfaces (Lashkari et al., 1994,
Lieberman, 2001), and learning by imitation for
sensi-motor control, e.g., (Kuniyoshi et al., 1994,
Billard and Dautenhahn, 1999). The imitation can
drastically reduce the search space for the agent’s
task and speed up learning (Schaal, 1999). An-
other level of tutor’s involvement is teaching by
directly influencing the the actions of the ma-
chine. Such an example is when user biases the ac-
tion selection in the machine (Maclin et al., 2005)

or to allow direct control of robot’s actions
to supervise the process of reinforcement learn-
ing (Smart and Kaelbling, 2002). Another example
is the work of Arsenic (Arsenic, 2004) in which the
tutor initially guides the robot’s learning of actions
and as the knowledge gets grounded, the robot can
act by itself. Kaplan et al. (Kaplan et al., 2001) ex-
plored animal training techniques to teach a robot
to perform complex tasks. An example where the
tutor plays an oracle was explored by Schohn and
Cohn (Schohn and Cohn, 2000) – in that scenario,
the agent provides some level of transparency by
identifying the relevant examples and querying the
tutor for the required labels.

Learning in cognitive robots can be described in
terms of different levels of tutor involvement as well
as levels of learner’s responsiveness and learner’s
transparency. As noted above, various researchers
have dealt with scenarios with various levels of the
tutor-learner interaction, leading to different learn-
ing strategies. Accounting for the levels of interac-
tion, we identify four major learning strategies in the
next section.

3. Learning strategies

The goal of the learning mechanism is to continu-
ously learn and update the acquired concepts, i.e.,
to find associations between the words spoken by
the tutor (and related amodal concepts) and fea-
tures, which are automatically extracted from the
observations. Such a continuous learning framework
should communicate with the tutor, perform recogni-
tion, and update the representations according to the
current learning strategy. In this section we define
several learning strategies which alter the behaviour
of the system and require different levels of tutor in-
volvement.

In the core of any learning strategy is a learning
algorithm that actually builds and updates the rep-
resentations. Before we proceed with the definition
of the learning strategies, let us introduce several re-
quirements for the learning algorithm.

Most importantly, the learning algorithm has to
be incremental; the representation, which is used
for modeling the observed world, has to allow for up-
dates when presented with newly acquired informa-
tion. This update step should be efficient and should
not require access to previously observed data, while
still preserving the previously acquired knowledge.

In addition, in continuous learning scenarios the
noise in the input data has a detrimental effect on
the learnt representations, especially when the robot
learns autonomously. If, for example, the recogni-
tion algorithm fails at some point to correctly inter-
pret the visual scene and erroneously updates the
current knowledge, the models of the concepts tend
to degrade and the performance of the system will

typically decrease severely. However, in interactive
settings the tutor can help the robot to recover from
the errors through interaction, by, e.g., indicating to
the robot that its belief about a certain concept is
wrong. The system should be then able to unlearn,
i.e. to correct the representation of that concept,
which can improve the performance considerably.

Finally, it is obvious that the system is supposed
to have a certain level of self-understanding; it
should be able to estimate whether its current knowl-
edge suffices to interpret the current scene, or it
should ask the tutor for help. Therefore, it should
have a recognition capability, i.e., the ability to in-
terpret the current observation to some extent. And
even more importantly, the system should be able to
evaluate the reliability of this recognition process.

We therefore assume that the learning algorithm,
which is used in the continuous learning framework,
fulfills the criteria mentioned above.

We define a learning strategy as a common
strategy of the tutor and the robot that specifies the
behaviour of the robot and the tutor in the contin-
uous learning process. It specifies when the robot
updates its knowledge autonomously and how and
when the tutor and the robot communicate in order
to extend the robot’s knowledge. According to this
definition and considering different levels of interac-
tion between the tutor and the robot, various learn-
ing strategies are possible. Here we identify four such
strategies:

• Tutor driven. The tutor drives the learning by
describing the observation and giving all avail-
able information to the robot. The communi-
cation is one-directional, the learning process is
completely controlled by the tutor.

• Tutor supervised. The robot establishes trans-
parency; the tutor assesses the robot’s knowl-
edge and detects its ignorance. When the robot
fails to correctly interpret the current observa-
tion, the tutor provides the correct information,
which helps the robot to update or unlearn the
current representations accordingly.

• Tutor assisted. The robot tries to interpret the
current observation. If it succeeds to do this reli-
ably, it updates the current model, otherwise asks
the tutor for the correct interpretation. The tu-
tor therefore gives the information to the robot
only when asked for assistance.

• Tutor unassisted. The system updates the
model with the automatically obtained interpre-
tation of the visual input. No assistance from
the tutor is required. There is no communication
between the tutor and the robot.

The dialogue in the first two learning strategies is
initiated by the tutor, while in the second two cases

the robot takes the initiative. These four learning
strategies range across the entire spectrum of differ-
ent levels of the tutor involvement and the robot’s
autonomy. In Tutor driven mode the tutor com-
pletely drives the learning process, in Tutor super-
vised mode he intervenes only when necessary, in
Tutor assisted mode only when he is asked for, and
in Tutor unassisted mode even never. On the other
hand, the autonomy of the robot increases from Tu-
tor driven mode, where the robot does not influ-
ence the learning process, to Tutor unassisted mode,
where it completely autonomously controls the learn-
ing. This is also depicted in Fig. 2.

The spectrum of different learning modes is of
course not discrete as presented here; it is continuous
and one could define additional learning strategies
with similar properties. It is also possible to com-
bine different learning strategies, to execute them in
a sequence and to switch between them when neces-
sary. In practice, the learning strategy should change
over time, adapting to the current level of knowl-
edge and complexity and novelty of the environment
the robot is currently situated in. We believe, how-
ever, that the presented four learning strategies span
across the entire space of possible learning strategies
and cover a major part of its variability.

Figure 2: Learning strategies.

4. Formal model

In the previous section we have conceptually de-
scribed a few possible learning strategies. Here we
present a general formalism, which can be used to
formally define these or many other learning strate-
gies.

We will limit our analysis on the continuous learn-
ing scenarios, in which a robot observes a scene and
learns new concepts through interaction with a tutor.
This interaction can be quite simple or very complex;
different learning strategies employ different levels od
communication. We assume that the robot and the
tutor can establish the common ground; they have
all necessary communication capabilities, they ob-
serve the same scene, and in the dialogue they refer
to the same object.

The robot and the tutor are involved in a con-
tinuous and interactive learning process; the robot

continuously observes objects, it tries to recognize
them and learn something new about them. Every
learning step therefore starts with the robot trying
to interpret the current scene. It tries to recognize all
the concepts it currently knows. Based on the classi-
fication confidence (see Fig. 3), the robot can assign
soft labels when trying to determine whether the
current observation is indicative of a given concept
or not:

• ‘Yes’ (Yes): The recognition confidence is very
high, the robot reliably classifies the current ob-
servation as being an instance of a particular con-
cept.

• ‘Probably yes’ (PY): The recognition confi-
dence is relatively high, however the robot is not
certain about its current interpretation.

• ‘Probably no’ (PN): The recognition confidence
is relatively low; the current observation probably
does not indicate the particular concept.

• ‘No’ (No): The recognition confidence is very
low, therefore the robot reliably classifies the cur-
rent observation as not being an instance of a
particular concept.

• ‘Don’t know’ (DK): The recognition was not
sufficiently reliable to determine the answer.

• ‘Unknown’ (UK): The robot has not yet encoun-
tered the certain concept it was asked about.

Based on the output of the classifier and as in-
structed by the chosen learning strategy, one of the
following four actions follows:

• Do nothing. The robot does not update its cur-
rent knowledge nor does request an interaction
with the tutor.

• Autonomously update. The robot updates
the current knowledge with the information au-
tonomously inferred from the current observation
without involving the tutor.

• Tell. The tutor gives the correct information
about the current observation to the robot.

• Ask. The robot asks the tutor for clarifica-
tion about the current observation and the tutor
replies with the correct answer.

In the latter three cases an update of the current
knowledge follows (either based on the automatically
extracted information or on information obtained by
the tutor). Two different kinds of update are pos-
sible:

• Update with a positive example. The robot
updates its current knowledge by integrating the
positive training sample into its current represen-
tation of the particular concept.

• Unlearn with a negative example. The robot
unlearns its current knowledge; based on the
given negative example, it corrects the current
representations not to model this negative exam-
ple.

To fully describe the learning strategy we also need
to define the intensity of communication between the
robot and the tutor. We define three such commu-
nication levels:

• Ignoring. The tutor ignores the robot; the state
of the robot does not influence the tutors behav-
ior.

• Listening. The tutor listens to the robot and
correctly answers with ‘yes’ or ‘no’ when being
asked.

• Transparency facilitated assessment. The
robot establishes transparency and the tutor is
able to assess the robot’s current interpretation
of the observation.

Now, let us denote the above mentioned four ac-
tions with the following signs: ‘/’ for ‘do nothing’,
‘U’ for ‘auto-update’, ‘T’ for ‘tell ’, and ‘A’ for ‘ask’.
In addition, with a subfix next to these signs we will
denote an update with positive example with the plus
sign (‘+’) and an unlearning request with the mi-
nus sign (‘-’). For instance, ‘U+’ means that the
system will automatically update the current knowl-
edge with the information inferred from the current
observation, while ‘A−’ means that the robot will ask
the tutor for clarification, the tutor will reply with a
negative answer and the robot will unlearn its cur-
rent knowledge accordingly. Similarly, let us denote
the communication levels with ‘ign’ (ignoring), ’lst’
(listening), and ’tfa’ (transparency facilitated assess-
ment).

To fully describe a learning strategy, we need to
define what will happen if the robot correctly or in-
correctly interprets the current observation with re-
spect to all known concepts. Therefore, we need to
define the action that will be undertaken depend-
ing on the robot’s autonomous interpretation of the
scene (soft label sl that is autonomously assigned
for a particular concept). We assume that the tutor
is omniscient and always gives the correct informa-
tion to the robot; therefore the tutors actions will
also depend on the ground truth data (gt), which
tells if the observation is an istance of the particular
concept or not.

Now, a learning strategy can be defined as a 13-
tuple LS:

LS = [actsl,gt, cl] , where (1)
sl ∈ {Y es, PY, PN, No, DK, UK}
gt ∈ {yes, no}

act·,· ∈ {/, U+, U−, T+, T−, A+, A−}
cl ∈ {ign, lst, tfa}

Note that actsl,gt denotes 12 elements (2×6 combina-
tions of sl and gt, i.e., actY es,yes, actY es,no, actPY,yes,
etc.). This vector exactly specifies what will happen
in certain situations. When the robot observes a new
observation it tries to determine whether it belongs
to a certain concept or not, and assigns a soft label
(sl) as described above. This label is then together
with the known ground truth (gt) used to index in
the vector LS; the obtained action actsl,gt exactly
specifies which action (or sequence of actions) will
be undertaken.

Figure 3: Parametrisation of learning strategies.

To demonstrate this formalism, let us for-
mally define the four learning mechanisms pre-
sented in the previous section (see also Fig. 4):
LSTD = [T+, /, T+, /, T+, /, T+, /, T+, /, T+, /, ign]
LSTS = [U+, T−, U+, T−, T+, /, T+, /, T+, /, T+, /, tfa]
LSTA = [U+, U+, A+, A−, A+, A−, /, /, A+, A−, T+, /, lst]
LSTU = [U+, U+, /, /, /, /, /, /, /, /, T+, /, ign]

In Tutor driven learning mode, the tutor does not
pay any attention to the robot (ign); it always gives
to the robot the correct (positive) information about
the current observation (T+). In Tutor supervised
mode, the tutor observes the robot and assesses its
current knowledge (tfa). The tutor lets the robot to
automatically update the current knowledge (U+),
when its interpretation is correct, or he corrects the
robot, when its interpretation in incorrect by telling
the correct information (T− or T+). In Tutor assisted
mode the tutor listens to the robot (lst), which au-
tonomously decides either to update the knowledge
automatically (U+), when its trusts to its recogni-
tion result, or to ask the tutor for help, when the
recognition was not reliable. In the latter case, the
tutor responds with ‘yes’ (A+) or ‘no’ (A−) accord-
ing to the ground truth label, which in turn enables
the robot to update or unlearn its current knowl-
edge. Finally, in the Tutor unassisted learning, the
robot only relies on its current recognition abilities

and does not ask the tutor for help. The robot is
therefore ignored by the tutor (ign) and updates its
current knowledge autonomously (U+).

Figure 4: Formal definition of four learning strategies.

Such learning formalism allows us to formally de-
fine evaluation measures. Instead of standard recog-
nition rate we propose to use a recognition score,
which rewards successful recognition (true positives
and true negatives) and penalizes incorrectly recog-
nised concepts (false positives and false negatives) by
taking into account soft labels. The scoring rules are
presented in Table 1; it shows how many points (-1
to 1) the system is rewarded with for each of the an-
swers given in the first row, depending on the correct
answer as given in the first column.

Table 1: Scoring table.

YES PY PN NO DK UK
YES 1 0.5 -0.5 -1 0 0
NO -1 -0.5 0.5 1 0 0

The recognition score thus measures how suc-
cessfully the robot recognizes the learned concepts
(therefore, how successful the learning was). How-
ever, in interactive learning scenarios another crite-
rion is also important; the tutoring costs. Obvi-
ously, one would prefer that the robot learns au-
tonomously as much as possible, without involving
the tutor too frequently. During the learning pro-
cess different types of tutoring costs may occur (in
different learning strategies):

• Cinf : costs of providing some information to the
robot.

• Cans: costs of answering a polar question to the
robot.

• Cign: costs of ignoring the robot.

• Clst: costs of listening to the robot.

• Ctfa: costs of assessing the current robot’s knowl-
edge

Let us suppose that at a particular learning step
the tutor gave Ninf concepts labels about the correct
observation to the tutor and answered Nans polar
questions. Now we can define the overall tutoring
costs at that particular learning step as

TC = NinfCinf + NansCans + Ccl (2)

where cl is one of three communication levels as de-
fined above.

The values of the parameters C∗ depend on the ac-
tual costs that occur during the interactive learning.
In this paper we use the values presented in Table 2.
We set the cost of assessing the robots knowledge

Table 2: Tutoring costs.

Cinf Cans Cign Clst Ctfa

1 .25 0 .25 2

high, since this is not a trivial task for the tutor.
If, for instance, the robot would establish the trans-
parency by verbalizing its current beliefs, the tutor
would just have to listen to it and the cost of assess-
ing the knowledge would be lower, i.e., Ctfa = Clst.

5. Experimental results

For performing large scale experiments and evaluat-
ing different learning strategies we have developed
Interactive Continuous Learning Simulator, which
implements the formal model of learning strategies
presented in the previous section. This simulation
environment uses as observations the features that
were automatically extracted from the previously
captured, automatically processed and manually la-
beled real data; the tutor is replaced by an omni-
scient oracle, which has the ground truth data avail-
able. The simulator enables large scale experiments
and a thorough evaluation and comparison of differ-
ent learning methods and strategies.

We performed a number of experiments to eval-
uate different learning strategies on different learn-
ing domains. Here we present the results of the
experiment where the goal was to learn basic vi-
sual attributes like colour and shape by observing
a set of everyday objects (some of them are de-
picted in Fig. 5). Six visual attributes were con-
sidered; four colours (red, green, blue, yellow) and
two shapes (elongated, compact). The database that
we used for learning contains 500 images. 400 im-
ages were used to incrementally learn the represen-
tations of six visual properties, while the rest 100
of them were used as test images. We repeated
the experiment for 100 runs by randomly splitting
the set of images into the training and test set
and averaged the results across all runs. In all
the experiments we used the extended algorithm for

incremental learning that we have previously pro-
posed (Skočaj et al., 2008, Kristan et al., 2009).

Figure 5: Seven everyday objects from the database.

During the experiment, we kept incrementally up-
dating the representations with the training images
using different learning strategies as defined in the
previous section. At each step, we evaluated the
current knowledge by recognising the visual prop-
erties of all test images. The learning performance
was evaluated using two above defined performance
measures: recognition score and tutoring costs.

Figs. 6 and 7 show the evolution of the learning
performance over time for all four learning strategies.
First thing to note is that the overall results improve
through time. The growth of the recognition score
is very rapid at the beginning when new models of
newly introduced concepts are being added, and still
remains positive even after all models are formed due
to refinement of the corresponding representations.

Tutor driven and Tutor supervised learning yield
similar recognition score; they almost achieve the
perfect score (600 in this case). Tutor supervised
learning performs slightly better, since it sooner
achieves better results. This is somehow expected,
since in this case the tutor corrects the robot when
necessary and the robot unlearns the erroneous rep-
resentations. The inherent problem of any continu-
ous learning framework, which involves autonomous
updating of the knowledge, is propagation of errors.
The tutor supervision efficiently helps the robot to
recover from this errors, if the robot transparency
has been achieved. The error recovery is in this ex-
periment less effective in the tutor assisted case. The
errors are in this case detected by the robot (and
not by the tutor). Obviously, this error detection
is not so efficient, therefore the recognition score is
lower. In this experiment, Tutor unassisted learning
did not perform well; without sufficiently good ini-
tial knowledge it was not able to improve without
any assistance from the tutor.

We also have to take into account the tutoring

costs that occur during the learning. In Tutor driven
learning mode they are almost constant; the tutor al-
ways gives all the information about the current ob-
ject, which is available. The costs of Tutor assisted
learning are significantly lower. The robot keeps ask-
ing the tutor only at the beginning of the learning
process; after its knowledge gets improved the num-
ber of questions drops and most of the costs relate
to the fact that the tutor has to listen to the robot
and await for its questions. The costs of Tutor su-
pervised learning are relatively high, since in this ex-
periment we use the settings presented in Table. 2,
which assume that it is relatively expensive to asses
the robot’s knowledge. In addition to that, at the
beginning there is a lot of communication between
the tutor and the robot, which again drops when the
models of the concepts get stabilized. If the robot
establishes its transparency by verbalizing its beliefs
about current observations, the costs of assessing the
knowledge are be significantly lower, and the over-
all tutoring costs significantly decrease (the dashed
line in Fig. 7), making the Tutor supervised learn-
ing more efficient than the Tutor driven. This holds
true also in practice; it is more convenient (and ef-
fective) to the tutor just to listen and correct the
learner occasionally than to continuously giving it
new information.

1 25 50 85 145 245 400
0

100

200

300

400

500

600

Number of images

R
ec

og
ni

tio
n

sc
or

e

TD
TS
TA
TU

Figure 6: Evolution of Recognition Score. Note the log-

arithmic scale along abscissa.

6. Conclusion

In this paper we have introduced a new formal model
for formalizing learning strategies. We define a learn-
ing strategy as a common strategy of the tutor and
the robot that specifies the behaviour of the robot
and the tutor in the continuous learning process.
The formalism takes into account different levels and
types of communication between the robot and the
tutor and different actions that can be undertaken.

1 25 50 85 145 245 400
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of images

T
ut

or
in

g
co

st

TD
TS
TA
TU

Figure 7: Evolution of Tutoring costs. Note the logarith-

mic scale along abscissa.

By specifying these actions an communication levels,
the learning strategy can be uniquely defined.

In general, it is very difficult to objectively
compare different (incompatible) learning processes;
the presented formalism makes this comparisons
straightforward. This will allow us to analyse differ-
ent learning strategies, to efficiently combine them
and to find a way how to exploit the properties of
the individual strategy best.

In addition, we introduced four learning strategies
that span across the entire space of possible learning
strategies and cover a major part of its variability.
They range across the entire spectrum of different
levels of the tutor involvement and the robot’s auton-
omy. We also evaluated these four learning strategies
using the proposed performance metrics.

Our primary goal is to develop a robot that would
be able to efficiently acquire new concepts and to up-
date the existing ones in collaboration with a human
teacher. We have implemented the learning strate-
gies introduced in this paper on a real robot (for de-
tails the reader is referred to (Vrečko et al., 2009)).
When conducting research on interactive learning it
is crucial to have a real implementation of the learn-
ing framework on real robots and to test its function-
ality in real-world settings. However, it is of equal
importance also to have formalisms and tools to per-
form large scale experiments, which enable thorough
evaluation and analysis of the proposed methods. We
believe that the proposed formal model can facilitate
such research and enable further development of re-
lated approaches.

Acknowledgements

This research has been supported in part by the EU
FP7 project CogX (ICT-215181) and the Research
program Computer Vision (RS).

References

Arsenic, A. (2004). Developmental learning on a
humanoid robot. In IEEE International Joint
Conference on Neural Networks.

Billard, A. and Dautenhahn, K. (1999). Experi-
ments in learning by imitation - grounding and
use of communication in robotic agents. Adap-
tive Behavior, 7(3/4):415–438.

Kaplan, F., Oudeyer, P.-Y., Kubinyi, E., and Mik-
losi, A. (2001). Taming robots with clicker train-
ing : a solution for teaching complex behaviors.
In European workshop on learning robots, LNAI,
Springer.

Kristan, M., Skočaj, D., and Leonardis, A. (2009).
Online kernel density estimation. In Neural In-
formation Processing Systems, page submitted.

Kuniyoshi, Y., Inaba, M., and Inoue, H. (1994).
Learning by watching: Extracting reusable task
knowledge fromvisual observation of human per-
formance. IEEE Transactions on Robotics and
Automation, 10:799822.

Lashkari, Y., Metral, M., and Maes, P. (1994). Col-
laborative interface agents. In National Confer-
ence on Artificial Intelligence.

Lieberman, H., (Ed.) (2001). Your Wish is My
Command: Programming by Example. Morgan
Kaufmann, San Francisco.

Maclin, R., Shavlik, J., Torrey, L., Walker, T., and
Wild, E. (2005). Giving advice about preferred
actions to reinforcement learners via knowledge-
based kernel regression. In National Conference
on Artificial Intelligence.

Mugan, J. and Kuipers, B. (2008). Towards the ap-
plication of reinforcement learning to undirected
developmental learning. In International Con-
ference on Epigenetic Robotics.

Nagai, Y., Asada, M., and Hosoda, K. (2002). De-
velopmental learning model for joint attention.
In IEEE/RSJ International Conference on In-
telligent Robots and System.

Oudeyer, P. Y. and Kaplan, F. (2004). In-
telligent adaptive curiosity: a source of self-
development. In International Workshop on
Epigenetic Robotics, pages 127–130.

Pea, Roy, D. (1993). Distributed cognitions: Psy-
chological and educational considerations, chap-
ter Practices of distributed intelligence and
designs for education. Cambridge University
Press, New York.

Roy, D. K. (2002). Learning visually-grounded
words and syntax for a scene description task.
Computer Speech and Language, 16(3):353–385.

