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In Year 1, WP6 investigated how a robot could carry out a situated dialogue
with a human, about items in the world it needed to learn more about. The
robot was able to formulate questions against a multi-agent model of situ-
ated beliefs, what it would like to know more about. The robot was able
to represent and reason with uncertainty in experience, but it was relatively
fixed in the strategies it would follow to communicate with the human about
resolving the uncertainty. In Year 2, WP6 investigated several issues in how
to make dialogue behavior more adaptive. This covered several aspects: how
we can achieve adaptivity in managing situated dialogue; and how we can
dynamically adapt what kind of utterance is phrased in a given context, and
how. Results include a suite of novel, context-sensitive methods for adapt-
ing dialogue processing, management, and planning (Task 6.3); empirically
based methods for varying granularity in descriptions (Task 6.4); and, fur-
ther results on context-sensitive planning and realization of utterances using
varying intonation. All these methods are based on a novel probabilistic
framework for representation and inference of situated, multi-agent beliefs,
intentions and events, developed in WP6 and used across the board in CogX.
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Executive Summary

One of the objectives of CogX is self-extension. This requires the robot to
be able to actively gather information it can use to learn about the world.
One of the sources of such information is dialogue. But for this to work,
the robot needs to be able to establish with a human some form of mutually
agreed-upon understanding, a common ground. The overall goal of WP6 is
to develop adaptive mechanisms for situated dialogue processing, to enable
a robot to establish such common ground in situated dialogue.

In Year 1, WP6 investigated how a robot could carry out a situated
dialogue with a human, about items in the world it needed to learn more
about. The robot was able to formulate questions against a multi-agent
model of situated beliefs, indicating what it did and did not know – and
what it would like to know. The robot was able to represent and reason with
uncertainty in experience, but it was relatively fixed in the strategies it would
follow to communicate with the human about resolving the uncertainty.

The dynamic, interactive setting of CogX in which a robot actively learns
requires more than following a fixed, “universal” policy. Learning more,
dynamic situations, and the changes in common ground this implies, all
require the robot to adapt how it acts and interacts, if it is to successfully
communicate with a human over time.

In Year 2, WP6 investigated several issues in how to make dialogue
behavior more adaptive. This covered several aspects: (1) Making dialogue
strategies more adaptive (Task 6.3), and (2) varying how much a robot needs
to describe to be optimally transparent (Task 6.4).

Regarding the issue of adaptive dialogue management, we have begun
development of a probabilistic decision model for action selection, together
with a probabilistic reformulation of the processing models for continual
collaborative activity we started developing in Year 1. The combination of
these approaches into a single framework allows for a fine-grained modeling
of how to formulate a contextually grounded dialogue act, and to adapt
the strategy how this intention subsequently gets realized as a sequence of
utterances. Results include a suite of novel, context-sensitive methods for
adapting dialogue processing, management, and planning (Task 6.3). All
these methods are based on a new probabilistic framework for situated,
multi-agent models of beliefs, intentions, and events we have developed and
which is used across the board in CogX.

Concerning the second issue in adaptivity, we have performed several
empirical experiments to investigate how humans vary granularity in inter-
action with a robot, when describing objects in the kinds of small- and large-
scale spatial contexts we typically encounter in CogX. These results pro-
vide the basis for methods for further development of context- and content-
determination algorithms we use in content planning (Task 6.4).

Finally, in addition to our main focus on adaptivity in processing and
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content determination for situated dialogue, we have obtained further results
on context-sensitive planning and realization of utterances using varying
intonation.

Role of situated dialogue in CogX

CogX investigates cognitive systems that self-understand and self-extend.
In some of the scenarios explored within CogX such self-extension is done in
a mixed-initiative, interactive fashion (e.g. the George and Dora scenarios).
The robot interacts with a human, to learn more about the environment.
WP6 contributes situated dialogue-based mechanisms to facilitate such in-
teractive learning. Furthermore, WP6 explores several issues around the
problems of self-understanding and self-extension in the context of dialogue
processing. Dialogue comprehension and production is ultimately based in
a situated, multi-agent model the robot builds up. This model captures
epistemic objects like beliefs, intentions and events, in a multi-agent fash-
ion. Such epistemic objects cover both situated and cognitive aspects, and
already at this level we see forms of self-understanding and self-extension.
Where this is particularly coming to the fore now in Year 2 is how these
(probabilistic) models help to drive adaptation in dialogue processing itself,
in how we manage what to do (selecting dialogue acts or intentions), how to
do that best (strategy selection in dialogue content planning), all the way
down to deciding how best to process an utterance in a given context. We
thus see an important interplay between dialogue playing a supportive func-
tion in aiding self-understanding and self-extension system-wide, and how
dialogue can use the same principles to adapt its own models.

Contribution to the CogX scenarios and prototypes

WP6 contributes directly to the George and Dora scenarios, in relation to
work performed in WP 3 (Qualitative spatial cognition), WP 5 (Interactive
continuous learning of cross-modal concepts), and WP 7 (Scenario-based
integration). Adaptive dialogue management, including dialogue for clarifi-
cation and verbalization, are in principle used in both scenarios. In George
we illustrate the possibility for the robot to adapt how it asks about objects
and properties it is uncertain about, aligning the way it takes initiative in
the dialogue with the tutoring strategy the user appears to follow.

In Year 2, Dora is extended to include situated dialogue processing. We
explore how a robot can use introspection of what the robot does and does
not know about an area, to drive information requests to the user.

• Robot explores an unknown area, gradually building up rich spatial
models of his environment.
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• Human During the exploration, a human approaches the robot and
asks him to find a particular object (”robot, please find the cornflakes
box!”).

• Robot If the goal of finding the object is unclear or hasn’t been prop-
erly understood, the robot triggers additional information requests to
the human (”sorry i didn’t understand you properly, did you say I
should search for a cornflakes box?”), until a sufficient confidence level
is reached.

• Robot then starts searching for the object. In the performance of its
task, the robot can interact with nearby humans to retrieve additional
information, such as the category of the room they are currently in
(”excuse me, is this the kitchen?”).

• Robot Once the object has been found, the robot reports back his
findings to the human, by verbalizing its newly acquired knowledge.
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1 Tasks, objectives, results

1.1 Planned work

Robots, like humans, do not always know or understand everything. Situ-
ated dialogue is a means for a robot to extend or refine its knowledge about
the environment. For this to work, the robot needs to be able to establish
with a human some form of mutually agreed-upon understanding – they
need to reach a common ground. The overall goal of WP6 is to develop
adaptive mechanisms for situated dialogue processing, to enable a robot to
establish such common ground in situated dialogue.

WP6 primarily focuses on situated dialogue for continuous learning. In
continuous learning, the robot is ultimately driven by its own curiosity,
rather than by extrinsic motivations. The robot builds up its own under-
standing of the world – its own categorizations and structures, and the ways
in which it sees these instantiated in the world. While learning, the robot
can solicit help from the human, to clarify, explain, or perform something.
This is where transparency comes into play. The robot is acting on its own
understanding, which need not be in any way similar to how a human sees
the world. There is therefore a need for the robot to make clear what it is
after: why the robot is requesting something from a human, what aspects
of a common ground it appeals to, and how the request is related to what
it does and does not know. In Year 1, the robot would follow fairly fixed
“universal” strategies for trying to resolve uncertainties in understanding
the world. In Year 2, WP6 investigates how to make the robot’s dialogue
capabilities more adaptive (Task 6.3), including the adaptation of how much
information to provide in a given context (Task 6.4).

Task 6.3: Adaptive dialogue strategies The goal is to investigate how
we can use forms of reinforcement learning to adapt dialogue strategies
to optimize planning content for verbalization, clarication requests and
explanation on the basis of dynamic (i.e. extending, altering) categor-
ical knowledge.

Task 6.4: Variable granularity in content planning The goal is to ex-
tend content planning techniques to include the use of vagueness to
express properties to varying degrees of granularity.

The intention behind Tasks 6.3 and 6.4 was to achieve more adaptive
dialogue capabilities for the robot. So far, we focused on dealing with the
dynamics of the contexts in which a robot acts and interacts. We looked at
how these dynamics influence dialogue understanding, and production. In
Year 2, we wanted to take this a few steps further. In CogX, the system
itself is also highly dynamic. In a physical sense, surely, but also in a more
cognitive sense. It is a self-extending cognitive system. What was once
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unknown, now becomes known. The robot is actively interacting with the
world and agents therein. Through which it can learn more, and learn more
about how best to learn more. Ideally, it would pick up strategies for how
best to resolve uncertainties. Or, given the setting of WP6, it could learn
strategies for how best to communicate with a human, under uncertainty,
to help resolve uncertainty. And this is where adaptation comes in.

In §1.2 we describe how we achieved these goals.

1.2 Actual work performed

Below we succinctly describe the achievements for the individual tasks. The
descriptions refer to the relevant papers and reports in the annexes, for more
technical detail. In §1.3 we place these achievements in the context of the
state-of-the-art.

1.2.1 Adaptativity

The goal of Task 6.3 was to develop methods for the robot to adapt its
dialogue strategies: what it intends to do, how it enacts that intention, and
what it communicates about. We have achieved the following:

Probabilistic situated multi-agent models A robot needs to build up
an awareness of the world around it, and the agents therein. It needs
to have some idea of what can happen at some point in space and time,
who believes what, and who intends to do something or already has
been acting upon an intention. Uncertainty is a fundamental issue that
such models need to deal with. Kruijff, Lison et al (§2.1.4, §2.1.5) de-
scribe a novel framework for formulating situated, multi-agent models
of beliefs, intentions and events. The framework is based on a com-
bination of (first-order) logic and probabilistic graphical models. It
facilitates a combination of probabilistic inference using Markov Logic
Networks (§2.1.4), and decidable logical reasoning (§2.1.5, §2.1.6). Its
expressive power that can capture both the rich relational structure
of the environment, and the uncertainty arising from the noise and
incompleteness of sensory experience.

In Year 1, we presented an initial approach to situated multi-agent be-
lief modeling. This approach included the representation of belief content as
multivariate probability distributions over ontologically rich representations.
We performed inference over these distributions with a simple Bayesian net-
work, to establish how different beliefs might be seen as correlated. It en-
abled us to deal with uncertainty in a principled fashion, and as such it
provided an improvement over earlier ontology-based methods [12, 11].

At the same time, we could not yet exploit the rich relational structure
that is inherent to the problems we are typically dealing with. Adopting
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Markov Logic Networks [20], a type of statistical relational model, provides
the possibility to do so. Lison et al §2.1.4 describe several applications of the
framework in CogX. One application is multi-modal information fusion, now
exploiting relational structure as well as ontological richness. Such fusion
can be performed at arbitrary levels of abstraction, to allow for iterative
belief refinement from low-level observations up to temporally smoothed,
stable beliefs. Another use concerns situated reference resolution. Situ-
ated dialogue often includes expressions that refer to aspects of the world.
We use inference over belief models to establish hypotheses, what aspects
(i.e. beliefs about experience) a linguistic expression might be referring to.
These hypotheses are probabilistic beliefs in themselves. We subsequently
use available hypotheses when abductively inferring the contextually most
likely interpretation for an utterance, selecting that hypothesis which con-
tributes to establishing the best interpretation (cf. also §2.1.3).

Probabilistic models for adaptive dialogue management The prob-
lem of uncertainty extends to interaction: to understanding, and how
to act upon understanding. Lison and Kruijff (§2.1.1, §2.1.2) discuss
a POMDP-based approach. They focus on the problem of action se-
lection under uncertainty, i.e. what dialogue act or intention to adopt
for continuing the dialogue. The novel aspect is that they do not as-
sume a universal, complex policy but rather a set of smaller, modular
policies that can be activated in a given context. This activation as
inference is based (again) in Markov Logic Networks. The approach
is integrated into the larger framework of modeling situated dialogue
as continual collaborative activity, described by Kruijff and Jańıček
(§2.1.3). The combination of probabilistic abduction and adaptive di-
alogue management enables us to model how to comprehend dialogue
given uncertainty, and produce forms of user-adapted dialogue.

In Year 1, we presented a first account of how situated dialogue pro-
cessing can be based on a continual model of collaborative activity. The
account was based on Stone et al [25, 28], but provided several important
extensions including multi-agent beliefs including uncertainty, and the pos-
sibility to revise and extend beliefs over time. At the same time, it did not
allow for adaptivity, following a deterministic finite-state machine for action
selection, nor could it reason over more than beliefs.

With the further developments of e.g. probabilistic situated multi-agent
models, and POMDP-based action selection, we have begun work on over-
coming these limitations. Lison (§2.1.1) discusses how we can formulate
POMDPs over a rich state space combining dialogue models, user state, and
belief models for situation awareness. To handle the high dimensionality of
such action and state spaces, we developed a new mechanism for constrain-
ing the set of actions which are locally relevant in a particular situation.
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This mechanism is specified using a Markov Logic Network, which allows us
to exploit the rich relational structure inherent to situated dialogue. Dia-
logue planning is then performed on this limited set of relevant actions, and
results in the selection of a new dialogue act to adopt as our next intention.
Lison illustrates this on several examples from the George domain. Lison
& Kruijff (§2.1.2) take this approach a step further, and consider activation
of individual, modular POMDPs. Furthermore, by extending the POMDP
state space with features that model particular user characteristics, e.g. ob-
servable aspects of tutoring style, we can achieve mixed-initiative behavior
in the robot that tries to tailor (“optimize”) interaction towards the user’s
style of teaching the robot. The abductive inference discussed by Kruijff &
Jańıček (§2.1.3) then turns the dialogue act (or intention) selected by the
POMDP into a plan for realizing the intention in a contextually appropriate
way relative to the situated multi-agent models the robot maintains.

Learnable controllers for adaptive dialogue processing Dialogue pro-
cessing typically applies a fixed set of processes to an input, to pro-
duce an analysis for an utterance. We have begun the development
of an alternative model, preparing the grounds for Task 6.5 (Year
3). Kruijff & Krieger (§2.1.7) discuss an approach for dynamically
deciding which configuration of processes should be applied to anal-
yse an utterance. The approach is based on online learnable MDP
controllers, and factored state models that capture the incrementally
formed (partial) analyses at multiple levels of linguistic interpretation.
Processing is directed towards a given goal state, which can be derived
from a POMDP-based expectation about how a dialogue is likely to
unfold. Based on how processes are known to contribute particular
types of information (analyses), MDP controllers activate specific pro-
cesses and form a configuration over them. The configuration specifies
processes to run sequentially or concurrently, in an effort to optimize
time-efficiency.

Typically, dialogue processing adopts a model that uses a fixed set of
processes that is applied to a given input, to produce an analysis. These
processes may be organized as a pipeline, or in a constraint-based setup.
Each process works in relative isolation (modulo the input it gets), making
this type of processing is only as successful as its weakest process. The kind
of incremental processing model we presented in Year 1 partly alleviates this
problem, as multiple levels of analysis are unfolding in parallel. As a result
processes can mutually inform or guide each other, mediated through the
available partial analyses. At the same time, we are still applying a fixed set
of processes, and this need not be the most efficient way of interpreting an
utterance. We need to be able to parametrize what processes get applied to
allow for any-time processing, up to any needed depth of linguistic informa-
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tion. This facilitates both a more developmental perspective, and a manner
of process control that can provide for robustness and adaptivity.

In Year 2 we have begun the development of a more flexible model for
managing what processes become involved in interpreting an utterance. The
suggested model provides the means for online planning of process configura-
tions, following a scheme of activation-planning-optimization that is similar
to that of Lison & Kruijff (§2.1.2). The probabilistic models for activation
and for the controller are learnable online. This yields interesting possibil-
ities from the viewpoint of self-understanding and self-extension. So far,
we have always considered a robot to have reasonably mature dialogue ca-
pabilities, when using interaction to learn more about the world. What if
we would drop that assumption? How does language processing develop,
focusing on controlling what and how is being understood, as a function of
developing sensory modalities? In our approach to situated dialogue pro-
cessing, we have always adopted the view that the functional understanding
of language in a cognitive system reflects the level of functional (distinctive)
understanding of the world. Taking this to a developing system, there is
a simple hypothesis: There is an incentive to linking what you see, to a
minimum understanding of what you hear. In terms of learnable controllers
and models for binding language to experience, this hypothesis implies that
controllers would opt for cost-efficient strategies that provide a minimally
necessary and sufficient amount of linguistic information to help (categori-
cally) distinguish what it is that you are able to experientially distinguish.
If all a robot can see is colors, it would ideally understand the utterance
“Look here robot this is a large blue box!” as ‘blabla blabla BLUE bla!”
Initially, the robot may thus only use words as labels. As the robot is able
to perceive more structure, and can thus assign more semantics, the idea is
that the controllers learn to invoke processing at further levels of linguistic
interpretation to provide a linguistic structure that is adequate from the
viewpoint of grounding it in experience. We would like to explore these
ideas further in the context of Task 6.5 in Year 3, and WP5.

1.2.2 Variable granularity

The goal of Task 6.4 was to develop methods for the robot to determine an
appropriate level of information to be realized in an utterance, and, by the
same token, to be able to understand such utterances given by its user.

Variable granularity for anchor-progression in situated discourse
Zender et al (§2.2.1, §2.2.2) propose methods for generating and re-
solving referring expressions in a situated discourse about large-scale
space. They extend the work on situated resolution and generation of
referring expressions presented in Year 1 to multi-utterance discourses.
We present different models that determine the level of granularity of
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spatial referring expressions, based on the way the focus of attention
shifts along a discourse. These models are evaluated against data
gathered in an empirical production experiment. In §2.2.1, Zender et
al. present the production experiment. In §2.2.2, they tie the results
from the production experiment together with the previous approach
for bi-directional (i.e., for generation as well as resolution) context de-
termination, and show how the proposed methods enable a dialogue
system to engage in a situated dialogue about entities in a large-scale
spatial environment.

In Year 1, we considered how to appropriately refer to an object or
place in the world – either locally, or in reference to large-scale spatial or-
ganization. But this considered only single utterances. Typically, dialogue
provides a more dynamic way of identifying referents, gradually guiding at-
tention and building up a context in which the referent is to be resolved.
For example, when a robot is being given instructions to “go to the kitchen,
take the box on the table, and bring it to the living room,” it is faced with
the task of resolving the referring expressions (i.e., “the kitchen,” “the box
on ‘the table’,”, and “the living room” to entities in its own knowledge base.
While the robot might only know one entity that satisfies the description
“the kitchen,” it might know of several tables or boxes that are located on
tables somewhere in its environment. The interpretation of “the box on the
table” as “the box on the table in the kitchen” depends on the previously
given reference to “the kitchen.” We call this latter reference the attentional
anchor for the interpretation of the next reference in the discourse.

Establishing reference is not only a task to be solved by an isolated
GRE algorithm. Reference is established during the course of a discourse.
It is not sufficient to determine which information needs to be realized in
an utterance, but also the issue of variable granularity across utterances in
a dialogue: when, where, and how much information should be provided?
The challenge that we address here is how the focus of attention can move
over the course of a discourse if the domain is larger than the currently
visible scene. The examples below illustrates the issue. The two sentences
(translated to English) are taken from the data that we gathered in our
production experiment (see §2.2.1).

1. “Go to the living room and take the ball. Then go to the bathroom
and put the ball into the box. Then take the ball from the floor and
put it in the study into the box on the table.”

2. “Go to the bathroom, take the ball, go to the study and put the ball
into the box. Take the other ball, go to the living room, put the ball
into the box on the table.”
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1.2.3 Variable intonation

Closely related to Tasks 6.3 and 6.4 is our work on contextually appropriate
intonation for utterances in situated dialogue. Intonation is an important
means in dialogue to indicate how some of the expressed content is related
to the already established context, and what content the speaker intends to
focus on. In other words, it is a principle means for achieving transparency.
We have continued the work we started in Year 1, closely tying our approach
into the overall framework for situated multi-agent modeling and situated
dialogue processing.

Producing contextually appropriate intonation Kruijff-Korbayová et
al have continued to analyze the relation between empirical theories
of intonation patterns and aspects of cognitive state, notably the atti-
tudes of agreement and commitment to beliefs, and ownership of (or
responsibility for) the verifiability of a belief. (See e.g. Meena’s MSc
thesis, available online.1) Based on the analysis they are developing
a novel model of how a situated multi-agent model as discussed in
(§2.1.5, §2.1.3) can help establish these attitudes, and thus determine
intonation for production in a systematic way. Experiments are being
performed to empirically test predictions made by the approach. The
results of the first experiment are reported in §2.3.1.

For example, when referring to an entity, the robot can indicate that it is
aware of other (relevant) entities that share some property(ies) by accenting
particular words (and not others), cf. (1). It can (also) indicate certainty
vs. uncertainty (or in other terms: claim vs. relinquish dominance) by using
falling vs. rising intonation, respectively, cf. (2). 2

(1) a. the big red ball

b. the big red ball
c. the big red ball

(2) a. the ball ↓
b. the ball ↑

Context-dependent variation in the placement of pitch accent(s) based
on focus/contrast was the main issue addressed in Year 1. In Year 2 we have
elaborated the assignment of various types of pitch accents and boundary
tones, depending on the cognitive state of the robot. For instance, to com-
municate a certain, uncontentious belief that the robot intends to establish
as shared, the tune H*L-L% (or H-L%) is most appropriate, whereas to com-
municate an uncertain, contentious belief for which the robot is checking the

1http://www.dfki.de/web/forschung/publikationen?pubid=4902
2Small capitals denote words carrying nuclear pitch accent.
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human’s commitment, it is the tune L*H-L% (or H-H%), cf. example (3a)
and (3b), respectively.

(3) H: places a ball in front of R (not saying anything)
R: sees an object and forms the following belief:
B(R): KR:“a ball”
R adopts the goal to communicate its belief to H

a. R: a ball
H* L-L% (or H-L%)

b. R: a ball
L* H-L% (or H-H%)

Kruijff-Korbayová et al (§2.3.1) present the results of the first of a series
of exeriments designed to verify some of the predictions the account makes
with regard to intonation of clarification questions. The main goal of this
experiment was to ascertain in a human-robot interaction scenario the com-
monly accepted view that hearers are sensitive to differences in accent place-
ment depending on contrast between alternatives available in the context.
There are two novel aspects about the study: (i) testing accent placement
in clarification questions expressing a correct or an incorrect recognition hy-
pothesis, and (ii) the application of a proper psycholinguistic experimental
setup. The main hypothesis that accent placement makes a difference has
been confirmed, but there are also various unexpected effects that require
further investigation.
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1.3 Relation to state-of-the-art

Below we briefly discuss how the obtained results relate to the current state-
of-the-art. We refer the reader to the annexes for more in-depth discussions.

Moreover, we want to briefly mention dissemination activities performed
in the context of the CogX project in which participants from within and
outside the project discussed advances in the state-of-the-art. In May 2010,
partners from BHAM and DFKI organized a workshop on “Interactive Com-
munication for Autonomous Intelligent Robots (ICAIR)” [8] held in con-
junction with the 2010 IEEE International Conference on Robotics and Au-
tomation (ICRA 2010). The workshop’s theme centered around the question
how to “make robots articulate what they understand, intend, and do” –
thus contributing to the state-of-the-art in establishing common ground and
achieving transparency in human-robot communication.

1.3.1 Adaptivity

Probabilistic models for adaptive dialogue management Uncer-
tainty and partiality are pervasive in spoken dialogue systems. Due to speech
recognition errors, linguistic or pragmatic ambiguities, the user’s intentions
are often difficult to decode. Furthermore, the evolution of the interaction
(”what is the user going to say next?”) is also typically impossible to predict
for everything but the most trivial discourse domains.

In recent years, probabilistic models of dialogue combined with decision-
theoretic planning have been developed to address these issues in a mathe-
matically principled way. Most probabilistic models of dialogue management
rely on the notion of dialogue state. The dialogue state is a variable sum-
ming up all the agent’s knowledge about the dialogue history and external
context which is assumed to be relevant for decision-making. Dialogue with
non-deterministic transitions between states can be modelled as a Markov
Decision Process (MDP). If in addition, we view the current dialogue state
as not being directly observable (but rather inferred from observations), the
dialogue can be formalised as a Partially Observable Markov Decision Pro-
cess (POMDP). Examples of dialogue systems using MDPs and POMDPs
can be found in [10, 9, 4, 30].

POMDPs combine several advantages wich make them particularly in-
teresting for dialogue management. Besides the principled account of uncer-
tainties mentioned above, POMDPs also rely on decision-theoretic planning,
which is capable of forward planning over horizons of arbitrary length, and
can encode complex trade-offs between competing objectives. Moreover,
several reinforcement algorithms exist for the automatic optimisation of di-
alogue strategies based on dialogue transcripts or user simulators [23, 21].
Most of these algorithms are used offline, i.e. they generate a complete pol-
icy offline as a finite-state controller, and this policy can then be directly
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exploited without further planning. Alternatively, mechanisms for online
planning or combinations of offline and offline planning also exist [22].

A POMDP is formally defined as a tuple 〈S,A,Z, T, Ω, R〉, where S is
the state space; A is the action space; Z is the observation space; T (s, a, s′)
is the transition function from state s to state s′ using action a; Ω(z, a, s′) is
the observation function for observing z in state s′ after performing action
a; and R(s, a) is the reward function encoding the utility for the agent of
executing action a in state s.

A central assumption in POMDPs is that the state is not directly accessi-
ble and can only be inferred from observation. Such uncertainty is expressed
in the belief state b, which is a probability distribution b : S → [0, 1] over
possible states. A POMDP policy is then defined over this belief space as a
function π : B → A determining the action to perform for each point of the
belief space.

Dialogue management can be easily cast as a POMDP problem, with
the state space being a compact representation of the interaction, the ac-
tion space being a set of dialogue moves, the observation space representing
speech recognition hypotheses, the transition function defining the dynam-
ics of the interaction (which user reaction is to be expected after a particular
dialogue move), and the observation function describing a “sensor model”
between observed speech recognition hypotheses and actual utterances. Fi-
nally, the reward function encodes the utility of dialogue policies – it typi-
cally assigns a big positive reward if a long-term goal has been reached (e.g.
the retrieval of some important information), and small negative rewards
for minor “inconveniences” (e.g. prompting the user to repeat or asking for
confirmations).

Using a POMDP, adapting dialogue policies to specific aspects of the
dialogue history or external context is mostly a matter of (1) extending
the dialogue state to take these aspects into account, and (2) designing the
reward function in such a way that the desirability of particular actions is
made sensitive to these aspects. In order to keep the probabilistic model
tractable for planning, such expansions of the state space is usually based on
factored models. Factored models are probabilistic models where the random
variable is factored into a set of separate subvariables which are assumed to
be conditionally independent. An example of such adaptivity for the specific
case of affective interaction is demonstrated in [4].

Our approach seeks to improve on this existing work by taking advantage
of the relational structure present in most interactions. By exploiting the
probabilistic belief models to handle the structural complexity of human-
robot interactions, we hope to leverage the rich relational structure of the
problem and efficiently abstract over large regions of the state and action
spaces. In the long term, our aim is to develop a hybrid approach to adaptive
dialogue management which combines the best of probabilistic and logical
models of dialogue.
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Learnable controllers The work on learnable controllers for dialogue
processing is based on a long tradition of perceiving of the problem of control
as a sequential decision making problem. Techniques typically used there
are reinforcement learning, and Markov Decision Processes [27]. Our work
is inspired by an approach that views the problem as an online planning
problem with receding horizon control [15], in combination with factorized
state spaces to exploit the structure inherent to dialogue interpretation [2,
26]. The learning techniques we are exploring are all based in reinforcement
learning. We follow a model-based paradigm, particularly looking at MDPs
with self-aware learning like R-MAX [3] or SLF-MAX [26]. These approaches
all fit the KWIK framework [14], which models what the agent “knows what
it knows” to actively drive learning in a way that fits well with the CogX
focus on self-understanding and self-extension.

1.3.2 Variable granularity content planning

[18] observed that users interacting with the TRAINS-92 system make use of
short non-anaphoric definite descriptions (e.g., “the boxcar”) to felicitously
refer to a specific one, even though the overall domain contains several box-
cars. The correct referent of the utterance is determined by the previous
discouse. When producing and, conversely, understanding an utterance, its
interpretation in situation semantics depends on three situations: the ut-
terance situation (defined as “the context in which the utterance is made
and received”), the resource situation, which can become available in vari-
ous ways, and the focal situation [5]. As factors that can make a situation
available as resource situation, [5] lists:

1. being perceived by the speaker,

2. being the objects of some common knowledge about the world,

3. being the way the world is,

4. being built up by previous discourse.

For the cases we are interested in, i.e., situated discourse about large-
scale space, especially the second and fourth factor are relevant.

Although the previously mentioned noun phrase “the boxcar” is, strictly
speaking, underspecific with respect to the whole domain, the speaker can
nevertheless make a felicitous reference. The NP must thus be interpretable
with respect to a resource situation in which it is a unique description of
its intended referent. [18] hence argues for the need of a “situation forming
principle”, which states under which conditions a conversational participant
will assume that a piece of information is part of that situation.” More
precisely, he claims that there must be “principles for anchoring resource
situations” in the course of a discourse. An important determining factor
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of resource situations is the current focus of attention. The mutual focus of
attention of the interlocutors can be felicitously used as resource situation
(the so-called situation of attention, which [18] explains in terms of shared
visual attention). A second principle for determining the resource situation
is via the current discourse topic. This can then lead to a shift of attention
induced by the “movement” of the referents in the domain of discourse.

Based on these observations, we extend this approach from visual scenes
to situated discourse about entities in large-scale space. Parallel to the focus
shift in visual attention, we extend this notion to mental shifts of attention
during a discourse about large-scale space. We show how such a principle
can account for “movement” of the attentional anchor required for situated
context determination in large-scale space presented in Year 1.

1.3.3 Variable intonation

Intonation is one of the primary means in many languages to realize the
information structure of an utterance, and thereby its relationship to the
discourse context, in terms of the discourse status of its content, the ac-
tual and attributed attentional states of the discourse participants, and the
participants’ prior and changing attitudes (knowledge, beliefs, intentions,
expectations, etc.) [13]. A pioneering attempt to provide a compositional
approach to the functional meaning of English intonation is [16]. Continuing
in this tradition, [24] offers compositional semantics of English intonation
in terms of information structure. [1], [7] and [29] provide detailed anal-
yses concerning the meaning of various English tunes, especially focusing
on boundary tones. The problem is that these accounts, although aware of
one another, are separate. We have set out to make a detailed comparison
and critical synthesis of their predictions from the perspective of intonation
assignment. The resulting theoretical model is grounded in an implemented
belief state framework, and we are in a position to experiment with the
model in an integrated end-to-end system.
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2 Annexes

2.1 Adaptivity

2.1.1 Lison, “Towards relational POMDPs for adaptive dialogue
management.” (ACL’10)

Bibliography P. Lison. “Towards relational POMDPs for adaptive dia-
logue management.” In: Proceeding of the Student Research Workshop of
the 48th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, 2010.

Abstract Open-ended spoken interactions are typically characterised by
both structural complexity and high levels of uncertainty, making dialogue
management in such settings a particularly challenging problem. Traditional
approaches have focused on providing theoretical accounts for either the
uncertainty or the complexity of spoken dialogue, but rarely considered the
two issues in tandem. This paper describes ongoing work on a new approach
to dialogue management which attempts to fill this gap. We represent the
interaction as a Partially Observable Markov Decision Process (POMDP)
over a rich state space incorporating both dialogue, user, and environment
models. The tractability of the resulting POMDP can be preserved using
a mechanism for dynamically constraining the action space based on prior
knowledge over locally relevant dialogue structures. These constraints are
encoded in a small set of general rules expressed as a Markov Logic network.
The first-order expressivity of Markov Logic enables us to leverage the rich
relational structure of the problem and efficiently abstract over large regions
of the state and action spaces.

Relation to WP The paper makes it possible for the robot to adapt
what dialogue actions to take, under uncertainty (Task 6.3). Together with
the work on policy selection §2.1.2 it provides the basis for adapting action
selection in dialogue management. Action selection is again part of the larger
issue of modeling situated dialogue as a continual collaborative activity,
discussed in §2.1.3.
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2.1.2 Lison & Kruijff, “Policy activation for open-ended dialogue
management.” (Subm.)

Bibliography P. Lison & G.J.M. Kruijff. “Policy activation for open-
ended dialogue management.” Under submission to the AAAI 2010 Fall
Symposium Dialogue with Robots.

Abstract An important difficulty in developing spoken dialogue systems
for robots is the open-ended nature of most interactions. Robotic agents
must typically operate in complex, continuously changing environments which
are difficult to model and do not provide any clear, predefined goal. Directly
capturing this complexity in a single, large dialogue policy is thus inade-
quate. This paper presents a new approach which tackles the complexity
of open-ended interactions by breaking it into a set of small, independent
policies, which can be activated and deactivated at runtime by a dedicated
mechanism. The approach is currently being implemented in a spoken dia-
logue system for autonomous robots.

Relation to WP Together with §2.1.1 this work provides the basis for
adaptation in action selection for dialogue management (Task 6.3).
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2.1.3 Kruijff & Jańıček, “Continual Processing of Situated Di-
alogue in Human-Robot Collaborative Activities.” (RO-
MAN 2010)

Bibliography G.J.M. Kruijff & M. Jańıček. “Continual Processing of Sit-
uated Dialogue in Human-Robot Collaborative Activities.” In: Proceedings
of the 19th IEEE International Symposium in Robot and Human Interactive
Communication (RO-MAN 2010). IEEE, 2010.

Abstract The paper presents an implemented approach of processing sit-
uated dialogue between a human and a robot. The focus is on task-oriented
dialogue, set in the larger context of human-robot collaborative activity.
The approach models understanding and production of dialogue to include
intension (what is being talked about), intention (the goal of why something
is being said), and attention (what is being focused on). These dimensions
are directly construed in terms of assumptions and assertions on situated
multi-agent belief models. The approach is continual in that it allows for in-
terpretations to be dynamically retracted, revised, or deferred. This makes
it possible to deal with the inherent asymmetry in how robots and humans
tend to understand dialogue, and the world it is set in. The approach has
been fully implemented, and integrated into a cognitive robot. The paper
discusses the implementation, and illustrates it in a collaborative learning
setting.

Relation to WP The paper discusses the overarching approach to mod-
eling situated dialogue as a continual collaborative activity. The approach
makes use of abductive inference to decide which beliefs and intentions to
invoke when contextually comprehending or producing dialogue. The action
selection mechanisms nowadays employs the POMDP-based adaptive selec-
tion. This allows for a context-senstive, adaptive way of selecting intentions
and realizing them in the current (epistemic, situated) context (Task 6.3).
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2.1.4 Lison et al, “Belief modelling for situation awareness in
human-robot interaction.” (RO-MAN 2010)

Bibliography P. Lison, C. Ehrler, and G.J.M. Kruijff. “Belief modelling
for situation awareness in human-robot interaction.” In: Proceedings of
the 19th IEEE International Symposium in Robot and Human Interactive
Communication (RO-MAN 2010). IEEE, 2010.

Abstract To interact naturally with humans, robots needs to be aware
of their own surroundings. This awareness is usually encoded in some im-
plicit or explicit representation of the situated context. In this paper, we
present a new framework for constructing rich belief models of the robot’s
environment. Key to our approach is the use of Markov Logic as a uni-
fied representation formalism. Markov Logic is a combination of first-order
logic and probabilistic graphical models. Its expressive power allows us to
capture both the rich relational structure of the environment and the uncer-
tainty arising from the noise and incompleteness of low-level sensory data.
The constructed belief models evolve dynamically over time and incorporate
various contextual information such as spatio-temporal framing, multi-agent
epistemic status, and saliency measures. Beliefs can also be referenced and
extended top-down via linguistic communication. The approach is being
integrated into a cognitive architecture for mobile robots interacting with
humans using spoken dialogue.

Relation to WP The paper provides a probabilistic take on the situ-
ated multi-agent models we developed in Year 1. The probabilistic models
provide a proper way of modeling uncertainty in experience, and we can
use structural forms of inference to reason with them. These models are
the basis on which decisions on how to adapt are based (Task 6.3). §2.1.5
presents a more indepth discussion. The framework is used throughout the
cognitive system in CogX to represent and reason with experience, action,
and interaction.
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2.1.5 Kruijff et al, “Combining Probabilistic And Logical Infer-
ence in Situated Multi-Agent Models” (Report)

Bibliography G.J.M. Kruijff, M. Jańıček, P. Lison and H.-U. Krieger.
“Combining Probabilistic And Logical Inference in Situated Multi-Agent
Models.” Report.

Abstract The paper describes work in progress on a formal system for
representing, and reasoning with, situated multi-agent belief models. These
models capture what a particular agent believes about the world, and what
it believes about other agents. Such beliefs arise from a mixture of infer-
ences, ranging over the agent’s direct perception of the world, what it has as
semantic background knowledge about the world, and what facts the agent
can infer to hold over time. The model puts probabilistic and logical infer-
ence on a par, to balance logical structure with a robustness to uncertain
and partial information. The paper discusses various forms of logical and
probabilistic inference, and the possibilities for combining them.

Relation to WP The report presents an in-depth discussion of the sit-
uated, multi-agent framework for representing and reasoning with beliefs,
intentions, and events adopted in CogX (Task 6.3).
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2.1.6 Krieger, “A General Methodology for Equipping Ontolo-
gies With Time.” (LREC’10)

Bibliography H.-U. Krieger. “A General Methodology for Equipping On-
tologies With Time.” In: Proceedings of the 7th international conference
on Language Resources and Evaluation (LREC’10).

Abstract In the first part of this paper, we present a framework for en-
riching arbitrary upper or domain-specic ontologies with a concept of time.
To do so, we need the notion of a time slice. Contrary to other approaches,
we directly interpret the original entities as time slices in order to (i) avoid a
duplication of the original ontology and (ii) to prevent a knowledge engineer
from ontology rewriting. The diachronic representation of time is comple-
mented by a sophisticated time ontology that supports underspecication
and an arbitrarily ne granularity of time. As a showcase, we describe how
the time ontology has been interfaced with the PROTON upper ontology.
The second part investigates a temporal extension of RDF that replaces the
usual triple notation by a more general tuple representation. In this setting,
Hayes/ter Horst-like entailment rules are replaced by their temporal coun-
terparts. Our motivation to move towards this direction is twofold: rstly,
extending binary relation instances with time leads to a massive prolifera-
tion of useless objects (independently of the encoding); secondly, reasoning
and querying with such extended relations is extremely complex, expensive,
and error-prone.

Relation to WP The paper describes inference techniques used in com-
puting (temporal) closures situated BIE models, as described in §2.1.5 (Task
6.3).
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2.1.7 Kruijff & Krieger, “Learnable Controllers for Adaptive Di-
alogue Processing Management.” (Subm.)

Bibliography G.J.M. Kruijff & H.-U. Krieger. “Learnable Controllers
for Adaptive Dialogue Processing Management.” Under submission to the
AAAI 2010 Fall Symposium Dialogue with Robots.

Abstract Uncertainty is pervasive throughout processing spoken dialogue
in human-robot interaction. That need not always be a problem though.
The paper adopts the view that it depends on context, how much that uncer-
tainty actually matters. The paper argues that uncertainty in input needs to
be balanced off against how much actually needs to be understood to make a
contextually appropriate, next move. The paper presents work in progress
on developing mechanisms for adaptively controlling how utterances in spo-
ken dialogue in human-robot interaction get processed “step-by-step”, to
deal with uncertainty in as much as necessary given an goal state. These
mechanisms take the form of a learnable closed-loop controller that decides
on an optimal policy or process configuration to reach a next fixed-point in
a state space of (partial) analyses. The policy is planned online, adapting
the processing strategy rather than using a “universal” policy.

Relation to WP The paper outlines an approach for adapting the way
dialogue is processed. It proposes to use learnable controllers to adapt, at
each “step” of analyzing an utterance, what processes get applied to help
construct contextually relevant analyses. This is guided by a formulation of a
goal state that specifies what there is to be understood about this utterance,
given expectations about the way the dialogue is likely to proceed (resulting
from POMDP-based action planning, §2.1.2) (Task 6.3).
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2.2 Variable granularity

2.2.1 Zender et al, “Anchor-Progression in Spatially Situated
Discourse: a Production Experiment.” (INLG’10)

Bibliography H. Zender, C. Koppermann, F. Greeve, and G.J.M. Kruijff.
“Anchor-Progression in Spatially Situated Discourse: a Production Experi-
ment.” In: Proceedings of the 6th International Natural Language Genera-
tion Conference (INLG 2010). Dublin, Ireland, July 2010

Abstract The paper presents two models for producing and understand-
ing situationally appropriate referring expressions (REs) during a discourse
about large-scale space. The models are evaluated against an empirical pro-
duction experiment.

Relation to WP The paper extends our earlier work on verbalizing ref-
erences to objects, places, or events outside the current situation (reported
in DR6.1) to multi-utterance discourses. In such discourses, consecutive
referring expressions to different entities that are located elsewhere in the
interlocutors’ environment must contain a different amount of information
than singleton referring expressions. Consecutive referring expressions act
as attentional anchors which evoke new mental resource situations on the
part of the hearer. This allows the speaker to make use of shorter but
nevertheless successfully identifying descriptions.

An example for this is a situation in which the user and the robot are
in the corridor and the user gives the robot instructions how to clean up
the apartment. Instead of saying “Go to the kitchen. Take the ball in the
kitchen and put it into the box on the table in the kitchen,” it is sufficient to
say “Go to the kitchen. Take the ball and put it into the box on the table,”
even in cases where there exist several balls, boxes and tables elsewhere in
the environment.

The granularity of the information (cf. Task 6.4) to be realized in a fe-
licitous referring expression is thus dependent on preceding references. This
paper presents two models for this dependence, called anchor-progression
and anchor-resetting. While the models are described in more detail in the
report in §2.2.2, this paper particularly focuses on an empirical production
experiment for gathering human produced utterances to compare the models
against.
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2.2.2 Zender et al, “Anchor-Progression in Situated Discourse
About Large-Scale Space” (Report)

Bibliography H. Zender, C. Koppermann, F. Greeve, and G.J.M. Krui-
jff. “Anchor-Progression in Situated Discourse About Large-Scale Space.”
Manuscript in preparation for journal submission.

Abstract The use of natural language processing systems is no longer
limited to small, fixed, fully known and fully observable domains. In inter-
action with mobile robots, with non-player characters in virtual worlds, or
with mobile location-based applications alike references to entities outside
the currently observable scene (i.e., in large-scale space) are becoming more
and more important. Referring expressions (e.g., definite noun phrases, pro-
nouns, and proper names) are used to convey which entities in the world are
being talked about. Ideally, the natural language communication with such
systems is not restricted to single one-way utterances. The way successful
reference between such a system and its user is established must thus be
viewed from a discourse-oriented perspective. Successful reference is estab-
lished by the interplay of referring expressions and the way the discourse
unfolds.

In this paper we address the challenge of producing and understanding
referring expressions to entities in large-scale space during a discourse. To
this end, we propose a general principle of topological abstraction (TA) for
determining an appropriate spatial context. This principle is applied to
the tasks of generating and resolving referring expressions. Further, we
propose anchor-progression and anchor-resetting mechanisms to track the
origin of the TA algorithms throughout the discourse. Finally, we present
an empirical experiment that evaluates the utility of the proposed methods
with respect to situated instruction-giving in small-scale space on the one
hand, and large-scale space on the other.

Relation to WP This report presents a more detailed discussion of the
models for tracking the attentional anchor presented in §2.2.1. The models
are suitable for the tasks of generating and resolving referring expressions
alike. The report describes how the models can be directly and straight-
forwardly used with the dialogue framework developed in the context of
WP6 and the models for representing large-scale space from WP3 (see also
DR6.1). The results of this work hence contribute immediately to the Dora
demonstrator from WP7 because they allow a robot to produce and un-
derstand consecutive references to entities that are located elsewhere in its
operating environment (such as an office floor or an apartment).
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2.3 Variable intonation

2.3.1 Kruijff-Korbayová et al, “Contextually Appropriate Into-
nation of Clarification Requests in Human-Robot Interac-
tion” (Report)

Bibliography I. Kruijff-Korbayová, R. Meena, and P. Pyykkönen.

Abstract It is established that assigning intonation to dialogue system
output in a way that reflects contrast among entities available in the dis-
course context can enhance the acceptability of system utterances. Previous
research has concentrated on the role of linguistic context in processing; di-
alogue situatedness and hence the role of visual context in determining the
accent placement has not been studied. In this paper, we present an experi-
mental study addressing the influence of visual context on the perception of
nuclear accent placement in synthesized clarification requests. We predicted
that variation in the placement of nuclear accent is perceivable and that
visual context affects acceptability. We found that utterances with nuclear
accent placement licenced by the visual scene are perceived as appropriate
more often then utterances with nuclear accent placement not licenced by
the visual scene.

Relation to WP The paper provides further insights in the contextually
appropriate production of robot utterances, in mixed-initiative dialogues for
cross-modal learning.
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Abstract

Open-ended spoken interactions are typi-
cally characterised by both structural com-
plexity and high levels of uncertainty,
making dialogue management in such set-
tings a particularly challenging problem.
Traditional approaches have focused on
providing theoretical accounts for either
the uncertainty or the complexity of spo-
ken dialogue, but rarely considered the
two issues in tandem. This paper describes
ongoing work on a new approach to dia-
logue management which attempts to fill
this gap. We represent the interaction as
a Partially Observable Markov Decision
Process (POMDP) over a rich state space
incorporating both dialogue, user, and en-
vironment models. The tractability of the
resulting POMDP can be preserved using
a mechanism for dynamically constraining
the action space based on prior knowledge
over locally relevant dialogue structures.
These constraints are encoded in a small
set of general rules expressed as a Markov
Logic network. The first-order expressiv-
ity of Markov Logic enables us to leverage
the rich relational structure of the problem
and efficiently abstract over large regions
of the state and action spaces.

1 Introduction

The development of spoken dialogue systems for
rich, open-ended interactions raises a number of
challenges, one of which is dialogue management.
The role of dialogue management is to determine
which communicative actions to take (i.e. what to
say) given a goal and particular observations about
the interaction and the current situation.

Dialogue managers have to face several issues.
First, spoken dialogue systems must usually deal

with high levels of noise and uncertainty in the
spoken inputs. These uncertainties may arise from
speech recognition errors, limited grammar cover-
age, or from various ambiguities in the linguistic
or pragmatic interpretations.

Second, open-ended dialogue is characteristi-
cally complex, and exhibits rich relational struc-
tures. Natural interactions should be adaptive to
a variety of factors dependent on the interaction
history, the general context, and the user prefer-
ences. As a consequence, the state space necessary
to model the dynamics of the environment tends to
be large and sparsely populated.

These two problems have typically been ad-
dressed separately in the literature. On the one
hand, the issue of uncertainty in speech under-
standing is usually dealt using a range of proba-
bilistic models combined with decision-theoretic
planning. Among these, Partially Observable
Markov Decision Process (POMDP) models have
recently emerged as a unifying mathematical
framework for dialogue management (Williams
and Young, 2007; Lemon and Pietquin, 2007).
POMDPs provide an explicit account for a wide
range of uncertainties related to partial observabil-
ity (noisy, incomplete spoken inputs) and stochas-
tic action effects (non-deterministic dynamics).

On the other hand, structural complexity can be
addressed with logic-based approaches, based for
instance on pragmatic interpretation (Thomason
et al., 2006), dialogue structure (Asher and Las-
carides, 2003), or collaborative planning (Kruijff
et al., 2008). Such approaches are able to model
sophisticated dialogue behaviours, but at the ex-
pense of robustness and adaptivity. They generally
assume complete observability and provide only a
very limited account (if any) of uncertainties.

We are currently developing an hybrid approach
which simultaneously tackles the uncertainty and
complexity of dialogue management, based on a
POMDP framework. We present here our ongo-



ing work on this issue. In this paper, we more
specifically describe a new mechanism for dy-
namically constraining the space of possible ac-
tions available at a given time. Our aim is to use
such mechanism to significantly reduce the search
space and therefore make the planning problem
globally more tractable. This is performed in two
consecutive steps. We first structure the state space
using Markov Logic Networks, a first-order prob-
abilistic language. Prior pragmatic knowledge
about dialogue structure is then exploited to derive
the set of dialogue actions which are locally ad-
missible or relevant, and prune all irrelevant ones.
The first-order expressivity of Markov Logic Net-
works allows us to easily specify the constraints
via a small set of general rules which abstract over
large regions of the state and action spaces.

Our long-term goal is to develop an unified
framework for adaptive dialogue management in
rich, open-ended interactional settings. Such di-
alogue manager is to be integrated in a cognitive
architecture for a mobile robot interacting with hu-
man users in an indoor environment via spoken di-
alogue (Hawes et al., 2007; Kruijff et al., 2010).

This paper is structured as follows. Section 2
lays down the formal foundations of our work,
by describing dialogue management as a POMDP
problem. We then describe in Section 3 our ap-
proach to dimensionality reduction using Markov
Logic rules. Section 4 discusses some further as-
pects of our approach and its relation to existing
work, followed by the conclusion in Section 5.

2 Background

2.1 Partially Observable Markov Decision
Processes (POMDPs)

POMDPs are a mathematical model for sequential
decision-making in partially observable environ-
ments. It provides a powerful framework for con-
trol problems which combine partial observability,
uncertain action effects, incomplete knowledge of
the environment dynamics and multiple, poten-
tially conflicting objectives.

Via reinforcement learning, it is possible to au-
tomatically learn optimal or near-optimal action
policies given a POMDP model combined with
real or simulated user data (Rieser, 2008).

2.1.1 Formal definition
A POMDP is a tuple 〈S,A,Z, T, Ω, R〉, where:

• S is the state space, which is the model of

the world from the agent’s viewpoint. It is
defined as a set of mutually exclusive states.

• A is the action space: the set of possible ac-
tions at the disposal of the agent.

• Z is the observation space: the set of obser-
vations which can be captured by the agent.

• T is the transition function. It is formally
defined as a function T : S×A×S → [0, 1],
where T (s, a, s′) = P (s′|s, a). It is therefore
the probability of reaching the state s′ from
the state s if action a is performed.

• Ω is the observation function, defined as
Ω : Z × A × S → [0, 1], with Ω(z, a, s′) =
P (z|a, s′). It expresses the probability of ob-
serving the particular input z if the agent has
performed action a and is now in state s′.

• R is the reward function, defined as R : S×
A → %, R(s, a) is a real number encoding
the utility for the agent to perform the action
a while in state s.

In addition, a POMDP usually includes the fol-
lowing two parameters h and γ:

• h is the horizon of the POMDP-based agent.
It defines the number of look-ahead steps that
are taken into account when planning.

• γ is the discount factor, providing a weight-
ing scheme for non-immediate rewards.

2.1.2 Beliefs and belief update
A key idea of POMDP is the assumption that the
state of the world is not directly accessible, and
can only be inferred via observation. Such uncer-
tainty is expressed in the belief state b, which is
a probability distribution over possible states, that
is: b : S → [0, 1]. The belief state for a state
space of cardinality n is therefore represented in a
real-valued simplex of dimension (n−1).

This belief state is dynamically updated before
executing each action. The belief state update op-
erates as follows. At a given time step t, the agent
is in some unobserved state st = s ∈ S. The
probability of being in state s at time t is writ-
ten as bt(s). Based on the current belief state bt,
the agent selects an action at, receives a reward
R(s, at) and transitions to a new (unobserved)
state st+1 = s′ , where st+1 depends only on st

and at. The agent then receives a new observation
ot+1 which is dependent on st+1 and at.



Finally, the belief distribution bt is updated,
based on ot+1 and at as follows1.

bt+1(s′)= P (s′|ot+1, at, bt) (1)

=
P (ot+1|s′, at, bt)P (s′|at, bt)

P (ot+1|at, bt)
(2)

= α Ω(ot+1, s
′, at)

∑

s∈S
T (s, at, s

′)bt(s) (3)

where α is a normalisation constant. An initial
belief state b0 must be specified at runtime as a
POMDP parameter when initialising the system.