Roy, D. K. and Pentland, A. P. (2002). Learning
words from sights and sounds: a computational
model. Cognitive Science, 26(1):113–146.

Schaal, S. (1999). Is imitation learning the route to
humanoid robots? Trends in Cognitive Science,
3(6):233–242.

Schohn, G. and Cohn, D. (2000). Less ismore: Ac-
tive learning with support vector machines. In
International Conference on Machine Learning.

Skočaj, D., Kristan, M., and Leonardis, A. (2008).
Continuous learning of simple visual concepts
using Incremental Kernel Density Estimation.
In International Conference on Computer Vi-
sion Theory and Applications, pages 598–604.

Smart, W. D. and Kaelbling, L. P. (2002). Effec-
tive reinforcement learning for mobile robots. In
IEEE International Conference on Robotics and
Automation, page 34043410.

Thomaz, A. L. (2006). Socially GuidedMachine
Learning. PhD thesis, Massachusetts Institute
of Technology.

Vrečko, A., Skočaj, D., Hawes, N., and Leonardis,
A. (2009). A computer vision integration model
for a multi-modal cognitive system. In Accepted
at 2009 IEEE/RSJ International Conference on
Intelligent RObots and Systems. Accepted at
2009 IEEE/RSJ International Conference on In-
telligent RObots and Systems.

Vygotsky, L. (1962). Thought and Language. Cam-
bridge, MA: MIT Press.

Weng, J., McClelland, J., Pentland, A., Sporns, O.,
Stockman, I., Sur, M., and Thelen, E. (2001).
Autonomous mental development by robots and
animals. Science, 291(5504):599 – 600.

Online Kernel Density Estimation For Interactive Learning1

M. Kristana,b,1, D. Skočaja, A. Leonardisa

aFaculty of Computer and Information Science, University of Ljubljana, Slovenia
bFaculty of Electrical Engineering, University of Ljubljana, Slovenia

Abstract

In this paper we propose a Gaussian-kernel-based online kernel density estimation which can be used for
applications of online probability density estimation and online learning. Our approach generates a Gaussian
mixture model of the observed data and allows online adaptation from positive examples as well as from the
negative examples. The adaptation from the negative examples is realized by a novel concept of unlearning
in mixture models. Low complexity of the mixtures is maintained through a novel compression algorithm.
In contrast to the existing approaches, our approach does not require fine-tuning parameters for a specific
application, we do not assume specific forms of the target distributions and temporal constraints are not
assumed on the observed data. The strength of the proposed approach is demonstrated with examples of
online estimation of complex distributions, an example of unlearning, and with an interactive learning of
basic visual concepts.

Key words: Online learning, Kernel Density Estimation, Mixture models, Unlearning, Compression,
Hellinger distance, Unscented transform
PACS: :

1. Introduction

The process of learning may be viewed as a task of generating models from a corpus of data. Interactive
acquisition of such models is one of the fundamental tasks in many rapidly emerging research areas. One
example is interactive search engines for browsing large-scale data bases [1], where a system has to chose an
optimal strategy to build efficient models of the query while minimizing the required communication with the
user. Interactive and online learning is also becoming important in cognitive computer vision and cognitive
robotics (eg., [2, 3]), where the primary goal is to study and develop cognitive agents – systems which could
continually learn and interact within natural environments. Since most of the real-world environments are
ever-changing, and all the information which they provide cannot be available (nor processed) at once, an
agent or a system interacting within such an environment has to fulfill some general requirements in the way
it builds the models of its environment: (i) The learning algorithm should be able to create and update the
models as new data arrives. (ii) The models should be updated without explicitly requiring access to the old
data. (iii) The computational effort needed for a single update should not depend on the amount of data
observed sofar. (iv) The models should be compact and should not grow significantly with the number of
training instances. Furthermore, in real-life scenarios, an erroneus information will typically get incorporated
into the models. In such situations, the models should allow for error-recovery without the need of complete
relearning. This is especially important in the user-agent interaction settings, in which the user can provide
not only positive but negative examples as well to improve the agents knowledge about its environment.
Therefore, another requirement (v) is that the models should support the process of unlearning, i.e., they
have to allow online adaptation using the negative examples as well.

1Submitted to the Jounal of Image and Vision Computing
∗Corresponding author.
URL: http://vicos.fri.uni-lj.si/matejk (M. Kristan)

Preprint submitted to Elsevier July 17, 2009

The process of online learning should thus create, extend, update, delete, and modify models of the
perceived data in a continuous manner, while still keeping the representations compact and efficient. Various
models and methods for their extraction have been proposed in different contexts and tasks (eg., [4, 5, 6, 7, 8]).
In this paper we explore modelling data by probability density functions (pdf) based on Kernel Density
Estimates (KDE). In particular, we focus on Gaussian mixture models (GMM), which are known to be a
powerful tool in approximating distributions even when their form is far from Gaussian [9]. We demonstrate
the results of our approaches on examples of online approximation of probability density functions and on
examples of interactive visual learning in cognitive agents.

1.1. Related work

Traditionally, methods for density estimation are based on Parzen estimators [9, 10, 11, 12], expectation
maximization (EM) algorithm [13, 14, 15] or variational estimation [16, 17], to name a few. However, their
extention to online estimation of mixture models is nontrivial, since they assume all the data is available
in advance. Indeed, a major issue in an online estimation of mixture models is that we do not have an
access to the previously observed data to re-estimate the model’s parameters when the new data arrives.
Instead, the model itself has to serve as a compact representation of the data. While the model has to
generalize well the already observed data, at the same time it has to be complex enough to allow efficient
adaptation to the new data. Some researchers therefore impose temporal constraints on the incoming data
to allow online estimation of the mixture models. Song and Wang [18], for example, assume that data
comes in blocks. They use an EM with model selection to estimate the mixture model for the block of data
and use statistical tests to merge components with the model learnt from the previously observed data.
Arandjelović and Cippola [19] proposed an online extension of EM with split and merge rules, which allows
adding a single datum at a time, rather than blocks. They make a strong assumption, however, that the
distances between consecutive data points are sufficiently small, which prohibits application of this approach
in general situations. Deleclerq and Piater [20] assign a Gaussian with a predefined covariance to the newly
observed data and merge it with the mixture model, which describes the previously observed data. To ensure
that the resulting mixture model contains enough information to adapt to the new data, each component is
modelled by another mixture model. Szewczyk [21] applies a Dirichlet and Gamma density priors to assign
new components to the mixture model in light of the incoming data and then merges the components in
the mixture which are sufficiently close. One drawback of this approach, however, is that the parameters of
the prior need to be specified for a given problem. A conceptually different approach was proposed by Han
et al. [22], which aims to detect only the modes of the distribution and approximate each mode by a single
Gaussian. While the approach produces good models when the modes of the distribution are sufficiently
Gaussian and well separated, it fails to properly estimate the distribution in cases when the modes are
non-Gaussian, e.g., in skewed or uniform distributions.

1.2. Our Approach

In contrast to the above approaches, we propose in this paper a method for online estimation of mixture
models which does not require fine-tuning the parameters for a specific application, we do not assume a
very specific forms of the target pdfs, temporal constraints are not assumed on the observed data and the
proposed methods allow for unlearning as well. Our contributions are threefold. The first contribution is
a new approach to incremental Gaussian mixture models which allows online estimation of the probability
density functions. This is achieved by deriving a novel method for online kernel density estimation. The
second contribution is a method that enables unlearning parts of the learned mixture model, which allows
for a more versatile learning. The third contribution is a method for maintaining a low complexity of the
estimated mixture models.

The remainder of the paper is structured as follows. In Section 2.1 we present the online mixture model,
the method for unlearning is introduced in Section 2.2 and the method for complexity reduction is proposed
in Sections 2.3 and 2.4. In Section 3 we present experimental results from online approximation of complex
distributions, model refinement by unlearning, and apply the proposed methodology to the problem of online
interactive learning of simple visual concepts. Conclusions are drawn in Section 4.

2

2. Online Estimation of Mixture Models

Throughout this paper we will refer to a class of kernel density estimates based on Gaussian kernels, which
are commonly known as the Gaussian mixture models. Formally, we define a one dimensional M -component
Gaussian mixture model as

pmix(x) =
M
∑

j=1

wjKhj
(x− xj), (1)

where wj is the weight of the j-th component and Kσ(x− µ) is a Gaussian kernel

Kσ(z) = (2πσ2)−
1
2 exp(−1

2
z2/σ2), (2)

centered at mean µ with standard deviation σ; note that σ is also known as the bandwidth of the Gaussian
kernel.

2.1. Online kernel density estimation

Suppose that we have observed a set of nt samples {xi}i=1:nt
up to some time-step t. The problem of

modelling samples by a probability density function can be posed as a problem of kernel density estima-
tion [9]. In particular, if all of the samples are observed at once, then we seek a kernel density estimate with
kernels placed at locations xi with equal bandwidths ht

p̂t(x;ht) =
1

nt

nt
∑

i=1

Kht
(x− xi), (3)

which is as close as possible to the underlying distribution that generated the samples. A classical measure
used to define closeness of the estimator p̂t(x;ht) to the underlying distribution p(x) is the mean integrated

squared error (MISE)

MISE = E[p̂t(x;ht)− p(x)]2. (4)

Applying a Taylor expansion, assuming a large sample-set and noting that the kernels in p̂t(x;ht) are
Gaussians ([9], p.19), we can write the asymptotic MISE (AMISE) between p̂t(x;ht) and p(x) as

AMISE =
1

2
√

π
(htnt)

−1 +
1

4
h4

t R(p′′(x)), (5)

where p′′(x) is the second derivative of p(x) and R(p′′(x)) =
∫

p′′(x)2dx. Minimizing AMISE w.r.t. band-
width ht gives AMISE-optimal bandwidth

htAMISE = [
1

2
√

πR(p′′(x))nt
]
1
5 . (6)

Note that (6) cannot be calculated exactly since it depends on the second derivative of p(x), and p(x)
is exactly the unknown distribution we are trying to approximate. Several approaches to approximating
R(p′′(x)) have been proposed in the literature (see e.g. [9]), however these require access to all the observed
samples, which is in contrast to the online learning where we wish to discard previous samples and retain
only their compact representations. Our setting is depicted in Figure 1: We start from a known pdf p̂t−1(x)
from the previous time-step and in the current time-step observe a sample xt (Figure 1a). A Gaussian kernel
corresponding to xt is calculated and used to update p̂t−1(x) to yield a new pdf p̂t(x) (Figure 1b). Formally
this means that the current estimate p̂t(x) is obtained as

p̂t(x) = (1− 1

nt
)p̂t−1(x) +

1

nt
Kht

(x− xt), (7)

3

and the online kernel density estimation boils down to estimating the bandwidth ht of the Gaussian kernel
for the currently observed sample xt. We can rewrite (3) by separating the kernel corresponding to the
currently observed sample xt from the other kernels

p̂t(x;ht) = (1− 1

nt
)

nt−1
∑

i=1

1

nt − 1
Kht

(x− xi) +
1

nt
Kht

(x− xt)

= (1− 1

nt
)p̂t−1(x, ht) +

1

nt
Kht

(x− xt). (8)

If we then assume that the KDE corresponding to the samples from the previous time-steps in (8) can be
approximated by our estimate of the distribution from (t− 1), i.e., p̂t−1(x, ht) ≈ p̂t−1(x), then the optimal
bandwidth ht for p̂t(x), (7), is equal to the optimal bandwidth for p̂t(x;ht), (3). This means that, under
the above assumptions, we can use (6) as a heuristic for estimating the optimal bandwidth of p̂t(x). In the
following we propose an iterated plug-in rule which uses this heuristic for online bandwidth estimation.

p̂t−1(x) p̂t(x)

xt

(a) (b)

Figure 1: The left image shows a Gaussian mixture model p̂t−1(x) from time-step t − 1 (bold line) and the currently observed
sample xt (circle). A Gaussian kernel is centered on xt (dashed line) and used to update p̂t−1(x). The right image shows the
current, updated, mixture p̂t(x).

Let xt be the currently observed sample and let p̂t−1(x) be an approximation to the underlying distribu-
tion p(x) from the previous time-step. The current estimate of the p(x) is initialized using the distribution

from the previous time-step p̂t(x) ≈ p̂t−1(x). The bandwidth ĥt of the kernel Kĥt
(x− xt) corresponding to

the current observed sample xt is obtained by approximating the unknown distribution p(x) ≈ p̂t(x) and
applying (6)

ĥt = [2
√

πR(p̂′′t (x))nt]
−1/5. (9)

The resulting kernel Kĥt
(x− xt) is then combined with p̂t−1(x) into an improved estimate of the unknown

distribution

p̂t(x) = (1− 1

nt
)p̂t−1(x) +

1

nt
Kĥt

(x− xt). (10)

Next, the improved estimate p̂t(x) from (10) is plugged back into the equation (9) to re-approximate ĥt and
then equations (9) and (10) are iterated until convergence; usually, five iterations suffice.

Note that with each observed sample the number of components in the mixture model increases. There-
fore, in order to maintain a low complexity, a compression algorithm is initiated whenever the number of
components exceeds a value Ncomp. As we will see in section 2.4 the compression (Algorithm 3) does not
force removing components but merely tries to remove some. Therefore the threshold Ncomp only deter-
mines the frequency at which the compression is called. To prevent unnecessary calls to compression, the
threshold Ncomp can be therefore set to some fixed large value or can be allowed to vary. In practice,
we use a simple rule to adjust the Ncomp online: If no components are removed in the compression step
(Algorithm 1, step 5), then Ncomp is increased, i.e., Ncomp ← cscaleNcomp, otherwise, if the number of the
remaining components falls below c−1

scaleNcomp, the threshold is decreased, i.e., Ncomp ← c−1
scaleNcomp. In

all the subsequent experiments, we use a scale factor cscale = 1.5. The procedure for online kernel density
estimation is outlined in Algorithm 1.

4

Algorithm 1 : Online kernel density estimation

Input: p̂t−1(x), xt . . . the initial density approximation and the new sample
Output: p̂t(x) . . . the new approximation of density
1: Initialize the current distribution p̂t(x) ≈ p̂t−1(x).
2: Estimate the bandwidth ht of Kĥt

(x− xt) according to (9) using p̂t(x).
3: Reestimate p̂t(x) according to (10) using Kĥt

(x− xt).
4: Iterate steps 2 and 3 until convergence.
5: If the number of components in p̂t(x) exceeds a threshold Ncomp, compress p̂t(x) using Algorithm 3.
6: If required, adjust the threshold Ncomp.

2.2. Incorporating the negative examples

In the previous section we have proposed a method for online estimation of the mixture model from
all-positive examples using an online kernel density estimation. As discussed in the introduction, another
important aspect of the online learning is how to account for the negative examples. This feature is especially
important in real-life scenarios since it allows learning models from a noisy data and then refining these
models using additional negative examples – we call this the process of unlearning. Assume that, by observing
values of some feature x, we have constructed the following Mref -component Gaussian mixture model

pref(x) =

Mref
∑

i=1

wiKhi
(x− xi). (11)

Now assume that we obtain another pdf, a Mneg-component mixture

pneg(x) =

Mneg
∑

j=1

ηjKsj
(x− yj), (12)

which represents a negative example to what we want to learn. For example, we might want to learn how
the hue values of red objects are distributed. pref(x) would then be a (possibly) noisy model of the red color
which we have learnt sofar, and we wish to use a pdf pneg(x) estimated from the hue values of a yellow
object to refine our model of the red color. The main issue in the unlearning is thus how to incorporate
pneg(x) into the reference model pref(x).

We can think about pneg(x) as of a pdf which specifies the likelihood by which particular values of x
can be considered as a negative example to what we want to learn. A complement to pneg(x) therefore
specifies another positive example, which effectively assigns low probability to those values of x which are
very likely to be the negative example according to pneg(x). Thus, in summary, we propose to formulate
the unlearning in the following two steps: First, we generate a so-called attenuation function fatt(x), which
presents a complement to pneg(x), and maps the feature values x into interval [0, 1] by yielding 0 for the
values of x where pneg(x) is maximal and 1 for the values where pneg(x) is zero. Then pneg(x) is incorporated
into pref(x) simply by multiplying pref(x) with the attenuation function, yielding the attenuated mixture
model patt(x). The analytical solution to this procedure is described next.

The attenuation function is defined as

fatt(x) = 1− C−1
optpneg(x), (13)

where the normalization constant Copt guarantees that C−1
optpneg(x) ≤ 1 and thus all values of x are mapped

into the interval [0, 1]. Note that Copt corresponds to the maximum value in pneg(x) and cannot be trivially
calculated, since the maximum may lay in-between the components of the mixture. For that reason we
use a variable-bandwidth mean-shift algorithm [23], which we initialize at the centers of the components of
pneg(x) to detect its modes. The mode xopt, corresponding to the maximum value of pneg(x), is selected as
the maximum of the distribution and the normalization Copt is given as

Copt = pneg(xopt). (14)
5

The attenuated pdf patt(x) is obtained by multiplying the reference pdf with the attenuation function

patt(x) = C−1
normpref(x)fatt(x) = C−1

norm[pref(x)− fcom(x)], (15)

where we have defined fcom(x) = C−1
optpref(x)pneg(x) and Cnorm is a normalization constant such that

∫

patt(x)dx = 1. Note that since the product of two Gaussians is another, scaled, Gaussian [24], we can
rewrite fcom(x) as

fcom(x) =

Mref
∑

i=1

Mneg
∑

j=1

CoptwiηjKhi
(x− xi)Ksj

(x− µj)

=

Mref
∑

i=1

Mneg
∑

j=1

zijβijKσij
(x− µij), (16)

where zij =
σij√

2πhisj

exp[12 (
µ2

ij

σ2
ij

− x2
i

h2
i

− y2
j

s2
j

)], µij = σ2
ij(

xi

h2
i

+
yj

s2
j

), βij = Coptwiηj , σ2
ij = (h−2

i + s−2
j)−1. Now

we can derive the normalization Cnorm for the attenuated pdf patt(x) (15)

Cnorm = (1−
∑Mref

i=1

∑Mneg

j=1
βijzij)

−1. (17)

The proposed method for unlearning a mixture model is summarized in Algorithm 2.

Algorithm 2 : The algorithm for unlearning mixtures

Input: pref (x), pneg(x) . . . the reference mixture and the negative-example mixture.
Output: patt(x) . . . the unlearned mixture.
1: Detect the location xopt of the maximum mode in pneg(x) using the variable-bandwidth mean shift [23].

2: Scale pneg(x) with respect to the detected mode xopt (14) and calculate the attenuation function fatt(x)
(13).

3: Multiply fatt(x) with pref (x) and normalize to obtain the attenuated mixture patt(x) (15,16,17).

Note that while patt(x) is indeed a proper pdf, it is not a proper mixture model, since some of the
weights are negative. Furthermore, by introducing new attenuation functions, the number of components in
(15) increases exponentially, which in practice makes subsequent calculations inefficient and slow. For that
reason, after the attenuation, the resulting distribution needs to be compressed, i.e., we require an equivalent
mixture with a smaller number of components. Furthermore, for algorithmic reasons (because of the way
in which we define the compression in the subsequent sections) it is beneficial if the equivalent is a proper
mixture with all-positive weights. In the following we propose a methodology for obtaining such equivalents.

2.3. Approximating mixtures with mixtures

Assume we are given a reference mixture

p(x) =

M
∑

i=1

wiKhi
(x− xi), (18)

where all wi are not necessarily positive, but they do sum to one. Our goal is then to approximate the
reference (18) with a N-component mixture with all positive weights

p̂(x|θ) =

N
∑

j=1

γjKσj
(x− µj), (19)

6

where θ = {γj , µj , σj}j=1:N denotes the parameters of the mixture, such that some difference criterion
between p(x) and p̂(x|θ) is minimized. Since the reference mixture is known, the difference between the
reference mixture and its approximation can be quantified by the integrated squared error (ISE)

ISE(θ) =

∫

(p(x)− p̂(x|θ))2dx. (20)

The problem of finding an equivalent to p(x) can thus be posed as seeking an optimal θ̂ while minimizing
the ISE:

θ̂ = arg min
θ

[

∫

p̂2(x|θ)dx− 2Ep(x){p̂(x|θ)}], (21)

where Ep(x){p̂(x|θ)} is the expectation with respect to the reference distribution p(x) and where we have
dropped

∫

p2(x)dx from the above equation since it does not depend on θ. Since we can calculate the deriva-
tives of ISE, δISE(θ)/δθ, analytically, efficient optimization schemes such as gradient descent or Levenberg-
Marquardt can be used in optimizing (21). However, in practice, when M is large and N ≈ M it is likely
that some components in p̂(x|θ) will be redundant, which may result in a slow convergence of optimization.
Moreover, in cases when p̂(x|θ) is poorly initialized, optimization can get stuck in a local minimum. There-
fore, a question remains how to determine the appropriate number of components in p̂(x|θ). To address
this issue, we note that component selection can be viewed as optimizing (21) with respect to the weights
γi of p̂(x|θ) (19). By driving some weights of (19) to zero we are effectively removing the corresponding
components. A useful insight into such optimization is provided by the theory of the reduced-set-density
estimation [25] and earlier results from the support estimation in the support vector machines [26]. In [25],
Girolami and He proposed a reduced-set-density approximations of kernel density estimates. A central point
of their approach was minimization of an ISE-based criterion, which is in spirit similar to our formulation
in (20). In line with their observations, we now inspect how the two terms of the right-hand side of (21)
affect the optimization of ISE w.r.t. the weights γi of p̂(x|θ).

If the first term of the right-hand side of (21) is kept fixed, minimization is obtained by maximizing the
second term Ep(x){p̂(x|θ)}. By expanding this term we have

Ep(x){p̂(x|θ)} =

N
∑

j=1

γj p̃j , (22)

with p̃j =
∫

Kσj
(x− µj)[

M
∑

i=1

wiKhi
(x− xi)]dx.

Note that (22) is a convex combination of positive numbers p̃i, which are expectations of components
in p̂(x|θ) under the reference p(x). In this case, maximization would be achieved by assigning a weight one
to the largest expectation p̃j and a zero weight to all others. Thus, if the reference distribution p(x) has a
dominant mode, then the component Kσj

(x−µj) of the approximating distribution p̂(x|θ) that agrees best
with this mode will be assigned a weight one, while all other weights will be zero. We say that the term
Ep(x){p̂(x|θ)} is sparsity-inducing in that it prefers those components of the approximating distribution
p̂(x|θ) which correspond to the high-probability regions in p(x).