2.1.3 POMDP policies
Given a POMDP model 〈S,A,Z, T, Z,R〉, the
agent should execute at each time-step the action
which maximises its expected cumulative reward
over the horizon. We define a function π : B → A,
called a policy, which determines the action to per-
form for each point of the belief space.

The expected reward for policy π starting from
belief b is defined as:

Jπ(b) = E
[ h∑

t=0

γtR(st, at) | b, π
]

(4)

The optimal policy π∗ is then obtained by optimiz-
ing the long-term reward, starting from b0:

π∗ = argmax
π

Jπ(b0) (5)

The optimal policy π∗ yields the highest expected
reward value for each possible belief state. This
value is compactly represented by the optimal
value function, noted V ∗, which is a solution to
the Bellman optimality equation (Bellman, 1957).

Numerous algorithms for (offline) policy opti-
misation and (online) planning are available. For
large spaces, exact optimisation is impossible and
approximate methods must be used, see for in-
stance grid-based (Thomson and Young, 2009) or
point-based (Pineau et al., 2006) techniques.

2.2 POMDP-based dialogue management
Dialogue management can be easily cast as a
POMDP problem:

• The state space is a compact representation
of the interaction (information state), com-
bined with relevant features of the situation.

• The action space is a set of dialogue moves.
1As a notational shorthand, we write P (st=s) as P (s)

and P (st+1=s′) as P (s′).

Figure 1: Dynamic Bayesian Network correspond-
ing to the POMDP model. Actions are represented
as rectangles to stress that they are system actions
rather than observed random variables. State vari-
ables are greyed since they are hidden variables.

• The observation space is usually a set of pos-
sible speech recognition hypotheses (repre-
sented as a word lattice or a N-Best list), plus
relevant observations from the environment.

• The transition function defines the local di-
alogue “dynamics” (which user reaction is to
be expected after a particular dialogue move).

• The observation function describes a “sensor
model” between observed speech recognition
hypotheses and the real (hidden) utterance.

• Finally, the reward function encodes the util-
ity of dialogue policies – it typically as-
signs a big positive reward if a long-term
goal has been reached (e.g. the retrieval of
some important information), and small neg-
ative rewards for various “annoyances” (e.g.
prompting the user to repeat).

2.3 Dialogue management for human-robot
interaction (HRI)

Our aim is to apply such POMDP framework to
a rich dialogue domain for HRI (Kruijff et al.,
2010). These interactions are typically open-
ended (no predefined goal), relatively long (hun-
dreds to thousands of turns), highly noisy (envi-
ronmental noise, faulty speech recognition), and
require complex state and action spaces (both the
user and the robot can talk freely and perform di-
verse collaborative tasks and activities).

The dialogue system also needs to be adaptive
to its user (attributed beliefs and intentions, atti-
tude, attentional state) and to the current situation
(currently perceived entities and events). As a con-



sequence, the state space must be expanded to in-
clude these knowledge sources.

These requirements can only be fullfilled if we
address the “curse of dimensionality” which is
bound to face such sophisticated state spaces. The
next section provides a tentative answer.

3 Approach

3.1 Dimensionality reduction
Classical approaches to POMDP planning oper-
ate directly on the full action space and select the
next action to perform based on the maximisation
of the expected cumulative reward over the spec-
ified horizon. Such approaches can be used in
small-scale domains with a limited action space,
but quickly become intractable for larger ones,
as the planning time increases exponentially with
the size of the action space (for non-immediate
horizons). Significant planning time is therefore
wasted on actions which, from the viewpoint of a
human user, are irrelevant2. Dismissing such ir-
relevant actions before planning would enable the
agent to concentrate its computational resources
on locally relevant actions.

Instead of a direct policy optimisation over the
full action space, our approach formalises action
selection as a two-step process. As a first step, a
set of relevant dialogue moves is constructed from
the full action space. The POMDP planner then
computes the optimal (highest-reward) action on
this reduced action space in a second step.

Such an approach is able to significantly reduce
the dimensionality of the dialogue management
problem by taking advantage of prior knowledge
about the expected relational structure of spoken
dialogue. This prior knowledge is to be encoded
in a set of general rules describing the admissible
dialogue moves in a particular situation.

How can we express such rules? POMDPs are
usually modeled with Bayesian networks which
are inherently propositional. Encoding such rules
in a propositional framework requires a distinct
rule for every possible state and action instance.
This is not a feasible approach. We therefore need
a first order (probabilistic) language able to ex-
press generalities over large regions of the state
action spaces. Markov Logic is such a language.

2For instance, an agent hearing a user command such as
“Please take the mug on your left” might spent a lot of plan-
ning time calculating the expected future reward of dialogue
moves such as “Is the box green?” or “Your name is John”, which
are irrelevant to the situation.

3.2 Markov Logic Networks (MLNs)

Markov Logic combines first-order logic and
probabilistic graphical models in a unified repre-
sentation (Richardson and Domingos, 2006). A
Markov Logic Network L is a set of pairs (Fi, wi),
where Fi is a formula in first-order logic and wi is
a real number representing the formula weight.

A Markov Logic Network L can be seen as
a template for constructing markov networks3.
To construct a markov network from L, one has
to provide an additional set of constants C =
{c1, c2, ..., c|C|}. The resulting markov network
is called a ground markov network and is written
ML,C . The ground markov network contains one
feature for each possible grounding of a first-order
formula in L, with the corresponding weight. The
technical details of the construction of ML,C from
the two sets L and C is explained in several pa-
pers, see e.g. (Richardson and Domingos, 2006).

Once the markov network ML,C is constructed,
it can be exploited to perform inference over ar-
bitrary queries. Efficient probabilistic inference
algorithms such as Markov Chain Monte Carlo
(MCMC) or other sampling techniques can then
be used to this end (Poon and Domingos, 2006).

3.3 States and actions as relational structures

The specification of Markov Logic rules apply-
ing over complete regions of the state and action
spaces (instead of over single instances) requires
an explicit relational structure over these spaces.

This is realised by factoring the state and ac-
tion spaces into distinct, conditionally indepen-
dent parts. A state s can be expanded into a tuple
〈f1, f2, ...fn〉, where each sub-state fi is assigned
a value from a set {v1, v2, ...vm}. Such structure
can be expressed in first-logic with a binary predi-
cate fi(s, vj) for each sub-state fi, where vj is the
value of the sub-state fi in s. The same type of
structure can be defined over actions. This factor-
ing leads to a relational structure of arbitrary com-
plexity, compactly represented by a set of unary
and binary predicates.

3.4 Relevant action space

For a given state s, the relevant action space
RelMoves(A, s) is defined as:

{a : a ∈ A ∧ RelevantMove(a, s)} (6)

3Markov networks are undirected graphical models.



The truth-value of the predicate
RelevantMove(a, s) is determined using a
set of Markov Logic rules dependent on both the
state s and the action a. For a given state s, the
relevant action space is constructed via proba-
bilistic inference, by estimating the probability
P (RelevantMove(a, s) | s, a) for each action a,
and selecting the subset of actions for which the
probability is above a given threshold.

Eq. 7 provides an example of such Markov
Logic rule. It defines an admissible dialogue move
for a situation where the user questions the agent
about the feature of a particular object. The rule
specifies that, if the system is in state s at time t,
and if the last dialogue move is m and is a ques-
tion about the feature f of object o, there is an
admissible move a consisting in the assertion that
the feature f of object o has the value v. The rule
is universally quantified over all possible assign-
ments of variables s, t, m, f , o and v.

Concretely, the rule states that after a question
such as “what is the colour of the box?”, a possible
reaction would be “It is red” (assuming the box can
be properly referred by the pronoun “it”).

[State(s, t) ∧ LastUserMove(s, m) ∧
Question(m) ∧ AboutObj(m, o)∧
AboutFeat(m, f) ∧ AssertMove(a)∧
AboutObj(a, o) ∧ AboutFeat(a, f) ∧
AboutVal(a, v))]→ RelevantMove(a, s) (7)

Each of these Markov Logic rules has a weight
attached to it, expressing the strength of the im-
plication. A rule with infinite weight and satisfied
premises will lead to a relevant move with prob-
ability 1. Softer weights can be used to describe
moves which are less relevant but still possible in
a particular context. These weights can either be
encoded by hand or learned from data.

3.5 Rules application on POMDP belief state
The previous section assumed that the state s is
known. But the real state of a POMDP is never di-
rectly accessible. The rules we just described must
therefore be applied on the belief state. Ultimately,
we want to define a function Rel : #n → P(A),
which takes as input a point in the belief space and
outputs a set of relevant moves.

Due to the high dimensionality of the belief
space, the above function must be approximated

to remain tractable. One way to perform this ap-
proximation is to extract, for each point in b, a set
Sm of m most likely states, and compute the set
of relevant moves for each of them. We then de-
fine the global probability estimate of a being a
relevant move given b as such:

P (RelevantMove(a) | b, a) ≈∑

s∈Sm

P (RelevantMove(a, s) | s, a)× b(s) (8)

In the limit where m→ |S|, the error margin on
the approximation tends to zero.

4 Discussion

4.1 General comments
It is worth noting that the mechanism we just
outlined does not intend to replace the existing
POMDP planning and optimisation algorithms,
but rather complements them. Each step serves a
different purpose: the action space reduction pro-
vides an answer to the question “Is this action rel-
evant?”, while the policy optimisation seeks to an-
swer “Is this action useful?”. We believe that such
distinction between relevance and usefulness is
important and will prove to be beneficial in terms
of tractability.

It is also useful to notice that the Markov Logic
rules we described provides a “positive” definition
of the action space. The rules were applied to pro-
duce an exhaustive list of all admissible actions
given a state, all actions outside this list being de
facto labelled as non-admissible. But the rules can
also provide a “negative” definition of the action
space. That is, instead of generating an exhaustive
list of possible actions, the dialogue system can
initially consider all actions as admissible, and the
rules can then be used to prune this action space
by removing irrelevant moves.

Which of these two options provides the opti-
mal solution depends on two factors: the size of
the dialogue domain, and the domain knowledge
of the dialogue developer. As the dialogue do-
mains grow larger, the need for a positive defini-
tion of the action space becomes more acute, as the
action space is likely to grow exponentially with
the domain size and become untractable. But the
positive definition of the action space is also sig-
nificantly more expensive for the dialogue devel-
oper. There is therefore a trade-off between the
costs of tractability issues, and the costs of dia-
logue domain modelling.



4.2 Related Work
There is a substantial body of existing work in
the POMDP literature about the exploitation of
the problem structure to tackle the curse of di-
mensionality (Poupart, 2005; Young et al., 2010),
but the vast majority of these approaches retain
a propositional structure. A few more theoreti-
cal papers also describe first-order MDPs (Wang
et al., 2007), and recent work on Markov Logic
has extended the MLN formalism to include some
decision-theoretic concepts (Nath and Domingos,
2009). To the author’s knowledge, none of these
ideas have been applied to dialogue management.

5 Conclusions

This paper described a new approach to exploit re-
lational models of dialogue structure for dimen-
sionality reduction in POMDPs. This approach
is part of an ongoing work to develop a unified
framework for adaptive dialogue management in
rich, open-ended interactional settings. The dia-
logue manager is being implemented as part of a
larger cognitive architecture for talking robots.

Besides the implementation, future work will
focus on refining the theoretical foundations of
relational POMDPs for dialogue (including how
to specify the transition, observation and reward
functions in such a relational framework), as well
as investigating the use of reinforcement learning
for policy optimisation based on simulated data.
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Abstract
An important difficulty in developing spoken dialogue
systems for robots is the open-ended nature of most
interactions. Robotic agents must typically operate in
complex, continuously changing environments which
are difficult to model and do not provide any clear, pre-
defined goal. Directly capturing this complexity in a
single, large dialogue policy is thus inadequate. This
paper presents a new approach which tackles the com-
plexity of open-ended interactions by breaking it into a
set of small, independent policies, which can be acti-
vated and deactivated at runtime by a dedicated mecha-
nism. The approach is currently being implemented in
a spoken dialogue system for autonomous robots.

Introduction
Human-robot interactions (HRI) often have a distinctly
open-ended character. In many applications, the robot does
not know in advance which goals needs to be achieved, but
must discover these as it goes, during the interaction itself.
The user might communicate new requests, clarify or mod-
ify existing requests, ask questions, or provide the robot with
new information at any time. The robotic agent must there-
fore be capable of handling a wide variety of tasks, some
being purely reactive (such as answering a question), some
being more deliberative in nature (such as planning a com-
plex sequence of actions towards a long-term goal).

The interaction dynamics are also significantly more dif-
ficult to predict in HRI. In classical, slot-filling dialogue
applications, the domain provides strong, predefined con-
straints on how the dialogue is likely to unfold. Interactive
robots, on the other hand, usually operate in rich, dynamic
environments which can evolve in unpredictable ways. The
interaction is therefore much more difficult to model and de-
pends on numerous parameters. (Bohus and Horvitz 2009)
provide a review of important technical challenges to ad-
dress in such kind of open-ended interactions.

Previous work on this issue mostly focussed on tech-
niques for enlarging the state and action spaces to directly
capture this complexity. These techniques are usually cou-
pled with mechanisms for factoring (Bui et al. 2010) or ab-
stracting (Young et al. 2010) these large spaces to retain
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tractability. Applied to human-robot interactions, these ap-
proaches unfortunately suffer from two shortcomings: first,
the complexity of the dialogue planning problem increases
exponentially with the size of the state space, making these
approaches difficult to scale. Second, from the viewpoint of
the dialogue developer, maintaining and adapting dialogue
policies over very large spaces is far from trivial.

In this paper, we sketch a new approach which is specif-
ically tailored for open-ended interactions. Instead of us-
ing one single policy operating over large spaces, the idea
is to break up this complexity into a set of shorter, more
predictable interactions, which can be activated and deacti-
vated at runtime. The dialogue manager contains a reposi-
tory of potential policies, and decides which policies to use
at a given time via a dedicated policy activation mechanism.
Several policies can be activated in parallel, and the dialogue
manager is responsible for finding the right trade-offs be-
tween the activated policies.

Architecture
The general architecture of the dialogue system is illustrated
in Figure 1. The architecture revolves around a situated di-
alogue model, which stores various epistemic objects such
as beliefs, events and intentions. These epistemic objects
are generic representations of the agent’s knowledge (e.g.
the dialogue history, but also relevant perceptual informa-
tion), and are expressed as probabilistic relational structures
– see (Lison, Ehrler, and Kruijff 2010) for details. The di-
alogue manager continuously monitors this dialogue model,
and reacts upon changes by triggering new observations.
These observations can in turn influence the policy activa-
tion mechanism (by activating or deactivating policies), or
provide direct input to the active policies.

Approach
Instead of designing each dialogue policy by hand – a te-
dious task given the high levels of noise and uncertainty en-
countered in HRI –, we define each interaction as a Partially
Observable Markov Decision Process (POMDP), and apply
optimisation algorithms to extract a near-optimal policy for
it. POMDPs are a principled mathematical framework for
control problems featuring partial observability, stochastic
action effects, decision-making over arbitrary horizons, in-
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Figure 1: Architectural schema, illustrating the dialogue system as a whole (left), and the dialogue management module (right).

complete knowledge of the environment dynamics, and mul-
tiple, conflicting objectives. As such, they provide an ideal
modelling tool to develop dialogue policies for HRI.

A POMDP is defined as a tuple 〈S,A,Z, T,Ω, R〉, where
S is the state space; A is the action space; Z is the obser-
vation space; T (s, a, s′) is the transition function from state
s to state s′ using action a; Ω(z, a, s′) is the observation
function for observing z in state s′ after performing action
a; and R(s, a) is the reward function encoding the utility for
the agent of executing action a in state s.

A central idea of POMDP is the assumption that the state
is not directly accessible and can only be inferred from ob-
servation. Such uncertainty is expressed in the belief state b,
which is a probability distribution b : S → [0, 1] over possi-
ble states. A POMDP policy is then defined over this belief
space as a function π : B → A determining the action to
perform for each point of the belief space.

Each interaction is modelled in our approach as a separate
POMDP. Since these POMDPs have a small state space, a
well-defined purpose and a more predictable transition func-
tion, they are much easier to model (and estimate from data)
than a single, large POMDP.

Policy activation
The policy activation is based on a repository of policies.
Each policy is associated with a set of triggers. These trig-
gers are reactive to particular changes in the dialogue model
– a dialogue policy dealing with replies to user questions
will for instance be made reactive to the appearance of a
new question onto the dialogue model.

The dialogue model being represented as a probabilistic
relational structure, these policy triggers should exploit this
rich expressivity. A possibility would be the use of approx-
imate inference algorithms for first-order probabilistic lan-
guages such as Markov Logic Networks (Richardson and
Domingos 2006) to dynamically construct the set of relevant
policies for a given dialogue model.

Action selection with multiple policies
Several dialogue policies can be activated in parallel in the
dialogue manager. The agent must therefore be capable of

setting the right trade-offs between the various policies.
To this end, we maintain a separate belief point bi for each

activated policy pi. We define the vector b as the set of
these belief points. Assuming each policy also provides us
directly a Q-value function Qi(bi, a), we can then compute
the best global strategy π(b) by maximising the sum of Q-
values over the set of activated policies:

π(b) = argmax
a∈A

∑

bi∈b

Q(bi, a) (1)

The global action space A in Eq. (1) is defined as ∪iAi.
This enables us to select the action which is globally optimal
with respect to the set of activated policies.

Conclusion
In this paper, we presented a first sketch of an POMDP-
based approach to dialogue management which explicitly
handles open-ended interactions by activating and deactivat-
ing policies at runtime. Future work will focus on imple-
menting and evaluating the outlined approach in a real-world
dialogue system for autonomous robots.
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Young, S.; Gašić, M.; Keizer, S.; Mairesse, F.; Schatzmann,
J.; Thomson, B.; and Yu, K. 2010. The hidden information
state model: A practical framework for pomdp-based spo-
ken dialogue management. Computer Speech & Language
24(2):150–174.



Continual Processing of Situated Dialogue
in Human-Robot Collaborative Activities

Geert-Jan M. Kruijff, Miroslav Janı́ček and Pierre Lison
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Abstract— The paper presents an implemented approach of
processing situated dialogue between a human and a robot.
The focus is on task-oriented dialogue, set in the larger
context of human-robot collaborative activity. The approach
models understanding and production of dialogue to include
intension (what is being talked about), intention (the goal of why
something is being said), and attention (what is being focused
on). These dimensions are directly construed in terms of as-
sumptions and assertions on situated multi-agent belief models.
The approach is continual in that it allows for interpretations
to be dynamically retracted, revised, or deferred. This makes it
possible to deal with the inherent asymmetry in how robots and
humans tend to understand dialogue, and the world it is set in.
The approach has been fully implemented, and integrated into
a cognitive robot. The paper discusses the implementation, and
illustrates it in a collaborative learning setting.

I. INTRODUCTION

Particularly in task-oriented dialogues between a human
and a robot, there is usually more to dialogue than just
understanding words. The robot needs to understand what
is being talked about, sure. But she also needs to understand
why she was told something. What the human intends her
to do with the information, in the larger context of the joint
activity both are involved in.

In this paper we see task-oriented dialogue as part of a
larger collaborative activity, in which a human and the robot
are involved. They are planning together, executing their
plans. Dialogue plays a facilitatory role in this. It helps all
those involved build up a common ground, and maintain it
as plans are executed, and the world around them changes.

We present here an approach that models these aspects of
situated, task-oriented dialogue. We provide an algorithm in
which dialogue is understood, and generated, by looking at
why something is being said (intention), what that something
is about (intension), and how that helps to direct our focus
(attention). Core to the algorithm is abductive reasoning.
This type of reasoning tries to find the best explanation for
observations. In our case, it tries to find the best explanation
for why something was said (understanding), or how an
intention best could be achieved communicatively (gener-
ation). Thereby abduction directly works off the situated,
multi-agent belief models the robot maintains as part of its
understanding of the world, and of the agents acting therein.

Our approach views dialogue from a more intentional
perspective, like the work by Grosz & Sidner [6], Lochbaum

et al. [10], and most recently Stone et al [14], [15], [16]. Our
approach extends that of Stone et al.

Stone et al. formulate an algorithm for collaborative ac-
tivity, involving abductive reasoning, that forms the basis for
our approach. However, they assume that understanding and
production are symmetric. What I say is how you understand
it. This is optimistic for human-human dialogue, and rather
unrealistic for human-robot interaction. Robots hardly ever
perfectly understand what is meant. We need to allow for
the robot to act upon interpretations even when they are
incomplete or uncertain. And, should it turn out the robot
has misunderstood what was said, roll dialogue back to a
point where she can clarify and correct her understanding.

The approach enables this by introducing assertions into
our logics. This is inspired by Brenner & Nebel’s work on
continual planning [3]. An assertion is a content formula that
needs to be verified at a later point. In that it is different from
a propositional fact, which the robot knows to be either true
or false. We can introduce an assertion into an abductive
inference to help find an explanation, and thus act upon it.
It is just that this is then made contingent on the assertion
to become true sooner or later. In this paper, we show how
assertions can play a fundamental role in helping a robot and
a human to achieve common ground in collaborative activity.

Below, §II provides a brief overview on intentional ap-
proaches to dialogue. §III presents the approach. We discuss
situated multi-agent belief models, abductive reasoning, and
the algorithm for continual processing of collaborative activ-
ity. §IV discusses the implementation, and §V illustrates it
on working examples from an integrated robot system.

II. BACKGROUND

Recent theories of dialogue focus on how participants can
obtain common ground through alignment [11]. Agents align
how they communicate content, what they pay attention to,
and what they intend to do next. They base this on how they
perceive each other’s views on the world.

This works out reasonably well as long as we can assume
a more or less common way of “looking” at things. Even
when humans normally differ in what they know, can,
and intend to do, there is typically a common categori-
cal framework in which they can try to characterize the
world, to arrive at a common ground. But this is where a
problem arises in communication between a human, and a



robot that continuously learns. Because robots tend to see
things substantially different from how humans see things.
Which is why mechanisms for modeling, and dealing with,
such asymmetry in understanding are necessary for situated
dialogue. We present here an approach providing such means.

The approach is based on an extension of Stone &
Thomason’s (S&T) abductive framework [14], [15], [16].
S&T model comprehension and production of dialogue as
construction of abductive proofs. Abduction reasons towards
an explanation consisting of a consistent context update and
possible changes to attentional state. The explanation is based
on factual assumptions, observations, and inferred intentions,
all included at a context-sensitive cost. They thus place belief
context, attention, and intention on a par. This is similar to
other intentional approaches to dialogue and discourse, like
Grosz & Sidner’s [6]. S&T’s approach arguably provides
more flexibility [16] in that aspects such as reference resolu-
tion are dynamically determined through proof, rather than
being constrained by hierarchical composition of a context
model. For comprehension an abductive proof provides the
conditions under which an agent can update her belief model
and attentional model with the content for a communicated
utterance, and her task model using the inferred intentions
underlying the utterance. For production an abductive proof
provides the conditions for executing a plan to achieve an
intended context- and attentional update in another agent.

We extend S&T in several ways. We expand context [14]
to incorporate the types of situated multi-agent beliefs and
tasks the robot reasons with in understanding collaboration,
and the world as such. We also make S&T’s notion of
“checkpoints” more explicit. A checkpoint is a means to
establish whether assumptions are in fact warranted [16].
Checkpoints introduce a relation between the construction of
an explanation, and acting on it. This suggests a similarity to
the construction of a plan and the monitoring of its execution.
[3] introduce a notion of assertion for continual planning.
An assertion poses the availability of future observations, to
enable the construction of a continual plan including actions
based on such an assertion. Upon execution, assertions are
checked and are points for possible plan revision.

We propose to use a similar notion. In an abductive proof,
we can include assumptions, observations, and actions at
varying costs to infer an explanation. They all contribute
facts or outcomes from which further inferences can be
drawn. An assertion is a statement whose truth we need
to assume, but which we cannot prove or disprove on
the current set of beliefs of the agent. Marking assertions
turns these statements in an abductive proof into points that
warrant explicit verification – i.e. they act as checkpoints.
The notions of assertion and checkpoint provide the approach
with a fundamental way for dealing with asymmetry in
understanding, and resolving it to come to common ground.

III. APPROACH

A. Modeling multi-agent beliefs
We couch our approach to situated grounding in direct

reasoning about the agents’ beliefs. A belief is an agent’s

informational state that reflects her understanding of the
world and the way it has been talked about. Such an
understanding can be acquired through a direct observation,
i.e. as a result of a sensoric input, or through communication
with other agents, as is the case when engaging in a dialogue.
Moreover, these beliefs can explicitly model common beliefs,
which correspond to the beliefs that are a part of the common
ground among a group of agents.

A belief is a formula Ke/σ : φ that consists of three
parts: a content formula φ from a domain logic Ldom, the
assignment e of the content formula to agents, which we
call an epistemic status and the spatio-temporal frame σ in
which this assignment is valid.

We distinguish three classes of epistemic statuses, that give
rise to three classes of beliefs:

• private belief of agent a, denoted {a}, comes from
within the agent a, i.e. it is an interpretation of sensor
output or a result of deliberation.

• a belief attributed by agent a to other agents b1, ..., bn,
denoted {a[b1, ..., bn]}, is a result of a’s deliberation
about the mental states of b1, ..., bn (e.g. an interpreta-
tion of an action that they performed).

• a belief shared by the group of agents a1, ..., am,
denoted {a1, ..., am}, is common ground among them.

A spatio-temporal frame is a contiguous spatio-temporal
interval. The belief is only valid in the spatio-temporal frame
σ and frames that are subsumed by σ. This way, spatio-
temporal framing accounts for situatedness and the dynamics
of the world. The underlying spatio-temporal structure may
feature more complex spatial or temporal features.

Finally, the domain logic Ldom is a propositional modal
logic. We do not require Ldom to have any specific form,
except for it to be sound, complete and decidable.

Multiple beliefs form a belief model. A belief model is a
tuple B = (A,S ,K ,F ) where A is a set of agents, S is a
set of spatio-temporal frames, K is a set of beliefs formed
using A and S and F ⊆ K is a set of activated beliefs.