Now note that minimizing ISE (21) with Ep(x){p̂(x|θ)} kept fixed equals to minimizing the first term
∫

p̂2(x|θ)dx. Expanding this term yields a weighted sum of expectations of pairs of components of p̂(x|θ)

∫

p̂2(x|θ)dx =

N
∑

i=1

N
∑

j=1

γiγjcij , (23)

where we have defined cij =
∫

Kσi
(x− µi)Kσj

(x− µj)dx.
The expectations among non-overlapping components will yield low values of cij , while expectations

among overlapping components will yield high values of cij . In this case, ISE would be minimized by
7

assigning small weights to the overlapping components and large weights to those which do not overlap.
Thus we can say that the term (23) is sparsity-inducing in that it prefers selection of those components that
are far apart.

From the above discussion, we can see that optimizing ISE (21) between p(x) and p̂(x|θ) will yield a
subset of components in p̂(x|θ) by selecting components in high-probability regions of p(x), while preferring
configurations in which the selected components are far apart.

Using (22,23) we can rewrite the minimization of ISE (21) with respect to the weights γi into a classical
quadratic program

arg min
γ
{1
2
γT Cγ − γT P} ; γT 1 = 1, γj > 0,∀j, (24)

where 1 is a column vector of ones, and where we have defined the vector of weights γT = [γ1, γ2, . . . , γN],
a symmetric N ×N matrix C with elements cij (23) and a vector of P = [p̃1, p̃2, . . . , p̃N] with elements p̃j

(22).
Note that since all components in the reference and the approximating distributions (18,19) are Gaus-

sians, C and P in (24) can be evaluated analytically. There is a number of optimization techniques available
for solving the quadratic program (24). In our approach we use a variant of a Sequential Minimal Optimiza-
tion (SMO) scheme [26], which was previously used by Girolami and He [25] for a similar optimization.

2.4. Compression algorithm

Using the results from the previous section, we propose an iterative compression algorithm, which is
similar in spirit to [27, 28], for finding a reduced equivalent to a reference Gaussian mixture model p(x).
We start from an approximation p̂(x|θ) which is equal to the reference mixture in cases when mixture p(x)
does not contain any negative weights. When compressing the unlearned mixture, we initially increase
the number of the components in the approximation by splitting each component with a negative weight
into two components and then make their weights positive. This in practice makes the approximation
adapt quicker to the reference distribution in regions where the reference distribution contains positive as
well as negative components. After the approximation has been initialized, the components are gradually
removed from p̂(x|θ) while minimizing the ISE criterion (20) between p̂(x|θ) and p(x). The compression
algorithm proceeds in the following two steps: reduction and organization. At the reduction step, a subset
of components from p̂(x|θ) is removed using SMO. In the next step, the organization step, we further reduce
the error between the reduced p̂(x|θ) and the reference p(x). This is achieved by optimizing (21) w.r.t. all
parameters θ in p̂(x|θ) using a Levenberg-Marquardt (LM) optimization with a constraint that all weights in
p̂(x|θ) are positive. These two steps are iterated until convergence. The procedure is outlined in Algorithm 3.

At each step of the iterative procedure described in Algorithm 3, a subset of components from p̂(x|θ)
is removed, thus gradually reducing the complexity of p̂(x|θ). The number of components removed at each
step can be controlled by inflating the variances of p̂(x|θ) by some inflation parameter α > 1 before applying
the SMO. For a large α, many components of p̂(x|θ) will overlap significantly and thus many components
will be removed. As a result, the final pdf p̂(x|θ) will be a smoothed equivalent of the reference pdf p(x).
However, removing too many components will increase the error in the approximation of p(x), and therefore
the inflation parameter α has to be set such that the inflated pdf is always close enough to the reference pdf
p(x). In our implementation, this is achieved by adjusting the α such that the Hellinger distance [29] between
p(x) and the inflated p̂(x|θ), H(p(x), p̂(x|θ)), is always smaller than some predefined distance Hdist. Note
that while the Hellinger distance is a proper metric between probability density functions and is constrained
to the interval [0, 1], it cannot be calculated analytically in a closed-form for mixture models. We therefore
calculate its approximation using the unscented transform [30]. For convenience, we derive the unscented

approximation of the Hellinger distance for mixture models in the Appendix A.
Once the selection step removes a set of components, the remaining set is optimized in order to minimize

the ISE between p̂(x|θ) and the reference p(x) (organization). Note that we do not have to optimize p̂(x|θ)
until convergence in this step. We only need to reduce the error between p̂(x|θ) and p(x) to the extent
that a set of components in p̂(x|θ) will overlap after the inflation and will be removed in the reduction step.

8

Algorithm 3 : Compression algorithm

Input: pref (x), Hdist . . . the reference mixture and the maximum allowed Hellinger distance between pref (x)
and compressed counterpart.

Output: p̂(x|θ) . . . the compressed equivalent.
1: Initialization: construct p̂(x|θ) from p(x), such that all components have positive weights (see text).
2: Reduction:

• Inflate p̂(x|θ) into p̂α(x|θ) by increasing the variances σ2
j ← ασ2

j such that
H(pref (x), p̂α(x|θ)) = 0.7Hdist.

• Optimize (24) between the inflated p̂(x|θ) and p(x) w.r.t. γ using a SMO.

• Remove those components from p̂(x|θ) for which γi = 0.

3: Organization: Optimize ISE between p̂(x|θ) and p(x) using a LM optimization w.r.t. θ.
4: If the distance between pref (x) and p̂(x|θ) is small enough, i.e., H(pref (x), p̂(x|θ)) < Hdist, then accept

p̂(x|θ) as a potential compressed equivalent.
5: If at least one component was removed during the reduction procedure, and p̂(x|θ)) was accepted at

step (4), then go to to step (2), otherwise optimize θ until convergence and end compression.

Thus in practice we use five Levenberg-Marquardt iterations at each organization step. Only after no more
components are removed, we optimize p̂(x|θ) until convergence.

3. Experimental Results

Three sets of experiments were conducted to evaluate the proposed methods for online learning and ap-
proximation of probability density functions. The first two experiments were designed to demonstrate online
approximation of complex mixtures and to illustrate the concept of unlearning. In the third experiment we
show how the proposed algorithms can be applied for interactive learning of basic visual properties.

3.1. Online approximation of complex distributions

The aim of the first experiment was to demonstrate the performance of the online kernel density esti-
mation proposed in Section 2.1 – we will refer to this method as an online KDE. A set of 1000 samples was
generated from a reference pdf pref (x), which was a 1D mixture of a Gaussian and a uniform distribution
(Figure 2a). These samples were then used one at a time to incrementally build the approximation to the
original distribution using the Algorithm 1. At each time-step three other models were also built for refer-
ence. The first two were batch KDEs, and were built by processing all samples observed up to the given
time-step simultaneously. In the first KDE model, we refer to it as the optimal batch KDE, the bandwidths
of the kernels were estimated via solve-the-equation plug-in method [31], which is currently theoretically
and empirically one of the most successful bandwidth-selection methods. In the second KDE model, we call
this model a suboptimal batch KDE, the bandwidths were estimated using the Silverman’s rule-of-thumb
([9], page 60), which is a common choice of practicians. The third reference model was a Gaussian Mix-
ture Model, which was built by applying the online Expectation Maximization (EM) coupled with model
resampling and the Bayes Information Criterion [32] was used to select the number of components in the
model. Since the online EM-based model requires processing data in partial batches, this model was updated
using 100 samples at a time, and a maximum of 50 components was allowed in the model selection. Our
online KDE was initialized using the solve-the-equation plug-in method from the first ten samples and the
threshold Ncomps in the Algorithm 1 was initialized to Ncomps = 10. The online KDE was updated using
only a single sample at a time.

To quantify how the approximations evolve with each new sample, three different distance measures
were calculated between the obtained approximations and the reference model: the integrated squared error

9

(ISE); a Hellinger distance2; and the log-likelihood of another set of 1000 randomly drawn samples from
the reference pref (x). The distances were averaged over thirty repetitions of the experiment. Along with
the distances, we have also recorded the average number of components in the approximations and for the
KDE-based methods also the average bandwidth assigned to the new kernel after observing each new sample.

(a) (b) (c)

(d) (e) (f) (g)

Figure 2: A reference mixture model (a) used in the online density approximation experiment. Approximations by online KDE
with parameter Hdist set to 0.05, 0.1 and 0.3 are shown in (b), (c) and (d), respectively, the approximations obtained by
suboptimal batch KDE and the optimal batch KDE are shown in (e) and (f), respectively and the approximation obtained by
the online EM is shown in (g). In (b,c,d,e,f,g), the reference is drawn in dashed (blue) line and the approximations are shown
by a full (red) line.

Figure 2 shows the approximations of the reference pdf after observing all 1000 samples. The approx-
imations from the proposed online KDE with the parameter Hdist set to 0.05, 0.1 and 0.3 are shown in
Figures 2(b,c,d). Recall that the parameter Hdist defines the maximal allowed error in the approximation
during the compression steps. We see that for small values of Hdist, the approximations agree well with
the reference pdf (Figure 2b,c). However, when Hdist was large, i.e., Hdist = 0.3, the reduction step in the
compression eventually removed the components which corresponded to the low-weight uniform distribution
and only retained the dominant mode (Figures 2d). In terms of the bandwidth selection, we can see from
the Figure 3(a), that the proposed online KDE with parameters Hdist ∈ {0.05, 0.1} produced similar band-
widths as the optimal batch KDE, while the bandwidths of the suboptimal batch KDE were consistently
over-estimated, which resulted in an over-smoothed approximation of the reference pdf (Figure 2e). Note
that the graphs of the estimated bandwidths in Figure 3(a) corresponding to the online KDEs with parame-
ters Hdist ∈ {0.05, 0.1} are virtually equal. This result is consistent with the evolution of the approximation
errors in Figure 4 where we compare the online KDE with the batch KDE: while initially the errors were
high for all approximations, they decreased with increasing number of samples. As expected, the error of
the batch KDE calculated using Silverman’s rule remained high even after all the 1000 samples have been
observed. On the other hand, the errors decreased faster for the online KDEs and came close to the errors
of the optimal batch KDE with increasing number of samples. This result is consistent across all three
measures of the approximation error in Figure 4. Note that the bandwidths in the optimal batch KDE were
calculated using all samples observed up to a given step. In contrast, the proposed online KDEs produced
similarly small errors using only a low-dimensional representations of the observed samples. This is seen in
Figure 3(b) where we show the evolution of the average number of components in the approximations. In the
batch KDEs (optimal and suboptimal), the complexity was increasing linearly with the observed number of
samples. Thus, after observing 1000 samples, the batch KDEs were composed of 1000 kernels. On the other
hand, the final approximations obtained by the proposed online KDEs with parameters Hdist = 0.1 and

2The Hellinger distances between the reference distribution and its approximations were calculated by a Monte Carlo
integration

10

Hdist = 0.05 contained only 12 and 20 kernels, respectively. While the complexity of the models produced
by the online KDE with Hdist = 0.05 was comparable to that of the models produced by the online EM
(Figure 3b), both online KDEs consistently produced smaller errors than the online EM (Figure 5).

To provide an insight into the computational complexity of the online KDE, we have calculated the
average times required for the model update after observing the 1000th sample in our experiment. The
tests were performed with non-optimized code in Matlab [33] on a personal computer with a 2.6GHZ CPU.
The times are given in Table 1. The online EM required the longest computational time, which is largely
due to the model selection stages, while the suboptimal batch KDE required the shortest of computational
time. The online KDEs required on average a smaller amount of processing time per update step than the
optimal batch KDE. The reason si that the online KDE models have reached a bound on their complexity
fairly early (after observing approximately 300 samples – see Figure 3) and therefore the processing time
after observing the 1000th sample was approximately the same as if only 300 samples have been observed.

200 400 600 800

10
-3

10
-2

10
-1

b
a
n
d
w

id
th

number of samples
200 400 600 800

10
1

10
2

10
3

n
u
m

.
o
f
c
o
m

p
o
n
e
n
ts

number of samples

(a) (b)

Figure 3: The graphs show how the bandwidths (a) and the number of components (b) in the KDE approximations change
with increasing number of samples. The results for online KDE with Hdist 0.05 and 0.1 are depicted by bright (cyan) and dark
(red) full lines. The results for the batch KDE with the optimal and suboptimal bandwidth selection are depicted by dashed
(green) and dotted (blue) lines, respectively.

200 400 600 800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

IS
E

number of samples
200 400 600 800

0

0.1

0.2

0.3

0.4

0.5

H
e
ll
in

g
e
r

d
is

ta
n
c
e

number of samples
200 400 600 800

0

50

100

150

200

250

300

lo
g
-l
ik

e
li
h
o
o
d

number of samples

(a) (b) (c)

Figure 4: Three error measures of the KDE approximations w.r.t. the number of samples: ISE (a), Hellinger distance (b) and
the log-likelihood (c). The results for online KDE with Hdist 0.05 and 0.1 are depicted by bright (cyan) and dark (red) full
lines. The results for the batch KDE with the optimal and suboptimal bandwidth selection are depicted by dashed (green) and
dotted (blue) lines, respectively.

Table 1: Average time spent per model adaptation (tspent) after observing 1000 samples for the suboptimal batch KDE
(KDEsil), the optimal batch KDE (KDEplugin), the online KDE with Hdist = 0.1 (OKDE0.1), the online KDE with Hdist = 0.05
(OKDE0.05) and the online Expectation Maximization with model selection oEM . (Tested on a PC with a 2.6GHz cpu)

method KDEsil KDEplugin OKDE0.1 KDE0.05 oEM
tspent 0.04s 2s 0.4s 1.6s 13s

From the above results we can conclude that, when Hdist parameter is set to a low value,e.g. {0.05, 0.1},
11

200 400 600 800
10

-2

10
-1

10
0

10
1

10
2

10
3

IS
E

number of samples
200 400 600 800

10
-2

10
-1

10
0

10
1

H
e
ll
in

g
e
r

d
is

ta
n
c
e

number of samples
200 400 600 800

10
1

10
2

10
3

10
4

lo
g
-l
ik

e
li
h
o
o
d

number of samples

(a) (b) (c)

Figure 5: Three error measures of the online approximations w.r.t. the number of samples: ISE (a), Hellinger distance (b) and
the log-likelihood (c). The results for online KDE with Hdist 0.05 and 0.1 are depicted by bright (cyan) and dark (red) full
lines, while the results for the online EM are depicted by the black dash-dotted lines.

the online KDE produces approximations with smaller errors than those obtained by a suboptimal batch
KDE and the online EM, while the errors are comparable to those of the batch optimal KDE . In terms
of the model’s complexity, the online KDE produces models with a much lower number of components
than the batch methods. While the complexity of the models is comparable to the models produced
by the online EM, the online KDEs produce significantly lower errors. In the online KDE, the errors
of approximation using Hdist = 0.05 and Hdist = 0.1 were virtually equal for number of samples lower
than 600. As the number of samples grew, the approximation error was decreasing faster for Hdist =
0.05, however, at a cost of an increased complexity. To balance between the model complexity and
approximation error, we choose Hdist = 0.1 for all our subsequent experiments. For additional exam-
ples of online estimation of probability density functions using the online KDE, see http://vicos.fri.uni-
lj.si/data/matejk/ivcj08/SupplementalMaterial.htm.

3.2. Unlearning: A toy example

To demonstrate how the unlearning from the Algorithm 2 can be used in interactive learning, we consider
a toy-example of training a cognitive agent to learn the concept of a red color. Assume that we present the
agent with an object to which we refer as a ”red fork” (Figure 6a). The agent tries to learn the concept
of the red color by sampling hue values of pixels corresponding to the fork (green dots in Figure 6a) and
constructs a mixture model pred(x) from the sampled values (Figure 6b). Note that two modes arise in
pred(x) – one for the hue values of the red handle and one for the hue values of the yellow head. The model
pred(x) can now be used to calculate a belief of whether the color of a given pixel is red or not. The beliefs
of all pixels in the fork image (Figure 6a) are shown in (Figure 6h). Note that high beliefs are assigned to
the color of the handle and even higher to the color of the head. Thus the agent would wrongly believe
that the red as well as the yellow hues make up the concept of the red color. To rectify this we present a
yellow ball (Figure 6c) and say that its color is yellow and NOT red. As before, hue values are sampled
from the ball and a mixture model pyell(x) is constructed (Figure 6d). An attenuation function fatt(x)
(Figure 6e) is calculated from pyell(x) and used to unlearn the corresponding parts of pred(x); the resulting
mixture is shown in (Figure 6f). After compression, we obtain the corrected model of the red color concept
p̂red(x) (Figure 6g). Note that the mode corresponding to the yellow color has been attenuated, which is
also verified in the belief image (Figure 6i) where we have used p̂red(x) to calculate the beliefs of hue values
in (Figure 6a). The belief image shows that now only the colors of pixels on the fork’s handle are believed
to correspond to the concept of the red color.

3.3. Interactive learning of basic visual concepts

To further demonstrate the strength of the proposed algorithms for online learning we have embedded
them into a system for continuous online learning of basic visual concepts [34]. The system operates by
learning associations between six object properties (four colors and two shapes) and six low-level visual

12

0 0.05 0.1 0.15 0 0.05 0.1 0.15

0 0.05 0.1 0.15

0

0 0.05 0.1 0.15

0

1

0 0.05 0.1 0.15

a b c d

e f g h i

Figure 6: Hue values are sampled from (a) to initialize the mixture model pred(x) (b). The mixture pyell(x) corresponding
to the sampled hue values of a yellow ball (c) is shown in (d). The attenuation function fatt(x) is shown in (e) and the final
pred(x) before and after compression is shown in (f) and (g), respectively. The belief images corresponding to pred(x) before
and after unlearning, (b) and (g), are shown in (h) and (i), respectively. White colors correspond to high beliefs, while dark
colors correspond to low beliefs. The mixtures in (b,d,f,g) are show in bright (red) lines, while their components are depicted
in black lines.

features (median hue value, eccentricity of the segmented region, etc.). Once an association (a concept) is
created, a detailed model of each concept (properties-feature association) is constructed. As a testbed we
have used a set of everyday objects (see Figure7a for examples).

In the process of learning, a tutor presented one object at a time to the system and provided its description
– the concept labels. The system created associations between features and concept labels such that, for
example, the concepts of colors were associated with the hue feature. The associated visual features were
modelled by KDEs using the algorithms proposed in this paper. Therefore, the concept of the green color,
for example, was modelled by a KDE over the hue values of the observed green objects.

In this experiment, a set of 300 images of everyday objects was randomly split in two sets of 150 images.
One set was used for training and the other for testing. The images entered the learning system one by one
and at every step the quality of the current models was evaluated by trying to recognize the visual properties
of all testing images. The accuracy of recognition was defined as the ratio between the number of correctly
recognized concepts and the number of all the concepts from the test set. The experiment was repeated 50
times with different training and test sets and the results were averaged.

The evolution of the accuracy of the concept recognition is shown in Figure 7(b). It is evident that
the overall accuracy increases by adding new samples. The growth of the accuracy is very rapid at the
beginning, when new models of newly introduced concepts are being added, and remains positive even after
all models are formed, which is due to refinement of the corresponding representations (KDEs). Note that
this refinement does not come from increasing the number of components in the KDEs. This can be seen
in Figure 7(c), where we show how the number of components evolved on average with new observations.
Initially, the number of components is rapidly increasing, and after a while it remains approximately constant.

To demonstrate the unlearning algorithm, we repeated the experiment, but now every 10-th training
sample was labelled incorrectly in the first half of the incremental learning process. As a result, the underlying
KDE representations were corrupted by the incorrect feature values and the recognition accuracy degraded
(red line in Figure 7b). However, by applying unlearning to the corrupted representations, they were
successfully corrected, which resulted in a significant improvement of the recognition accuracy (blue line).
The recognition results after unlearning were very similar to those obtained in an error-free learning process
(compare the blue and the green line in Figure 7b).

Figures 7(d-g) show an example of the evolution of the individual models over time. At the beginning, the
models were very simple and rather weak, since they were obtained considering only a few training samples
(Figure 7d). However, as new samples were observed, they adapted to the variability of the individual
concepts. Figure 7(g) shows the models after all 150 training samples have been observed. The efficiency
of the compression algorithm can be seen by inspecting columns in Figures 7(e) and (f) – most obvious
compression results are seen in the second and the last column. The compressed models resemble the

13

original ones at a very high degree. Figure 7(h) shows an example of updating the final models from
Figure 7(g) by incorrectly labelled training samples. The proposed unlearning algorithm was then applied
to these models by unlearning the incorrectly presented images and concepts. Figure 7(i), which depicts the
obtained models, shows that the error recovery was successful and that the information that was incorrectly
added into the models was successfully removed.

4. Conclusion

A new approach to online estimation of Gaussian mixture models for interactive learning was proposed.
The approach consists of three main contributions. The first contribution is a new approach to incremental
Gaussian mixture models which allows online estimation of probability density function from the observed
samples. This approach was derived by an online extension of a batch kernel density estimation (KDE).
The second contribution is a method for unlearning parts of the learned mixture model, which allows for
a more versatile learning. The third contribution is a method for maintaining a low complexity of the
learned mixture models, a compression, which is based on iterative removal of the mixture components
and minimization of the L2 distance between the original mixture and its approximation. Results of the
experiments have shown that, in an online estimation of the probability density functions, a crucial part
is to allow the models to have some redundant complexity, so that they can efficiently adapt to the future
data. We have seen that if the errors introduced by the model compressions are kept sufficiently low, the
adaptation will be successful even after observing a large number of samples. In our approach, these errors
were quantified in terms of the Hellinger distance and we have proposed a numerical approximation for its
evaluation between two mixture models.

The performance of the online kernel density estimation (OKDE) was first demonstrated with an example
of online estimation of a complex distribution from individual samples. In terms of the error between the
approximations and the reference distribution, the OKDE outperformed an online EM-based mixture model,
a widely-used batch KDE and produced results which were comparable to a batch state-of-the-art KDE. In
contrast to the batch KDEs, where the model complexity increased with the number of samples, the OKDE
maintained a low complexity even after a large number of samples have been observed. We have applied the
proposed methodologies for online learning/unlearning to a tutor-supervised interactive learning of basic
visual concepts in a cognitive agent. In this experiment the tutor presented the agent with an object and
provided labels (concepts) associated with the objects visual properties. The agent was gradually building
representations of the visual concepts using the OKDE and was able to achieve a high accuracy of recognition
when the tutor provided error-free labels. When the labels contained errors, the recognition decreased, since
false examples got incorporated into the models. However, using the unlearning strategy, the tutor was able
to easily improve the models such that the accuracy of the recognition increased back to the level of learning
with error-free labels.

The methodologies proposed in this paper were designed for online estimation of models for stationary
distributions (i.e., distributions which do not change in time), and have been demonstrated to allow an
efficient approach to online learning in cognitive agents. In our future work we will extend this approach
and apply it to other online learning problems which consider nonstationary distributions as well. A further
consideration is deriving a faster method for compressing the mixture models. Indeed, we have found that,
while the bandwidth selection consumes only a fraction of the method’s processing time, the majority of the
processing time is spent for compression of the mixture models. In our future work, we will also consider
derivation of a faster compression method which would provide a comparable estimation accuracy.

Acknowledgement

This research has been supported in part by: Research program P2-0214 (RS), EU FP6-004250-IP project
CoSy and EU FP7-ICT215181-IP project CogX.

14

References

[1] A. Holub, P. Perona., M. Burl, Entropy-based active learning for object recognition, in: Workshop on Online Learning for
Classification, in conjunction with Conf. Comp. Vis. Pattern Recognition, 2008, pp. 1–8.

[2] E. F. project, CoSy: Cognitive systems for cognitive assistants, http://www.cognitivesystems.org (2004-2008).
[3] E. F. project, CogX: Cognitive systems that self-understand and self-extend, http://cogx.eu (2008-2012).
[4] E. Ardizzone, A. Chella, M. Frixione, S. Gaglio, Integrating subsymbolic and symbolic processing in artificial vision,

Journal of Intelligent Systems 1(4) (1992) 273–308.
[5] A. M. Arsenio, Developmental learning on a humanoid robot, in: IEEE International Joint Conference On Neural Networks,

2004, pp. 3167–3172.
[6] S. Kirstein, Wersing, E. H., Körner, Rapid online learning of objects in a biologically motivated recognition architecture,

in: 27th DAGM, 2005, pp. 301–308.
[7] Online learning for classification workshop, in conjunction with IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (June 2007).
[8] Online learning for classification workshop, in conjunction with IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (June 2008).
[9] M. P. Wand, M. C. Jones, Kernel Smoothing, Chapman & Hall/CRC, 1995.

[10] D. W. Scott, W. F. Szewczyk, From kernels to mixtures, Technometrics 43 (3) (2001) 323–335.
[11] J. Goldberger, S. Roweis, Hierarchical clustering of a mixture model, in: Neural Inf. Proc. Systems, 2005, pp. 505–512.
[12] K. Zhang, J. T. Kwok, Simplifying mixture models through function approximation, in: Neural Inf. Proc. Systems, 2006.
[13] G. J. Mc Lachlan, T. Krishan, The EM algorithm and extensions, Wiley, 1997.
[14] M. A. F. Figueiredo, A. K. Jain, Unsupervised learning of finite mixture models, IEEE Trans. Pattern Anal. Mach. Intell.

24 (3) (2002) 381–396.
[15] Z. Živkovič, F. van der Heijden, Recursive unsupervised learning of finite mixture models 26 (5) (2004) 651 – 656.
[16] A. Corduneanu, C. M. Bishop, Artificial Intelligence and Statistics, Morgan Kaufmann, Los Altos, CA, 2001, Ch. Varia-

tional Bayesian model selection for mixture distributions, pp. 27–34.
[17] C. A. McGrory, D. M. Titterington, Variational approximations in Bayesian model selection for finite mixture distributions,

Comput. Stat. Data Analysis 51 (11) (2007) 5352–5367.
[18] M. Song, H. Wang, Highly efficient incremental estimation of gaussian mixture models for online data stream clustering,

in: SPIE: Intelligent Computing: Theory and Applications, 2005, pp. 174–183.
[19] O. Arandjelovic, R. Cipolla, Incremental learning of temporally-coherent gaussian mixture models, in: British Machine

Vision Conference, 2005, pp. 759–768.
[20] A. Declercq, J. H. Piater, Online learning of gaussian mixture models - a two-level approach, in: Intl.l Conf. Comp. Vis.,

Imaging and Comp. Graph. Theory and Applications, 2008, pp. 605–611.
[21] W. F. Szewczyk, Time-evolving adaptive mixtures, Tech. rep., National Security Agency (2005).
[22] B. Han, D. Comaniciu, Y. Zhu, L. S. Davis, Sequential kernel density approximation and its application to real-time visual

tracking, IEEE Trans. Pattern Anal. Mach. Intell. 30 (7) (2008) 1186–1197.
[23] D. Comaniciu, V. Ramesh, P. Meer, The variable bandwidth mean shift and data-driven scale selection, in: Proc. Int.

Conf. Computer Vision, Vol. 1, 2001, pp. 438 – 445.
[24] M. J. F. Gales, S. S. Airey, Product of gaussians for speech recognition, Computer Speech & Language 20 (1) (2004)

22–40.
[25] M. Girolami, C. He, Probability density estimation from optimally condensed data samples., IEEE Trans. Pattern Anal.

Mach. Intell. 25 (10) (2003) 1253–1264.
[26] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, R. C. Williamson, Estimating the support of a high-dimensional

distribution, Neural Comp. 13 (7) (2001) 1443–1471.
[27] A. Leonardis, H. Bischof, An efficient mdl-based construction of rbf networks, Neural Networks 11 (5) (1998) 963 – 973.
[28] H. Bischof, A. Leonardis, View-based object representations using rbf networks, ”IVC” 19 (2001) 619–629.
[29] D. E. Pollard, A user’s guide to measure theoretic probability, Cambridge University Press, 2002.
[30] S. Julier, J. Uhlmann, A general method for approximating nonlinear transformations of probability distributions, Tech.

rep., Department of Engineering Science, University of Oxford (1996).
[31] M. C. Jones, J. S. Marron, S. J. Sheather, A brief survey of bandwidth selection for density estimation, J. Amer. Stat.

Assoc. 91 (433) (1996) 401–407.
[32] K. P. Burnham, D. R. Anderson, Multimodel inference: Understanding aic and bic in model selection, Sociological Methods

and Research 33 (2) (2004) 261–304.
[33] Matlab - the language of technical computing (2009).

URL http://www.mathworks.com/products/matlab/

[34] D. Skočaj, M. Kristan, A. Leonardis, Continuous learning of simple visual concepts using Incremental Kernel Density
Estimation, in: International Conference on Computer Vision Theory and Applications, 2008.

[35] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes in C (2nd ed.): the art of scientific
computing, Cambridge University Press, 1992.

[36] E. Veach, L. J. a. Guibas, Optimally combining sampling techniques for monte carlo rendering, in: Computer graphics
and interactive techniques, 1995, pp. 419 – 428.

15

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/

A. The unscented Hellinger distance

In this appendix we derive a numerical approximation to the Hellinger distance between two one-
dimensional Gaussian mixture models p1(x) and p2(x) via the unscented transform. The unscented transform
is a special case of a numerical integration technique called a Gaussian quadrature [35], which uses a small
set of carefully placed samples to evaluate nonlinear transformations of Gaussian variables (see, e.g. [30]).
The squared Hellinger distance [29] between p1(x) and p2(x), is defined as

H2(p1, p2)
∆
=

1

2

∫

(p1(x)
1
2 − p2(x)

1
2)2dx. (25)

Similarly to a Monte Carlo integration [36] we define an importance distribution p0(x) = 1
2p1(x) + 1

2p2(x),
which contains the support of both, p1(x) as well as p2(x). In our case, p0(x) is a Gaussian mixture model

of a form p0(x) =
N
∑

i=1

wiKhi
(x− xi), and we rewrite (25) into

H2(p1, p2) =
1

2

∫

p0(x)
(p1(x)

1
2 − p2(x)

1
2)2

p0(x)
dx

=
1

2

N
∑

i=1

wi

∫

g(x)Khi
(x− xi)dx, (26)

where we have defined g(x) = (p1(x)
1
2 −p2(x)

1
2)2

p0(x) . Note that the integrals in (26) are simply expectations over

a nonlinearly transformed Gaussian random variable x, and therefore admit to the unscented transform.
The unscented squared Hellinger distance is thus defined as

H2(p1, p2) ≈
1

2

N
∑

i=1

wi

2
∑

j=0

g((j)Xi)
(j)Wi, (27)

where {(j)Xi,
(j)Wi}j=0,1,2 are triplets of weighted sigma-points corresponding to the i-th Gaussian Khi

(x− xi),
and are defined as

(j)Xi = xi + (−1)j
√

1 + κhi,

(j)Wi =

{ κ
1+κ ; j = 0

1
2(1+κ) ; otherwise

. (28)

In line with the discussion on the properties of the unscented transform in [30], we set the parameter κ to
κ = 2.

16

0.018 0.306 0.595

Gr ↔Hu (6)

0.655 1.363 2.071

Cm ↔Cp (18)

0.063 0.127 0.191

Yl↔Hu (7)

0.431 0.600 0.770

Bl ↔Hu (5)

0.945 0.982 1.019

El ↔Ec (10)

−0.017 0.021 0.059

Rd ↔Hu (4)

0.033 0.295 0.557

Gr ↔Hu (15)

0.570 1.347 2.124

Cm ↔Cp (40)

−0.043 0.118 0.279

Yl↔Hu (17)

0.372 0.590 0.808

Bl ↔Hu (14)

0.904 0.962 1.021

El ↔Ec (28)

−0.006 0.021 0.049

Rd ↔Hu (21)

0.033 0.295 0.557

Gr ↔Hu (18)

0.527 1.361 2.195

Cm ↔Cp (46)

−0.001 0.124 0.249

Yl↔Hu (19)

0.416 0.609 0.803

Bl ↔Hu (17)

0.904 0.962 1.021

El ↔Ec (30)

−0.006 0.020 0.046

Rd ↔Hu (23)

−0.017 0.280 0.577

Gr ↔Hu (29)

0.511 1.341 2.171

Cm ↔Cp (67)

−0.004 0.133 0.270

Yl↔Hu (33)

0.277 0.533 0.788

Bl ↔Hu (36)

0.901 0.964 1.027

El ↔Ec (57)

−0.009 0.019 0.047

Rd ↔Hu (34)

−0.044 0.398 0.840

Gr ↔Hu (31)

0.513 1.925 3.337

Cm ↔Cp (68)

−0.013 0.122 0.256

Yl↔Hu (36)

−0.135 0.317 0.770

Bl ↔Hu (37)

0.290 0.659 1.027

El ↔Ec (59)

−0.006 0.019 0.044

Rd ↔Hu (36)

−0.037 0.284 0.606

Gr ↔Hu (31)

0.517 1.341 2.166

Cm ↔Cp (68)

0.037 0.141 0.245

Yl↔Hu (36)

0.426 0.601 0.776

Bl ↔Hu (37)

0.902 0.964 1.026

El ↔Ec (59)

−0.005 0.019 0.043

Rd ↔Hu (36)

0 50 100 150
0

10

20

30

40

50

60

70

80

90

100

image number

re
co
g
n
it
io
n

 r
a
te

correct labels

corrupted labels

unlearning

0 50 100 150
1

2

3

4

5

6

7

8

image number

n
u
m
b
e
r
o
f
co
m
p
o
n
e
n
ts

(a)

(d)

(e)

(f)

(g)

(h)

(i)

(b) (c)

Figure 7: Learning of basic object properties. Seven everyday objects from the database (a). The evolution of the recognition
accuracy through time for online learning on correct data (green line), on partially incorrect data (red line), and after unlearning
(blue line) (b). The average number of components through time (c). An example of the evolution of the KDE models
representing six basic object properties (‘green’, ‘compact’, ‘yellow’, ‘blue’, ‘elongated’, ‘red’) through time after observing 30
(d), 80 (e), 90 (f), and 150 (g) training images. Final models updated with incorrect labels (h). Models after unlearning (i).

17

Multivariate Online Kernel Density Estimation

using Gaussian Mixture Models

Matej Kristan, Danijel Skočaj, Aleš Leonardis

University of Ljubljana

Faculty of Computer and Information Science

{matej.kristan, danijel.skocaj, ales.leonardis}@fri.uni-lj.si

Technical Report LUVSS-TR-04/09

May 5, 2009

Abstract

We propose an approach for online kernel density estimation (KDE)

that can be used in applications in which models have to be built

from continuously arriving data. In these situations, one requirement

is that the models enable online adaptation and the other is that they

maintain low (or bounded) complexity which does not scale linearly

with the observed data samples. Our approach meets both of these

requirements. We build a non-parametric model of the data itself and

use this model to calculate the corresponding KDE. The dominant

parameter in the KDE is the kernel bandwidth and we propose an

automatic bandwidth selection rule, which can be computed directly

from the non-parametric model of the data. Low complexity of the

model is maintained through a novel compression scheme. We compare

the online KDE to some state-of-the-art batch KDEs on examples of

estimating stationary as well as non-stationary distributions and on

an example of classification. The results show that the online KDE

achieves comparable performance to the batch approaches, while pro-

ducing models with significantly lower complexity and allowing online

updating using only a single observation at a time.

1

1 Introduction

Many tasks in machine learning and pattern recognition may be viewed as

building models of some process from the observed data. In real-world en-

vironments all the data may not available in advance, or we even want to

observe the process for an indefinite duration, while continually providing

the best estimate of the model from the data observed so far. So the online

model should in general meat the following two requirements: (i) it should en-

able online adaptation, and (ii) its complexity (and the storage requirements)

should not increase linearly with the number of observations.

A popular approach to generating models from data is to model the prob-

ability density function (pdf) associated with the observed data. Tradition-

ally, parametric models such as the Gaussian mixture models (GMM) [6]

have been applied with some success in estimation of the pdf when all data

are observed in advance. A drawback of the GMMs is that they require spec-

ifying the number of components in the mixture and may not capture the

complete structure of the underlying pdf. Non-parametric methods such as

Parzen [14, 8, 20] kernel density estimators (KDE), with Gaussian kernels,

alleviate this problem by treating each observation as a component in the

mixture model and assuming all components have equal covariances (band-

widths). The problem of KDE is then how to automatically set this band-

width. While most of the literature on the bandwidth selection have dealt

with one-dimensional problems, recently [13] have proposed a method for

calculating the bandwidths in high-dimensional problems and demonstrated

classification performance close to that of the support vector machines. One

drawback of the KDEs is that their complexity (number of components)

increases linearly with the number of the observed data. To remedy this,

methods have been proposed to reduce the number of components either to

a predefined value [8, 20] or by optimizing a data-based cost function [7].

There have been several attempts to merge the non-parametric quality

of the kernel density estimators with the Gaussian mixture models and to

apply them to online modelling. Arandjelović et.al. [1] proposed a scheme

for online adaptation of the Gaussian mixture model which can be updated

by one sample at a time. However, a strong restriction is made that data

is temporally coherent in feature space, which prevents its use in general

applications. Song et. al. [16] alleviate this restriction by processing data in

large blocks. Deleclerq and Piater [4] assume each data is a Gaussian with a

2

predefined covariance. All data are stored in the model and clusters of data

are discarded only when they can be replaced by a single component. Han et.

al. [10] proposed an online approach inspired by the kernel density estimation

in which each new observation is added to the model as a Gaussian kernel

with a predefined bandwidth. The model’s complexity is maintained low by

retaining only the modes of the distribution, which they approximate by

Gaussians. This approach deteriorates in situation when assuming a prede-

fined bandwidths of kernels too restrictive, and in cases when the distribution

is locally non-Gaussian (e.g., in skewed or uniform distribution). Thus, when

extending a kernel density estimate to an online setting, two main issues have

to be addressed: (i) how to perform online bandwidth selection and (ii) how

to efficiently compress the model, while at the same time maintain enough

information to adapt when new data arrives.

In this paper we focus on online estimation of probability density func-

tions using the kernel density estimation. The main contribution, which con-

trasts the existing approaches, is that we build a non-parametric model of

the data itself and use this model to calculate the corresponding KDE. In line

with the proposed approach we derive in Section 3 a rule for automatic band-

width selection which can be calculated directly from the non-parametric

model of the data. To maintain a low complexity of the model, we propose

a compression scheme in Section 4, where we derive an approximate metric

between the Gaussian mixture models to measure the level of compression.

The online KDE algorithm is presented in In Section 5. In Section 6 we com-

pare it to some existing batch state-of-the-art KDE algorithms on examples

of estimation of stationary and non-stationary distributions and on example

of classification. We conclude the paper in Section 7.

2 Definition of the model

We define the model of potentially summarized (compressed) d-dimensional

data as a N -component Gaussian mixture model

ps(x) =
N

∑

i=1

αiφΣsi
(x− xi), (1)

where φH(x− µ) = (2π)−
d
2 |H|− 1

2 exp(−1
2
(x− µ)TH−1(x− µ)) is a Gaus-

sian kernel centered at µ with covariance matrix H. We call ps(x) a sample

3

distribution and kernel density estimate (KDE) is defined by a convolution

of ps(x) by a kernel with a covariance matrix (bandwidth) H

p̂KDE(x) = φH(x) ∗ ps(x) =
N

∑

i=1

αiφH+Σsi
(x− xi). (2)

To maintain low complexity of the KDE during online operation, the

sample distribution ps(x) is compressed from time to time. As detailed in

Section 4, the compression entails searching for subsets of components which

may be approximated by single Gaussians without introducing significant

error in the model. However, while it may be valid to combine several com-

ponents into a single component at some point in time, this compression may

become invalid as more data arrive and additional structures of the distri-

bution become apparent. To enable detection and correction of such events,

we keep detailed statistics of each component of the sample distribution in

form of a two-component mixture model. We therefore define our model of

the observed samples as

Smodel = {ps(x), {qi(x)}i=1:N}, (3)

where ps(x) is the sample distribution and qi(x) is a two-component mixture

model for the i-th component in ps(x). Note that during online operation,

we only update the sample model Smodel, while the corresponding KDE is

obtained by estimating the bandwidth H and applying (2). In the following

we propose a method for calculating the bandwidth from ps(x).

3 Bandwidth selection using the sample dis-

tribution

If all observed samples are retained in the sample model, then the sample

distribution ps(x) will contain only components with zero covariances (i.e,

Σsi = 0 for all i) and the KDE (2) is defined as p̂KDE(x) =
∑N

i=1 αiφH(x− xi).

The goal of the KDE methods is to determine the kernel bandwidth H such

that the distance between p̂KDE(x) and the unknown pdf p(x) that generated

the data is minimized. A classical measure used to define closeness of the

estimator p̂KDE(x) to the underlying pdf is the asymptotic mean integrated

squared error (AMISE), defined as ([19], pp.95-98),

AMISE = (4π)−
d
2 |H|− 1

2N−1
α +

1

4
d2

∫

tr2{HGp(x)}dx, (4)

4

where tr{·} is the trace operator, Gp(x) is a Hessian of p(x), and Nα =

(
∑N

i=1 α
2
i)

−1. If we rewrite the bandwidth matrix into H = h2F for |F| = 1,

and assume that we know F, then (4) is minimized at hopt

hopt = [d(4π)
d
2NαR(p,F)]−

1
d+4 , (5)

where R(p,F) =
∫

tr2{FGp(x)}dx is a functional of the second-order partial

derivatives of the unknown distribution p(x). In principle this functional

could be estimated using the plug-in methods [19], however these assume we

have access to all observed samples. In our case, during online operation, we

retain only a (compressed) mixture model of the samples, and in the following

we will derive an approximation to the functional using this mixture model.

From [19] (page 98), R(p,F) can be written in terms of expectations of

the derivatives ψr =
∫

p(r)(x)p(x)dx. We approximate the unknown distribu-

tion by the sample mixture model, p(x) ≈ ps(x), and the derivative of that

distribution by a derivative kernel density estimate p(r)(x) ≈ p
(r)
G

(x) with

a bandwidth G. The kernel density estimate p(r)(x) can be also written in

terms of the sample model as

pG(x) = φG(x) ∗ ps(x) =
N

∑

j=1

αjφΣgj
(x− µj), (6)

where Σgj = G + Σsj and G is usually called the pilot bandwidth. The

functionals can be approximated as ψ̂r =
∫

p
(r)
G

(x)ps(x)dx. Noting that pG(x)

and ps(x) are both Gaussian mixtures we can use [19] (page, 181, Fact C.2.3)

and ψ̂r to approximate R(p,F) by

R̂(p,F,G) =
∫

tr{FGp
G

(x)}tr{FGps
(x)}. (7)

Wand [18] has dealt with a similar form of integral as (7). Following his

derivation in the Appendix of [18] it is straightforward to show that

R̂(p,F,G) =
N

∑

i=1

N
∑

j=1

αiαjφΣgi+Σsj
(µgi − µsj)[2tr(AijBij) + tr2(FCij)], (8)

where for each pair (i, j) we have used the following definitions

Aij = (Σgi + Σsj)
−1,

Bij = Aij{I− 2(µgi − µsj)(µgi − µsj)
TAij},

Cij = Aij{I− (µgi − µsj)(µgi − µsj)
TAij}. (9)

5

Note that we still have to determine the pilot bandwidth G of pG(x) and the

structure F of the bandwidth matrix H. We use the empirical covariance of

the observed samples Σ̂smp to approximate both. First we resort to a practical

assumption [19, 5] that the structure of the bandwidth H can be reasonably

well approximated by the structure of the covariance matrix of the observed

samples, and thus, F = Σ̂smp|Σ̂smp|−1/d. We estimate the pilot bandwidth G

by a normal-scale rule [19]. The normal-scale provides a bandwidth that is

optimal in AMISE sense if the unknown distribution p(x) is in fact normal.

While this assumption is too restrictive to directly estimate H it is admissable

in practice for estimation of the bandwidths for the derivatives (see, eg. [19]

page 71). The pilot bandwidth using the multivariate normal-scale rule is

given by G = Σ̂smp(
4

(d+2)Nα
)

2
d+4 ([19], page 111).

4 Compression of the sample distribution

The goal of compression is to approximate a N -component sample model

ps(x) by a M -component p̂s(x), M < N , under condition that the resulting

KDE does not change significantly. One way to achieve this is to search for

clusters of components in ps(x) whose KDE can be sufficiently well approxi-

mated by a single Gaussian. However, since in our case the number of com-

ponents M in the final distribution p̂s(x) is generally unknown, this would

in principle require enumeration of all possible clusterings, which becomes

computationally infeasible with increasing the number of components. Sig-

nificant reduction in complexity of the search can be obtained by noting that

components which are spatially close are more likely to form a cluster than

those farther apart. This allows structuring the search through an application

of a hierarchical compression, which proceeds as follows. We split the sample

distribution ps(x) along its largest principal axis into two sub-mixtures and

then we recursively continue the splitting on each sub-mixture. The split-

ting is stopped if either a single component remains in the sub-mixture or

the KDE of the sub-mixture can be well approximated by a single Gaus-

sian. This approach generates a binary tree among the mixture components,

in which the leafs of the tree represent the components of the compressed

mixture model.