Belief models are assigned semantics based on a modal-
logical translation of beliefs into a poly-modal logic that
is formed as a fusion of KD45C

A (doxastic logic with a
common belief operator [4]) for epistemic statuses, K4n for
subsumption-based spatio-temporal reasoning and Ldom for
content formulas. This gives us a straightforward notion of
belief model consistency: a belief model is consistent if and
only if its modal-logical translation has a model.

The belief model keeps track of the beliefs’ evolution
in a directed graph called the history. The nodes of the
history are beliefs and operations on the belief model (such
as retraction) with (labeled) edges denoting the operations’s
arguments. The nodes that are beliefs and have no outcoming
edges form a consistent, most recent belief model.

B. Attaining common ground
A shared belief of a group G that φ implies all private

beliefs and all possible attributed beliefs that φ within that
group. For example, if φ is common ground between the
human user, h, and robot, r, then (i) implies (ii):



B |= K{r, h}/σ : φ ⇒

B |= K{r}/σ : φ
B |= K{r[h]}/σ : φ
B |= K{h}/σ : φ *
B |= K{h[r]}/σ : φ *

(i) (ii)

Since (i) and (ii) are inferentially equivalent within belief
models, the relation is in fact equivalence. If (ii) holds in the
belief model B, it also satisfies (i).

However, the agents’ private and attributed beliefs cannot
be observed by other agents, they are not ominiscient. The
beliefs above marked by asterisk (*) cannot be present in
the robot’s belief model. The validity of such beliefs can
only be assumed. An invalidation of the assumptions then
invalidates the premise (ii) and thus the conclusion (i). As
long as they are not invalidated, agents may act upon them:
they may assume that common ground has been attained.

But how can these assumptions be in principle mandated
or falsified? Given a communication channel C, we consider
a class of protocols PC that supply the means for falsification
of the assumptions. If these means are provided, then the
protocol is able to reach common ground. We assume that
the agents are faithful to Grice’s Maxim of Quality [5], i.e.
that they are truthful and only say what they believe to be
true and for what they have evidence.

C. Abductive inference with assertions

1) Context in abductive inference: Our abductive frame-
work consists of a set of modalised facts F and a set of rules
R. The modal contexts we utilise are the following:

• i – information. Used to mark the information that is
logically true, e.g. description of relational structures.

• e – event. Used to denote events which the robot is
trying to understand or produce.

• γ – intention. Marks the intention of an agent’s action.
In the interpretation phase, it is used to mark the
recognised intention. In the generation phase, it is used
as a goal in order to find its best possible realisation.

• a – attentional state. Marks the formulas that are in
the attention span. For beliefs, this corresponds to the
notion of foregrounded beliefs.

• k(e) – epistemic status. Assigns the predicate an epis-
temic status (private/attributed/shared).

• DURING(σ) – spatio-temporal frame. Assigns a spatio-
temporal frame to the predicate. Together with [k(e)],
the formulas can then be translated into beliefs.

We also include two “technical” contexts that exploit the
ability to bring modularity into logic programming following
Baldoni et al. [1].

• interpret – understanding phase module.
• generate – generation phase module.

In comparison to S&T’s definition of a context [14], we
include specific contexts for intentions (γ), epistemic statuses
(k(e)) and spatio-temporal frames (DURING(σ)), as well as
both “technical” contexts, interpret and generate. While the
addition of a context for assigning epistemic statuses and
spatio-temporal frames is specific for our purposes and stems

from the usage of belief models to model the state of the
world and common ground, the addition of the context for
distinguishing intentions is more general and allows us to
use intentions as an abstract layer.

2) Assertions: We propose a notion of assertion for
abduction based on test actions 〈F 〉? [2]. Baldoni et al.
specify a test as a proof rule. In this rule, a goal F follows
from a state a1, ..., an after steps 〈F 〉?, p1, ..., pm if we can
establish F on a1, ..., an with answer σ and this (also) holds
in the final state resulting fron executing p1, ..., pm. Using
the notion of context as per above, a test κ : 〈F 〉? means
we need to be able to verify F in context κ. If we only use
axioms A, testing is restricted to observability of facts. An
embedded implication D ⊃ C establishes a local module:
the clauses D can only be used to prove C. Formulating
a test over an embedded implication µ : (D ⊃ 〈C〉?), we
make it explicit that we assume the truth of the statement
but require its eventual verification in µ.

Finally, an assertion is the transformation of a test into a
partial proof which assumes the verification of the test, while
at the same time conditioning the obtainability of the proof
goal on the tested statements. Intuitively, µ : 〈D〉? within a
proof Π[〈D〉?] to a goal C turns into Π[D] → C ∧ µ : D.
Should µ : D not be verifiable, Π is invalidated.

D. Continual collaborative acting (CCA)
1) The algorithm: Our extension of S&T’s collaborative

acting algorithm [16] uses assertions in abductive inference,
to allow for a revision of beliefs once they were falsified.
We assume their truth until such a revision occurs. This
removes the need for S&T’s symmetry assumption. This is
represented in the VERIFIABLE-UPDATE operation, below.

Algorithm 1 Continual collaborative acting

Σπ = ∅

loop {
Perception

e ← SENSE()
〈c′, i, Π〉 ← UNDERSTAND(r, Z(c)⊕ Σπ, e)
c ← VERIFIABLE-UPDATE(c′, i, Π)

Determination and Deliberation
c′ ← ACT-TACITLY(p, c)
m ← SELECT(p, c′)
〈i, Π〉 ← GENERATE(r, c′, m, Z(c)⊕ Σπ)

Action
ACT-PUBLICLY(a(i))
c ← VERIFIABLE-UPDATE(c′, i, Π)

}

2) Verifiable update: The VERIFIABLE-UPDATE operation
operates on the belief model and a structure Σπ that we call
proof stack. This is an ordered store of abductive proofs that
contain assertions that have not been verified or falsified yet.
Given the proof Π, it checks whether there is a proof Π′ on
the stack whose assertions can be verified using the beliefs of



Π. If there are any beliefs in Π′ that were falsified, then the
Π′ should remain on the top: thus, the operation first pushes
Π onto the stack and then Π′. The belief model update is then
be based on those beliefs from Π that have been assumed in
the abductive proof and the asserted beliefs beliefs from Π′

that have been verified.
VERIFIABLE-UPDATE returns a consistent belief model.

Should there be beliefs in the update that cannot be con-
sistently added to the belief model, the operation retracts
some beliefs from the belief model so that the model can be
updated and stays as descriptive as possible. The retracted
beliefs are added to the stack as assertions so that they can
be corrected subsequently, or retracted altogether.

3) Grounding using CCA: If the robot (r) understands the
human’s (h) claim that φ in a frame σ, a proof containing
the belief K{r[h]}/σ : φ is added to the proof stack as
an assertion. If the robot can verify φ, then this assertion
is removed from the stack; the robot can then assume
K{h}/σ : φ per the Maxim of Quality. Similarly, the human’s
acceptance of the robot’s acknowledgment is a verification of
an assertion of on the proof stack, on which the robot (again
per Maxim of Quality) can assume the belief K{h[r]}/σ : φ.

Common ground can then be also assumed as long as these
beliefs are not contradicted. Should they be contradicted,
VERIFIABLE-UPDATE removes them from the belief model,
and the assumption of common ground is no longer valid.

IV. IMPLEMENTATION

A. The architecture
The approach has been fully implemented in a cogni-

tive robot architecture. The cognitive architecture integrates
sensory and deliberative information-processing components
into a single cognitive system, in a modular fashion. The
continual collaborative acting (CCA) is implemented as one
of these components.

The design of the system is based on the CoSy Architec-
ture Schema (CAS) [7]. CAS is a set of rules that delimit the
design of a distributed information-processing architecture
in which the basic processing unit is called a component.
Components related by their function are grouped into sub-
architectures. Each subarchitecture is assigned a working
memory, a blackboard which all the components within the
subarchitecture may read or write to. Inter-component and
inter-subarchitecture communication is achieved by writing
to these working memories. The schema is implemented
using the CoSy Architecture Schema Toolkit (CAST).

In our scenario, we use a robot in a table-top scenario,
observing and manipulating visual objects. The goal is to
build a visual categorical models of the objects in the
scene. The robot can interact with a human, e.g. to ask the
human for clarification when it is uncertain about its sensory
interpretation of the visual input. This clarification is then
used to extend or update the visual models.

The scenario involves the subarchitectures for vision [17],
communication (“comsys”) and binding [8]. Each subar-
chitecture’s working memory contains specialised repre-
sentations of the information processed by the associated

components. The visual working memory contains regions
of interest generated by a segmentor and proto-objects
generated by interpreting these regions. The communica-
tion subarchitecture working memory contains logical forms
generated from parsing utterances. The task of the bind-
ing subarchitecture [8] is to combine these subarchitecture-
specific data representations into a common a-modal one.
The binding architecture (henceforth “binder”) uses Bayesian
networks to derive a probability distribution over the possible
combinations and builds and maintains the belief model in
a bottom-up fashion.

B. The abducer
The weighted abduction algorithm as formulated by

Stickel [13] and later Baldoni et al. is straightforward to
implement within the logic programming paradigm. We have
used Mercury, a purely declarative logic/functional program-
ming language that resembles both Prolog and Haskell but
which is compiled rather than interpreted [12].

The abducer rule set is currently static and is common for
both the understanding and generation phases of the CCA
algorithm in which the abducer is used. We use the two
technical modal contexts interpret and generate as described
above in order to distinguish rules that can only be applied
in one of the phases.

C. The CCA component
1) Understanding an observed action: The CCA is imple-

mented as a component within the communication subarchi-
tecture. It is notified of any logical form corresponding to a
recognized utterance together with a list of possible bindings
of its referential expressions to binder unions appearing on its
working memory. This is interpreted as an event observation
in the perception phase of the CCA loop. Each of the
possible bindings is assigned a probability by the binder.
This information is used by the abducer to find the best
explanation of the entire utterance.

Currently, the only action that is interpreted as an event by
the CCA is a dialogue act by the user. However, the frame-
work can accomodate events recognized by other modalities
(such as vision) as well.

2) Clarification requests: If a modality (vision in our
scenario) needs to find out more about a certain object
from the user, it writes a clarification request to the comsys
working memory. This is picked up by the CCA, interpreted
as a tacit action within the CCA loop. It makes the robot
generate a context-aware clarification question. This results
in the question core to appear onto the proof stack as an
assertion, thus making it a potential belief model update.

3) Verification of asserted beliefs: Modalities can verify
the asserted beliefs. For instance, if the user says “the box is
blue” (an assertion about the box) the vision subarchitecture
is notified of the new assertion appearing on the proof stack
and can check whether the information is consistent with
its visual model and if not, whether the visual model can
be extended or updated. If so, the subarchitecture updates
the visual model and notifies the CCA component, which



then (as a result of a tacit action) generates an appropriate
feedback such as “yes, i can see that”.

This change then percolates into the vision working mem-
ory and triggers the binder to form an updated belief model.

4) Acting: The public action selection in our implemen-
tation is done by using a finite-state automaton that maps
recognised communicative intentions to intentions to act. In
the future, we would like to employ a POMDP-based action
selection [18] rather than a finite-state automaton.

The action is then abductively transformed (GENERATE)
to a structure that can be written to a corresponding working
memory. Currently, our system only supports communicative
actions using the communication subarchitecture.

V. EXPERIMENTATION

We illustrate our approach on a scenario in which a robot
gradually learns more about visual objects it sees (Figure
1). The interaction is mixed-initiative. Typically the robot
drives the dialogue by asking more about what it does not
understand. The success of such a dialogue depends strongly
on whether the human and the robot can arrive at common
ground. This is key in several respects. One, the robot needs
to be able to consistently integrate information it gets through
dialogue, into its belief models and visual models. This
may concern positive information, resulting in an update of
its models, or negative information. In the latter case, the
robot needs to revise its belief model, unlearn the incorrect
information, and then gather the correct information to learn
a better model. Below, we illustrate how the robot can deal
with these.

Fig. 1. The setting of the table-top scenario

A. Updating beliefs with human information
As the robot observes a new object in the visual scene, it

creates a private belief, (1), about this object. The belief is
explicitly connected to the a-modal representation u of the
object.

K{r} : @uobject (1)

After the human has placed the object, he indicates what
it is: “This is a box.” The robot creates a semantic represen-
tation of this utterance. It uses this information to create a

belief it attributes to the human (2): The robot believes the
human believes this is a box. This belief is also connected
to the visual object, and thus to the robot’s private belief.

K{r} : @uobject (1)
K{r[h]} : @u〈Type〉box (2), assertion

The robot can use the type-information to consistently
update its visual models. The vision subarchitecture thereby
positively verifies the information, represented by a private
belief (3) in the belief model.

K{r} : @uobject (1)
K{r[h]} : @u〈Type〉box (2)

K{r} : @u〈Type〉box (3)

If the robot then notifies the human of this verification, it
can lift the attributed belief (2) with the private belief (3) to a
shared belief (4), assuming the information to be grounded.

K{r} : @uobject (1)
K{r, h} : @u〈Type〉box (4)

The robot infers that a box typically has a color – but it
does not know what color the box is. Vision accordingly
poses an information request to the architecture, which
dialogue can help resolve. The request is based on a private
belief of the form K{r} : @u〈Color〉unknown. Stating
color as an assertion means the robot needs information from
the human to “verify” it, i.e. fill the gap.

K{r} : @uobject (1)
K{r, h} : @u〈Type〉box (4)

K{r} : @u〈Color〉unknown (5), assertion

The human responds cooperatively, saying “It is green.”
Abduction yields a proof that this information in principle
could answer the question the robot just raised [9]. This
gives rise to an attributed belief, with the color information:
K{r[h]} : @u〈Color〉green.

K{r} : @uobject (1)
K{r, h} : @u〈Type〉box (4)

K{r} : @u〈Color〉unknown (5), assertion
K{r[h]} : @u〈Color〉green (6), assertion

If vision can now use the information in the updated belief
to consistently extend its models, it verifies the assertion. The
belief attains shared status.

K{r} : @uobject (1)
K{r, h} : @u〈Type〉box (4)
K{r, h} : @u〈Color〉green (7)

B. Revising the belief model

Now, assume that instead of not knowing the color at
all, the robot hypothesizes that the box is yellow. In this
case, it asks “Is the box yellow?” based on the belief K{r} :
@u〈Color〉yellow. If the human now replies with “No, it is
not yellow,” the robot first creates a corresponding negative
belief, and unlearns the classification from its visual models.
The negative belief is shared. Next up, it still wants to know
what color the box has. The belief model then contains both
the shared negative belief (8) and the open private belief
about the now unknown color (9).



K{r} : @uobject (1)
K{r, h} : @u〈Type〉box (4)
K{r, h} : @u〈Color〉not(yellow) (8)

K{r} : @u〈Color〉unknown (9), assertion

The dialogue now returns to a flow similar to the above.
If the human responds with “It is green,” the robot can
again update its belief model and visual models. The
robot now holds both a negative shared belief about color
(not(yellow)) and a positive shared belief about it (green).

K{r, h} : @u〈Type〉box (4)
K{r, h} : @u〈Color〉not(yellow) (8)
K{r, h} : @u〈Color〉green (10)

All of these beliefs are connected, being anchored to the
visual referent we have been talking about. This connection
provides a belief history. The robot not only has its current
beliefs, it can also introspect how it got there. If the human
would now ask, for example to test, whether the robot still
thinks whether the object is yellow, the robot can reply “No.
It is green.” This makes fully transparent the chain of shared
beliefs that the robot has, pertaining to the box object.

VI. CONCLUSIONS

We presented an approach to processing situated dialogue
in human-robot interaction, as set in a larger collaborative
activity. The approach both looks at what utterances are
about, and why they are or should be uttered: Intension
and intention are put on a par. The approach uses weighted
abduction to drive processing. This allows for a smooth
integration with probabilistic interpretation hypotheses we
get from other forms of processing, e.g. binding or vision.

Currently, we are investigating how we can combine this
approach with plan- and intention recognition to achieve a
close integration with collaborative action planning, and with
POMDP-based action selection. The latter would help us to
select actions even when interpretation does not yield enough
information to completely interpret an utterance.
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Belief Modelling for Situation Awareness in Human-Robot Interaction

Pierre Lison, Carsten Ehrler and Geert-Jan M. Kruijff

Abstract— To interact naturally with humans, robots needs
to be aware of their own surroundings. This awareness is
usually encoded in some implicit or explicit representation of
the situated context. In this paper, we present a new framework
for constructing rich belief models of the robot’s environment.
Key to our approach is the use of Markov Logic as a unified
framework for inference over these beliefs. Markov Logic is
a combination of first-order logic and probabilistic graphical
models. Its expressive power allows us to capture both the rich
relational structure of the environment and the uncertainty
arising from the noise and incompleteness of low-level sensory
data. The constructed belief models evolve dynamically over
time and incorporate various contextual information such
as spatio-temporal framing, multi-agent epistemic status, and
saliency measures. Beliefs can also be referenced and extended
“top-down” via linguistic communication. The approach is
being integrated into a cognitive architecture for mobile robots
interacting with humans using spoken dialogue.

I. INTRODUCTION

The situated context plays a central role in human-robot
interaction (HRI). To be able to interact naturally with
humans, robots needs to be aware of their own environment.
This situation awareness is generally expressed in some sort
of belief models in which various aspects of the external
reality are encoded. Such belief models provide an explicit
or implicit representation for the current state of the world,
from the robot’s viewpoint. They therefore serve as a repre-
sentational backbone for a wide range of high-level cognitive
capabilities related to reasoning, planning and learning in
complex and dynamic environments. They are also essential
for the robot to verbalise its own knowledge.

In speech-based HRI, critical tasks in dialogue under-
standing, management and production are directly depen-
dent on such belief models. Examples are context-sensitive
speech recognition [15], reference resolution and generation
in small- [11] and large-scale space [24], spoken dialogue
parsing [14] and interpretation [20], dialogue management
[23], user-tailored response generation [22], and contextually
appropriate intonation patterns [13]. Contextual knowledge is
also a prerequisite for the dynamic adaptation of the robot’s
behaviour to different environments and interlocutors [3].

Belief models are usually expressed as high level symbolic
representations merging and abstracting information over
multiple modalities. For HRI, the incorporated knowledge
might include (inter alia): entities in the visual scene, spatial
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structure, user profiles (intentional and attentional state,
preferences), dialogue histories, and task models (what is
to be done, which actions are available).

The construction of such belief models raises two impor-
tant issues. The first question to address is how these high-
level representations can be reliably abstracted from low-
level sensory data [1], [18]. To be meaningful, most symbolic
representations should be grounded in (subsymbolic) sensory
inputs [19]. This is a difficult problem, partly because of
the noise and uncertainty contained in sensory data (partial
observability), and partly because the connection between
low-level perception and high-level symbols is typically
difficult to formalise in a general way [6].

The second issue relates to how information arising from
different modalities and time points can be efficiently merged
into unified multi-modal structures [12], and how these
inputs can refine and constrain each other to yield improved
estimations, over time. This is the well-known engineering
problem of multi-target, multi-sensor data fusion [5].

Belief models are thus the final product of an iterative
process of information fusion, refinement and abstraction.
Typical HRI environments are challenging to model, being
simultaneously complex, multi-agent, dynamic and uncertain.
Four requirements can be formulated:

1) HRI environments are complex and reveal a large
amount of internal structure (for instance, spatial re-
lations between entities, or groupings of objects). The
formal representations used to model them must there-
fore possess the expressive power to reflect this rich
relational structure.

2) Interactive robots are made for multi-agent settings.
Making sense of communicative acts requires the
ability to distinguish between one’s own knowledge
(what I believe), knowledge attributed to others (what
I think the others believe), and shared common ground
knowledge (what we believe as a group).

3) Situated interactions are dynamic and evolve over time.
The incorporation of spatio-temporal framing is thus
necessary to go beyond the “here-and-now” and be ca-
pable of linking the present with (episodic) memories
of the past and anticipation of future events.

4) And last but not least, due to the partial observability of
most contextual features, it is crucial that belief models
incorporate an explicit account of uncertainties.

Orthogonal to these “representational” requirements, cru-
cial performance requirements must also be adressed. To
keep up with a continuously changing environment, all
operations on belief models (updates, queries, etc.) must be
performed under soft real-time constraints.



This paper presents ongoing work on a new approach to
multi-modal situation awareness which attempts to address
these requirements. Key to our approach is the use of a
first-order probabilistic language, Markov Logic [17], as a
unified representation formalism to perform various kind of
inference over rich, multi-modal models of context. Markov
Logic is a combination of first-order logic and probabilistic
modelling. As such, it provides an elegant account of both
the uncertainty and complexity of situated human-robot
interactions. Our approach departs from previous work such
as [9] or [18] by introducing a much richer modelling
of multi-modal beliefs. Multivariate probability distributions
over possible values are used to account for the partial
observability of the data, while the first-order expressivity
of Markov Logic allows us to consisely describe and reason
over complex relational structures. As we shall see, these
relational structures are annotated with various contextual
information such as spatio-temporal framing (where and
when is the entity assumed to exist), epistemic status (for
which agents does this belief hold), and saliency (how
prominent is the entity relative to others). Furthermore, per-
formance requirements can be addressed with approximation
algorithms for probabilistic inference optimised for Markov
Logic [17], [16]. Such algorithms are crucial to provide an
upper bound on the system latency and thus preserve its
efficiency and tractability.

The rest of this paper is structured as follows. Section II
provides a brief introduction to Markov Logic, the framework
used for belief modelling. Section III details our approach in
terms of architecture, representations, and processing opera-
tions. Section IV discusses further aspects of our approach.
Section V concludes and provides directions for future work.

II. BACKGROUND

Markov logic combines first-order logic and probabilistic
graphical models in a unified representation [17]. A Markov
logic network L is defined as a set of pairs (Fi, wi), where Fi

is a first-order formula and wi ∈ R is the associated weight
of that formula. A Markov logic network can be interpreted
as a template for constructing Markov networks, which in
turn can be used to perform probabilistic inference over the
relational structure defined by the set of formulas Fi.

A. Markov Network
A Markov network G, also known as a Markov random

field, is an undirected graphical model [10] for the joint
probability distribution of a set of random variables X =
(X1, . . . , Xn) ∈ X . The network G contains a node for
each random variable Xi. The joint probability of a Markov
network is defined as such:

P (X = x) =
1
Z

∏

k

φk(x{k}) (1)

where φk(x{k}) is a potential function mapping the state of
a clique1 k to a non-negative real value. Z is a normalization
constant (known as partition function).

1In graph theory, a clique is a fully connected subgraph. That is, a subset
of nodes where each node is connected with each other.

Alternatively, the potential function φk in (1) can be
replaced by an exponentiated weighted sum over real-valued
feature functions fj :

P (X = x) =
1
Z

e(
P

j wjfj(x)) (2)

B. Ground Markov Network
Recall that a Markov logic network L is a set of pairs

(Fi, wi). If in addition to L we also specify a set of constants
C = {c1, c2, ..., c|C|}, one can generate a ground Markov
network ML,C as follows:

1) For each possible predicate grounding over the set C,
there is a binary node in ML,C . The value of the node
is true iff the ground predicate is true.

2) For every formula Fi, there is a feature fj for each
possible grounding of Fi over C. The value of the
feature fi(x) is 1 if Fi is true given x and 0 otherwise.
The weight of the feature corresponds to the weight wi

associated with Fi.
The graphical representation of ML,C contains a node for
each ground predicate. Furthermore, each formula Fi defines
a set of cliques j with feature fj over the set of distinct
predicates occurring in Fi. For further details see [17].

Fig. 1. Example (adapted from [17]) of a ground Markov Network ML,C
given the Markov logic network L = (∀x.P (x)∨Q(x), w) and C = {A}.
It contains a single clique with feature f . The value of f is 1 for the three
worlds (P (A), Q(A)), (¬P (A), Q(A)), (P (A),¬Q(A)). Following Eq.
(3), the probability of each of these worlds is ew/Z, where Z = ew + 1.
For the last world (¬P (A),¬Q(A)) the formula is false (f = 0) and its
probability is 1/Z (thus tending to 0 as w →∞).

C. Inference
Once a Markov network ML,C is constructed, it can be

exploited to perform conditional inference over the relational
structure defined by L. Following (1), the joint probability
distribution of a ground Markov network ML,C is given by

P (X = x) =
1
Z

∏

i

φi(x{k})ni(x) =
1
Z

e(
P

i wini(x)) (3)

The function ni(x) in (3) counts the number of true ground-
ings of the formula Fi in ML,C given x. Due to the nor-
malization term Z, exact inference is in general infeasible.
However, efficient algorithms for probabilistic inference such
as Markov Chain Monte Carlo (MCMC) can then be used
to yield approximate solutions [16].

D. Learning
The weight wi in a Markov logic network encode the

“strength” of its associated formula Fi. In the limiting
case, where limwi→∞, the probability of a world violating
Fi has zero probability. For smaller values of the weight,
worlds violating the formula will have a low, but non-zero
probability. Weights can be learned on training samples using
classical gradient-based techniques, or sampling.



III. APPROACH

We now describe our approach to belief modelling for
situation awareness. We detail the architecture in which our
system is integrated, the representations we used, and the
processing components operating on them.

A. Architecture
Our approach is being developed as part of a distributed

cognitive architecture for autonomous robots in open-ended
environments [7]. The architecture has been applied to vari-
ous scenarios such as visual learning and object manipulation
in a tabletop scene [21] and exploration of indoor environ-
ments for human-augmented mapping [8].

Our approach to rich multi-modal belief modelling is
implemented in a specific module called the “binder”. The
binder is directly connected to all subsystems in the ar-
chitecture (i.e. vision, navigation, manipulation, etc.), and
serves as a central hub for the information gathered about
the environment. The core of the binder system is a shared
working memory where beliefs are formed and refined based
on incoming perceptual inputs. Fig. 2 illustrates the connec-
tion between the binder and the rest of the architecture.

B. Representation of beliefs
Each unit of information describing an entity2 is expressed

as a probability distribution over a space of alternative
values. These values are formally expressed as propositional
logical formulae. Such unit of information is called a belief.

Beliefs are constrained both spatio-temporally and epis-
temically. They include a frame stating where and when the
described entity is assumed to exist, and an epistemic status
stating for which agent(s) the information contained in the
belief holds. Finally, beliefs are also given an ontological
category used to sort the various belief types.

Formally, a belief is a tuple 〈i, e, σ, c, δ〉, where i is
the belief identifier, e is an epistemic status, σ a spatio-
temporal frame, c an ontological category, and δ is the
belief content itself. The content δ is typically defined by
a list of features. For each feature, we have a (continuous
or discrete) distribution over alternative values. Fig. 3(a)
provides a schematic illustration of a belief.

In addition, beliefs also contain bookkeeping information
detailing the history of their formation. This is expressed
as pointers to the belief ancestors (i.e. the beliefs which
contributed to the emergence of this particular belief) and
offspring (the ones which themselves emerged out of it).

The spatio-temporal frame σ defines a a probability dis-
tribution over the existence of the entity in a given temporal
and spatial domain. The frame can for instance express that
a particular visual object is thought to exist (with a given
probability) in the world at a location l and in a temporal
interval [t1, t2].

The epistemic status e for an agent a can be either:
• private: denoted {a}, is a result of agent a’s perception

of the environment;
2The term “entity” should be understood here in a very general sense.

An entity can be an object, a place, a landmark, a person, etc.
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Fig. 2. Schema of the cognitive architecture in relation with the binder
system and its working memory

• attributed: denoted {a[b1, ..., bn]}, is a’s conjecture
about the mental states of other agents b1, ..., bn, usually
resulting from communicative acts.

• shared: denoted {a1, ..., am}, is information which is
part of the common ground for the group[2].

As a brief illustration, assume a belief bi defined as

〈i, {robot}, σi, visualobject, δi〉 (4)

where the spatio-temporal frame σi can be a normal distri-
bution over 3D space combined with a temporal interval:

σi = (N3(µ,Σ), [t1, t2]) (5)

and with the content δi being composed of two features:

〈LABEL〉 = {(mug, 0.7), (Unknown, 0.3)} (6)
〈COLOUR〉 = {(red, 0.8), (orange, 0.2)} (7)

Note that the probability distributions between features are
by default assumed to be conditionally independent.

Feature values can be either discrete (as for categorical
knowledge) or continuous (as for real-valued measures). A
feature value can also be a pointer to another formula:

〈LOCATION〉 k (8)

where k points to another belief. Such pointers are crucial
to capture relational structures between entities.

Converting the probability distribution δ into Markov
Logic is relatively straightforward. Modal operators are
translated into first-order predicates and nominals into con-
tants. A (sub-)formula 〈COLOUR〉 blue with probability p1

for a belief i is therefore expressed as:

w1 Colour(I1, I2) ∧ Blue(I2) (9)

where the weight w1 = log
p1

1 − p1
.
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Fig. 3. Rich belief modelling for HRI: representations (left) and processing (right).

C. Levels of beliefs

The beliefs constructed and refined in the binder can be of
different types. The number and nature of these types depend
on the application domain. We discuss here four levels which
are common for cognitive robotic architectures:

1) The lowest-level type of beliefs is the percept, which
is a uni-modal representation of a given entity in
the environment. Perceptual beliefs are inserted onto
the binder by the various subsystems included in the
architecture. The epistemic status of a percept is private
per default, and the temporal frame is constrained to
the present time-point.

2) If several percepts (from distinct modalities) are as-
sumed to originate from the same entity, they can be
grouped into a percept union. A percept union is just
another belief, whose content is the combination of all
the features from the included percepts.

3) The features of a percept union can be abstracted using
multi-modal fusion and yield a multi-modal belief.

4) If the current multi-modal belief (which is constrained
to the present spatio-temporal frame) is combined
with beliefs encoded in past or future spatio-temporal
frames, it forms a temporal union.

5) Finally, the temporal unions can be refined over time
to improve the estimations, leading to a stable belief,
which is both multi-modal and spans an extended
temporal frame.

Since beliefs can point to each other, such models are
able to capture relational structures of arbitrary complexity.
Beliefs can also express past or future knowledge (i.e.
memories and anticipations). That is, beliefs need not be
directly grounded in the “here-and-now” observations.

D. Iterative belief refinement

We now turn our attention to the way stable beliefs can be
constructed bottom-up from the initial input provided by the
perceptual beliefs. The formation of stable beliefs proceeds
in four consecutive steps: (1) perceptual grouping, (2) multi-

modal fusion, (3) tracking and (4) temporal smoothing. Fig.
3(b) provides a graphical illustration of this process.

1) Perceptual grouping: The first step is to decide which
percepts from different modalities belong to the same real-
world entity, and should therefore be grouped into a belief.
For a pair of two percepts p1 and p2, we infer the likelihood
of these two percepts being generated from the same under-
lying entity in the real-world. This is realised by checking
whether their respective features correlate with each other.

The probability of these correlations are encoded in a
Markov Logic Network. The formulae might for instance ex-
press a high compatibility between the haptic feature “shape:
cylindrical” and the visual feature “object: mug” (since most
mugs are cylindrical), but a very low compatibility between
the features “shape: cylindrical” and “object: ball”. Eq. 10
illustrates the correlation between the cylindrical shape (Cyl)
and the object label “mug” (Mug).

wi ∃i, j Shape(x, i) ∧ Cyl(i) ∧
Label(y, j) ∧ Mug(j) → Corri(x, y) (10)

A grouping of two percepts will be given a high probability if
one or more feature pairs correlate with each other, and there
are no incompatible feature pairs. This process is triggered
at each insertion or update of percepts. Its outcome is a
probability distribution over possible percept unions.

2) Multi-modal fusion: We want multi-modal beliefs to go
beyond the simple superposition of isolated modal contents.
Multi-modal information should be fused. In other words,
the modalities should co-constrain and refine each other,
yielding new multi-modal estimations which are globally
more accurate than the uni-modal ones. We are not talking
here about low-level fusion on a metric space, but about
fusion based on conceptual structures. These approaches
should be seen as complementary with each other.

Multi-modal fusion is also specified in a Markov Logic
Network. As an illustration, assume a multi-modal belief B
with a predicate Position(B, loc) expressing the positional
coordinates of an entity, and assume the value loc can be
estimated via distinct modalities a and b by way of two



predicates Position(a)(U, loc) and Position(b)(U, loc)
included in a percept union U.

wi Position(a)(U, loc) → Position(B, loc) (11)
wj Position(b)(U, loc) → Position(B, loc) (12)

The weights wi and wj specify the relative confidence of the
modality-specific measurements.

3) Tracking: Environments are dynamic and evolve over
time – and so should beliefs. Analogous to perceptual
grouping which seeks to bind observations over modalities,
tracking seeks to bind beliefs over time. Both past beliefs
(memorisation) and future beliefs (anticipation) are consid-
ered. The outcome of the tracking step is a distribution over
temporal unions, which are combinations of beliefs from
different spatio-temporal frames.

The Markov Logic Network for tracking works as follows.
First, the newly created belief is compared to the already
existing beliefs for similarity. The similarity of a pair of
beliefs is based on the correlation of their content (and spatial
frame), plus other parameters such as the time distance
between beliefs. If two beliefs B1 and B2 turn out to be
similar, they can be grouped in a temporal union U whose
temporal interval is defined as [start(B1), end(B2)].

4) Temporal smoothing: Finally, temporal smoothing is
used to refine the estimates of the belief content over time.
Parameters such as recency have to be taken into account,
in order to discard outdated observations.

The Markov Logic Network for temporal smoothing is
similar to the one used for multi-modal fusion:

wi Position(t-1)(U, loc) → Position(B, loc) (13)
wj Position(t)(U, loc) → Position(B, loc) (14)

IV. EXTENSIONS

A. Salience modelling

The belief formula of an entity usually contains a specific
feature representing its salience. The salience value gives an
estimate of the “prominence” or quality of standing out of
a particular entity relative to neighboring ones. It allows us
to drive the attentional behaviour of the agent by specifying
which entities are currently in focus.

In our model, the salience is defined as a real-valued
measure which combines several perceptual measures such as
the object size and its linear and angular distances relative to
the robot. During linguistic interaction, these perceptual mea-
sures can be completed by measures of linguistic saliency,
such as the recency of the last reference to the object.

The salience being real-valued, its probability is defined
as a density function " → [0, 1].

B. Referencing beliefs

Beliefs are high-level symbolic representations available
for the whole cognitive architecture. As such, they provide
an unified model of the environment which can be used
during interaction. An important aspect of this is reference
resolution, which connects linguistic expressions such as

Percept p2 Percept p3Percept p1

Belief b2 Belief b3Belief b1

Reference r1

P=0.01

P=0.92

P=0.02

Asserted 
formula a1

link

“ this is yellow ” 

this yellow

Fig. 4. An utterance such as “This is yellow” illustrates the two mechanisms
of referencing and belief extension. First, the expression “this” is resolved
to a particular entity. Since “this” is a (proximal) deictic, the resolution
is performed on basis of saliency measures. The belief B2 is selected as
most likely referent. Second, the utterance also provides new information –
namely that the object is yellow. This asserted content must be incorporated
into the robot’s beliefs. This is done by constructing a new belief which is
linked (via a pointer) to the one of the referred-to entity.

“this box” or “the ball on the floor” to the corresponding be-
liefs about entities in the environment. Reference resolution
is performed via a Markov Logic Network specifying the
correlations between the linguistic constraints of the referring
expression and the belief features (in particular, the entity
saliency and its associated categorical knowledge).

Formula (15) illustrates the resolution of a referring ex-
pression R containing the linguistic label “mug” to a belief
B which includes a label feature with value Mug:

wi ∃i, j Label(B, i) ∧ Mug(j) ∧
Ref(R, j) ∧ Mug(j) → Resolve(R, B) (15)

The resolution process yields a probability distribution over
alternative referents, which is then retrieved by the commu-
nication subsystem for further interpretation.

C. Asserting new information

In Section III-D, we described how beliefs can be formed
from percepts, bottom-up. When dealing with cognitive
robots able to reflect on their own experience, anticipate
possible events, and communicate with humans to improve
their understanding, beliefs can also be manipulated “top-
down” via high-level cognitive functions such as reasoning,
planning, learning and interacting.

We concentrate here on the question of belief extension via
interaction. In addition to simple reference, interacting with
a human user can also provide new content to the beliefs.
Using communication, the human user can directly extend
the robot’s current beliefs, in a top-down manner, without
altering the incoming percepts. The epistemic status of this
information is attributed. If this new information conflicts
with existing knowledge, the agent can decide to trigger a
clarification request to resolve the conflict.

Fig. 4 provides an example of reference resolution coupled
with a belief extension.



D. Belief filtering

Techniques for belief filtering are essential to keep the
system tractable. Given the probabilistic nature of the frame-
work, the number of beliefs is likely to grow exponentially
over time. Most of these beliefs will have a near-zero
probability. A filtering system can effectively prune such
unecessary beliefs, either by applying a minimal probability
threshold on them, or by maintaining a fixed maximal
number of beliefs in the system at a given time. Naturally,
a combination of both mechanisms is also possible.

In addition to filtering techniques, forgetting techniques
could also improve the system efficiency [4].

V. CONCLUSION

In this paper, we presented a new approach to the con-
struction of rich belief models for situation awareness. These
beliefs models are spatio-temporally framed and include
epistemic information for multi-agent settings. Markov Logic
is used as a unified representation formalism, allowing us
to capture both the complexity (relational structure) and
uncertainty (partial observability) of typical HRI domains.

The implementation of the approach outlined in this paper
is ongoing. We are using the Alchemy software3 for efficient
probabilistic inference. The binder system revolves around
a central working memory where percepts can be inserted,
modified or deleted. The belief model is automatically up-
dated to reflect the incoming information.

Besides the implementation, future work will focus on
three aspects. The first aspect pertains to the use of machine
learning techniques to learn the model parameters. Using
statistical relational learning techniques and a set of training
examples, it is possible to learn the weights of a given
Markov Logic Network [17]. The second aspect concerns the
extension of our approach to non-indexical epistemic knowl-
edge –i.e. the representation of events, intentions, plans, and
general knowledge facts. Finally, we want to evaluate the
empirical performance and scalability of our approach under
a set of controlled experiments.
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[8] N. Hawes, H. Zender, K. Sjöö, M. Brenner, G.-J. M. Kruijff, and

P. Jensfelt. Planning and acting with an integrated sense of space.
In Proceedings of the 1st International Workshop on Hybrid Control
of Autonomous Systems – Integrating Learning, Deliberation and
Reactive Control (HYCAS), pages 25–32, Pasadena, CA, USA, July
2009.

[9] H. Jacobsson, N.A. Hawes, G.-J. M. Kruijff, and J. Wyatt. Crossmodal
content binding in information-processing architectures. In Proceed-
ings of the 3rd ACM/IEEE International Conference on Human-Robot
Interaction (HRI), Amsterdam, The Netherlands, March 12–15 2008.

[10] D. Koller, N. Friedman, L. Getoor, and B. Taskar. Graphical models
in a nutshell. In L. Getoor and B. Taskar, editors, Introduction to
Statistical Relational Learning. MIT Press, 2007.

[11] G-.J. M. Kruijff, J.D. Kelleher, and N. Hawes. Information fusion for
visual reference resolution in dynamic situated dialogue. In Perception
and Interactive Technologies (PIT 2006). Spring Verlag, 2006.

[12] G.-J. M. Kruijff, John D. Kelleher, and N. Hawes. Information
fusion for visual reference resolution in dynamic situated dialogue. In
Perception and Interactive Technologies: International Tutorial and
Research Workshop, PIT 2006, volume 4021 of Lecture Notes in
Computer Science, pages 117 – 128, Kloster Irsee, Germany, June
2006. Springer Berlin / Heidelberg.
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Abstract—The paper describes work in progress on a formal
system for representing, and reasoning with, situated multi-agent
belief models. These models capture what a particular agent
believes about the world, and what it believes about other agents.
Such beliefs arise from a mixture of inferences, ranging over the
agent’s direct perception of the world, what it has as semantic
background knowledge about the world, and what facts the
agent can infer to hold over time. The model puts probabilistic
and logical inference on a par, to balance logical structure with
a robustness to uncertain and partial information. The paper
discusses various forms of logical and probabilistic inference,
and the possibilities for combining them.

I. INTRODUCTION

A robot continuously builds up beliefs about the world, and
about the agents it is working with. It bases these beliefs in
its experience. This experience naturally covers the here-and-
now. What the robot currently sees, hears, plans to do. At
the same time, experience needs to go beyond that. Recording
past experience, the robot can reason about what once was –
and what might still be, even when the robot isn’t looking that
way right now. And, looking beyond the moment, the robot can
create expectations about what the future might bring. Either
based on what has been, or what can be expected to be the
case given general ”world” knowledge the robot has.

How can we capture all that in a belief model for a robot?
A belief model, or simply a collection of beliefs, is es-

sentially a dynamic model. Every time the robot forms new
beliefs, or alters ones that it already entertains, the belief model
needs to be updated. This update takes the model from some
state t to a new state t + 1.This new state reflects the robot’s
beliefs about the world.

Typically, the robot updates its beliefs on the basis of
perceptual input it gets, or deliberative steps it takes in
e.g. dialogue processing or action planning. Experiencing the
world, and acting on it, are the main drives for maintaining
and updating a robot’s belief model.

What we would like to achieve is that, within bounds, the
belief model represents “all” the robot could possibly know
about the aspects of the world it has held beliefs about.
By this we mean both a sense of temporal continuity or
persistence, and a sense of completion. By persistence we
mean that the robot can infer whether what it believed earlier
is still the case, currently. Even when the robot does not
have any current experience to confirm or disconfirm that.

By semantic completion we mean that when a robot creates
a belief based in experience, it can expand that belief by
making further inferences about that aspect of reality by using
its domain knowledge. There is a certain appeal to a model
like that. At each point, it represents “all there is to know
about experience” relative to the robot’s domain knowledge
and inference capabilities. And that means that any process
acting on, working with, that model only needs to inspect the
model to make its decisions, i.e. without needing to request
further information from other processes.

Just seeing this logically would be nice, but there is a
problem we need to face here. Namely, there is an inherent
uncertainty to a robot’s experience, reflected in the beliefs and
inferences it can draw from them. A robot never knows for sure
that the object in front of it is a mug – with some likelihood,
yes, but it could also be a box. Or the room it believes to be
a bedroom is actually a kitchen. A robot is never certain. Any
computation for dynamically updating belief models needs to
take these uncertainties into account. In this paper we discuss
how we can deal with this uncertainty, in combination with
complementary forms of logical inference.

§II discusses the situated multi-agent models of beliefs,
intentions and events we employ. These models are relational,
probabilistic models. Content takes the form of probabilistic
distributions over ontologically sorted, relational structures.
Beliefs, intentions, and events can also be related. In §III we
consider different forms of probabilistic inference over these
models, and in §IV we discuss the possibility of combining
logical inference to compute deductive closures, with proba-
bilistic inference for filtering.

II. SITUATED MULTI-AGENT MODELS

We would like to provide a cognitive system with an
awareness of the world it find itself in. And in which it is
acting and interacting with other agents. Often with the express
purpose to cooperate, to learn more. This naturally requires
the model to be situated in the world, but we need more. A
model needs to provide the means for the robot to form an
understanding of itself relative to world, and to other agents.
What they might know (or not), or might be able to do (or not).
Any potential asymmetry there is a potential source for self-
extension. And any successful resolution to that end ultimately
relies on the possibility of forming a mutual understanding.
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In this section we describe the modeling framework we
adopt. We focus primarily on the representational aspects of
the framework. Inference mechanisms over these belief models
are presented in more detail in the next sections.

A situated multi-agent model is an epistemic construct. It
is something internal to a robot. It is a reflection of the world
it is situated in, mediated by its experience. In that sense, it
is always the robot’s model of the world, as certain as its
experience can ever be. It is never the world itself.

Within this construct, we distinguish three different types of
epistemic objects: Beliefs, Intentions, and Events. As epistemic
objects they situate particular information relative to one or
more agents.

Definition 1 (Epistemic object): An epistemic object is a
tuple 〈σ, e〉 with σ a frame, and e an epistemic status.

Definition 2 (Epistemic status): The epistemic status e ∈ E
of an object indicates for which agent(s) the information in
the object holds. The set of possible statuses E is defined by
construction from a set of agents A and three (operator) types:

• private, denoted K{a}. Private beliefs come from within
the agent a. These beliefs are a direct or indirect result
of agent a’s experience of the environment.

• attributed, denoted K{a[b1, ..., bn]}. Attributed beliefs are
beliefs which are ascribed to other agents. They are
a’s conjecture about the cognitive states of other agents
b1, ..., bn.

• shared, denoted K{a1, ..., am}. Shared beliefs contain
information which is assumed to be part of the common
ground for a1, ..., am.

Shared epistemic status subsumes both private and attribute
epistemic status. A shared belief K{a, b} therefore also implies
the two private beliefs K{a} and K{b} and the two attributed
beliefs K{a[b]} and K{b[a]}.

Definition 3 (Frame): The frame σ of an object represents
the spatial or spatiotemporal frame for which the epistemic
object is thought to hold. Let S be the frame domain, i.e.
∀σ : σ ∈ S.

Typically, we consider a frame to be a contiguous spatiotem-
poral interval. The object is only valid in this interval, and
any frames σ′ that are subsumed by σ. This way, framing
can account for the situatedness and the dynamics of the
world. Under uncertainty, the spatio-temporal frame defines
a probability distribution over the existence of the entity in a
given temporal and spatial domain.

A belief is an epistemic object that represents a statement
about a state of the world. This state can be now, in the past, or
in the future; somewhere. This is captured by the frame of the
belief. It is contributed to one or more agents, represented
by its epistemic status. We represent the statement itself
as a mixture between logical and probabilistic information,
namely as a distribution over logical formulas. These formulas
form a graph structure that indicates (local) variations in how
an experience can be interpreted. Referential aspects of the
experience are captured directly in the formulas, e.g. which
area or what object a belief is about. In addition, the belief
itself has a (possibly sorted) identifier. This identifier makes
it possible for formulas to construct relational structures over
beliefs.

Definition 4 (Belief): A belief is an epistemic object, rep-
resented as a tuple 〈σ, e, δ, h〉. σ and e are the frame and
epistemic status of the belief, respectively. δ is the content of
the belief, and h is the history of the belief. The content δ is
typically defined by a list of features. For each feature, we have
a (continuous or discrete) distribution over alternative values. h
provides a revisioning record of changes to the belief, making
it possible to roll-back to a previous version of the belief.

The distribution δ defines the possible content values for
each feature defined in the belief. The feature values can be
either discrete (as for categorical knowledge) or continuous
(as for real-valued measures). Discrete values are generally
expressed as (propositional) logical formulae. A feature value
can also specify a reference to another belief, allowing us to
capture the relational structure of the environment we want to
model. The resulting relational structure can be of arbitrary
complexity.

Discrete probability distributions can be expressed as a set
of pairs 〈ϕ, p〉 with ϕ a formula, and p a probability value,
where the values of p must satisfy the usual constraints for
probability values. For continuous distributions, we generally
assume a known distribution (for instance, a normal distribu-
tion) combined with the required parameters (e.g. its mean and
variance). The distributions for the features contained in the
belief are assumed to be conditionally independent.

Instead of seeing a belief as a tuple, we can also think of
a belief functionally. A belief is a function from epistemic
statuses, frames, and logical formulas to a probability – or
a probability distribution, if a set of alternative formulas is
considered.

Definition 5 (Belief as function): Given E , S and a logical
domain L defining possible formulas, a belief can be defined
as a function E × S × L → [0...1] if strictly one formula is
selected from L. If multiple formulas from L are allowed, the
function maps to a PDF.

And we can decompose a belief as function even further,
if we consider L as the range of a mapping from (uncertain)
perceptual structures. This provides us then with a complex
yet continuous functional characterization from experience
to beliefs. The interesting aspect of seeing a belief from a
functional perspective is that we can turn this definition into
a probabilistic characterization of the belief space.

An event is a statement about dynamics that can make a
transition from one state into another state possible. This might
be a simple agent-initiated action, or an expectation about the
dynamics of an environment.

Definition 6 (Event): An event is an epistemic object, rep-
resented as a tuple 〈σ, e, τ 〉. σ is the frame of the event,
whereas e is the set of agents (including the world as agentive
force) that bring about a transition. τ is a probabilistic
distribution over possible transitions.

Functionally, an event defines a transition function from
(beliefs about) frames to (beliefs about) frames. It is this
functional understanding that we use in the notion of intention.

An intention is a statement that relates a set of beliefs
about an initial state, to a deliberately brought about change
(“action”), to yield another state. Which is again captured by
a set of beliefs. In other words, an intention is a relation
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between beliefs about a state, to another set of beliefs about
another state, brought about by an event that encodes a (usually
physical) action. Achieving the intention thus relies both on the
ability to bring about the event, and on the ability to perceive
(enough) of the world to be able to form the required beliefs
about the resulting state.

Definition 7 (Intention): An intention is an epistemic ob-
ject, represented as a tuple 〈σ, e, ι〉. σ is the frame of the
event, whereas e is the set of agents for which the intention
holds. ι is a probabilistic distribution over alternative intents.
Each intent is a tuple 〈pre, event,post, p〉 with pre a set
of beliefs about the state that is the precondition, post is a
set of beliefs about the state that is to ensue as post-condition,
and event is the event that is to bring about the transition
between the pre- and post-conditions. p is the probability of
the intent.

III. HYBRID INFERENCE METHODS

In this section we discuss hybrid methods for performing
abductive and deductive inference on situated multi-agent
models. These methods combine a logical type of inference
with probabilistic models to deal with uncertainty and incom-
pleteness.

A. Probabilistic abduction
Abduction is a method of backward logical reasoning that

allows inferring explanations of observations (facts). Formally,
given a theory T , a rule (T #)A → B and a fact B,
abduction allows inferring A as an explanation of B. B can
be deductively inferred from A ∪ T . If T &# A, then we say
that A is an assumption. Naturally, as there may be many
possible explanations for a given observation, a mechanism
for selecting the best explanation is required in practical
applications.

There are many ways to do this. For instance, one may only
allow the assumption of some facts, and prefer proofs with the
minimal number of assumptions. This is a direct application of
Occam’s razor on the “surface form” of the proofs. However,
in general, this syntactic criterion does not always lead to a
single best answer. Proof selection techniques therefore need
to look at the meaning of the assumed facts, in order to select
the most plausible explanation.

In our current work, we are employing logic programming
as a backbone of our abductive inference. The method for se-
lecting the most plausible explanations, while probabilistic, is
based on a cost-based mechanism called weighted abduction.

1) Proof procedure: We extend Hobbs and Stickel’s logic
programming approach to weighted abduction [1], [2] by a
contextual aspect following Baldoni et al [3]. We further
extend the approach with the notion of assertion [4] in order
to be able to reason about information not present in the
knowledge base, thereby addressing the need for reasoning
under the open-world assumption. Weights in the system
are assigned probabilistic semantics following Charniak and
Shimony [5].

Formally, inference in our system makes use of four in-
gredients: facts, rules, disjoint declarations and assumability
functions.

• Facts are modalised formulas of the form

µ : A

where µ is a (possibly empty) sequence of modal con-
texts, and A is an atomic formula, possibly containing
variables. Contexts help separating unrelated facts, re-
stricting the search space.

• Rules are modalised Horn clauses, i.e. formulas of the
form

(µ1 : A1/t1) ∧ ... ∧ (µn : An/tn) → (µH : H)

where each of the µi : Ai and µH : H are modalised
formulas. Each antecedent is annotated by ti, which
determines the way the antecedent is manipulated and
is one of the following:

– true – the antecedent has to be proven, i.e. either it
is a fact, or a head of some rule;

– assumable(f ) – the antecedent is assumable under
function f ;

– assertion – the antecedent is asserted, i.e. the validity
is assumed, but will eventually have to be proved.