Let us assume that at some point of the tree building we analyze a set

of m components and want to decide whether the set should be further split

into two sub-sets. Let ps(x;m) =
∑

j∈m αjφΣsj
(x − µsj) be a sub-mixture

6

of ps(x) composed of a set m components. The KDE of the sub-mixture is

defined according to (2) as p̂m(x) = ps(x;m) ∗ φH(x). A single Gaussian

approximation of the sub-mixture’s KDE , psing(x) = α0φΣ0
(x− µ0), can be

trivially calculated using the method of moments [3]:

α0 =
∑

j∈m
αj ; µ0 = β−1

m

∑

j∈m
αjµj (10)

Σ0 = β−1
m

∑

j∈m
αj(Σ̂j + µjµ

T
j)− µ0µ

T
0 , (11)

where we have defined Σ̂j = Σsj + H and βm =
∑

j∈m αj. If the distance

between the KDE p̂m(x) and psing(x) is below a predefined threshold, i.e.,

D(p̂m, psing) < Dth, then the set m forms a leaf, otherwise it is split into

two subsets along the principal axis of psing(x) and the algorithm continues.

After the tree is built, and the set of m components indeed forms a leaf, then

these components i ∈ m in ps(x) are replaced by a single Gaussian using

the method of moments. The set of detailed descriptions {qi(x)}i∈m is also

replaced by a single (two-component) description qsing(x), which is generated

by splitting {qi(x)}i∈m into two subsets along its principle axis, and each

subset is approximated by a single Gaussian using the method of moments.

To measure the distance between p̂m(x) and its approximation psing(x)

we apply the Hellinger distance [15], which, for two distributions p1(x) and

p2(x), is defined as

D2(p1, p2)
∆
=

1

2

∫

(p
1
2

1 (x)− p
1
2

2 (x))2dx. (12)

Note that, while the Hellinger distance is a proper metric between distribu-

tions and is bounded to interval [0, 1] it cannot be calculated analytically

for mixture models. We therefore calculate its approximation using the un-

scented transform, which has been proposed by [12] for calculating nonlinear

transformations of Gaussian variables. In the next subsection we show how

the Hellinger distance can be formulated as a such nonlinear transform.

4.1 The unscented Hellinger distance

The unscented transform is a special case of a Gaussian quadrature, which,

similarly to Monte Carlo integration, relies on evaluating integrals using care-

fully placed points, called the sigma points, over the support of the integral.

Therefore, as in Monte Carlo integration [17], we define an importance distri-

bution p0(x) = γ(p1(x) + p2(x)), which contains the support of both, p1(x)

7

as well as p2(x), with γ set such that
∫

p0(x)dx = 1. In our case, p0(x)

is a Gaussian mixture model of a form p0(x) =
∑N

i=1wiφΣi
(x− xi), and we

rewrite (12) into

D2(p1, p2) =
1

2

∫

g(x)p0(x)dx =
1

2

N
∑

i=1

wi

∫

g(x)φΣi
(x− xi)dx, (13)

where we have defined g(x) =
(
√

p1(x)−
√

p2(x))2

p0(x)
. Note that the integrals in

(13) are simply expectations over a nonlinearly transformed Gaussian random

variable X, and therefore admit to the unscented transform. According to [12]

we then have

D2(p1, p2) ≈
1

2

N
∑

i=1

wi

2d+1
∑

j=0

g((j)Xi)
(j)Wi, (14)

where {(j)Xi,
(j)Wi}j=0:d are weighted sets of sigma points corresponding to

the i-th Gaussian φΣi
(x− xi), and are defined as

(0)Xi = xi ; (j)Xi = xi + sj

√
1 + κ(

√

dΣi)j

(0)Wi =
κ

1 + κ
; (j)Wi =

κ

2(1 + κ)
; sj =

{

1 ; j ≤ d

−1 ; otherwise
(15)

with κ = max([0,m − d]), and (
√

Σi)j is the j-th column of the matrix

square root of Σi. Concretely, let UDUT be a singular value decomposition of

covariance matrix Σ, such that U = {U1, . . . , Ud} and D = diag{λ1, . . . , λd},
then (

√
Σ)k =

√
λkUk. In line with the discussion on the properties of the

unscented transform in [12], we set the parameter m to m = 3.

5 Online Kernel Density Estimation

A key point of the online kernel density estimation is the ability to prop-

erly update the sample distribution and to re-calculate the bandwidth as

new samples arrive. Furthermore, if the samples arrive from a non-stationary

process, then a forgetting factor should be taken into account since the re-

cently observed samples are better representatives of the current underlying

distribution.

Let Smodel(t−1) = {ps(t−1)(x), {qi(t−1)(x)}i=1:Mt−1
} be the model of the sam-

ples observed up to time-step (t−1), where ps(t−1)(x) =
∑Mt−1

i=1 αiφΣsi
(x− µi)

is a Mt−1-component sample distribution. Let Nt−1 denote the effective num-

ber of observations, let Nα(t−1) be the current value of Nα in (5) and let f be

8

the forgetting factor. At time-step t we observe a sample xt and reestimate

the sample model Smodel(t) = {ps(t)(x), {qi(t)(x)}i=1:Mt
} (and hence the KDE)

in the four following steps.

Step 1: Update parameters. The effective sample size is adapted as

Nt = Nt−1f +1, the weight of the new sample is computed as w0 = N−1
t and

N−1
αt = (N−1

αt−1(1−w0)
2 +w2

0). The sample-set distribution is updated by the

new observation as

ps(t)(x) = (1− w0)ps(t−1)(x) + w0φ0(x− xt) (16)

The detailed model corresponding to xt is initialized by augmenting the set

of detailed descriptions {qi(x)}i=1:Nt−1
by a component qNt

(x) = φ0(x− xt).

Step 2: Reestimate the bandwidth. The empirical covariance of the

observed samples Σ̂smp is calculated by approximating ps(t)(x) by a single

Gaussian using the method of moments (10). According to Section 3, the

optimal bandwidth for the KDE is then given as

Ht = [d(4π)d/2NαtR̂(p,F,G)]
−1
d+4F, (17)

where F = Σ̂smp|Σ̂smp|−1/d, G = Σ̂smp(
2

(2+d)Nt
) and R̂(p,F,G) is defined in

(8).

Step 3: Refine model. In order to refine the components which have

been compressed in previous time-steps, each component φΣsi
(x − xi) in

ps(t)(x) is tested if it still summarizes well its detailed model qi(x) under the

current KDE. This is done by evaluating the Hellinger distance between their

KDEs using the new bandwidth Ht. If the distance exceeds the predefined

value Dth (same threshold as used in compression) then the single component

φΣsi
(x − xi) is replaced by its detailed model qi(x) and for each of the two

components in qi(x) a new two-component detailed model is initialized.

Step 4: Compress model. After the model has been refined, a com-

pression can be carried out to find clusters of components which can be ap-

proximated by a single Gaussian under the current KDE with the bandwidth

Ht (see Section 4). In our implementation, however, the compression is called

after some threshold on number of components Mthc has been exceeded. Note

that this threshold does not determine the number of components in the fi-

nal model, but rather the frequency at which the compression is called. To

avoid too frequent calls to compression, the threshold is also allowed to vary

during the online operation using a simple hysteresis rule: If the number of

9

components Mt still exceeds Mthc after the compression, then the thresh-

old increases Mthc ← 1.5Mthc, otherwise, if Mt <
1
2
Mthc, then it decreases

Mthc ← 0.6Mthc.

After the four steps have finished, the current KDE can be calculated

from the new sample distribution according to (2)

pKDEt(x) = ps(t)(x) ∗ φHt
(x) =

Mt
∑

i=1

αiφΣsi+Ht
(x− xi). (18)

Note that in cases when the number of observed samples is comparable

to the dimensionality of the the samples the actual samples might lie in a low

dimensional subspace. This may cause singular covariances in the estimated

KDE. To avoid this rank deficiency, after the update of parameters in Step

1, the sample distribution is projected into its own subspace by removing the

nullspace (see, B), and the remaining steps are carried out. After the Step

4, the sample distribution (and the corresponding KDE), are projected back

from the subspace into the original feature space.

6 Experiments

The performance of the online kernel density estimator (oKDE) from Sec-

tion 5, was evaluated by comparing the approach to some state-of-the-art

batch KDEs on estimation of stationary distribution (experiment 1), non-

stationary distribution (experiment 2) and on an example of classification

(experiment 3). The forgetting factor was set to f = 1 (no forgetting) in all

but the second experiment.

Experiment 1. The first experiment involved estimating a three-dimensional

stationary and highly nonlinear spiral distribution defined by the following

model

x = [(13− 1

2
t)cos(t),−(13− 1

2
t)sin(t), t]T + w

w ∼ φΣw
(·) ; t ∼ U(0, 14), (19)

where Σw = diag{1
4
, 1

4
, 1

4
}, and U(1, 14) is a uniform distribution constrained

to interval [0, 14] (Figure 1a). A set of test samples was generated from this

model; the first 10 samples were used for initialization and the rest were used

one at a time with the oKDE, to approximate the underlying distribution.

The online KDE was compared to three batch state-of-the-art KDE methods:

10

Hall’s et. al. [9] plug-in (implementation [11]), Murillo’s et. al. [13] cross vali-

dation and Girolami’s et. al. [7] reduced-set-density estimator. The predictive

performance of the models was evaluated by the average log-likelihood of ad-

ditionally sampled 1000 observations. The experiment was repeated 20 times

and results are given in Figure 1(c) and Table 1. The different estimators are

denoted as: cross validation (CV), Hall’s plug-in (Hall), reduced-set-density

estimator initialized by the CV estimator (RSDE), online KDE with com-

pression threshold Dth = 0.02 (oKDE0.02) and online KDE with compression

threshold Dth = 0.05 (oKDE0.05).

-10

0

10

-10

0

10

0

5

10

15

200 400 600 800 1000

10
1

10
2

10
3

num. samples

n
u
m

.
co

m
p
o
n
en

ts

(a) (b) (c)

Figure 1: Samples from a 3D spiral distribution (a) and the corresponding

model for oKDE0.02 (b). The number of components in the learnt model

w.r.t. the number of observed samples (b) for oKDE0.02 (bright full line),

for oKDE0.05 (dark full line), RSDE (dash-dotted line), and for CV and Hall

(dotted line); Note that the number of components in RSDE was evaluated

only at 10,100,400,700 and 1000 samples.

Table 1: The average negative log-likelihood (−L) and the number of com-

ponents in the model (Ncmp) w.r.t. the number of observed samples.

number of CV Hall RSDE oKDE0.02 oKDE0.05

samples −L Ncmp −L Ncmp −L Ncmp −L Ncmp −L Ncmp

10 1.43 10 1.21 10 1.38 8 1.19 9 1.19 9

100 0.74 100 0.76 100 0.80 54 0.76 25 0.76 16

400 0.68 400 0.72 400 0.70 151 0.70 32 0.71 20

1000 0.67 1000 0.70 1000 0.67 283 0.68 34 0.70 21

From Table 1 we see that oKDE outperformed the batch methods when

only 10 samples have been observed. As the number of samples increased, it

11

marginally outperformed the Hall’s plug-in and produced a comparable pre-

dictive capabilities to the batch RSDE and CV. At the same time the oKDEs

required only a fraction of components in comparison to RSE and CV. For

example, after observing 1000 samples, oKDE0.05 required only two percent

of the number of components required by the Hall and CV and approximately

ten percent of the number of components retained by RSDE. While the com-

plexity of the model (number of components) was increasing linearly with

the number of samples for Hall and CV, the complexity in oKDE appeared

to stabilize after approximately 500 samples (Figure 1c). In comparison to

oKDE0.05, the oKDE0.02 provided better predictive performance at a cost of

a small increase in the model’s complexity (last four columns in Table 1).

Experiment 2. In the second experiment we applied the oKDE to ap-

proximate a non-stationary distribution. This distribution was a mixture of

two distributions, p0(x, t) = wtp1(x)+(1−wt)p2(x), whose mixing weight wt

was changing with time. The first distribution, p1(x) was a heavily skewed

distribution (Figure 2a), while the second, p2(x), was a mixture of a uniform

and normal distribution (Figure 2c). The weight was set to wt = 1 for the first

1000 samples and it gradually decreased to zero for the next 2000 samples at

rate wt = wt−10.995. Thus p0(x, t) transited from pure p1(x) to pure p2(x)

(Figure 2). Since the distribution was nonstationary, the forgetting factor

in oKDE was set to f = 0.980. Thus the effective sample size converges to

Nt = 50 and the oKDE was performing as if it effectively observed only 50

samples. The oKDE was initialized from the first 3 samples and the rest were

added one at a time. The quality of estimation at time-step T was measured

by the L1 distance between the current estimate and p0(x, T). For reference

we have compared the performance of oKDE to CV and Hall batch KDEs,

which have been computed using the last 50 observed samples. Figure 3 sum-

marizes the results. On average, the oKDE outperformed both, CV and Hall

batch KDEs by maintaining lower error (Figure 3a) and using one fifth as

many components (Figure 3b). In terms of per-time-step L1 error, the oKDE

outperformed Hall for all time-steps. This was also the case for CV, except

for a short duration at the point where the distribution p0(x) started to shift

to p2(x) (sample 1000 in Figure 3a). We have noticed that in some (rare)

cases, the CV produced an under-smoothed estimate of the distribution. On

the other hand, this behavior has not been observed for the oKDE and Hall’s

method (see Figure 3c for example).

Experiment 3. In the third experiment, we have compared classification

12

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

(a) (b) (c)

Figure 2: The phases of the non-stationary distribution at t = 1 (a), t = 1300

(b) and t = 2900 (c).

0 1000 2000 3000

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

num. samples

-l
o
g
L
ik

500 1000 1500 2000 2500 3000

0

10

20

30

40

50

60

num. samples

n
u
m

.
co

m
p
o
n
en

ts

-3 -2 -1 0 1 2 3

(a) (b) (c)

Figure 3: The L1 estimation error (a) and the number of components (b)

w.r.t the time-step for oKDE (full line), CV (dashed) and Hall (dotted). (c)

shows a rare event when CV produces an undersmoothed estimate of the

reference pdf (depicted by a thin black line).

performance of the oKDE with the results reported in [13] for the batch cross-

validation KDEs with a spherical covariance (sCV) and full covariance (fCV),

one-versus-the-rest support vector machine (SVM) and K-Nearest-Neighbors

(KNN, with K=1). We have used the letter dataset [2] for the evaluation. The

dataset consists of 26 classes of letters coded in 16 dimensional feature space.

A set of first 16000 samples was used for training and the remaining 4000 for

classification by performing a Bayesian criterion ŷ = arg max
l

pKDE(x|cl).

The oKDE was initialized from the first 20 samples and the rest were

added one at a time. The compression threshold was set to Dth = 0.05. The

results are given in Table 2. Although the proposed oKDE was learnt only by

observing a single example at a time, the resulting models exhibit classifica-

tion performance similar to the batch KDE approaches and a slightly worse

13

performance of the batch SVM. Note also, that the complexity of the models

learnt by batch KDEs is quite larger than that of the oKDE. The batch KDEs

and the KNN model, for example, produced models composed on average of

615 components, while the models obtained by oKDE0.05 contained on aver-

age only 203 components. Thus the oKDE was able to produce comparable

results to state-of-the art KDEs using only one-third as many components.

This makes the oKDE a very appropriate tool for online operation since it

produces compressed models with good classification performance, while at

the same time allows online refinements of the model without increasing their

complexity with each training example.

Table 2: Classification results for the letter database [2]. The results for sCV,

fCV, KNN and SVM are taken from [13].

method oKDE0.05 sCV fCV KNN SVM

classification 94.87% 95.23% 92.77% 95.20% 97.55%

7 Conclusion

We have proposed an approach for a kernel density estimation which can

be applied in online operation. The central point of the proposed scheme is

that it maintains a compressed model of the observed samples and uses this

model to compute the kernel density estimate of the underlying distribution.

Since in online operation, the samples arrive continually, a low complexity of

the model has to be maintained. We have therefore proposed a compression

scheme, which searches for clusters of components which can be sufficiently

well approximated by a single component. To enable recovering from false

compressions, each component is also described by more detailed mixture

model. The approach was tested on examples of online estimation of station-

ary as well as non-stationary distributions and on an example of classification.

In all experiments, the oKDE was able to produce comparable results to the

state-of-the-art batch approaches, while producing models whose complexity

was significantly lower. While the oKDE is a contribution to the literature on

kernel density estimation as such, parts of our approach can also contribute to

other applications. The proposed unscented Hellinger distance may be used,

for example, as a general metric in applications where one needs to compare

14

mixtures of Gaussians (e.g., [8]). Recently, an approximate probability den-

sity estimator was proposed for visual tracking [10]. The estimator is based

on KDE, however, the kernel bandwidth is user predefined. Our bandwidth

selection rule can be directly applied to that estimator to provide means of

automatic bandwidth selection. These will be the topics of our future work.

Acknowledgment

This research has been supported in part by: Research program P2-0214

(RS), and EU FP7-ICT–215181-IP project CogX.

A Approximation of the functional R(p,F)

According to [19] (page, 98) we can rewrite R(p(x),F), into

R(p(x),F) =
∫

tr{FGp(x)}tr{FGp(x)}dx

=
∫

vecT (F){vecGp(x)}{vecTGp(x)}vec(F)dx

= vechT (F)ΨGvech(F). (20)

The ΨG denotes a 1
2
d(d+ 1)× 1

2
d(d+ 1) matrix given by

ΨG =
∫

vech(2Gp(x)− dg(Gp(x)))vechT (2Gp(x)− dg(Gp(x)))dx (21)

where the notation dg denotes the diagonal matrix formed by replacing all

off-diagonal entries by zeros.

For a d-variate function g(x) and vector r = (r1, . . . , rd) of nonnegative

integers we write the multiple partial derivatives of g(x) as

g(r) =
∂|r|

∂xr1

1 . . . ∂xrd

d

g(x), (22)

with |r| = ∑d
i=1 ri.

From Wand and Jones ([19],pp.98-99), each entry of ΨG can be written

in terms of functionals ψr which are of form

ψr =
∫

p(r1)(x)p(r2)(x)dx, (23)

with r = r1 + r2 and, for even |r1|, can be rewritten into

ψr =
∫

p(r1+r2)(x)p(x)dx = 〈p(r1+r2)(x)〉p(x), (24)

15

where 〈·〉p(x) denotes expectation over p(x). We can approximate the un-

known distribution by the sample mixture model, p(x) ≈ ps(x), and the

derivative of that distribution by a derivative kernel density estimate p(r)(x) ≈
p

(r)
G

(x) with a bandwidth G. Then the expectation (26) can be approximated

as

ψ̂r =
∫

p
(r)
G

(x)ps(x)dx, (25)

Since pG and ps are both Gaussian mixture models, and |r1|, |r2| are both

even, we can rewrite the approximation (25) into (see Appendix A.1)

ψ̂r =
∫

p
(r1)
G

(x)p(r2)
s (x)dx, (26)

which has the same form as (23) and we can write the approximation to ΨG

as

Ψ̂G =
∫

vech(2GpG(x)− dg(GpG(x)))vechT (2Gps(x)− dg(Gps(x)))dx. (27)

Plugging Ψ̂G back into (20) we get the following approximation of R(p(x),F):

R̂(p(x),F) =
∫

tr{FGpG(x)}tr{FGps
(x)}. (28)

We now first give the proof of substitution in (26) and then derive matrix-

algebra-based solution to (28).

A.1 Proof of substitution

We first prove the equality
∫

p
(r)
G

(x)ps(x)dx =
∫

p
(r1)
G

(x)p(r2)
s (x)dx, (29)

given even |r1| and even |r2| and assuming both, pG(x) and ps(x) are Gaus-

sian mixture models defined as:

pG(x) =
Ng
∑

i=1

αgiφ
(r)
Σgi

(µgi − x) ; ps(x) =
Ns
∑

j=1

αsjφ
(r)
Σsj

(µsj − x). (30)

Using the result in ([19], p.181, Fact C.2.3), the left-side integral in (29) is

written as
∫

p
(r)
G

(x)ps(x)dx =
Ng
∑

i=1

Ns
∑

j=1

αgiαsj(−1)|r|φ
(r)
Σgi+Σsj

(µgi − µsj)

=
Ng
∑

i=1

Ns
∑

j=1

αgiαsjφ
(r)
Σgi+Σsj

(µgi − µsj), (31)

16

while the second integral is written as

∫

p
(r1)
G

(x)p(r2)
s (x)dx =

Ng
∑

i=1

Ns
∑

j=1

αgiαsj(−1)|r1|φ
(r1+r2)
Σgi+Σsj

(µgi − µsj)

=
Ng
∑

i=1

Ns
∑

j=1

αgiαsjφ
(r)
Σgi+Σsj

(µgi − µsj). (32)

Since the righthand sides of (31) and (32) are equal, this completes the proof.

A.2 Calculation of R̂(p(x),F)

To derive a closed-form solution to

R̂(p(x),F) =
∫

tr{FGpG
(x)}tr{FGps

(x)} (33)

which is based only on matrix algebra, we follow closely the derivation of a

similar integral which was studied in the Appendix of M.P. Wand’s paper [18].

We will require some the following established results:

GφΣ(·−µ) = φΣ(x){Σ−1(x− µ)(x− µ)T − I}Σ−1, (34)

φΣi
(x− µi)φΣj

(x− µj) = φΣi+Σj
(µi − µj)φΣi(Σi+Σj)−1Σj

(x− µ∗) (35)

where

µ∗ = Σj(Σi + Σj)
−1µi + Σi(Σi + Σj)

−1µj, (36)

and

Cov(XTAX, (X − c)TB(X − c)) = 2tr[AΣB{Σ + 2(µ− c)µT}], (37)

where X is a φΣ(µ− x) random vector, A and B are constants d× d symm-

metric matrices and c is a constant d× 1 vector. We start by expanding the

integral

∫

tr{FGpG
(x)}tr{FGps

(x)} =
Ng
∑

i=1

Ns
∑

j=1

αdiαsjφΣgi+Σsj
(µgi − µsj)

×
∫

φΣgi(Σgi+Σsj)−1Σsj
(x− µ∗)

×tr{H(Σ−1
si (x− µsi)(x− µgi)

T − I)Σ−1
si }

×tr{H(Σ−1
sj (x− µsj)(x− µsj)

T − I)Σ−1
gi }dx. (38)

17

Since tr{BA} = tr{AB}, we have

∫

tr{FGpG
(x)}tr{FGps

(x)} =
Ng
∑

i=1

Ns
∑

j=1

αgiαsjφΣgi+Σsj
(µgi − µsj)

×E[tr{HΣ−1
gi ((Y − µgi)(Y − µgi)

TΣ−1
gi − I)}

×tr{HΣ−1
sj ((Y − µsj)(Y − µsj)

TΣ−1
sj − I)}], (39)

where I is an identity matrix and Y a φΣgi(Σgi+Σsj)−1Σsj
(x − µ∗

ij) random

vector with

µ∗
ij = Σsj(Σgi + Σsj)

−1µgi + Σgi(Σgi + Σsj)
−1µsj. (40)

Since E(UV) = Cov(U, V) + E(U)E(V) for two random variables U and V

the above axpectation can be written

Cov{(Y − µgi)
TΣ−1

gi FΣ−1
gi (Y − µgi), (Y − µsj)

TΣ−1
sj FΣ−1

sj (Y − µsj)

+tr{FΣ−1
gi (E[(Y − µgi)(Y − µgi)

T]Σ−1
gi − I)}

×tr{FΣ−1
sj (E[(Y − µsj)(Y − µsj)

T]Σ−1
sj − I)}. (41)

Noting that µ∗
ij − µsi = Σgi(Σgi + Σsj)

−1(µsj − µgi), (37) and direct matrix

algebra can be used to show that the covariance term is

2tr{F(Σgi + Σsj)
−1F(Σgi + Σsj)

−1[I− 2(µgi − µsj)(µgi − µsj)
T (Σgi + Σsj)]}.