• Assumability functions are partial functions f , f : F →
R+

0 , where F is the set of modalised formulas. Assuma-
bility functions assign weights to modalised formulas.

• A disjoint declaration is a statement of the form

disjoint([µ : A1, ..., µ : An])

which specifies that at most one of the modalised formu-
las µ : Ai may be used in the proof. Ai and Aj cannot
be unified for all i &= j.

A proof state is a sequence of marked modalised formulas
(called queries in this context)

Q1[n1], ...Qm[nm]

The markings ni are one of the following:

• unsolved(f ) – the query is yet to be proved, assumable
under assumability

• proved – the query is proved or in the process of being
proved; function f

• assumed(f ) – the query is assumed under f ;
• asserted – the query is asserted

The proof procedure starts from a single query marked as
unsolved, iteratively rewriting the proof state by manipulating
the leftmost unsolved query Ql. First, the query has to pass
constraints imposed by disjoint declarations. If it does, it
is either proved (using facts or rules), assumed under an
assumability function, or eliminated if any of the queries to
the right is unifiable with Ql. In other words, each query is
proved or assumed at most once.

The initial query Q is proved when there is no unsolved
query in the proof state. The final proof state ΠQ is then the
proof of Q.
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2) Weights and probabilities: In weighted abduction,
weights assigned to assumed queries are used to calculate
the overall proof cost. The proof with the lowest cost is the
best explanation. However, the weights are not assigned any
semantics, and often a significant effort by the writer of the
rule set is required to achieve expected results [1].

Charniak and Shimony [5] showed that by setting weights
to − log of the prior probability of the query, the resulting
proofs can be given probabilistic semantics.

Suppose that query Qk can be assumed true with some prob-
ability P (Qk is true). Then if Qk is assumable under assum-
ability function f such that f(Qk) = − log(P (Qk is true)),
and under the independence assumption, we can represent the
overall probability of the proof Π = Q1[t1], ..., Qn[tn] as

P (Π) = e
Pn

k=1 c(Qk)

where

c(Qk) =
{

f(Qk) if mi = assumed(f)
0 otherwise

The best explanation Πbest of a query Q is then

Πbest = arg max
Π proof of Q

P (Π)

Exact inference in this system is NP-complete, and so is
approximate inference given a threshold [5]. However, it is
straightforward to give an anytime version of the algorithm
– simply by performing iterative deepening depth-first search
[6] and memoizing the most probable proof so far.

3) Situated belief models and abduction: The abductive
inference allows smooth integration with multi-agent belief
models as described in §II. All logical information in beliefs,
events and intentions (e.g. epistemic statuses) is represented as
a set of modalised formulas. To demonstrate how probabilistic
information is modelled in the abductive inference, we discuss
the treatment of beliefs in detail. For events and intentions, an
analogous process applies.

Recall that per Definition 4, a belief content is a probability
distribution over possible content values. Every point in this
distribution is assigned a unique identifier. These identifiers are
then translated into a disjoint declaration, effectively promising
to fix the choice of a content value in a proof by the proof
procedure. The content itself is then represented as a set of
rules with antecedents corresponding to the identifier of the
content value, with the antecedent assumable under probability
given by the distribution.

For example, a content value distribution

δ = {(〈Color〉blue ∧ 〈Shape〉small) : 0.5,
(〈Color〉red ∧ 〈Shape〉small) : 0.3,
(〈Color〉green ∧ 〈Shape〉smal) : 0.2}

translates to a disjoint declaration

disjoint([cont(b, i1), cont(b, i2), cont(b, i3)])

and rules

cont(b, i1)/assumable(p(0.5)) → val(b, color(blue))
cont(b, i1)/assumable(p(0.5)) → val(b, shape(small))
cont(b, i2)/assumable(p(0.3)) → val(b, color(red))
cont(b, i2)/assumable(p(0.3)) → val(b, shape(small))
cont(b, i3)/assumable(p(0.2)) → val(b, color(green))
cont(b, i3)/assumable(p(0.2)) → val(b, shape(small))

where p(x) = − log x, and b is the identifier of the belief.
When proving val(b, color(X)), the proof procedure unifies

it with one of the rules above, and expands the antecedent
to the proof state; the antecedent is then assumed under the
corresponding function. If val(b, shape(small)) later occurs
in the proof, the disjoint declaration disallows the use of other
cont(...) than the one selected previously, committing to the
choice. The antecedent is then factored out as it has already
been assumed earlier, and no cost for assuming the valid
antecedent is charged.

The entire content value is thus expanded into the proof,
under the probability specified in the distribution.

4) Comparison with other approaches: Our system is sim-
ilar to Poole’s Probabilistic Horn abduction [7]. The main
difference, apart from the proof procedure which is cost-based
in our case, is that we do not include probabilities in our
formulation of disjoint declarations. As we employ factoring
so as to avoid double assumptions and proofs, we are able to
model the semantics of disjoint declarations with probabilities.

On the other hand, having a general disjoint declaration
allows us to define general rules such as simple negation,

disjoint([p(X), not p(X)])

or functional constraints on features, such as

disjoint([val(b, color(blue),
val(b, color(red)),
val(b, color(green))])

without having to specify the prior probabilities of the dis-
juncts.

In our rule sets for natural language understanding and
generation, we need to be able to manipulate with logical
structure (e.g. logical forms of utterances) efficiently. We have
found that the logic-programming-based approach is quite
satisfactory in this aspect, as we can employ standard Prolog
programming techniques. In other approaches to probabilistic
abduction such as Kate and Mooney’s abduction in Markov
Logic Networks [8], such tools are not available, which
crucially limits their usefulness in our application.

B. Probabilistic deduction

We are exploring to use of Markov Logic Networks to
perform particular types of deductive inference over situated
multi-agent models. Markov logic combines first-order logic
and probabilistic graphical models in a unified representation
[9]. The motivation for this is to use such expressive formalism
to capture the internal structure inherent to our models - some-
thing we would not able to do using e.g. (simple) Bayesian
networks.
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From a syntactic point of view, a Markov logic network
L is defined as a set of pairs (Fi, wi), where Fi is a first-
order formula and wi ∈ R is the associated weight of that
formula. A Markov logic network can be interpreted as a
template for constructing Markov networks. The structure and
parameters of the constructed network will vary depending on
the set of constants provided to ground the predicates of the
Markov Logic formulae. Such a Markov network represents
a probability distribution over possible words. It can be used
to perform probabilistic inference over the relational structure
defined by the formulas Fi.

In the following, we briefly review the definition of Markov
networks, and then show how they can be generated from a
Markov logic network L.

1) Markov Network: A Markov network G, also known
as a Markov random field, is an undirected graphical model
[10] for the joint probability distribution of a set of random
variables X = (X1, . . . , Xn) ∈ X . The network G contains a
node for each random variable Xi. The nodes in the network
can be grouped in a set of cliques. In graph theory, a clique is
a fully connected subgraph – that is, a subset of nodes where
each node is connected with each other. The joint probability
distribution of the Markov network can then be factorised over
the cliques of G:

P (X = x) =
1
Z

∏

k

φk(x{k}) (1)

where φk(x{k}) is a potential function mapping the state of
a clique k to a non-negative real value. Z is a normalization
constant, known as partition function, and is defined as Z =∑

x∈X
∏

k φk(x{k}).
Alternatively, the potential function φk in (1) can be re-

placed by an exponentiated weighted sum over real-valued
feature functions fj :

P (X = x) =
1
Z

e(
P

j wjfj(x)) (2)

The representation in (2) is called a log-linear model.
2) Constructing a Markov Network from a Markov Logic

Network: Recall that a Markov logic network L is a set of
pairs (Fi, wi). If in addition to L we also specify a set of
constants C = {c1, c2, ..., c|C|}, one can generate a ground
Markov network ML,C as follows [11]:

1) For each possible predicate grounding over the set C,
there is a binary node in ML,C . The value of the node
is true iff the ground predicate is true.

2) For every formula Fi, there is a feature fj for each
possible grounding of Fi over C. The value of the
feature fi(x) is 1 if Fi is true given x and 0 otherwise.
The weight of the feature corresponds to the weight wi

associated with Fi.

The graphical representation of ML,C contains a node for each
ground predicate. Furthermore, each formula Fi defines a set
of cliques j with feature fj over the set of distinct predicates
occurring in Fi.

Following (1) and (2), the joint probability distribution of a
ground Markov network ML,C is then given by:

P (X = x) =
1
Z

∏

i

φi(x{k})ni(x) =
1
Z

e(
P

i wini(x)) (3)

The function ni(x) in (3) counts the number of true groundings
of the formula Fi in ML,C given x.

3) Example of Markov Logic Network: Consider a simple
Markov Logic network L made of three unary predicates,
Tube(x), Rolls(x), and Box(x), and two formulae:

w1 Tube(x)→ Rolls(x) (4)
w2 Box(x)→ ¬Rolls(x) (5)

The formulae encode the fact that most tubes roll, while
most boxes don’t. Since these two rules admit a few exceptions
(some tubes may be square, and some boxes might be of a
form that affords rolling), they are specified as soft constraints
with finite weights w1 and w2.

Assuming a particular object A, we can construct a ground
Markov network ML,{A} over this single constant following
the procedure we just outlined. The network ML,{A} defines a
probability distribution over a set of 23 possible worlds (since
we have three unary predicates which can be true or false, and
one constant).

The probability of the world x =
(Tube(A),¬Rolls(A),¬Box(A)) can then be directly
computed using (3). The ground Markov Network countains
two features (one for each formula). In the case of world x,
the first formula is violated, while the second is not. This
means that n1(x) = 0 and n2(x) = 1. This gives us the
probability P (X = x) = 1

Z e(w1×0+w2×1) = 1
Z ew2 , where

the partition function Z = 4ew1+w2 + 2ew1 + 2ew2 . Notice
that the partition function Z grows exponentially with the
weights, and will tend to infinity for large values of w1 or
w2. If we increase the value of w1 while keeping the value of
w2 constant, the probability P (X = x) will thus approach 0.

4) Inference: Once a Markov network ML,C is constructed,
it can be exploited to perform conditional or MPE inference
over the relational structure defined by L. A Markov Logic
Network can be used to answer arbitrary queries such as “What
is the probability that formula F1 holds given that formula F2

does?’. Such query can be translated as:

P (F1|F2, L, C) = P (F1|F2, ML,C) (6)

=
P (F1 ∧ F2|ML,C)

P (F2|ML,C)
(7)

=

∑
x∈XP1∩XP2

P (X = x|ML,C)
∑

x∈XP2
P (X = x|ML,C)

(8)

where XPi represent the set of worlds where the formula
Fi holds.

Exact inference in Markov Networks is a #P-complete
problem [10] and is thus untractable. However, several anytime
algorithms for probabilistic inference such as weighted MAX-
SAT or Markov Chain Monte Carlo (MCMC) can then be
used to yield approximate solutions [12], [13], [14]. Given
the requirements of our application domain, and particularly
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the need to operate under soft real-time constraints, such
approximation methods are crucial.

5) Learning: The weight wi in a Markov logic network
encodes the “strength” of its associated formula Fi. In the
limiting case, where limwi→∞, the probability of a world
violating Fi has zero probability. For smaller values of the
weight, worlds violating the formula will have a low, but non-
zero probability.

But how are these weights specified? In most cases, weights
are learned based on training samples extracted from a re-
lational database. Several machine learning algorithms for
parameter learning can be applied to this end, from classical
gradient-based techniques to more sophisticated algorithms
specifically designed for statistical relational learning [15],
[16].

In addition to weights learning, it is in theory also possible
to learn the structure of a Markov Logic problem, either
partially (by adding additional clauses to the network or
refining the existing ones), or completely (by learning a full
network from scratch). Structure learning is usually performed
with algorithms borrowed from Inductive Logic Programming
[17], [18].

6) Experiments: We performed some preliminary experi-
ments with Markov Logic Networks for inference over belief
content. We started our experiments with the problem of
visual reference resolution, which is a relatively simple and
well-defined task. Visual reference resolution is the part of
the dialogue interpretation process which is concerned with
linking particular linguistic expressions such as “the ball” or
“the red object” to their visual counterpart in the real world.

These experiments were performed using the open-source
tool Alchemy combined with a mechanism for serialising belief
contents into a Markov Logic representation. Practically, such
operation is realised by converting each individual formulae
contained in the belief distribution into a distinct Markov
Logic formula, with weights corresponding to the logarith-
mic equivalent of the formula probability in the distribution.
The serialised beliefs are then combined with a sequence of
(problem-specific) Markov Logic rules for the inference.

In the case of reference resolution, such rules will specify
particular correlations between the visual characteristics of the
objects in the scene and the linguistic characteristics of the
referring expression. One (simplified) example of such rule is

wi Resolve(x) ∧ LingColor(B, Red)⇒ Color(x, Red)

where x denotes an arbitrary visual belief and B the belief
corresponding to the referring expression.

The results we can currently report on these experiments
are negative results. As explained in the previous sections,
Markov Logic Networks need to be compiled into ground
Markov Networks as a preprocessing step for inference. This
means that in the general case, the number of ground clauses in
this network grows exponentially with the number of beliefs,
rendering such inference intractable beyond a few beliefs and
inference rules. The intractability of the inference is due to
the use of full logical structures in the belief content. The
conversion of such structure into Markov Logic necessitates
the use of universal and existential quantifiers in the inference

rules, which quickly result in a combinatorial explosion of the
ground network size.

As a consequence, the solution we are using in our refer-
ence resolution component consists in “propositionalising” the
belief content, by collapsing the logical structure of the belief
formula into a single atomic symbol, and performing inference
over this simplified representation. This reduces the inference
to a form akin to inference over a Bayesian network. We are
currently investigating how to overcome the problems with
online inference using Markov Logic, (which was originally
designed for offline inference over “certain” database content).
One possibility might be to constraint the space over which
the inference is to be drawn, by first of all exploiting logical
structure to its full extent using efficient logical reasoners. For
this we are currently considering an approach based on the
mechanisms discussed in the next section.

IV. HYBRID MODEL UPDATE USING COMPLETION

In this section we present the formal aspects of the approach
to computing a completion over a model. As already indicated
earlier, the basic idea is to compute an update of a belief model
using a mixture of logical and probabilistic reasoning. Given
a model, and a set of inference rules, we compute a closure
over the model with the beliefs to be updated. Each closure
is computable as a sequence over sets of extensions. At each
step in this sequence, we choose one single extension, using
discriminate probabilistic inference. We repeat this compute-
choose-extend cycle until a fixpoint is reached, after which
we compute the probability of the resulting belief model and
the probabilities of the beliefs it is made up of. Below we
first discuss the closure computation, then the basis for hybrid
model update.

A. Closure Computation And Forward Chaining

Logical inference within the individual models is performed
by HFC [19], a rule-based forward chainer that was originally
implemented for reasoning and querying with OWL-encoded
ontologies [20] over RDF triples [21].1

Usually, bottom-up forward chaining is employed to carry
out (all possible) inferences at compile time, so that querying
information reduces to an indexing problem at runtime. The
process of making implicit information explicit is often called
materialization or computing the deductive closure of a set
of ground atoms A w.r.t. a set R of universally-quantified
implications B → H (if-then rules). Bottom-up here means
that one starts from the ground atoms to which the rules are
applied, contrary to top-down approaches which start with a
goal (the head H) and potentially hypothesize intermediate
goals that can hopefully be satisfied by ground atoms finally
(Prolog’s strategy). The body and the head of a rule consist

1Due to decidability issues, OWL, or description logic in general, restricts
itself to unary and binary predicates, so-called classes and roles (OWL is a
instance of the decidable two-variable PL1 fragment). OWL relation instances,
such as r : Robot or (r, a) : in are represented in RDF through a uniform
data structure, the RDF triple: subject predicate object. The above
instances then translate into r rdf:type Robot and r in a. We will
often use the more common relational notation Robot(r) and in(r, a).
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of a set of clauses, interpreted conjunctively. In HFC, clause
arguments are either constants c ∈ C or variables v ∈ V .

Closure computation can be characterized as the computa-
tion of the least fixpoint of a certain monotonic function TR.
A fixpoint is reached in case there exists some number n, such
that

Tn+1
R (A) = Tn

R(A)

where the n-fold composition of TR is defined as follows:
• T 0

R(A) := A
• Tn+1

R := TR(Tn
R(A))

In order to define TR for our setting, let θ =
{v1/c1, . . . , vn/cn} be a ground substitution for the variables
in the body B of a rule and Θ(C) the set of all ground
substitutions w.r.t. C [22]. We define Bθ as the set of ground
atoms obtained from B by simultaneously replacing each
occurrence of vi by constant ci (1 ≤ i ≤ n).

This leads us to the following definition of TR:

TR(A) =
⋃

(B→H)∈R

⋃

θ∈Θ(C)

{Hθ |Bθ ⊆ A}

Due to the use of set union, the following inclusion does
always hold, a requirement that we use later to efficiently
realize a practical fixpoint computation (n ∈ N):

Tn
R(A) ⊆ Tn+1

R

Since set union is a monotonic operation, TR is also clearly
monotonic, and thus a well-defined least fixpoint exists. This,
of course, does not tell us that the fixpoint can be reach
in finitely-many steps. Finitely-reachable fixpoints, however,
are guaranteed by the following sufficient condition: if the
set of constants C does not change, e.g., new constants are
not generated during the fixpoint computation, only a finite
number of ground atoms can be generated. For the RDF/OWL
case, this number is bound by |C|3, since the data model is
the RDF triple, where C refers to the union of the sets of XSD
atoms and URI references found in the ontology (= TBox +
RBox + ABox).

Forward chaining, as we used it here, can be seen as model
building over the Herbrand interpretation of a function-free
definite program (Horn logic as used in Prolog). In general,
model builders are systems that try to construct a finite model
for a given theory (usually, a set of first-order formulae) [23].
Forward chaining is also related to the Datalog query and
rule language for deductive databases. Datalog calls TR the
elementary production principle which can be shown to be
sound and complete (as is the case for TR).

Given the definition of TR, a naı̈ve (but not very efficient)
implementation is relatively straightforward:

input R: set of if-then rules, A: set of RDF triples (= ground
atoms here)

repeat
A′ := A
for each (B → H) ∈ R

for each binding b ∈ match(B, A′)

A := A ∪ {instantiate(H, b)}
until A′ = A

In a naı̈ve implementation, the second for loop is usually
realized by a nesting of n for loops (or a heavily-recursive
procedure), where n = |B|.

In order to make forward chaining scalable, HFC applies
several optimization techniques that are realized as a sequence
of filter stages, leading to a filter rate of more than 99%.
I.e., less than 1% of possible matching candidates are actually
computed and used for instantiating the RHS of a rule. This
possibility comes as a side product of the fact that closure
computation is a monotonic operation. Consider, for instance
a rule r = (b1 b2 → H) and assume that r is currently
applied in iteration n of the closure computation. Due to the
monotonicity argument, matching candidates Mn from A for
the LHS variables of rule r at iteration n can be decomposed
into those which are brand new at n and those which come
from iteration n−1: Mn = N'Mn−1. Since bindings for the
variables of individual clauses are actually tables, computing a
binding for all LHS variables effectively reduces to a natural
join "# known from data base theory. Given the distinction
new vs. old already mentioned, we can compute all possible
bindings for b1 b2 from the individual bindings, given N and
Mn−1:

Mn(b1 b2) = N(b1) "# N(b2) ∪
N(b1) "# Mn−1(b2) ∪
Mn−1(b1) "# N(b2)

This optimization massively speeds up forward chaining,
since useless bindings, leading to already instantiated tuples,
are no longer generated. In our case here, Mn−1(b1) "#
Mn−1(b2) is not computed, and those bindings are by far the
largest, when closure generation n increases. This techniques
not only applies to individual clauses, but also to larger parts,
so called (LHS) clusters.

Other optimizations are also applied in HFC, for instance:
• bindings are shared over “similar” clause between differ-

ent rules;
• the LHSs of rules are reordered to faster compute match-

ing candidates;
• equivalence relations instances on the LHS and the

RHS of rules (e.g., owl:sameAs) are efficiently handled
through rule rewriting and a union-find structure;

• the processing of individual rules is parallelized at each
fixpoint iteration step;

• efficient data structures, such as open-address hash tables,
integer arrays for tuples, specialized sets with strategy
objects to support binding/table projection, etc., are used.

It is worth noting that the forward chainer operates in
a monotonic and certain conjunctive search space: neither
do we delete any information (remember the monotonicity
assumption used in the closure computation above), nor do
we attach probabilities to asserted facts. As stated above,
the information in the body and the head of a rules is al-
ways interpreted conjunctively. Disjunction is realized through
efficient and lazy model duplication, whereas negation can
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be partly implemented through special negated types and by
reformulating rules, as the below LTL example will show.

We apply forward chaining to perform logical inference
at runtime w.r.t multivariate probability distributions over
beliefs/incoming sensor data. HFC is initially equipped with
some axiomatic knowledge and regularly queries new informa-
tion within a situation-awareness loop, adds this information to
its current state (the ABox) and computes an extended closure,
given the old closure and the new information. Since the size
of relevant new information (the deltas) between different
closure computations is relatively small, a new fixpoint is
usually computed extremely fast, requiring only a few iteration
steps.

HFC efficiently handles ABoxes with millions of facts and
provides means to work with extended copies of a given ABox
in parallel, an important feature that we later employ when
performing Viterbi search over non-probabilistic ABoxes (see
section ).

HFC has implemented several extensions that are not avail-
able in comparable systems, such as OWLIM [24]:

• replacement of triples by more general tuples,
• possibility to add arbitrary tests to the LHS of a rule,
• possibility to add arbitrary actions to the RHS of a rule,
• incorporation of aggregation rules,
• incorporation of metric linear time into OWL.

Rules in such systems usually serve a two-fold purpose:
1) to implement OWL entailment, and thus consistency;

e.g.,
?s owl:sameAs ?o
?s owl:differentFrom ?o
->
?s <rdf:type> <owl:Nothing>
?o <rdf:type> <owl:Nothing>

2) to provide custom functionality; e.g., to move from a
point-based sensor-oriented representation to an extend-
able interval-based encoding:
?s ?p ?o ?t
->
?s ?p ?o ?t ?t

Due to experiences we have gained in several projects [25],
we have opted to go for more general tuples (instead of using
encoding schemes, such as reification), thus making HFC able
to address two further important areas of functionality:

3) to coalesce information over time, e.g.,
?s ?p ?o ?b1 ?e1
?s ?p ?o ?b2 ?e2
->
?s ?p ?o ?b ?e
@test
IntervalNotEmpty ?b1 ?e1 ?b2 ?e2
@action
?b = Min2 ?b1 ?b2
?e = Max2 ?e1 ?e2

4) to reformulate LTL safety conditions (r = robot, a =
area), such as G(explore(r) ∧ risky(a) ⇒ ¬in(r, a)):
?r explore ?b1 ?e
?a rdf:type Risky ?b2 ?e
?r in ?a ?b3 ?e
->
DO SOMETHING / MOVE ROBOT OUT / ...

In order to make the entailment rules for RDFS [26] and
OWL [27] also sensitive to time, we have extended them
by further temporal arguments, expressing durations within a
calendar treatment of time. Here is an example of a rule that
talks about functional object properties in OWL:

?p rdf:type owl:FunctionalProperty
?p rdf:type owl:ObjectProperty
?x ?p ?y ?b1 ?e1
?x ?p ?z ?b2 ?e2
->
?y owl:sameAs ?z
@test
?y != ?z
IntervalNotEmpty ?b1 ?e1 ?b2 ?e2

The IntervalNotEmpty predicate in the test section
(@test) guarantees that we only identify ?y and ?z if the
temporal extents [?b1, ?e1] and [?b2, ?e2] have a non-empty
intersection. Thus a single overlapping observation leads to a
total identification of ?y and ?z, so the sameAs statement need
not be equipped with temporal information (and this is not
desired). If both observations, however, do talk about different
non-intersecting times, it makes perfect sense that ?y and ?z
need not be equal, even though ?p is a functional property.

B. Hybrid model update
We first present a logical approach to model update. After

that we discuss how the properties of this approach make it
possible to include probabilistic filtering, to guide completion
computation.

Logically speaking, computing the closure over a belief
(as per Definition 4) given a domain logic Ldom means we
are computing a model in the model space of Ldom. This
model space is structured, following the (typically hierarchi-
cal) structure of Ldom. We use this structure to guide closure
computation. In this section we focus here on the computation
of closures from a single belief.

Given a belief B = 〈σ, e, δ, h〉. B provides us with grounded
information about an instance. The content δ provides the
alternative interpretations within that information. For our
current purposes, we assume δ = 〈δ1, δ2, ..., δn〉 with δ2, ..., δn

conditionally independent, and dependent on (Ldom-implied
by) δ1. For example, if we have a belief about a tabletop object,
we consider color and shape to be independent of each other,
but dependent on what type of object we are dealing with.

The simplest (though most expensive) way to compute
completions over B is by compiling out logically possibly
combinations of variant interpretations in δ, in a breadth-first
manner. We do so through graph construction. Each node in
the graph we annotate with a set of logical statements. A
statement is conjunction of interpretations selected from δ,
one for each δi ∈ δ. Edges between nodes are labelled with
δj’s. The dependency of a δj on δ1 can result in a partitioning
of this set. This is the case if there is an interpretation in δ1

that would be inconsistent with one or choices in δj . We then
create multiple edges for δj , one for each partition.

Figure 1 provides an illustration of Algorithm 1. Given a be-
lief about i with δ = 〈type = 〈mug : 0.6, box : 0.4〉, color =
〈red : 0.5, blue : 0.5〉, shape = 〈square : 0.4, round : 0.6〉〉.
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Algorithm 1 BREADTH-FIRST COMPLETION FOR B
Require: A belief B = 〈σ, e, δ, h〉
Require: δ = 〈δ1, δ2, ..., δn〉
Require: δ2, ..., δn mutually independent, dependent on δ1

Require: instant identifier i referred to by B
1: Graph G = node n0({i})
2: for δi ∈ δ do
3: Let Si−1 be the statements at previous node ni−1 along

the path back to n0

4: Si = ∅
5: for Formula f ∈ δi do
6: s = ∅
7: Xf = closure(f)
8: for each f ′ ∈ Si−1 s.t. f ′ ∧Xf → ',

add f ′ ∧Xf to s
9: Si = Si ∪ {s}

10: end for
11: for {s} ∈ Si do
12: create a node ni({s})
13: connect ni−1 to ni({s}) with an edge labelled δi

14: end for
15: end for

We assume for the sake of illustration that closure is just
an identity function, and that mugs are round and boxes are
square. The algorithm then computes the graph as in Figure
1. This yields two logically consistent models, which can be
straightforwardly translated into two beliefs.