(42)

Using E[(Y −µgi)(Y −µgi)
T] = Σgi(Σgi +Σsj)

−1Σsj + (µ∗
ij −µsi)(µ

∗
ij −µsi)

T

we can show that each of the factor in the second term is equal to

−tr{F(Σgi + Σsj)
−1[I− (µgi − µsj)(µgi − µsj)

T (Σgi + Σsj)
−1]}. (43)

Combining these with (38) and applying the definitions

Aij = (Σgi + Σsj)
−1,

Bij = Aij{I− 2(µgi − µsj)(µgi − µsj)
TAij},

Cij = Aij{I− (µgi − µsj)(µgi − µsj)
TAij} (44)

leads to the required result.

18

B Sphearing and removing the nullspace

Let p(x) be a Gaussian mixture model defined over a d-dimensional feature

space, x ∈ Rd, which has been estimated from some observed data,

p(x) =
N

∑

i=1

αiφΣi
(x− µi). (45)

A subspace of the data can be determined through the analysis of the first

and second statistical moments of the mixture model (45). Let Σ0 and µ0 be

the covariance matrix and the mean value, respectively, of a Gaussian fitted

to the mixture model p(x), e.g., using the moment matching (10).

A singular value decomposition of the covariance gives Σ0 = VSVT ,

where V is a concatenation of the eigenvectors of Σ0 and S is a diago-

nal matrix where each entry on diagonal is the eigenvalue (the variance

along the corresponding eigenvector. By removing the zero eigenvalues and

the corresponding eigenvectors we get the sub-matrix Ssub with all non-zero

eigenvalues and the matrix Vsub of the corresponding eigenvectors. Then the

transformation Tfwd which projects into the subspace with zero eigenvalues

removed is defined as Tfwd = (Vsub

√
Ssub)

−1 =
√

SsubV
T
sub. The subspace-

projected mixture model from (45) is then defined as

pprj(x) =
N

∑

i=1

αiφΣprji
(x− µprji)

µprji = Tfwd(µi − µprj0)

Σprji = TfwdΣiT
T
fwd. (46)

Acknowledgment

This research has been supported in part by: Research program P2-0214 (RS),

M3-0233 project PDR sponsored by the Ministry of Defense of Republic of

Slovenia, and EU FP7-ICT–215181-IP project CogX.

References

[1] O. Arandjelovic and R. Cipolla, Incremental learning of temporally-

coherent gaussian mixture models, British Machine Vision Conference,

2005, pp. 759–768.

19

[2] A. Asuncion and D.J. Newman, UCI machine learning repository,

http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007.

[3] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with appli-

cations to tracking and navigation, ch. 11, pp. 438–440, John Wiley &

Sons, Inc., 2001.

[4] A. Declercq and J. H. Piater, Online learning of gaussian mixture models

- a two-level approach, Intl.l Conf. Comp. Vis., Imaging and Comp.

Graph. Theory and Applications, 2008, pp. 605–611.

[5] T. Duong and M. L. Hazelton, Plug-in bandwidth matrices for bivariate

kernel density estimation, Nonparametric Statistics 15 (2003), no. 1,

17–30.

[6] M. A. F. Figueiredo and A. K. Jain, Unsupervised learning of finite

mixture models, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002),

no. 3, 381–396.

[7] M. Girolami and C. He, Probability density estimation from optimally

condensed data samples., IEEE Trans. Pattern Anal. Mach. Intell. 25

(2003), no. 10, 1253–1264.

[8] J. Goldberger and S. Roweis, Hierarchical clustering of a mixture model,

Neural Inf. Proc. Systems, 2005, pp. 505–512.

[9] P. Hall, S. J. Sheater, M. C. Jones, and J. S. Marron, On optimal data-

based bandwidth selection in kernel density estimation, Biometrika 78

(1991), no. 2, 263–269.

[10] B. Han, D. Comaniciu, Y. Zhu, and L. S. Davis, Sequential kernel den-

sity approximation and its application to real-time visual tracking, IEEE

Trans. Pattern Anal. Mach. Intell. 30 (2008), no. 7, 1186–1197.

[11] A. Ihler and M. Mandel, Kernel density estimation toolbox for MATLAB,

http://www.ics.uci.edu/ ihler/code/, 2007.

[12] S. Julier and J. Uhlmann, A general method for approximating nonlinear

transformations of probability distributions, Tech. report, Department of

Engineering Science, University of Oxford, 1996.

20

[13] J. M. L. Murillo and A. A. Rodriguez, Algorithms for gaussian bandwidth

selection in kernel density estimators, Neural Inf. Proc. Systems, 2008.

[14] E. Parzen, On estimation of a probability density function and mode,

Annals of Math. Statistics 33 (1962), 1065–1076.

[15] D. E. Pollard, A user’s guide to measure theoretic probability, Cambridge

University Press, 2002.

[16] M. Song and H. Wang, Highly efficient incremental estimation of gaus-

sian mixture models for online data stream clustering, SPIE: Intelligent

Computing: Theory and Applications, 2005, pp. 174–183.

[17] E. Veach and L. J. and Guibas, Optimally combining sampling tech-

niques for monte carlo rendering, Computer graphics and interactive

techniques, 1995, pp. 419 – 428.

[18] M. P. Wand, Error analysis for general multivariate kernel estimators,

Nonparametric Statistics 2 (1992), 1–15.

[19] M. P. Wand and M. C. Jones, Kernel smoothing, Chapman & Hall/CRC,

1995.

[20] K. Zhang and J. T. Kwok, Simplifying mixture models through function

approximation, Neural Inf. Proc. Systems, 2006.

21

A Computer Vision Integration Model for a Multi-modal Cognitive
System

Alen Vrečko, Danijel Skočaj, Nick Hawes and Aleš Leonardis

Abstract— We present a general method for integrating
visual components into a multi-modal cognitive system. The
integration is very generic and can combine an arbitrary set
of modalities. We illustrate our integration approach with a
specific instantiation of the architecture schema that focuses
on integration of vision and language: a cognitive system
able to collaborate with a human, learn and display some
understanding of its surroundings. As examples of cross-modal
interaction we describe mechanisms for clarification and visual
learning.

I. INTRODUCTION

Computer vision methods are often researched and devel-
oped in isolation, and evaluated according to human visual
criteria — they are expected to emulate our perception of the
world. Many methods achieve excellent results on standard
benchmark image databases [1], however they often fail to
achieve a similar performance within real systems that are
supposed to operate in real world and in real time. Not so
rarely our expectations toward isolated visual systems reflect
higher levels of our visual cognition, which often exceeds
their actual scope. In some cases the excessive expectations
can hinder the development of otherwise promising methods.

Multi-modal cognitive systems represent a different chal-
lenge for computer vision methods. In this case the main and
most direct benchmark for a visual component’s performance
is the benefit for other system components, which is eventu-
ally reflected in the performance of the cognitive system as a
whole. The multi-modality of the integrated systems ensures
that all its components are exposed (through cross-modal
communication) to a much wider spectrum of environmental
input than if they were working in isolation. This usually
increases their complexity and development effort on the one
hand, but improves their reliability on the other, since they
can benefit from other components’ output. Our expectations
are in this case focused to the system level, which makes it
easier for the vision component development to concentrate
on intra-modal and cross-modal communication.

The availability of cross-modal information can be a
crucial advantage for any visual component. It can be used
for verifying component’s decisions or even as an important
cue when facing more than one hypothesis of similar proba-
bilities. If the system is able to learn (we firmly believe that
learning ability is one of the most important requirements

A. Vrečko, D. Skočaj and A. Leonardis are with the
Faculty of Computer and Information Science, University of
Ljubljana, Slovenia, {alen.vrecko, danijel.skocaj,
ales.leonardis}@fri.uni-lj.si

N. Hawes is with the School of Computer Science, University of
Birmingham, UK, n.a.hawes@cs.bham.ac.uk

for a cognitive system), the cross-modal information can be
used for labeling visual information or for detecting gaps in
knowledge. Of course, to be able to exploit these benefits, the
visual subsystem has to be capable to discern situations when
no external information is needed from those that require
cross-modal verification.

In this paper we introduce a novel approach to integration
of visual components into a multi-modal cognitive system.
The main advantage of our method is that it is very generic in
the sense that it applies to a multitude of possible intra-modal
(components that make up the visual subsystem), as well
as multi-modal (subsystems composing cognitive system)
instantiations.

The problem of the cross-modal vision integration is in its
core a symbol grounding problem, introduced by Harnad in
[7]. Similar problems have been very often addressed in the
literature, e.g. by Chella et al [2], [5], by Roy [15], [14] or by
Steels and Kaplan [17], [18]. Our work differs from the work
of the authors mentioned above in that we seek solutions
within a much wider and general cognitive framework, which
assumes also continuous and parallel execution of a variety
of possible activities. The integration of visual subsystem
into the framework is very generic an can work with mini-
mal modifications with an arbitrary set of other modalities,
using high-level, a-modal entity representations. The visual-
linguistic instantiation we show in this work is just one
example of possible cross-modal combinations. In this sense
a similar approach is followed in [3]. Focusing to visual-
linguistic integration, we see the main advantage of our
work in more diversified, autonomous and responsive cross-
modal learning mechanisms (implicit and explicit learning,
clarification).

In Section II we briefly introduce the architecture schema
our system is built atop and give a general overview of the
system. Section III describes the visual part of the system,
while Section IV describes its interaction with other modali-
ties. In Section V we exemplify the cross-modal mechanisms
shown in Section IV. Finally, Section VI summarizes and
concludes the discussion.

II. SYSTEM OVERVIEW

A. CoSy Architecture Schema

The integrated computer vision system we present in this
work is built atop the CoSy Architecture Schema (CAS) [9],
[8] implemented by CAS Toolkit (CAST) [10], [8]. CAS
divides the cognitive system into loosely coupled subarchi-
tectures (SAs), where each of them roughly encompasses one
modality (e.g. Vision SA, Communication SA, Manipulation

SA, etc.) or wraps up some a-modal or mediative function-
ality (e.g. Binding SA, Motivation SA). Figure 1 shows the
general SA layout.

The SAs consist of a set of processing components that
are able to share information with each other. The com-
munication is mostly indirect, following the well known
‘blackboard’ multi-agent communication approach [6]. The
components can push their shareable data to a special
component called ’Working Memory’ (WM), where it can
be accessed by other components. Each SA has its own
WM component, which is used by default by SA member
components. Components can also access other SA’s WMs,
but this kind of communication (with the exception of
mediative SA’s WMs) should be avoided or held to its
absolute necessary minimum. An alternate communication
option is a direct link between components. Communication
via working memory offers a high degree of flexibility and
scalability to the system. The components can access the
data in working memory without knowing its source. A
component can thus just by monitoring the state of a single
component access the information from multiple independent
components. The direct communication approach is usually
necessary for more efficient access to larger data structures or
data streams (e.g. video streams). In this case the component
has to know its data supplier. The direct communication
is usually more likely the closer the component is to the
sensorial data, while the blackboard data sharing is almost
exclusive among the higher level components.

Another special SA component is the Task Manager that is
used to coordinate actions between processing components.
In this sense we divide the processing components in two
types:

• The Managed processing components require the Task
Manager’s permission to execute their information pro-
cessing tasks (e.g. to add, delete or change something
in WM). Their actions are usually triggered by certain
events in WM, therefore they are also called event-
driven components.

• The Unmanaged processing components do not inter-
act with the Task Manager, at all, while the interaction
with the WM is limited: they can add new entries to
WM, but they can not read anything from it, nor they
are sensitive to WM events. Usually they are connected
via a direct link to an external data stream (e.g. video
stream), and writting the processing results to WM.
Hence they are also called data-driven components.

B. CAS Instantiations

The flexibility and scalability of the architecture allows
easy addition of new components to the system, enabling
phased approach to the system development. The system
described in this work is one of the possible instantiations
of the architecture schema. Figure 2 gives an overview of
a typical CAS instantiation. The system is composed of
several SAs which operate in a distributed, asynchronous
and collaborative way. In this paper we focus on the Vision

Fig. 1. The CAS Subarchitecture Design Schema. For more details consult
[10], [8].

SA, which is used to illustrate our general approach to the
integration of visual components.

III. VISUAL SUBARCHITECTURE

The goal of the visual subsystem is to provide reliable
visual information to other modalities that are part of the
cognitive system. It consists of a set of relatively simple, but
specialized components sharing information with each other.
The Visual Subarchitecture can be divided into three layers
(Figure 3):

• the lower, quantitative layer deals directly with the
sensorial input and provides quantitative analysis of the
scene as a whole,

• the middle, qualitative layer performs qualitative anal-
ysis of selected regions of the scene,

• the upper, interface layer exchanges information with
other modalities.

Another goal we are trying to achieve with the distributed
approach is improving the robustness of the system. Since
we are aware that only a limited degree of robustness can
be achieved on the component level, we try to compensate
this on the integration level. An important quality that is
therefore required from the components is the ability of self-
evaluation. Since their output information is rarely the final
system output, but is usually reused by other components
(possibly from different modalities), they have to be able
to determine the reliability of their processing results. Only
reliable information should be available to other components.
If this is not possible, the components should share partial
processing results instead, or try to seek the missing infor-
mation elsewhere. In this sense redundancy in information
processing is not only desired, but often also required. Output
information can also be expressed as probability distribution

Fig. 2. A typical CAS instantiation consisting of Vision SA, Motivation SA, Binding SA, Manipulation SA (robot arm) and Communication SA (language).

over several alternatives, postponing the selection to higher
level processing, where more cross-modal information is
available.

A. Quantitative Layer

In our current instantiation the Vision SA uses a single
sensory input from a static camera above the desktop surface.
The video input is managed by the Video Server component,
which provides access to videostream data through direct
connection. Video frames are retrieved by four components:

The Change Detector is a data-driven component that is
sensitive to the changes in the scene. Whenever it detects
a certain degree of activity within the scene, it notifies the
interested components by updating a special data structure in
the WM. This notification can be used by other components
as a trigger for their processing. It sends a similar signal to
the WM when the scene activity ceases.

The Segmentor is a managed component that segments
the video frames trying to determine Regions of Interest
(ROI) in the scene. The segmentation takes place every time
when the scene becomes static and is currently based on
background subtraction. The component relies on informa-
tion provided by Change Detector and Handpointing Detec-
tor about the activity in the scene. After the segmentation
is done, the component tries to distinguish between newly
segmented ROIs and those from the previous segmentation
by simply matching their locations and areas. Based on ROI
matching the component adds or deletes ROI representations
in WM.

The Object Tracker component is designed to follow
moving objects in the scene. Tracking is based on the
objects’ color histograms that are retrieved from ROI data
structures in WM. The tracking of an individual object
is therefore triggered by the addition of its ROI to WM.
The component is constantly updating the tracked objects’

positions in WM ROI structures. This mechanism allows
Segmentor to reidentify the moved objects’ ROIs within the
scene, rather than assert new ROIs for them.

The Handpointing Detector is a means of visual com-
munication with the human tutor. Based on the skin color
segmentation and fast template matching the component is
sensitive to the presence of human hand in the scene. In the
case of a hand presence it tries to detect its index finger and
determine the nearest object (ROI) in the pointing direction.
The pointed object is deemed salient and is kept along with
the hand status information in a WM data structure. While
the hand is in scene, the component is overriding the static
scene signal, so that the segmentation can not be performed,

The above five components form the lower, quantitative
layer of the visual system, dealing with the quantitative scene
information. In general, this level detects and monitors scene
parts that might be interesting to higher level processing (the
bottom-up attention mechanism). Similarly, the higher levels
can provide a feedback about the types of information they
are currently interested in (the top-down attention mecha-
nism).

B. Qualitative Layer

The components of the quantitative layer are usually di-
rectly processing the sensorial input. Qualitative information
about the individual scene objects is maintained by the
middle, qualitative layer. In our current instantiation it is
formed by two components:

The Feature Extractor’s task is to extract visual features
from ROIs and update the WM ROI structures accordingly.
The component could in principle handle any type of visual
features. Currently the features include median HSV color
components and several other shape features.

The Learner-recognizer component maintains internal
visual knowledge in the form of associations between low-

level visual features and high-level cross-modal concepts
(e.g. visual properties). The representation of each visual
concept is based on Kernel Density Estimator (KDE) [13],
[16] and can be incrementally updated. Visual properties rep-
resent basic descriptive object properties, like various colors
and basic shapes (e.g. red, blue, green; circular, rectangular,
triangular, etc.). The component uses the underlying KDE
representations to determine object’s properties based on
extracted visual features. Object’s properties are stored along
with the other higher level object information in a separate
WM structure (‘SceneObject’).

Fig. 3. The general layout of the Visual Subarchitecture and its cross-modal
interaction. The red dashed lines span the representations of the same entities
across different vision layers and modalities.

The KDE based recognition is able to evaluate the reliabil-
ity of its results. Only the information that exceeds reliability
threshold is published in ‘SceneObject’ WM structure. In
case of non-reliable recognition results, the SA has an option
to request confirmation or clarification from other SAs.

An important part of component’s activity is visual learn-
ing, which is achieved by updating the KDE representations.
In order to perform an update of the current representations
the components need extracted features and information
about the object’s properties. In general the information that
can be translated to learnable visual properties can be pro-
vided by other components, usually from other modalities.
In our case this information is supplied by the communica-
tion sub-system, which analyzes tutor’s utterances. A more
detailed description of cross-modal visual learning follows
in Section IV-B.

Our system has been designed to operate in a continuous
way, therefore to keep continuously updating the knowledge
(the current representations), possibly also in an unassisted
way. In case of erroneous updates, this may lead to the prop-
agation of errors and degrading the models. Therefore, the
learning algorithms must have also the possibility to correct
the current representations, thus to remove the erroneously
incorporated information from the model. The KDE based
learning methodology that we have developed supports such
kind of unlearning[13], [16]. With unlearning the system can
react to explicit cross-modal negative feedback information
and can unlearn the representations of the corresponding
concepts accordingly.

In general the qualitative layer processes the scene regions
deemed interesting by the quantitative layer, looking for cues
to decide if and in what way they map to some modal
entity templates (e.g. scene objects). Once the entities are
established, they are processed individually. Usually this
involves the recognition of their properties. A desirable
property of the components on this layer is the ability to
evaluate the recognition confidence.

C. Interface Layer

The upper tier of the system — the interface layer is
composed of monitoring components. Their purpose is to
exchange information with components from other modal-
ities. The exchange of information is usually achieved via
dedicated mediative subsystems. In contrast to modal SAs,
the a-modal mediative SAs are known to all other SAs in the
system. The monitors forward the selected data from local
WM to those subsystems and make other cross-modal data
available to local components. Our system currently has two
such components

The Visual Binding Monitor’s task is to exchange infor-
mation with the Binding Subarchitecture. The basic princi-
ples of cross-modal information exchange via Binding SA
are explained in Section IV-A. Typically the binding moni-
tor maintains the cross-modal representations of recognized
properties of currently perceived scene objects.

The Motivation Monitor is in general used for forwarding
component’s requests to another mediative subsystem —

the Motivation Subarchitecture. Requests in Motivation SA
usually result in some additional processing in one or more
SAs1. An example of such a request is the clarification
request, which is the means for obtaining additional infor-
mation about a scene object from other modalities.

IV. CROSS-MODAL INTEGRATION

A. Binding Subarchitecture

Individual modalities within the cognitive system form
their own internal representations of the environment. An
object on the table can appear as a segmented color patch to
the visual system, a set of graspable areas to the robot arm
touch sensors or a reference in a tutor’s utterance to the com-
munication subsystem. Each modality tries, based on its own
innate and learnt concepts, to group the different sensorial
cues into modal representations of distinct entities. The SA’s
binding monitor converts those representations to a set of
binding features — a special representation form for cross-
modal communication. Through the binding monitor each
modal representation of each perceived entity delegates to
the Binding SA its own representative — the binding proxy,
containing its binding features. The role of the Binding SA
is to group the corresponding proxies to binding unions by
comparing their sets of binding features. Binding unions can
be regarded as a-modal representations of perceived entities.
Each entity can thus have several modal representations, but
one a-modal representation, only. Binding unions are used as
a sort of communication channels between different modal-
ities, ensuring that the exchanged multi-modal information
pertains to the same entity. The a-modal symbols are thus
grounded in several modal representations and through them
in sensorial information (see the dashed red lines in Figure
3).

A more detailed description of the binding process is
available in [11], [12].

B. Cross-modal Visual Learning

As a part of a complex multi-modal cognitive architecture
the visual subsystem is expected to process sensorial input in
real time providing reliable information about the visual envi-
ronment to other modalities. At the same time, the subsystem
should be able to access and use to its advantage the informa-
tion from other modalities. This information often includes
the feedback to the system’s past behavior (e.g. response to
its past actions or previously forwarded information). In a
continuous effort to improve its services to other modalities
and adapt itself to the changing environment, the subsystem
has to make good use of such feedback, since it represents
the most important guideline for further interpretation of the
sensorial input. The necessity for visual learning is therefore
the result of the needs for adaptation to both environments:
external environment, which is perceived through visual

1Motivation triggered processing involves also planning which is per-
formed by the Planning SA, which is, however, beyond the scope of this
paper. Consult [4] for a detailed description of this part of our cognitive
system.

sensors, and internal environment — composed by other
cognitive subsystems.

Our system currently bases its visual learning on a di-
alogue with a human tutor. This means that the visual
subsystem organizes its knowledge according to the tutor’s
interpretation of the visual environment. Such knowledge is
therefore composed of associations between internal repre-
sentations of human semantic categories and representations
of visual sensorial input. In the same manner other types
of cross-modal knowledge associations are possible. The
learning is achieved via two distinct learning mechanisms:
explicit learning and implicit learning.