Fig. 1. Breadth-first graph for computing possible models (id closure)

There are several interesting properties we can note for
Algorithm 1.

Property 1: If closure is the identity function closure(f) =
f , then Algorithm 1 computes Ldom-consistent models M =
M1, ...Mn over B such that for each Mi ∈ M it holds that
Mi ⊆M(B). .

Property 1 highlights that Algorithm 1 computes consistent,
disjoint subspaces in model space. If closure is the identity
function, these subspaces are entirely contained in the model
space spawn from B. Even for the more general case, it holds
that the branches in G as computed by Algorithm 1 partition
model space.

Property 2: For each model Mni at a node ni in a graph
G it holds that it is a consistent model.

Proof: Follows from the definition of Algorithm 1: Mod-
els are only built through consistent extension.

From Property 2 it immediately follows that each model is
contained in the extension(s) it helps construct.

Property 3: Given a graph G. Given nodes ni...nk that are
on a unique path from nk back to n0. Let ni < nj mean
that ni comes before nj on the path starting in n0. For each
ni < nk it holds that Mni ⊂Mnk .

Finally, branching induces partitioning of the model space.
Property 4: If nodes ni and nj in G are on different

branches, i.e. ∃nk ∈ π(nj) s.t. nk ,∈ π(ni), then Mni ∪
Mnj → ⊥.

Proof: The minimal submodel of Mni that leads to an in-
consistency with Mnj can be constructed as follows. Assume
ni, nj are on different branches, i.e. ∃nk ∈ π(nj) s.t. nk ,∈
π(ni). Let π(nk−1 be the longest path starting in n0 s.t.
π(nk−1) ⊂ π(ni) and π(nk−1) ⊂ π(nj). Let nk be the node
immediately following up on nk−1 on π(ni). Because nk is
the first node after the split with π(nj), Mnk is a minimal
model s.t. Mnk ⊆M(ni) and Mnk ∪Mnj → ⊥.

To construct a hybrid approach, we exploit Property 4.
The importance of Property 4 is that it provides the basis
for efficient filtering. The mutual independence of δ2, ..., δn

enables us to compute extensions using a δi in arbitrary
order. After each step in Algorithm 1 resulting in a node
ni we can then make a decision: continue with a submodel
of M(ni), or even just a subset of branches. Because the
algorithm partitions the model space, any filtering reduces
the model space along the dimensions considered by the δ’s
leading up to ni. Property 3 and Property 4 ensure that we
only continue building consistent models that will not expand
(through closure computation) to include submodels implied
by material we filtered out.

V. CONCLUSIONS

We discussed the main representational aspects of the
situated multi-agent models we have developed for CogX,
and presented several forms of inference over these repre-
sentations. Characteristic for all forms of inference is that
they can deal with the uncertainty inherent to these models,
while at the same time exploiting logical structure. As we
have found, this has its limits. Powerful statistical relational
models are not yet capable of dealing with the types of
uncertainty in observations (“soft evidence”) that is typical for
robotic applications. This currently requires a simplification
of the model for the purpose of online inference, due to
representational overhead that arises from having to explicitly
encode uncertainty as additional rules. We are looking into
possible solutions to this, along complementary lines. One line
of research concerns the reformulation of MLN inference to
allow for soft evidence, and perform inference in an any-time
fashion. Another line concerns the restriction of the search
space over which inference ranges. For this, we are considering
the approach described in §IV.

The approaches discussed in this paper are part of the
integrated systems developed for CogX. Completion reasoning
is used in conceptual mapping in Dora. Based on (uncertain)
beliefs, we infer possible interpretations of what an area might
be. We associate probabilities with the resulting closure(s), to
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reflect typicality: ”a kitchen typically has a coffee machine,
(with probability p).” These probabilities can then be combined
(outside the closure computation) with the actual evidence, to
finalize the categorization. The probabilistic abductive and -
deductive inferences are used in situated dialogue processing.
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Abstract
In the first part of this paper, we present a framework for enriching arbitrary upper or domain-specific ontologies with a concept of
time. To do so, we need the notion of a time slice. Contrary to other approaches, we directly interpret the original entities as time
slices in order to (i) avoid a duplication of the original ontology and (ii) to prevent a knowledge engineer from ontology rewriting. The
diachronic representation of time is complemented by a sophisticated time ontology that supports underspecification and an arbitrarily
fine granularity of time. As a showcase, we describe how the time ontology has been interfaced with the PROTON upper ontology. The
second part investigates a temporal extension of RDF that replaces the usual triple notation by a more general tuple representation. In this
setting, Hayes/ter Horst-like entailment rules are replaced by their temporal counterparts. Our motivation to move towards this direction
is twofold: firstly, extending binary relation instances with time leads to a massive proliferation of useless objects (independently of the
encoding); secondly, reasoning and querying with such extended relations is extremely complex, expensive, and error-prone.

1. Introduction
The first part of this paper presents a framework for en-
riching arbitrary upper or domain-specific ontologies with
a concept of time. The work reported here is part of an EU-
funded project called MUSING which is dedicated to the
investigation of semantic-based business intelligence solu-
tions.
Temporal information in MUSING is based on a diachronic
representation of time, on top of which temporal reasoning
services are defined (Krieger et al., 2008a). Since ontolog-
ical knowledge in MUSING is encoded in OWL (McGuin-
ness and van Harmelen, 2004), extending binary relations
with an additional time argument is not that easy, due to the
fact that OWL (or description logic in general) only pro-
vides unary and binary relations.
In order to equip ontologies with time, we need the notion
of a time slice, as explained, e.g., in (Sider, 2001). Contrary
to (Welty and Fikes, 2006), we directly interpret the origi-
nal entities as time slices in order to (i) avoid a duplication
of the original ontology and (ii) to prevent a knowledge en-
gineer from ontology rewriting.
We will see that this reinterpretation makes it easy to extend
an upper/domain ontology with time. The diachronic repre-
sentation of time is complemented by a sophisticated time
ontology that supports underspecification and an arbitrarily
fine granularity of time.
MUSING makes use of a general upper-base ontology
called PROTON (http://proton.semanticweb.org) that has
been extended mostly by the MUSING partners from STI
(formerly DERI), Innsbruck. As a showcase, we describe
how the time ontology has been interfaced with PROTON.
The OWL implementation of the methodology reported
here (plus a general time ontology) can be obtained freely
from the author.

∗The research described here has been financed by the European
Integrated projects MUSING (Multi-Industry Semantic-Based
Business Intelligence, http://musing.eu/) and CogX (Cognitive
Systems that Self-Understand and Self-Extend, http://cogx.eu)
under contract numbers FP6-027097 and FP7 ICT-215181. I
would like to thank the three referees for their valuable comments.

Even though our approach keeps the original ontology, it
leads to a massive proliferation of “container” objects, due
to the fact that the underlying data structure is still the RDF
triple (Klyne and Carroll, 2004). Furthermore and very
important, reasoning and querying with such a represen-
tation is extremely complex, expensive, and error-prone. It
is worth noting that all other approaches, as presented in
section 3., do suffer from the same disadvantage.
In order to overcome this problem, we propose to add some
kind of temporal annotation to an RDF triple, realized as
further temporal arguments (starting and ending time). We
describe an extension of Hayes/ter Horst-like RDFS/OWL
entailment rules that are “sensitive” to temporal informa-
tion. We show that only lightweight reasoning capabilities
are needed when working with such information.
The work reported in the second part of this paper is an out-
come of the lessons learned from the MUSING project and
is actively used and extended in the CogX project, whose
aim is to develop a unified theory of self-understanding and
self-extension with a convincing instantiation and imple-
mentation of this theory in a robot.
The representation of generalized tuples, reasoning with
them and querying them is realized through HFC, a for-
ward chainer developed at DFKI that scales up to millions
of tuples, which is reasonable fast and expressive enough to
formulate the extended entailment rules.

2. A Motivating Example
The problem with so-called synchronic relationships is that
they all refer to only one, potentially hidden point/period
in/of time. Here is an example:

Tony Blair was born on May 6, 1953.
Assuming a RDF-based representation, an information ex-
traction system might compute the following set of triples:
tb rdf:type Person .
tb hasName "Tony Blair" .
tb dateOfBirth "1953-05-06" .

However, most relationships are diachronic, i.e., they em-
body the possibility to vary with time. Take, for instance,



the following example:
Christopher Gent was Vodafone’s chairman until
July 2003. Later, Chris became the chairman of
GlaxoSmithKline with effect from 1st Jan 2005.

When applying the synchronic representation scheme from
above, however, the resulting RDF graph mixes up the as-
sociation between the fact and the temporal extend (two out
of four possibilities are wrong):
cg isChairman vf .
cg isChairman gsk .
cg hasTime [????-??-??,2003-07-??] .
cg hasTime [2005-01-01,????-??-??] .

No longer is it clear whether [????-??-??,2003-07-
??] belongs to vf or gsk (same holds for [2005-01-01,
????-??-??]).

3. Approaches to Diachronic Representation
Several well-known techniques of extending binary rela-
tions with additional arguments have been proposed in the
literature. (Welty and Fikes, 2006) mention three of them
and add a fourth one (4D or perdurantist view; see below),
which we reinterpret w.r.t. an upper or domain ontology.
This reinterpretation is the basis for representing temporal
information in MUSING and one of the topics of this paper,
since it opens a way to enrich arbitrary ontologies with the
concept of time, without any ontology rewriting.

3.1. Equip Relations With a Temporal Argument
This approach has been pursued in temporal databases and
the logic programming community. A binary relation, such
as hasCeo between a company c and a person p becomes
a ternary relation with a further temporal argument t (we
limit ourself to one further argument encoding an interval,
instead of two, representing the starting and ending time of
an interval):

hasCeo(c, p) !−→ hasCeo(c, p, t)

Unfortunately, OWL and description logic in general only
support unary (classes) and binary relations (properties) in
order to guarantee decidability of the usual inference prob-
lems. Thus, forward chainers (such as OWLIM and Jena)
as well as description logic reasoners (e.g., Racer or Pellet)
are unable to handle such descriptions.
We note here that this approach is clearly the silver bullet of
representation, since it is the easiest and most natural one,
although a direct interpretation is incompatible with RDF
and currently available reasoners. We will favor this kind
of representation in the second part.

3.2. Apply a Meta-Logical Predicate
McCarthy & Hayes’ situation calculus, James Allen’s inter-
val logic, and the knowledge representation formalism KIF
use the meta-logical predicate holds. Hence, our hasCeo
relation becomes

hasCeo(c, p) !−→ holds(hasCeo(c, p), t)

McCarthy & Hayes call a statement whose truth value
changes over time a fluent (McCarthy and Hayes, 1969).
Thus the extended ternary relation from the previous

subsection is a relational fluent. The holds expression
here, however, embodies a functional fluent, meaning that
hasCeo(c, p) is assumed to yield a situation-dependent
value. Such kinds of relations are not possible in OWL,
since description logics limit themselves to subsets of
function-free first order logic.

3.3. Reify the Original Relation
Reifying a relation instance leads to the introduction of a
new object and four additional new relationships. In ad-
dition, a new class needs to be introduced for each reified
relation, plus accessors to the original arguments. Further-
more and very important, relation reification loses the orig-
inal relation, requiring a modification of the original ontol-
ogy. Coming back to our hasCeo example, we get some-
thing like this (HasCeo is the newly introduced class):

hasCeo(c, p, t) !−→ ∃e .
type(e, HasCeo) ∧ hasTime(e, t) ∧
company(e, c) ∧ person(e, p)

3.4. Encode the 4D View in OWL
(Welty and Fikes, 2006) have presented an implementation
of the 4D or perdurantist view in OWL, using so-called time
slices (Sider, 2001), encoding the time dimension of space-
time.1 Relations from the original ontology no longer con-
nect the original entities, but instead connect time slices that
belong to those entities. A time slice is merely a container
for storing time. For a given ontology, such a representation
requires a lot of rewriting:

hasCeo(c, p, t) !−→ ∃ts1, ts2 .
type(ts1, TimeSlice) ∧ hasTimeSlice(c, ts1) ∧
type(ts2, TimeSlice) ∧ hasTimeSlice(p, ts2) ∧
hasTime(ts1, t) ∧ hasTime(ts2, t) ∧
hasCeo(ts1, ts2)

3.5. Reinterpret the 4D View
In MUSING, we have reinterpreted the perdurantist/4D
view in that we have reinterpreted the original entries from
the ontology. The basic idea can be summarized in the fol-
lowing slogan:

What has been an entity becomes a time slice.

In the example above, c and p are no longer entities, but
instead time slices of an entity (a perdurant), that explain
the behavior of an entity within a certain extension or point
in time (e.g., that c is a time slice talking about a company
or p a time slice, dealing with a person).
This reinterpretation does not need any ontology rewriting
and makes it easy to equip arbitrary upper/domain ontolo-
gies with the concept of time. Coming back to our example,
we have

hasCeo(c, p, t) !−→

1In the 4D view, all entities (the perdurants) only exist for
some period of time. Given this view, it does not matter whether
we are talking about an accidental, perhaps infinitely-small event
(say, the shooting of a pistol) or a very long time interval (e.g.,
the lifetime of our universe). Entities under this view are of-
ten referred to as spacetime worms (Sider, 2001), since a four-
dimensional trajectory identifies a perdurant in time and space.



hasCeo(c, p) ∧ hasTime(c, t) ∧ hasTime(p, t) ∧
hasTimeSlice(C, c) ∧ hasTimeSlice(P, p)

Note that the former binary predicate hasCeo is still avail-
able and unchanged. But the argument classes, viz., Com-
pany and Person have been equipped with an additional re-
lation called hasTime, defined on class TimeSlice, as we will
see later. Given this representation, everything that is de-
fined on c, such as the CEOship, the name, the address, or
the number of employees of this company, is assumed to
co-occur during time period t. I.e., different facts speak-
ing about the same time interval of the same individual in
the first place of the relation need not to be encoded in dif-
ferent time slices. Furthermore, the original entities p and
c are linked to perdurants P and C which, however, only
need to be created once.
The 4D reinterpretation is easier than Welty&Fike’s orig-
inal formulation, viewed from the standpoint of complex-
ity. Let us have a look at the domain (D) and range (R) of
the above hasCeo property, using abstract description logic
syntax:

• Welty & Fikes (2006)
(D) ∃hasCeo .# $ ∀hasTimeSlice− . Company
(R) # $ ∀hasCeo . (∀hasTimeSlice− . Person)

• 4D reinterpretation
(D) ∃hasCeo .# $ Company
(R) # $ ∀hasCeo . Person

As we have already noticed, this reinterpretation also makes
it easy to interface arbitrary ontologies with existing time
ontologies. We will see this in a moment.

4. The Perdurant Ontology
Given the above discussion, this section now presents the
basic ontology for perdurants and time slices used in the
MUSING project that is, however, directly applicable to
other applications and projects that deal with changing re-
lationships over time in RDF. Here is the overall picture:

Perdurant: hasTimeSlice
TimeSlice: timeSliceOf, hasTime
Time

Let us describe the three top-level classes that are only
necessary. Objects whose properties change over time are
called perdurants, as already explained above. Those ob-
jects possess a number of time slices, hence we need a prop-
erty hasTimeSlice in order to access their time slices. A
time slice specifies an extension in time through the func-
tional property hasTime and is associated with a perdurant
via timeSliceOf, the inverse relation to hasTimeSlice. A
time slice “contains” those properties whose values stay
constant over the specified period of time. The range of
hasTime is exactly an object of class Time which will be
described in a moment:
# $ ≤1hasTime ' ∀hasTime.Time

We note here that this simple ontology is completely open
to the choice of the time ontology (and open to the up-
per/domain ontology that is equipped with a concept of

time). Thus it will be possible to interface the perdurant on-
tology with popular time ontologies, such as Hobbs&Pan’s
OWL Time (Hobbs and Pan, 2004). This is achieved
through the above mentioned class Time, a simple place-
holder that is interfaced with the corresponding class in the
time ontology. Similarly, the placeholder TimeSlice needs
to be interfaced with the corresponding concept(s) in the
upper/domain ontology. This will be shown in section 5.

4.1. Flexible Semantic Representation
Let us focus on a natural language example and its (simpli-
fied) representation to see how things go together:

DaimlerChrysler’s CEO Schrempp announces that
he will resign by 31st December 2005.

Consider that an information extraction system has find out
that Jürgen Schrempp and DaimlerChrysler are named en-
tities. Consequently, we introduce two perdurants js and dc
for these entities (assuming that they have not already been
introduced).
The fact that Schrempp was CEO of DC until 31st Decem-
ber 2005 is expressed by a time slice p1 (of type Person)
that contains an instance oli1 of class OpenLeftInterval,
whereas his resignation is encoded in a time slice p2 (again
of type Person) that is temporally anchored in an instance
pid1 which is of class ProperInstantDay, having value
“2005-12-31”.

Notice that Schrempp did not resign from DC, but instead
resigned from DC’s ceoship. Thus property resignsFrom
points to p1 that expresses Schrempp’s ceoship with Daim-
lerChrysler.

4.2. Advantages of the Approach
Firstly, properties that do not change over time (e.g., birth-
date) can be relocated from TimeSlice to Perdurant (no
duplication of information). Time-varying information in-
stead is kept in a series of time slice. If several properties of
a perdurant are constant over the same period of time, we
do not need several time slices.
Secondly, the subtypes of TimeSlice specify the behavior
of a perdurant within a certain time interval (e.g., whether
a perdurant acts as a company, a person, etc.). We will see
in a moment how this can be achieved.
Thirdly, since hasTimeSlice is typed to TimeSlice, differ-
ent slices of the same perdurant need not to be of the same
type. For instance, the perdurant SRI might have a time
slice for Company as well as a slice for AcademicInstitu-
tion, i.e., a perdurant can act in different ways.
Fourthly, representing modalities, such as believe can be
achieved relatively easy. Representing space and move-
ments in space can be modeled similarly.
Finally, Allen’s 13 temporal topological interval relations
(Allen, 1983) can be naturally extended to time slices.



5. Extending Ontologies With Time
As promised, we now describe how we have interfaced the
4D and the time ontology with an upper/domain ontology,
in our case PROTON (http://proton.semanticweb.org).
Before going into the details, let us remark that our global
ontology consists of concepts and properties that imple-
ment a 4D perdurantist view, but also deals with time in
general, building on instants and intervals (and their sub-
classes). So we get the following picture for the merged
ontology PROTime:

4D
↓

Time → PROTime ← [Allen]
↑

PROTON

The 4D reinterpretation which we have presented so far
says that the original entities should be regarded as time
slices. To do so, one need to identify the most gen-
eral classes in PROTON (or in another arbitrary up-
per/domain ontology) that are supposed to be extended
by a temporal dimension—actually, we are interested in
the domain/range classes of the time-varying properties.
There is such a single, most general class in PROTON:
psys:Entity. Thus we only need a single axiom, employing
owl:equivalentClass:

fourd:TimeSlice ≡ psys:Entity

In general, a new integrated ontology is constructed as fol-
lows:

1. always use 4D
Perdurant: hasTimeSlice
TimeSlice: timeSliceOf, hasTime
Time

2. choose time
an arbitrary time ontology (e.g., OWL Time)

3. choose upper/domain ontology
the original ontology (e.g., PROTON)

4. choose Allen (optional)
Allen relations over time slices

plus an equivalence statement of the above kind.
Note that the class Time in the 4D ontology is a simple
placeholder used in hasTime⊆ TimeSlice× Time. When
interfacing 4D with an arbitrary time ontology, one needs to
say what is meant by Time, in our case:

fourd:Time ≡ time:TemporalEntity

We will describe TemporalEntity and the time ontology in
the next section.
In case there will be several maximal incompatible classes
c1, . . . , cn that need to be extended by a temporal dimen-
sion, the above axiom clearly becomes

fourd:TimeSlice ≡ c1 ( . . . ( cn

6. The Time Ontology
In this section, we will describe the time ontology that we
have employed in MUSING. We have opted against OWL
Time (Pan, 2007), a rich first-order axiomatization of time,

since we have decided to model temporal underspecifica-
tion in natural language and granularity of time through a
subtyping hierarchy. The ontology described here, how-
ever, is fully compatible with OWL Time through the use
of the class TemporalEntity as well as its subclasses In-
stant and Interval. Here is the overall picture:

TemporalEntity
Instant

NegativeInfinity
PositiveInfinity
ProperInstantYear: year

ProperInstantMonth: month
ProperInstantDay: day

ProperInstantHour: hour
ProperInstantMinute: minute

ProperInstantSecond: second
.....

Interval: begins, ends
OpenLeftInterval

ClosedInterval
Forever
.....

OpenRightInterval
ClosedInterval

Forever
.....

OWL classes start with uppercase letter characters; proper-
ties are written in lower case. Thus

Interval: begins, ends
means that properties begins and ends are defined on class
Interval. Indentation expresses subtyping/subclassing.
Subtyping also means that properties defined on super-
classes are also available in subclasses. Hence, the proper-
ties year and month are also accessible in class ProperIn-
stantDay.
Let us quickly describe the most top-level classes. We dis-
tinguish between two exhaustive partitioning and disjoint
subclasses of TemporalEntity: Instant and Interval.

TemporalEntity ≡ Interval ( Instant
Interval ) ¬ Instant

Instant is used to describe infinitely short events (i.e., in-
stants), whereas Interval identifies measurable periods of
time. Thus, Interval possesses two properties: begins and
ends, both returning an instant. All classes above are ex-
pressed as OWL axioms.
We now give a more complex example—the definition of
ClosedInterval:

ClosedInterval ≡
OpenLeftInterval * OpenRightInterval *
=1begins * =1ends *
∃ begins.Instant * ∃ ends.Instant

This definition says that begins and ends must be speci-
fied exactly once. begins and ends must furthermore be
assigned an instance of (at least) type Instant.
ProperInstantYear, PositiveInfinity, and NegativeInfin-
ity are declared as being mutually disjoint:

ProperInstantYear ) ¬ NegativeInfinity



ProperInstantYear ! ¬ PositiveInfinity
PositiveInfinity ! ¬ NegativeInfinity

Actually, saying that begins takes exactly one value is done
in the direct superclass OpenRightInterval (same for ends
and class OpenLeftInterval). begins and ends are being
declared as functional on the very general Interval class.
Functionality clearly means that a value need not to be
present (as can be seen, e.g., for property ends in class
OpenRightInterval):
≤1begins ! Interval
≤1ends ! Interval

begins and ends furthermore take objects of type Instant
as values:
# ! ∀begins.Instant
# ! ∀ends.Instant

Given NegativeInfinity and PositiveInfinity, the definition
for the time period Forever is easy:

Forever ≡
ClosedInterval &
∃begins.NegativeInfinity &
∃ends.PositiveInfinity

ClosedInterval has further subclasses that we only men-
tion here:

ClosedInterval
Day

Monday, Thuesday, ...
SpecialDay

Christmas, NewYearsEve
Month

January, February28, February29, ...
Quarter

FirstQuarter, SecondQuarter, ...
Season

Spring, Summer, ...
Year

Year365, Year366
Let us finally focus in this section on the definition of two
of these classes in order to flesh out this framework, viz.,
Day and NewYearsEve:

Day ≡
ClosedInterval &
∃ begins.ProperInstantDay &
∃ ends.ProperInstantDay

NewYearsEve ≡
SpecialDay &
∃begins.(∃month.{12} &∃ day.{31}) &
∃ends.(∃month.{12} &∃ day.{31})

It is worth noting that even though we have specified a value
for properties month and day, the definition of NewYears-
Eve misses the value for year. But this is correct and
only get assigned in examples such as New Year’s Eve 2007
which will be modeled as an instance of class NewYears-
Eve, having value 2007 for property year. Otherwise,
such an expression is underspecified w.r.t. to the value of
year, as in the sentence Over New Year’s Eve I have visited
the Eiffel Tower.

Further subclasses of Instant and ClosedInterval help to
deal with the granularity of time and the underspecifiction
of time in natural language. We will address this in the next
section.

7. Granularity and Underspecification
Granularity of time, i.e., the degree of how finely time is
measured and the temporal underspecification of natural
language expressions are closely related topics. Consider,
for instance, the following example:

In 1995, Edzard Reuter handed over the CEOship
of Daimler Benz AG to Schrempp.

and assume that a year is the smallest amount of time that
we want to measure. Thus the starting point for enriching
the RDF triple

js ceoOf db .

is 1995 and this temporal information will be encoded
via an instance of class ProperInstantYear–remember, we
measure things no finer than a year. Since ProperInstant-
Year only possesses the property year and since this year
is known, 1995 is a fully specified temporal expression, ac-
cording to the measure we have applied.
Independent of the degree of measurement, one can clearly
ask what is meant by 1995 here. Within the above con-
text, 1995 probably does not refer to the instant 1995-01-
01T00:00:00, assuming we would measure even seconds.
Instead, 1995 expresses the fact that there exists an interval
that starts somewhere in 1995 in which Schrempp started
his CEOship with Daimler Benz. Since the temporal end
point of the above fact is not known at this moment (but
the starting point) and since the time of Schrempp’s CEO-
ship is probably not infinitely small, we encode this interval
information in an instance of class OpenRightInterval.
This very simple example shows that temporal underspeci-
fication happens to appear on two levels:

1. instances of Instant might be underspecified in case
not every property (year, month, day, ...) has been
given a value;

2. instances of Interval might be underspecified in case
its properties begins and/or ends have not been given
a value or in case begins and/or ends are assigned a
value (instances of Instant), this value is underspeci-
fied.

The recursive part of this definition for temporal underspec-
ification is applied in the following sentence:

Between 1995 and 2005, Schrempp was the CEO
of DC.