Fig. 4. The flow of information between subsystems (vision, communica-
tion, binding, motivation) in cross-modal learning mechanisms. The dashed
line represents information referencing, while the red arrows represent the
reaction to the clarification request.

The explicit learning is a pure tutor-driven learning mech-
anism. It handles situations when tutor explicitly expresses
himself about a certain object property, e.g. when the main
purpose of his communicative act was to provide a novel
information to the system. The implicit learning, on the
other hand, is triggered by system’s own initiative when it
recognizes a learning opportunity in the current situation.
In our current system, for example, the information which
primary purpose was the identification of an entity and the
binding of its multi-modal representations, can be reused for
updating visual concepts. Implicit learning is usually used
to improve already known concepts: to fill their knowledge
gaps and to raise (or lower) the system’s confidence in them.
Explicit learning on the other hand is essential for learning
new concepts or to radically alter old ones (e.g. unlearning).
In this case the information to be learned is never used
for identification and binding, since it can jeopardize both
processes, if the system’s beliefs are not correct. The infor-
mation is passed to the visual learner as an explicit learning

Fig. 5. An example of clarification mechanism (time-plot).

motivation which references the a-modal representation of
the corresponding entity.

In both mechanisms the communication subsystem ana-
lyzes the tutor’s utterance, forms adequate representations
of described concepts and exports them to the Binding
SA as binding proxies, so that each referenced entity is
represented by its own proxy. Explicitly expressed properties
— properties that are perceived not as identification cues,
but rather as a focal points of the message or even as a
learning instructions — are not sent to Binding SA, the
interface layer forwards them to the Motivation SA instead.
The proxy in Motivation SA (motivation proxy) also contains
a reference to the binding proxy and the motive to spread
its information across the system. In a very similar fashion,
the visual subsystem exports its own binding proxies. Visual
binding proxies represent segmented objects with their rec-
ognized attributes. Through a bound proxy the visual binding
monitor gains access to linguistic information in the binding
union, which it can associate with the visual features of
a particular scene object, thus implicitly gaining a labeled
learning example.

In the case of explicit learning the planning subsystem,
using the information in the motivation proxy, makes a plan
which results in learning instruction in Vision SA. Besides
a linguistic label the learning instruction also contains a ref-
erence to the binding union representing the scene object in
question. And that again leads to the object’s visual features,
which are used to update the current internal representations.

C. Clarification

The clarification mechanism is a means for cross-modal
verification of modal information. It is typically used when a
component is not very confident about certain recognition or
prediction outcome. Instead of completely rejecting it, the
motivation monitor creates a motivation proxy containing
the unreliable information together with the clarification
instruction and a reference to the binding proxy representing
the scene object. Depending on the available plans and
resources the clarification request results in a specific action
within another modality, which helps the system to acquire
additional information. The clarifying action always involves
the entity represented by the referenced binding union. Often
that action would be a polar question about the certain object
property synthesized by the communication subsystem. The
clarifying action usually triggers some kind of reaction,
where the information flows in the opposite direction (e.g.
the interpretation of the tutor’s answer).

V. EXAMPLES OF CROSS-MODAL INTERACTION

We will illustrate the mechanisms described in the previ-
ous section with two very simple examples of clarification
and visual learning. We will see how the system through
the dialogue with the human tutor gradually builds its
knowledge about various colors and shapes of the objects.
Both examples are table-top scenarios. They occur within
the same scene consisting of simple objects on the table: a
blue square and a red triangle. The examples assume that the

Fig. 6. An example of cross-modal interaction including implicit and explicit learning mechanisms (time-plot).

system’s model for the red color is too comprehensive, so
that it contains also parts of the blue color space, while the
model for the blue color is missing (the system has yet to
learn it). The color of the square object on the table is thus
deemed red, but the recognition confidence is low.

A. Clarification Example

The clarification request is a reaction to the low recog-
nition confidence for the square object’s color. The visual
subsystem seeks cross-modal verification for its red color
model, which occurs in the form of a polar question to the
tutor. The system reacts to the tutor’s reply by unlearning
the red color label on square object’s visual features.

Figure 5 shows the flow of the clarification mechanism.
The scene processing in Visual SA results in two working
memory entries per object. The ROI (Region of Interest)
WM entries represent the output of the quantitative scene
processing, while the qualitative layer stores its recognition
results in the SceneObject WM entries. For each SceneObject
WM entry the Visual Binding Monitor creates a binding
proxy. The Binding SA reacts to the proxies by assigning
them to the binding unions (in this case a new union is
created for each proxy, since there are no other unions
they could be related to). In the case of the blue square
the Learner-recognizer is not confident in color recognition
result (red), therefore the color property is not included into
the binding proxy. Instead, the Motivation Monitor creates a
motivation proxy seeking clarification from other modalities

about the object’s color (timeframe 1). The motivation proxy
references the object’s binding proxy. Based on the motiva-
tion proxy, the Motivation SA generates a motive and then a
plan how to get the missing information. The plan suggests
that the Communication SA could best handle the request,
therefore a clarification goal is created in the Communication
SA (timeframe 2). The goal contains unreliable information
on the one hand and a reference to the square object’s binding
union on the other, which enables the Communication SA
to generate a polar question about the object’s color. The
question’s WM entry (discourse referent) has its own binding
proxy that, due to the reference provided by the clarification
goal, binds directly into the object’s union (timeframe 3).

After the tutor answers the polar question, a similar
process is performed in the opposite direction. The Com-
munication SA reacts to the tutor’s answer by creating a
‘new information’ motivation proxy (timeframe 4). Using the
same mechanisms as in previous steps, the system creates a
learning goal in Vision SA (timeframe 5), which eventually
results in an update of the model — unlearning in this case.

B. Visual Learning Example

The visual learning in the second example is a direct
consequence of the clarification request. The tutor tries to
explicate his previous answer by specifying the object’s true
color: “The square thing is blue”. In this sentence the shape
property (square) is used to identify the object which the
tutor is referring to, when explicitly expressing the color

property. This utterance triggers both, explicit (color) and
implicit learning (shape). While explicit learning directly
and arbitrarily fulfills the user’s expectations, the implicit
learning is more autonomous and incidental.

As we can see in Figure 6 it is the Communication SA
that in this case splits in two parts the information about
the square objects. The implicit information part goes to the
binding proxy and it is used by the Binding SA to group
the corresponding visual and communication proxies into
a single binding union, thus relating the tutor’s message
to the referred visual object. The Visual Binding Monitor
derives the implicit learning goal directly from the Binding
SA by comparing the binding union to the visual proxy
(timeframe 2). The explicit part follows a similar path to the
one already seen in the clarification example: a motivation
proxy is submitted, containing the explicit information and
a reference to the object’s binding proxy (timeframe 2).
After that the motivation and planning mechanisms create
an explicit learning goal in Vision SA (timeframes 3 and 4).

From these examples we can clearly see why it is im-
portant to separate explicit and implicit learning paths. If
the explicitly expressed color property was communicated
through a binding proxy, it would be also used for the
identification. In our case this could jeopardize the binding
process. Despite unlearning, the square object’s color could
be still recognized as red (as in the example in Figure 6),
which would prevent the linguistic and visual proxies to bind
to a common union.

VI. CONCLUSION

The multi-modal cognitive systems can be regarded as an
ultimate benchmark for the computer vision models. Though
the integration of a visual model into such a system (usually
already very complex by itself) is in general very demanding,
the benefit of having an experimental system operating in a
real environment certainly outweights the integration costs.

In this paper we presented a generic method for integrating
visual components into a multi-modal cognitive system based
on CoSy architecture schema. We described the visual part
of one possible instantiation and its cross-modal interaction.
The visual subsystem emphasizes the visual learning through
communication with a human tutor. We exemplified the
cross-modal integration with clarification mechanism and
mechanisms for implicit and explicit learning.

Our future research will be focused on further improve-
ment of our visual instantiations. We will improve the
attention mechanisms and extend and robustify the object
detection and recognition methods as well as the learning
methods. We aim to support a mobile robot platform and
extend the visual learning mechanisms with the capabilities
for self-reflection and detection of ignorance. In the paper
we have also shown the system’s capability to form a-modal
shared representations of individual entities. Its ability to
extend cross-modal concepts is currently quite limited, how-
ever. The cross-modal self-extension ability of the integrated
system will also be an important topic of our future research.

VII. ACKNOWLEDGEMENTS

This research has been supported in part by the EU FP7
project CogX (ICT-215181) and Research program Computer
Vision (RS).

REFERENCES

[1] The PASCAL object recognition database collection.
http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html.

[2] E. Ardizzone, A. Chella, M. Frixione, and S. Gaglio. Integrating
subsymbolic and symbolic processing in artificial vision. Journal of
Intelligent Systems, 1(4):273–308, 1992.

[3] B. Bolder, H. Brandl, M. Heracles, H. Janssen, I. Mikhailova,
J. Schmüdderich, and C. Goerick. Expectation-driven autonomous
learning and interaction system. In IEEE-RAS International Confer-
ence on Humanoid Robots, to appear 2008.

[4] M. Brenner, N. Hawes, J. Kelleher, and J. Wyatt. Mediating between
qualitative and quantitative representations for task-orientated human-
robot interaction. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI), Hyderabad, India, 2007.

[5] A. Chella, M. Frixione, and S. Gaglio. A cognitive architecture for
artificial vision. Artif. Intell., 89(1-2):73–111, 1997.

[6] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. The
hearsay-ii speech understanding system: integrating knowledge to
resolve uncertainty. Computing Surveys, 12:213–253, 1980.

[7] S. Harnad. The symbol grounding problem. Physica D, 42(1-3):335–
346, June 1990.

[8] N. Hawes, A. Sloman, and J. Wyatt. Towards an empirical exploration
of design space. In Evaluating Architectures for Intelligence: Papers
from the 2007 AAAI Workshop, pages 31 – 35, Vancouver, Canada,
July 2007.

[9] N. Hawes, J. Wyatt, and A. Sloman. An architecture schema for
embodied cognitive systems. Technical Report CSR-06-12, University
of Birmingham, School of Computer Science, November 2006.

[10] N. Hawes, M. Zillich, and J. Wyatt. Balt & cast: Middleware
for cognitive robotics. Technical Report CSR-07-1, University of
Birmingham, School of Computer Science, April 2007.

[11] H. Jacobsson, N. Hawes, G.-J. Kruijff, and J. Wyatt. Crossmodal
content binding in information-processing architectures. In HRI ’08:
Proceedings of the 3rd ACM/IEEE international conference on Human
robot interaction, pages 81–88, New York, NY, USA, 2008. ACM.

[12] H. Jacobsson, N. Hawes, D. Skočaj, and G.-J. Kruijff. Interactive
learning and cross-modal binding - a combined approach. In Sympo-
sium on Language and Robots, Aveiro, Portugal, 2007.

[13] M. Kristan, D. Skočaj, and A. Leonardis. Incremental learning with
Gaussian mixture models. In Computer Vision Winter Workshop, pages
25–32, 2008.

[14] D. K. Roy. Learning visually-grounded words and syntax for a scene
description task. Computer Speech and Language, 16(3-4):353–385,
2002.

[15] D. K. Roy and A. P. Pentland. Learning words from sights and sounds:
a computational model. Cognitive Science, 26(1):113–146, 2002.

[16] D. Skočaj, M. Kristan, and A. Leonardis. Continuous learning of
simple visual concepts using Incremental Kernel Density Estimation.
In International Conference on Computer Vision Theory and Applica-
tions, pages 598–604, 2008.

[17] L. Steels. The Talking Heads Experiment. Volume 1. Words and
Meanings. Laboratorium, Antwerpen, 1999.

[18] L. Steels and F. Kaplan. Collective learning and semiotic dynamics.
In D. Floreano, J-D Nicoud, and F. Mondada, editors, ECAL99, pages
679–688. Springer-Verlag, 1999.

Curiosity-Driven Acquisition of Sensorimotor Concepts Using
Memory-Based Active Learning∗

Sergio Roa, Geert-Jan M. Kruijff, and Henrik Jacobsson
Language Technology Lab

German Research Center for Artificial Intelligence / DFKI GmbH
Saarbrücken, Germany

{sergio.roa,gj, henrik.jacobsson}@dfki.de

Abstract—Operating in real-world environments, a robot
will need to continuously learn from its experience to update
and extend its knowledge. The paper focuses on the specific
problem of how a robot can efficiently select information that
is ”interesting”, driving the robot’s ”curiosity.” The paper inves-
tigates the hypothesis that curiosity can be emulated through
a combination of active learning, and reinforcement learning
using intrinsic and extrinsic rewards. Intrinsic rewards quantify
learning progress, providing a measure for ”interestingness” of
observations, and extrinsic rewards direct learning using the
robot’s interactions with the environment and other agents. The
paper describes the approach, and experimental results obtained
in simulated environments. The results indicate that both intrin-
sic and extrinsic rewards improve learning progress, measured
in the number of training cycles to achieve a goal. The approach
presented here extends previous approaches to curiosity-driven
learning, by including both intrinsic and extrinsic rewards, and
by considering more complex sensorimotor input.

Index Terms—Intrinsically motivated reinforcement learning,
interactive robot learning, developmental robotics, epigenetic
robotics.

I. INTRODUCTION

We would like our robots to operate in real-world envi-
ronments. They should assist us at home, in the office, malls
and supermarkets, or even outdoors. The challenge we face
there is that these are perceptually very rich environments.
It is not possible to endow the robot with all there is to
know about such environments – we can in no way guarantee
”omniscience out of the box.” To address this challenge, we
need to make the robot capable of learning what it does not
know yet. Using its experience, it should continuously update
and extend its knowledge.

In this paper we address a specific problem in the wider
context of continuous robot learning. As the robot is able
to obtain rich perceptual input, how can it efficiently obtain
and select information that is relevant or interesting, given
what it is trying to learn? The hypothesis we explore in this
paper is that a robot can focus on interesting learning material
by adopting an active form of exploration. We propose a
combination of active learning, with reinforcement learning
based on intrinsic and extrinsic rewards. The intrinsic rewards

∗The research reported of in this paper is supported by EU FP7 IP ”CogX”
(ICT-215181)

focus on learning progress, whereas the extrinsic rewards
direct learning based on the robot’s interactions with the en-
vironment and other agents. The combination of the rewards
provide the basis for the robot’s curiosity and motivation to
explore some aspects of the environment further.

The approach we present in this paper combines insights
from active learning mechanisms for speeding up learning
[1], and intrinsic motivation systems for learning [2]. Intrinsic
motivation systems drive the learning process by measuring
how and whether learning makes progress. In addition to
intrinsic motivations, our approach also includes various
extrinsic sources of motivation. Extrinsic sources include the
robot’s interactions with the environment, and other agents.

The intrinsic motivation system we adopt is based on
the idea of successive stages of development. We use a
fusion of the perception and action state spaces to define
a sensorimotor model. At each time step, a tuple consisting
of the current sensorimotor space and the perceptual state
estimation is stored, i.e. a prediction of the consequences
of the actions can be evaluated. We then use the error in
prediction to calculate a measure of learning progress. The
intrinsic rewards used to guide the exploration process are
inversely proportional to the decrease in error rate of the
experts used for prediction. Effectively this means that the
opportunities to learn more are triggered by this mechanism
in an active manner. As basis for our prediction models
we use the memory-based KD-tree algorithm for k-nearest
neighbour search[3]. However, more sophisticated learning
machines should be used for larger training times, in order
to lower the space computational complexity of the problem.

Learning successively enters into more complicated stages
of development by sequentally splitting the sample space of
sensorimotor and prediction features at specific time steps.
In cycles of 250 time steps, the sample space is split based
on its variance, defining cutting values to divide the sample
space. Thus, after some number of splits, prediction machines
become distributed, and start to concentrate on the specific
state space regions for which they yield optimal predictions.

We designed the extrinsic motivation system to include
rewards based on interaction with the environment, and with
a human tutor. The later type of rewards is inspired by the

experiments of [4]. Types of extrinsic rewards are collision
penalties, evaluation of progress towards a physical goal ob-
ject, and rewards on succesfully executing particular actions
(i.e. when the robot succesfully grips an object). Moreover,
the human tutor is able to interact with the robot by sending
a reward signal whenever he/she finds this appropriate. We
maintain a memory of the more recent rewards that are
relevant on the current sensorimotor context.

Given our hypothesis, the expectation is that intrinsic and
extrinsic rewards help a robot to achieve an expected goal in
a shorter amount of time. To test this, we created a simulated
world (using Player/Stage), and placed a mobile robot in a
room in a larger environment. In the environment, the robot
encounters obstacles that it should be able to avoid or surpass.
We defined several experiments, differing in task complexity
and in what types of rewards were available to the robot.
In each experiment, the goal task is for the robot to grip an
object. Depending on the scenario, this goal object may be in
a room different from the one in which the robot starts. As
robot we use a Pioneer P2-DX equipped with sonar sensors,
fiducial and blob finders, bumpers and a gripper touch sensor.
These sensors are sources of information that can be detected
by the robot as salient events, for instance when directing the
attention to objects. The space of motor actions the robot can
perform is continuous and allows three degrees of freedom,
i.e., it is able to move backwards and forwards, rotate left
and right, and close or open the gripper.

In this paper we show results for three different kinds
of experiments. In the first experiment, only intrinsic moti-
vation is employed. The second one applies also extrinsic
motivation but not interactive rewards, and the third one
includes also interactive rewards. These experiments provide
indications that the use of rewards based on learning progress
is indeed beneficial for reaching the goal object. Adding
extrinsic rewards can help accelerate reaching the goal (again,
on the average) by a 60% – or, combined, intrinsic and
extrinsic rewards can help cut cycles by 80% over a standard
active learning baseline. The experiments also demonstrate
the effectiveness of the intrinsic motivation system when
applied to a sensorimotor space which is more complex
than those explored in related work. The robot manages to
explore efficiently the environment, and explore regions of
the learning space that might be interesting while avoiding
situations of low learning progress.

This paper is organized as follows. The next section
presents a brief overview of current research in intrinsically
motivated systems and interactive learning. In section III, we
explain the learning algorithm in detail. In section IV we
present and discuss the experimental results. We close the
paper with conclusions and discussions of follow-up research.

II. RELATED WORK

The opportunities for exploration and curiosity have been
found to be important mechanisms for animal, humans and

robots to learn (see discussion in [5], [2]). There exists a kind
of intrinsic motivation system which is a source of internal
rewards, in contrast to extrinsic rewards that can be obtained
from the environment or other external agents. Thus, such a
system rewards exploration without the need of immediate
external rewards. The discovery of a new skill is then a
reward in itself. For children it is in fact more important to
autonomously explore the world to gain motor and perceptual
abilities in its first stages of development, although an adult
teacher can help by scaffolding the children’s environment
[6]. This learning process is also active, in the sense that
the opportunities to learn more interesting tasks are progres-
sively chosen by the agent. Different motivation drives have
been considered, such as novelty, surprise, incongruity and
complexity.

Two scenarios were set up in [2] to evaluate this learn-
ing mechanism. In the first experiment, a simulated robot
equipped with two wheels predicts a distance to a toy based
on the consequences of taking some actions and the distances
it senses. The action space is three dimensional and consist of
the speed of motor on the left, on the right and the frequency
of a sound emission. Depending on three different frequency
ranges, in this simulated environment the toy moves either
randomly, or it stops, or jumps into the robot. The actions
to choose are selected according to the maximization of the
expected reward (inverse of error rate decay) in the next time
step, allowing also a random exploration of actions with a
given probability. In this work, typical reinforcement learning
algorithms such as Q-Learning were not considered in order
to avoid the complex issues arising from the consequences
of delayed rewards. However, these techniques are applied in
related works [7] and in general this approach is commonly
known as intrinsically motivated reinforcement learning. It
is important to notice that rewarding learnability punishes
predictability and complex unpredictability. These aspects
have been also considered in [8].

A second experiment involves a Sony AIBO robot in
interacting with toys that can be bitten, bashed or visually
detected. Its sensors can perceive the detection of an object,
the ocurrence of biting an object, and the toys oscillations.
No a priori knowledge of the consequences of actions was
included in the robot programming, apart from proper con-
trol primitives needed for perception. In this more difficult
experiment, the results also show that the robot usually starts
performing random actions, followed by simple tasks and fi-
nally more complex ones. When it finds an interesting source
of learning it spends some time performing the corresponding
action, till there is no more motivation for doing it. Thus, the
robot recognizes affordances, that is, that certain actions are
sufficiently interesting at some point when the robot identifies
the correlations between these actions and its corresponding
perceptions.

The results of the experiments demonstrated that the agent

starts performing actions almost uniformly randomly and
then it focuses on more and more complicated stages, where
the actions consequences depend on more variables. Thus,
the robot avoids situations in which nothing can be learned
and directs its attention autonomously to more complex
situations. It was also shown that this algorithm (Intelligent
Adaptive Curiosity - IAC) is more efficient than simple
random exploration or IAC without exploration.

In [6], [4], an active virtual agent called Sophie learns the
order of steps needed in cooking. These skills are obtained
not only by trial and error tests but also by interaction with a
human teacher, which is able to give feedback as well, based
on sending a reward signal. Experiments conducted with
human tutors (not machine learning experts) demonstrate that
they are able to identify when the agent is making learning
progress, when some feedback mechanism (transparency) is
included in the agent behaviour.

III. APPROACH

As pointed out in section I, the robot interacts in its
environment by using a curiosity-driven behaviour mecha-
nism. We developed an Intrinsic Motivation System, which
is based on the work described in [2]. In order to implement
a curiosity-driven motivation mechanism, we want the robot
to concentrate on situations that are new or interesting for
it. Thus, following the work in [2], the robot is able to
predict the tuple {SM(t − 1),S(t)}, where SM(t) is the
concatenation of the sensor and motor vectors S(t) and
M(t) at time t. We use learning machines to predict the
consequences of taking some action in a given sensory state
at the previous time step. In the first time steps, a learning
machine corresponding to a first region R1 is created. All
sensorimotor perceptions found are considered to be part
of this region. In our experiments, a region is split into
2 regions after 250 time steps, as described in [2]. The
sensorimotor context is partitioned by using a measure of the
variance of the instances in the region, and a cutting value and
cutting index in the sensorimotor space is used as splitting
criterion. In this way, this information-based procedure is
used to partition efficiently the state space. Thus, the learning
machine Mn, corresponding to a region Rn, specializes in
some sensorimotor context.

The error rate en(t) is tracked for successive time steps
in order to measure an average error rate. The decrease in
error rate is obtained and this quantity is used to calculate the
learning progress, that is, an error rate reduction corresponds
to an increase in learning progress. The intrinsic reward rln(t)
is then the calculated learning progress quantity.

As previously sketched, we also make use of extrinsic
rewards in order to guide the robot to reach the goal. These
are a penalty for collisions rcn, a reward for the gripping event
rgn and a reward rfn when an approximation to a distance
goal is measured by using the fiducial finder. Moreover, the

interactive reward mechanism rintn can be employed by the
human tutor. The overall reward mechanism is then:

rn(t) =
∑
i

αir
i
n(t), (1)

where αi is the weight of the i-th reward applied in the
region Rn. In our experiments, we gave similar weights for
all the rewarding techniques, except for the collision penalties
that get lower values. When the robot collides with the goal
object, we notice that this situation is also interesting from
the point of view of the goal we want the robot to achieve.

The learning procedure is performed as follows. A first re-
gion is created and the previous sensorimotor state SM(t−1)
is registered, together with the current sensory state S(t).
Then, a learning machine is used to learn this training
instance. The sensorimotor vector is normalized with val-
ues ranging from 0 to 1. Afterwards, the vectors Hn =
{Cn,Gn, In} of recent rewards are updated according to
the sensing information, where Cn,Gn and In correspond
to collision, gripping and interactive rewards respectively. In
this case, a history of 15 events is stored. For each reward
vector Kn ∈ Hn, the corresponding current reward rin is
calculated as:

rin(t) =
∑
t≥tn

ϕt−tnKtn
n , (2)

where ϕ is a discount factor, typically 0.99. The fiducial
finding based reward rfn is calculated as a sum of the
differences between the successive x and y distances to the
goal object.

Then, a new action should be selected that maximizes
the expected rewards. For this purpose, a sample of 100000
possible actions is generated and the expected learning
progress Ln(t) ≈ rln(t − 1) and expected extrinsic rewards
E{rin(t)} ≈ rin(t − 1) for the current Region Rn are
calculated. So, the maximum value for all generated actions
A for some regions R is calculated:

max r(t) = arg max
A,R

∑
i

αir
i
n(t− 1) (3)

for some region n ∈ R. The corresponding action is
executed by the robot. When selecting translational actions,
we assure that the robot does not perform dangerous actions
like approaching hastily the walls. Moreover, we used a
near(ε)-greedy action selection rule with ε = 0.3 to allow
random actions and permit additional exploration sources.
Thus, a random action is selected with a probability of 0.3.

IV. EVALUATION

A. Evaluation setup: Scenarios & methods

In this work, the PlayerStage simulator was employed to
perform experiments. A Pioneer P2-DX robot was included

in the world, plus two objects that are used as obstacles and
a last object to be gripped by the robot. This object owns a
fiducial that is detected by the robot when the object stands in
the robot vision range. The robot acts in a room environment
surrounded by walls and a hole to pass to a next room (see
Figure 1).

Fig. 1. The scenario in the initial state. The robot (right-hand side) is
expected to surpass the obstacles in the middle and reach and grip the goal
object (left-hand side).

At each time step in the learning loop, the robot senses its
environment using the following sensors:
• 16 sonars distributed around the robot, whose values

range is [0.0, 5.0].
• 3 bumpers at right, left and front sides of the robot, with

values 0 and 1, the latter corresponding to a collision
detection.

• 2 gripper sensors, corresponding to a touch sensor and
a gripper status.

• 1 fiducial finder sensor detecting x and y relative coor-
dinates from the robot to the detected object.

• 1 blob finder sensor detecting area and object position
in the x coordinate in the vision range of the robot.

Thus, a sensor context S(t) measured in time step t is a
25-dimensional continuous vector, since the robot is able to
detect at most 3 objects at a given time using the blob finder.

The motor context M(t) in time step t is a 3-dimensional
continuos vector of:
• translational velocity values ranging in the interval

[−0.5, 0.5].
• rotational velocity values ranging from −0.1 180

πω to
0.1 180

πω , where ω is the wheel diameter of the robot,
where ω = 24 for a Pioneer P2-DX. These quanti-
ties were found to allow more stability in the robot
behaviour.

• 3 gripper motor values corresponding to the actions
open, close and no action.

Three different settings are considered in this investigation.
In the first place, only intrinsic motivation mechanisms are
used. Secondly, extrinsic motivations are also included and
finally also interactive rewards. Moreover, different scenarios
where the state space of actions and sensors is restricted were
set up, in order to analyse more carefully the whole system
by studying its different components.

In each of these cases the learning progress is taken
into account, because the system is mainly based on this

curiosity-driven mechanism. When the robot performs actions
corresponding to a specific region Rn, we observe increases
and decreases of the learning progress.

In order to analyse the different sources of reward indepen-
dently, we performed several experiments on a restricted state
space. The first scenario involves the robot moving in circles
around its own axis and a gripable object. With this setting
(gripping scenario), we want to check that the robot enters
in a stage of learning progress, when it finds the gripping
action interesting, i.e., when succesfully gripping the object.
The second scenario involves a robot in front of the object
at a certain distance. In this setting (reach goal scenario),
we want to test the effectiveness of the extrinsic rewarding
techniques in order to reach the goal.

B. Results

As explained in the previous section, we made preliminary
analyses of the data by restricting the state space of the
robot. In the gripping scenario, the robot only performs
rotational and gripping actions. In Figure 2 we can observe
a correlation between the learning progress and the increase
in the frequency of actions that are interesting for the robot,
e.g., closing the gripper to grip the object.

The reach goal scenario involves a target object and the
robot performs only translational actions in front of it at
a certain distance. Figure 3 shows that the use of fiducial
finding based rewards and interactive rewards accelerates
the task of approaching the object. 5 different runs of the
experiment were performed for 3 different cases. In average,
∼ 100 steps are needed to reach the goal for the scenario
without extrinsic and interactive rewards; ∼ 40 for the
scenario with extrinsic rewards and ∼ 20 with extrinsic and
interactive rewards.

The last scenario, whose initial state is the one we show in
Figure 1 is evaluated with the whole motivation system. In
Figure 4, one possible path taken by the robot is shown.
We found that when using additionally extrinsic rewards,
the average number of steps needed for the robot to attain
the goal (∼ 3000) does not decrease. This might be due
to the fact that the fiducial rewards are not always accesible,
because there are different ways to surpass the obstacles. The
other rewards are sometimes not relevant enough for reaching
the goal. This was also the case for interactive rewards and
the reason might be that given that each reward is related
to a specific region and this region might correspond to a
rich sensorimotor state (when different actions are allowed),
this reward might be causing unexpected effects for actions
we want to reward and not to punish. This mechanism is,
however, useful when the robot gets stuck at certain regions
that have been well learned after some time, for instance the
regions bordering walls. Figure 5 shows the contours of some
perceptions of the robot until it reaches the goal object.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450

Le
ar

ni
ng

 p
ro

gr
es

s

Time step

Learning progress Region 9

Learning progress

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200 1400

Fr
eq

ue
nc

y

Time step

Frequency of overall actions using window of 100 samples

Open gripper
Close gripper

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400

Fr
eq

ue
nc

y

Time step

Frequency of overall perceptions using window of 100 samples

Look at goal only
Succesful gripping

Other perception

Fig. 2. The robot manages to grip the object and close the gripper at a higher
frequency than the average at the time step ∼ 1050. The learning progress
in the corresponding context region 9 increases. By “other perception” we
mean bordering walls, looking at obstacles, among others.

C. Result analysis

The results show the effectiveness of the active learning
mechanism to explore the environment and recognize inter-
esting sources of learning. However, the results presented
here are preliminary and we have to perform more analyses in
order to understand the nature of the learning progress. Since
the perceptions of the robot change quickly because of the
nature of the motion, it is more difficult to establish when the
creation of successive stages of development is relevant for
achieving some goal. For instance, some regions are created
but the robot perform actions very rarely in such state spaces.
Additionally, sometimes the robot escapes quickly from a
recent created region.

In spite of this, observations of the learning curves show
that the robot in fact learns from the environment. One
example is when the robot manages to reach the obstacles
by going forward and backwards, detecting a salient event.
We have observed peaks in these actions when the robot finds
these sources of learning.

There are also some issues related to the effectiveness

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250

Fr
eq

ue
nc

y

Time step

(a) Frequency of perceptions using window of 25 samples Region 0

Succesful gripping

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 50 100 150 200 250

A
cc

um
ul

at
ed

 re
w

ar
d

Time step

(b) Fiducial finding based Rewards Region 0

Fiducial based rewards

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250

Fr
eq

ue
nc

y
Time step

(c) Frequency of perceptions using window of 25 samples Region 0

Succesful gripping

-2

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250

A
cc

um
ul

at
ed

 re
w

ar
d

Time step

(d) Interactive Rewards Region 0

Interactive rewards

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250

Fr
eq

ue
nc

y

Time step

(e) Frequency of perceptions using window of 25 samples Region 0

Succesful gripping

Fig. 3. Figure (a) shows the gripping event by only using learning progress
reward. Figures (b) and (c) show that the fiducial based rewards permit
the robot to reach the goal in ∼ 25 time steps. (d) and (e) show that
the interactive rewards accelerate more the goal reach. The memory of 15
rewards also allows the robot to reach the goal more frequently.

of the reward mechanism. Since the rewards are related
to a specific region, it is possible that when some regions
generalize over many different types of actions the rewarding
mechanism might be counterproductive. In the next section,
we discuss different approaches to these problems.

Fig. 4. A path taken by the robot using intrinsic motivation. In this figure,
it is observed that the robot first focus on trying to learn the region around
the walls, and then identifies a salient event such that the obstacles and reach
them. After this, it also finds the goal twice and experiments with the walls
in the left in between. The box at the left-hand side of the image shows the
blob finder sensor data.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fr
eq

ue
nc

y

Time step

Frequency of abstract perceptions using window of 100 samples

Look at goal only
Succesful gripping

Surpass obstacle

Fig. 5. One run of the experiment, when we observe some abstract
perceptions of the robot in the scenario with obstacles and gripable objects

Because of some limitations in the speed simulation al-
lowed by the software, we were not able to perform as much
experiments as needed, which is also important to obtain
additional data to be analysed more carefully.

V. CONCLUSIONS AND DISCUSSION

In this paper, we describe a curiosity-driven based mech-
anism for exploration of a mobile robotic environment.
Regions of interest arising from the partition of the state
space are successively created, allowing the robot to select
proper actions given a specific sensor context. Interesting
results were found and it is recognized that the robot is
able to explore and learn from the environment using an
intrinsic mechanism. Moreover, other external sources of
rewards were also investigated, as well as interactive rewards,
which are found to be sometimes useful when the robot gets
stuck at some not interesting regions or to accelerate the
approximation to a target objective.

The robot is able to attain goals, i.e., to reach some
obstacles, surpass them and then reach and grip a goal
object. However, much work remains to be done in order to
understand the robot behaviour and improve the rewarding
techniques.

Moreover, it is also an open issue how the agent can
retain temporal information and use hierarchical mechanisms
to abstract simple tasks into more complex ones, when it
is put in an autonomous setting. This has been studied

for reinforcement learning configurations specially using the
concept of options for the generalization of tasks [9], [6],
[10], [11].

It might be useful to explore alternatives like exploration in
specific state spaces using some kind of invariance [8]. More-
over, one can consider automatic construction of Markov
models after an efficient exploration using intrinsic motivated
approaches [7], [12], [13], which use more sophisticated
reinforcement learning algorithms like Q-Learning but have
not been tested in real robotic environments. Moreover,
prediction of motivational drives or rewards has also been
investigated and other sources of motivation like predictabil-
ity or familiarity may also be taken into account [8], [6],
including more complex motivational systems.

REFERENCES

[1] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with
active learning,” Machine Learning, vol. 15, no. 2, pp. 201–221, 1994.

[2] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation
systems for autonomous mental development,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 1, 2007.

[3] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for
finding best matches in logarithmic expected time,” ACM Transactions
on Mathematics Software, vol. 3, no. 3, pp. 209–226, September 1977.

[4] A. L. Thomaz, G. Hoffman, and C. Breazeal, “Reinforcement learning
with human teachers: Understanding how people want to teach robots,”
in Proceedings of the 15th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), 2006.

[5] P.-Y. Oudeyer and F. Kaplan, “Intelligent adaptive curiosity: a
source of self-development,” in Proceedings of the 4th International
Workshop on Epigenetic Robotics, L. Berthouze, H. Kozima, C. G.
Prince, G. Sandini, G. Stojanov, G. Metta, and C. Balkenius, Eds.,
vol. 117. Lund University Cognitive Studies, 2004, pp. 127–130.
[Online]. Available: citeseer.ist.psu.edu/oudeyer04intelligent.html

[6] A. L. Thomaz, “Socially guided machine learning,” Ph.D. dissertation,
Massachusetts Institute of Technology, May 2006.

[7] A. Stout, G. Konidaris, and A. Barto, “Intrinsically motivated rein-
forcement learning: A promising framework for developmental robot
learning,” in Proceedings of the AAAI Spring Symposium on Devel-
opmental Robotics, Stanford University, Stanford, CA, March 21-23
2005.

[8] F. Kaplan and P.-Y. Oudeyer, “Motivational principles for visual know-
how development,” in Proceedings of the 3rd Epigenetic Robotics
workshop : Modeling cognitive development in robotic systems, ser.
Lund University Cognitive Studies, C. Prince, L. Berthouze, H. Koz-
ima, D. Bullock, G. Stojanov, and C. Balkenius, Eds., vol. 101, 2003,
pp. 72–80.

[9] R. S. Sutton, D. Precup, and S. P. Singh, “Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement
learning,” Artificial Intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.
[Online]. Available: citeseer.ist.psu.edu/sutton99between.html

[10] J. Provost, B. Kuipers, and R. Miikkulainen, “Self-organizing dis-
tinctive state abstraction using options,” in Proceedings of the 7th
International Conference on Epigenetic Robotics, L. Berthouze, C. G.
Prince, M. Littman, H. Kozima, and C. Balkenius, Eds., vol. 135. Lund
University Cognitive Studies, 2007.

[11] ——, “Developing navigation behavior through self-organizing distinc-
tive state abstraction,” Connection Science, vol. 18, no. 2, 2006.

[12] S. Singh, A. G. Barto, and N. Chentanez, “Intrinsically motivated
reinforcement learning,” in Advances in Neural Information Processing
Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge,
MA: MIT Press, 2005, pp. 1281–1288.

[13] Özgür Şimşek and A. G. Barto, “An intrinsic reward mechanism
for efficient exploration,” in ICML ’06: Proceedings of the 23rd
international conference on Machine learning. New York, NY, USA:
ACM, 2006, pp. 833–840.

Long Short-Term Memory for Affordances Learning∗

Sergio Roa
sergio.roa@dfki.de

Geert-Jan Kruijff
gj@dfki.de

German Research Center for Artificial Intelligence / DFKI GmbH

Abstract

This paper addresses the problem of senso-
rimotor learning from the perspective of affor-
dances learning of simple objects. We are de-
veloping a scenario where a robotic arm inter-
acts with a polyflap, a simple 3-dimensional
geometrical object. We perform experiments
with a simulated arm using a physics simula-
tor, but we plan to use also a real arm. The
robot interacts with the object by pushing it
in different ways. We use Recurrent Neural
Networks to predict the arm and object poses
during this interaction, given a discrete set of
random actions that the robot can produce.

1. Introduction

Robots should be able to adapt and learn by in-
teracting in dynamic environments, if we want that
they acquire the kind of complex skills performed
by humans and animals in general. In altricial
animals (like humans) the development of com-
plex motor skills is continuously improved after
different stages of development. In these species
(Sloman and Chappell, 2005), the interaction with
the environment plays an important role for the ac-
quisition of sensorimotor abilities, and for the hierar-
chical acquisition of more complex skills based on the
ones previously acquired. This introduces us to the
concept of affordance, which is for instance referred
to learning about and from actions performed by an
agent on an object. In (Gibson, 1977), a theory of
affordances was developed. We can apply this theory
of cognitive development to the field of robotics by
employing, for instance, machine learning techniques
that allow the robot to predict action consequences
on certain objects. The interaction with objects and
in general with different environmental aspects allow
to shape the “mind” of the robot on the basis of its
acquired experience.

Taking into account that the environment and the
physical characteristics (embodiment) of a robot has
a complex structure, we have to think of proper sce-
narios where we can test these techniques and the-
ories. In (Sloman, 2006), simples scenarios using 3-
dimensional objects called polyflaps were proposed.

∗The research reported of in this paper is supported by EU
FP7 IP ”CogX” (ICT-215181)

The objective is to steadily increase the complexity
of the space of actions and the structure of the envi-
ronment. That would allow us to evaluate algorithms
that can be useful for compositional (hierarchical)
skills development.

It is also important to identify what kind of per-
ceptions can drive learning for an autonomous robot.
Oriented towards an emulation of the way children
acquire learning skills at early stages of develop-
ment, the works presented in (Oudeyer et al., 2007,
Roa et al., 2008) describe a system in which the
robot has an intrinsic motivation for learning, based
on the interestingness of the situations it discovers.
For these tasks, a simple intrinsic reward mechanism
is employed, which is proportional to the increase of
the error rate of some classifier trying to predict the
consequences of the robot actions at a given time.
The robot was able to identify affordances as corre-
lations between its space and actions and its conse-
quences in the environment. In this work, classifiers
are used for prediction and the robot is equipped
with real-valued sensors and actions comprising its
sensorimotor space. After training, there are differ-
ent classifiers specialized (biased) in some regions of
the state space. A statistical mechanism to split the
state space into regions is implemented to support
the specialization of the classifiers.

2. Scenario

As already pointed out, we use a robotic arm which
interacts with a polyflap in a simulated environment
(Figure 1).

Figure 1: Learning scenario with a polyflap

We use a simulator that can track objects and re-
turns an object pose. Objects that we consider are
polyflaps and the arm body parts, which are simple

objects from which we can obtain 3D information.
Thus, the task is to use machines that can predict
spatio-temporal sequences, and this can be seen as a
time-series prediction or regression problem. A sam-
ple s = {s0, s1, . . . , sn} is then a whole list (sequence)
of tuples (or vectors) si = {< v,m > |0 ≤ i ≤ n},
where v denotes a vector containing visual data of
an object (e.g. normalized 6D pose, surface areas,
surface normal vectors), m denotes motor informa-
tion (normalized joints pose, joint velocities) and i a
frame number up to a certain limit n. In the prac-
tice, the actions considered are pushing actions on
a linear trajectory applying a certain velocity pro-
file (a 4th degree polynom) to a Probabilistic Road
Map Planner and a direction angle. One sequence
comprises 70 feature vectors taken through time.

3. Learning Approach

The learning machines described in
(Oudeyer et al., 2007, Roa et al., 2008) can pre-
dict short-term consequences of actions. They
use an active learning mechanism which uses a
measure of learning progress based on the error
prediction to select next actions according to this
interestingness measure. Since we are dealing
with a spatio-temporal prediction problem, it is
important to introduce machines that can process
temporal information. Such machines can be
Recurrent Neural Networks (RNNs), and more
specifically Long Short-Term Memory (LSTM)
machines(Hochreiter and Schmidhuber, 1997),
which have been shown to store sequences over
more extended periods of time. Another approach
is the Cryssmex algorithm(Jacobsson, 2006) which
could either extract a probabilistic finite model (a
substochastic machine) of the experiences learned
by the RNNs (LSTM) or be used itself to analyze
the sensorimotor space (as a dynamic system) over
several periods of time, and finally extract a model.
More importantly, these models should give us a
categorization of different object behaviours and
corresponding affordances, i.e., given similar objects
(similar features) the predictions should be similar.
By using these machines, it is possible to evaluate
the certainty of the machine to predict action
consequences over several periods of time. This
mechanism would afford to simulate a kind of mas-
tery driven action selection (if the RNN successfully
predicts action consequences) or curiosity driven ac-
tion selection (if the RNN is failing to predict action
consequences and there is learning progress). Other
kinds of drives might be novelty (unpredictable ac-
tion consequence), surprise (unexpected outcome) or
interactive (based on a human reward/punishment
signal). A feature vector in a frame i is processed
at a time step t. The RNN should then predict
the corresponding feature vector in the next frame

i + 1 at some time t + δ, till i = n. Initially, we
use gradient-based methods for offline learning and
in online experiments this knowledge might also
be used as a kind of knowledge transfer method.
In general, the output of a neuron j in a LSTM is
yj =

∑
u wjuy

u(t− 1), where the summation indices
u may stand for input units, special units (gate
units, memory cells) or conventional hidden units.
The weights w are learned by using a modified
gradient descent algorithm, that together with the
special units avoid the problem of exponentially
decaying error (Hochreiter and Schmidhuber, 1997).

4. Preliminary experiments

For the purpose of testing the convergence of the
LSTM machines we are performing offline experi-
ments. In a preliminary experiment using 2-fold
cross-validation sets and 10 hidden nodes in the net-
work, we obtain the results shown in Table 4. We
expect to improve these results by modifying the net-
work topology and the feature encoding. However,
it is still expected that due to the nature of gradi-
ent descent learning, a considerable amount of train-
ing epochs and samples have to be used for offline
experiments. We plan to use active learning tech-
niques driven by e.g. curiosity for the selection of
samples. Genetic algorithms or Kalman Filters ap-
plied to RNNs, among other techniques, may also be
considered for offline learning.

Nr. epochs RMS error Nr. of training samples

2000 0.19 1000

Table 1: Preliminary results

References

Gibson, J. J. (1977). The theory of affordances. In Shaw,
R. and Bransford, J., (Eds.), Perceiving, Acting, and
Knowing: Toward an Ecological Psychology, pages 67–
82. Lawrence Erlbaum.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, pages 1735–1780.

Jacobsson, H. (2006). The crystallizing substochastic sequen-
tial machine extractor - CrySSMEx. Neural Computation,
18(9):2211–2255.

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. (2007). Intrin-
sic motivation systems for autonomous mental develop-
ment. IEEE Transactions on Evolutionary Computation,
11(1).

Roa, S., Kruijff, G. J., and Jacobsson, H. (2008).
Curiosity-driven acquisition of sensorimotor concepts us-
ing memory-based active learning. In Proceedings of the
2008 IEEE International Conference on Robotics and
Biomimetics, pages 665–670.

Sloman, A. (2006). Polyflaps as a domain for perceiving,
acting and learning in a 3-D world. In Position Papers
for 2006 AAAI Fellows Symposium, Menlo Park, CA.
AAAI.

Sloman, A. and Chappell, J. (2005). The altricial-precocial
spectrum for robots. In Proceedings IJCAI’05, pages
1187–1192, Edinburgh. IJCAI.