Now assume our fineness of time is measured in terms of
days, thus we generate two instances of ProperInstant-
Day that fill the slots begins and ends of an instance of
ClosedInterval. Even though this interval is closed, its be-
ginning and end points are underspecified, hence this closed
interval is regarded as being underspecified. If we, how-
ever, had measured time in terms of years, the above natural
language description would have led to a totally specified



closed interval. It should be clear that further textual infor-
mation might close an open-left/open-right interval. Tex-
tual information might even make a partially underspecified
instant or interval total.
The above examples are fully compatible with the prop-
erty restrictions imposed on begins, ends, year, month,
day, etc., viz., being functional properties (0 or 1 value). In
case we want to enforce a property to be instantiated, e.g.,
that begins and ends are “present” on ClosedInterval, we
have applied a local number restriction on this specific class
(see description logic axioms above).
We finally note that our approach to underspecification is a
result of the subclass hierarchy of proper instants which ap-
plies a more finer measuring system when moving down the
classes. An alternative, albeit less satisfying approach to
underspecification would apply 0/1 cardinality constraints
to the properties year, month, etc. in order to “switch them
off/on”, depending on the predefined granularity of time.

8. An Application
Let us focus on an application that uses the above time on-
tology and the methodology to represent temporally chang-
ing information: imprint monitoring. The monitoring sys-
tem described in (Federmann and Declerck, 2010) extracts
imprints (and other information) from a large number of
companies on a regular temporal basis. Imprints specifies,
e.g., the name of a company, the postal address, its legal
form, authorized executives, etc. This information and its
change over time is interesting for rating agencies (such as
Creditreform).
In case the imprint of a perdurant perd changes at time t
(w.r.t. information recorded in the ontology), the latest time
slice old of perd is closed, using t (actually its time inter-
val oldint). A new time slice new (of type Company) is
also added to the ontology, storing the new imprint. Since
new contains the latest information whose temporal end-
ing point is unknown, t is stored as the starting point of
an OpenRightInterval. Not only new triples are build
up here, but also new individuals/URIs: besides new, an
interval object newint is generated. More formally, we
construct the following RDF triples:
old fourd:hasTime oldint .
oldint rdf:type time:ClosedInterval .
oldint time:ends t .
perd fourd:hasTimeSlice new .
new rdf:type Company .
new fourd:hasTime newint .
newint rdf:type time:OpenRightInterval .
newint time:begins t .
..... // add imprint info to new

Information from the ontology can be queried using the
SPARQL query language, as is used to obtain the latest time
slice. The ontology, the reasoning and querying services
are realized by the CROWL system (Combining Rules and
OWL). CROWL consists of several publicly available rea-
soners (viz., Pellet (Sirin et al., 2007), OWLIM (Kiryakov,
2006), and Jena (Reynolds, 2009)), running in a fixpoint
loop, and is extended by a template language to implement
complex aggregation rules (Krieger et al., 2008b).

9. Problems: An Example
As we indicated in the introduction, even though our ap-
proach keeps the original ontology, it leads to a massive
proliferation of objects, making reasoning and querying un-
necessarily complex, expensive, and error-prone. This is
due to the underlying data structure, the RDF triple, and
the approaches presented in section 3. do suffer from the
same problem.
Let us present an example to see how complexity builds up,
even for a relatively easy task. This example will then be
used in the next section when a solution is presented. The
task we want to achieve is the following:

Compute maximal intervals, given a property,
e.g., ceoOf, between time slices ?p and ?c.

Such queries often arise in practice when temporally-
anchored facts need to be extended by further incoming
information. Our approach, as described in section 3.5.,
would require a “lengthy” Jena-like heuristic rule to solve
this task, impossible to formulate in OWLIM or Pellet,
since it employs two aggregates, as realized by the func-
tions Min2 and Max2:
?p rdf:type fourd:Perdurant
?p fourd:hasTimeSlice ?ts1
?p fourd:hasTimeSlice ?ts2
?ts1 ceoOf ?obj1
?ts1 rdf:type ?tstype
?obj1 fourd:timeSliceOf ?q
?obj1 rdf:type ?objtype
?ts2 ceoOf ?obj2
?obj2 fourd:timeSliceOf ?q
?ts1 fourd:hasTime ?i1
?ts2 fourd:hasTime ?i2
?i1 time:begins ?b1
?i1 time:ends ?e1
?i2 time:begins ?b2
?i2 time:ends ?e2
->
?ts rdf:type ?tstype
?p fourd:hasTimeSlice ?ts
?ts ceoOf ?obj
?obj fourd:timeSliceOf ?q
?obj rdf:type ?objtype
?ts fourd:hasTime ?i
?obj fourd:hasTime ?i
?i rdf:type time:ClosedInterval
?i time:begins ?min
?i time:ends ?max
?i time:ends ?max
@test
?ts1 != ?ts2
@action
?min = Min2 ?b1 ?b2
?max = Max2 ?e1 ?e2

Independent of the underlying approach, we immediately
feel that such a rule is hard to manage and expensive, both
in terms of time (when matching clauses) and space (when
introducing new objects/URIS, bound to ?ts, ?obj, ?i,
?min, and ?max.



10. A Solution
The solution we propose in this section has been realized
in the reasoning engine HFC, developed at DFKI. The idea
here is to move from RDF triples to tuples in order to ex-
tend relation instances with further (temporal) arguments,
as already described in section 3.1.
To achieve this goal, we also need to conservatively extend
RDFS and OWL entailment rules, as originally described
in (Hayes, 2004) and (ter Horst, 2005), i.e., to make these
rules sensitive to temporal information. Here are three in-
stantiated examples that show how things are supposed to
work.
Assuming that hasCeo is the inverse of ceoOf and that
our ontology has been populated with the fact that Jürgen
Schrempp was DC’s CEO from 1995 until 2005, repre-
sented as ceoOf (js, dc, 1995, 2005), we would then like to
deduce that hasCeo(dc, js, 1995, 2005) also holds.
The fact that Angelina Jolie was married with Billy
Bob Thornton from 2000 until 2003 is represented by
marriedWith(aj, bbt, 2000, 2003). Given that marriedWith
is a symmetric property, the following should also be the
case: marriedWith(bbt, aj, 2000, 2003).
Given that my office is part of the DFKI build-
ing, i.e., contains(dfki, room+1.26, 1990, 2010) and that
my old office chair was replaced in 2002, i.e.,
contains(room+1.26, chair42, 2002, 2010), we are allowed
to infer that new chair is (at least) inside the DFKI since
2002 (contains(dfki, chair42, 2002, 2010)), due to the tran-
sitivity of the containment relation.
Such behavior can be formalized through temporally-
extended entailment rules, quite similar to the “untensed”
version described in (Hayes, 2004) and (ter Horst, 2005).
As we indicated above, the temporal arguments are attached
to the original triples, thus we end up in quintuples, assum-
ing that we have a starting and ending time. Here are some
examples:

• ?p is inverse of ?q
?p owl:inverseOf ?q
?s ?p ?o ?t1 ?t2
->
?o ?q ?s ?t1 ?t2

• ?p is a symmetric property
?p rdf:type owl:SymmetricProperty
?s ?p ?o ?t1 ?t2
->
?o ?p ?s ?t1 ?t2

• ?p is a transitive property
?p rdf:type owl:TransitiveProperty
?x ?p ?y ?t1 ?t2
?y ?p ?z ?t3 ?t4
->
?x ?p ?z ?t5 ?t6
@action
?t5 = Max2 ?t1 ?t3
?t6 = Min2 ?t2 ?t4

• copy subject for owl:sameAs
?x owl:sameAs ?y

?x ?p ?z ?t1 ?t2
->
?y ?p ?z ?t1 ?t2

• enforce domain restriction
?p rdfs:domain ?dom
?s ?p ?o ?t1 ?t2
->
?s rdf:type ?dom

• universal instantiation
?i rdf:type ?c ?t1 ?t2
?c rdfs:subClassOf ?d
->
?i rdf:type ?d ?t1 ?t2

Note that only relation instances from the ABox are (usu-
ally) extended with temporal information—at the moment,
we do not think that terminological knowledge needs to be
equipped this way (e.g., that the domain/range restrictions
of a property or the subtype relation between two classes
only hold for some period of time).
Let us now come back to the example from the previous
section that tries to build a contiguous interval from its two
input intervals. Here is the new version:
?p ceoOf ?c ?b1 ?e1
?p ceoOf ?c ?b2 ?e2
->
?p ceoOf ?c ?min ?max
@test
?b1 != ?b2
?e1 != ?e2
@action
?min = Min2 ?b1 ?b2
?max = Max2 ?e1 ?e2

This is clearly much simpler and extremely intuitive: the
only two clauses in the antecedent deal with the CEOship
of a person with a company at different times and the single
consequent extends the CEOship to a larger time span.
Such a rule can even be generalized to arbitrary properties
which persist through time in a similar way. Assuming
that such properties are characterized as subproperties of
ContinuousProperty, the above rule becomes
?r rdfs:subPropertyOf ContinuousProperty
?p ?r ?c ?b1 ?e1
?p ?r ?c ?b2 ?e2
->
?p ?r ?c ?min ?max
.....

Even though the old rule is extremely complex, both rules
only “look” at two intervals. Now, assuming that we want
to glue n intervals together, both rules require n − 1 itera-
tions to compute the maximal interval. The number of rule
applications is even larger: (n− 1)× 2×

∑n−1
i=1 i.

In order to overcome this last obstacle, we need aggrega-
tion rules that differ from ordinary rules in that variables do
not bind only one individual at a time, but all individuals,
satisfying the left-hand side constraints and the tests. This
is quite similar to aggregates as used in query languages



(e.g., in SQL), except that the queried information is used
to instantiate further tuples which are then added to the on-
tology.
HFC provides us with such aggregation rules. The above
rule even becomes more simple; the important point, how-
ever, is that one rule application immediately yields the
maximal interval. Note the different arrow sign => to in-
dicate that the below rule aggregates information through
MinN and MaxN:
?p ceoOf ?c ?b ?e
=>
?p ceoOf ?c ?min ?max
@action
?min = MinN ?b
?max = MaxN ?e

11. Conclusion
In this paper, we have presented two approaches that are
able to enrich arbitrary ontologies with a concept of time.
The first approach implements a 4D or perdurant view on
temporally-changing information, complemented by a so-
phisticated time ontology that permits temporal underspec-
ification. This approach keeps the original ontology and
does not leave the territory of RDF. This approach was used
in the MUSING project.
The lessons, we learned in MUSING, have led us to a sec-
ond approach that is much simpler, more expressive, and
more efficient, but requires to move from RDF triples to
general tuples. Temporal information here is directly at-
tached to the relation instance. We have indicated how
RDFS and OWL entailment rules can be conservatively
extended to make them sensitive to temporal information.
This approach is currently employed in the CogX project.
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Abstract

Uncertainty is pervasive throughout processing spoken dia-
logue in human-robot interaction. That need not always be
a problem though. The paper adopts the view that it de-
pends on context, how much that uncertainty actually mat-
ters. The paper argues that uncertainty in input needs to be
balanced off against how much actually needs to be under-
stood to make a contextually appropriate, next move. The
paper presents work in progress on developing mechanisms
for adaptively controlling how utterances in spoken dialogue
in human-robot interaction get processed “step-by-step”, to
deal with uncertainty in as much as necessary given an goal
state. These mechanisms take the form of a learnable closed-
loop controller that decides on an optimal policy or process
configuration to reach a next fixed-point in a state space of
(partial) analyses. The policy is planned online, adapting the
processing strategy rather than using a “universal” policy.

Introduction
Uncertainty is pervasive throughout all of spoken dialogue
processing. This is in part due to the very nature of spo-
ken dialogue. Utterances are typically incomplete, or even
ungrammatical. Nobody speaks alike. Meaning is highly
contextualized. And with that, it presents a hard problem
to solve, if spoken dialogue is to succeed as (most) natural
form of communication between a human and a robot.

One way of dealing with this uncertainty is to make the
processes we use as robust as possible. That way we can
try and deal with missing or wrong input, and still provide
an analysis. Possibly, in a divide-and-conquer strategy, pro-
viding the same input to different kinds of processes in the
expectation that at least one succeeds.

But this is really only part of the answer. Or, of the ques-
tion, come to that. Sometimes uncertainty matters, if we are
in a situation where we require high-precision understand-
ing. For example, when a human and a robot discuss what
to do next in a rescue scenario. And sometimes it doesn’t,

∗The research presented here was supported by the EU FP7
IP project “Natural Human-Robot Cooperation in Dynamic Envi-
ronments,” (ICT-247870; http://www.nifti.eu) and by the
EUF P7 IP project ”Cognitive Systems that Self-Understand and
Self-Extend” (ICT-215181, http://cogx.eu).
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

if we only need to understand enough to produce a response
that keeps the conversation going. We need to balance off
uncertainty against how much actually needs to be under-
stood to make a contextually appropriate, next move.

In this paper we discuss work in progress on develop-
ing mechanisms for adapting how a dialogue system pro-
cesses uncertain input. The aim is to be able to plan op-
timal processing strategies given a contextually determined
target. We propose to see this as a sequential decision mak-
ing problem. Given an utterance that needs to be processed,
and looking at how a state of possible (partial) analyses de-
velops towards “what we would like to know,” what steps do
we need to take next?

These mechanisms take the form of learnable closed-loop
controllers. The control state space is defined in terms of
partial analyses, and (lifted) representations of goal analy-
sis states or “desired outcomes.” The action space is defined
as a space over statements in a system definition language.
Each statement specifies a possible process configuration
that leads up to a specific fixed point. A controller defines
a mapping between changes in the control state, and an “ac-
tion” in the action space. These actions are configurations of
processes to run over a part of the input. Processes can run
sequentially and/or concurrently. The selection of an action-
as-policy is based on the assumption that each process has
a certain expected reward, based on the cost of running that
process and the outcome it is able to yield. Running the con-
figuration is then done as open-loop controller.

Problems and design options
Following out these ideas, there are several problems we
need to address.

Problem (Control state space). We have an arbitrary num-
ber of processes, and each process contributes its own type
of information to the analysis of an utterance. The state of
unfolding analysis is to be defined from the (types of) in-
formation thus provided. The issue is that these need not
be independent. For example, correcting speech recogni-
tion errors typically has an impact on how well the utter-
ance can be parsed, and reference resolution can only take
place once enough semantic representation has been built.
The problem here is to find a formulation that allows for a
suitable factorization of the state space that enables us to (a)



Extended abstract, submitted to “Dialogue With Robots,” AAAI Fall Symposia 2010 2

impose structure between components, (b) use this structure
to guide learning and control, and (c) make it possible for
processes to “discontinuously” contribute to an unfolding
analysis state.

We propose to deal with this problem by using fac-
tored models (Boutilier, Dean, and Hanks 1999). A fac-
tored (state) model allows the explicit representation and
exploitation of structure in a state space, using a vector
X = {X1, ..., Xn} to represent a state. We assume the indi-
vidual state factors Xi to carry further (algebraic) structure
of the form hi · ... · hj | c to indicate a history composed of
hi · ... · hj yielding a current class c. To deal with the issue
of co-dependency between results, we allow for lifted repre-
sentations in a factored model’s vectors. A lifted represen-
tation basically captures what component i expects as class
of representation to appear in component j. This also yields
a suitable representation of fixed-points and goal states.

Problem (Action space). Given a set of processes P that
can act on one or more state factors, we want to consider an
action to be a dynamic configuration of several processes.
This configuration is to advance the analysis from the cur-
rent state S to a next state S′. The issue is that we want to
be able to exploit sequential and/or concurrent execution of
processes, rather than focusing on atomic skills. Aside from
the issue of how a configuration could be specified, we face
the problem that the search space over possible configura-
tions is highly complex.

For dynamically specifying a configuration over pro-
cesses, we propose to use the system description language
SDL (Krieger 2003). In SDL we can specify how a set of
processes should be combined to compute from a given in-
put I to yield an output, possibly under the condition of a
fixed-point to be reached. Originally, SDL has been used
to specify a system configuration offline. We extend SDL
with information about opting-out on processing input (Li,
Littman, and Walsh 2008). For each process we require a
specification of the state factor(s) in a state vector it can ap-
ply to. These factors define the feature spaces we use later
on to learn whether a process can be effectively applied on
this input, to yield a desired output. Thereby, a process can
opt out (⊥) of computing on an input. This enables us to em-
ploy an active learning strategy for exploiting and exploring
a complex search space following a framework of self-aware
learning (Li, Littman, and Walsh 2008).

Problem (Controllers). Given a state S and a goal state Sg

we want to reach, and a set of processes P that are applica-
ble to S. The basic problem is how to decide on a configura-
tion of processes P ′ ⊆ P to apply to S, to get to an updated
state S′ that brings us close(r) to Sg . What makes this prob-
lem more complicated is that we want to do is in an online
fashion, given a finite receding horizon (Barto, Bradtke, and
Singh 1995), so that we can dynamically adapt the closed-
loop control policy of what configuration to execute next.

We see this problem as one of sequential decision mak-
ing. We propose to use reinforcement learning as a way of
finding effective solutions (Sutton and Barto 1998). We for-
mulate a controller as a Markov Decision Process (MDPs),

particularly as a factored-state Markov Decision Process,
cf. (Boutilier, Dean, and Hanks 1999; Strehl, Diuk, and
Littman 2007). For each process p in a collection of pro-
cesses P , it is defined which state factor Xi it operates on
(possibly non-exclusively), and which factors Xj #= Xi it
can be conditioned on. At each state s, we filter P to a
subset of applicable processes, P . For each p ∈ P we ei-
ther have an expectation P (s′|s) that Xs

i = hi · ... · hj | c

extends to Xs′

i = hi · ... · hj · hj+1|C, or p opts out of
producing an output on Xi. This filters P down to a set of
positively applicable processes, P+. We then need to con-
struct a configuration over processes in P+ that forms an on-
line determined policy π to be executed. This construction-
determination takes place in a modified form of the value it-
eration algorithm, inspired by (Morisset and Ghallab 2008).
We need to solve E(s) = maxa∈AQ(s, a), except that
the “action” a in the action space A is a configuration of
processes determined from P+. We therefore break down
Q(s, a) = U(s, a)+γΣs′ inSPa(s′|s)E(s′) with U(s, a) =
R(s)−C(s, a) into the components that make up a, namely
p ∈ P+ and a combination of process sequencing (pi + pj)
and/or parallelization (|pi, .., pj). The utility of a configu-
ration a is then the sum of the utilities for the individual
components c of the configuration, defined recursively as
follows. For c a process p ∈ P+, U(s, c) = U(s, p); for
c = (c1 + ... + cj), U(s, c) = Σ1≤i≤jU(s, ci); and for
c = (|c1, ..., cj), U(s, c) = (Σ1≤i≤jR(ci)) − max

1≤i≤j
C(ci).

The algorithm is invoked each time a policy finishes its
(open-loop) execution, and we have an updated state that
does not instantiate the goal state. The stopping criterion for
the iteration is defined flexibly through a fixed point of the
Bellman equation max

s∈S
|En(s)− En−1(s)| < ε.

Cost-functions C(·) reflect processing time. We are still
considering different reward functions R(·). This depends
in part on the type of goal state we have, which may vary in
its demand on precision or recall. This still leaves open sev-
eral questions, though, including how distributions such as
P (s′|s) can be learnt relative to a specific configuration – or,
rather, given the above decomposition, relative to a applying
a specific process.

Problem (Learnability). How can we acquire the probabil-
ity distributions for the controller in an online fashion, with-
out having to fully explore the (complex) state spaces?

Here we are exploring the possibility for using a frame-
work for self-aware learning, such as various model-based
approaches like R-MAX (Brafman and Tennenholtz 2002)
or SLF-MAX (Strehl, Diuk, and Littman 2007) which all
fit the “knows what it knows” (KWIK) framework (Li,
Littman, and Walsh 2008).

Discussion
The framework presented here is still under development.
We are currently working on full formalization, and the im-
plementation of the framework for a dialogue system that
can adapt the characterization of its processing goals given
the expected flow of the dialogue. The aim here is to provide
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the possibility of adaptively deciding at what depth an utter-
ance should be analyzed, to obtain a result that “optimally”
helps to further the dialogue (in terms of speed, and level of
required understanding).
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Abstract

The paper presents two models for produc-
ing and understanding situationally appro-
priate referring expressions (REs) during
a discourse about large-scale space. The
models are evaluated against an empirical
production experiment.

1 Introduction and Background

For situated interaction, an intelligent system
needs methods for relating entities in the world,
its representation of the world, and the natural lan-
guage references exchanged with its user. Hu-
man natural language processing and algorithmic
approaches alike have been extensively studied
for application domains restricted to small visual
scenes and other small-scale surroundings. Still,
rather little research has addressed the specific is-
sues involved in establishing reference to entities
outside the currently visible scene. The challenge
that we address here is how the focus of attention
can shift over the course of a discourse if the do-
main is larger than the currently visible scene.

The generation of referring expressions (GRE)
has been viewed as an isolated problem, focussing
on efficient algorithms for determining which in-
formation from the domain must be incorporated
in a noun phrase (NP) such that this NP allows
the hearer to optimally understand which referent
is meant. The domains of such approaches usu-
ally consist of small, static domains or simple vi-
sual scenes. In their seminal work Dale and Reiter
(1995) present the Incremental Algorithm (IA) for
GRE. Recent extensions address some of its short-
comings, such as negated and disjoined properties
(van Deemter, 2002) and an account of salience for
generating contextually appropriate shorter REs
(Krahmer and Theune, 2002). Other, alternative
GRE algorithms exist (Horacek, 1997; Bateman,
1999; Krahmer et al., 2003). However, all these al-

gorithms rely on a given domain of discourse con-
stituting the current context (or focus of attention).
The task of the GRE algorithm is then to single out
the intended referent against the other members of
the context, which act as potential distractors. As
long as the domains are such closed-context sce-
narios, the intended referent is always in the cur-
rent focus. We address the challenge of producing
and understanding of references to entities that are
outside the current focus of attention, because they
have not been mentioned yet and are beyond the
currently observable scene.

Our approach relies on the dichotomy between
small-scale space and large-scale space for hu-
man spatial cognition. Large-scale space is “a
space which cannot be perceived at once; its global
structure must be derived from local observations
over time” (Kuipers, 1977). In everyday situa-
tions, an office environment, one’s house, or a uni-
versity campus are large-scale spaces. A table-top
or a part of an office are examples of small-scale
space. Despite large-scale space being not fully
observable, people can nevertheless have a rea-
sonably complete mental representation of, e.g.,
their domestic or work environments in their cog-
nitive maps. Details might be missing, and peo-
ple might be uncertain about particular things and
states of affairs that are known to change fre-
quently. Still, people regularly engage in a con-
versation about such an environment, making suc-
cessful references to spatially located entities.

It is generally assumed that humans adopt a par-
tially hierarchical representation of spatial orga-
nization (Stevens and Coupe, 1978; McNamara,
1986). The basic units of such a representation
are topological regions (i.e., more or less clearly
bounded spatial areas) (Hirtle and Jonides, 1985).
Paraboni et al. (2007) are among the few to ad-
dress the issue of generating references to entities
outside the immediate environment, and present
an algorithm for context determination in hierar-
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(a) Example for a hierarchical representation of space.

(b) Illustration of the TA principle: starting from the atten-
tional anchor (a), the smallest sub-hierarchy containing both
a and the intended referent (r) is formed incrementally.

Figure 1: TA in a spatial hierarchy.
chically ordered domains. However, since it is
mainly targeted at producing textual references to
entities in written documents (e.g., figures and ta-
bles in book chapters), they do not address the
challenges of physical and perceptual situated-
ness. Large-scale space can be viewed as a hier-
archically ordered domain. To keep track of the
referential context in such a domain, in our previ-
ous work we propose the principle of topological
abstraction (TA, summarized in Fig. 1) for context
extension (Zender et al., 2009a), similar to Ances-
tral Search (Paraboni et al., 2007). In (Zender et
al., 2009b), we describe the integration of the ap-
proach in an NLP system for situated human-robot
dialogues and present two algorithms instantiating
the TA principle for GRE and resolving referring
expressions (RRE), respectively. It relies on two
parameters: the location of the intended referent
r, and the attentional anchor a. As discussed in
our previous works, for single utterances the an-
chor is the physical position where it is made (i.e.,
the utterance situation (Devlin, 2006)). Below, we
propose models for attentional anchor-progression
for longer discourses about large-scale space, and
evaluate them against real-world data.

2 The Models

In order to account for the determination of the
attentional anchor a, we propose a model called
anchor-progression A. The model assumes that
each exophoric reference1 serves as attentional
anchor for the subsequent reference. It is based
on observations on “principles for anchoring re-
source situations” by Poesio (1993), where the ex-
pression of movement in the domain determines

1This excludes pronouns as well as other descriptions that
pick up an existing referent from the linguistic context.

the updated current mutual focus of attention. a
and r are then passed to the TA algorithm. Taking
into account the verbal behavior observed in our
experiment, we also propose a refined model of
anchor-resetting R, where for each new turn (e.g.,
a new instruction), the anchor is re-set to the utter-
ance situation. R leads to the inclusion of naviga-
tional information for each first RE in a turn, thus
reassuring the hearer of the focus of attention.

3 The Experiment

We are interested in the way the disambiguation
strategies change when producing REs during a
discourse about large-scale space versus discourse
about small-scale space. In our experiment, we
gathered a corpus of spoken instructions in two
different situations: small-scale space (SSS) and
large-scale space (LSS). We use the data to evalu-
ate the utility of the A and R models. We specifi-
cally evaluate them against the traditional (global)
model G in which the indented referent must be
singled out from all entities in the domain.

The cover story for the experiment was to
record spoken instructions to help improve a
speech recognition system for robots. The partici-
pants were asked to imagine an intelligent service
robot capable of understanding natural language
and familiar with its environment. The task of the
participants was to instruct the robot to clean up
a working space, i.e., a table-top (SSS) and an in-
door environment (LSS) by placing target objects
(cookies or balls) in boxes of the same color. The
use of color terms to identify objects was discour-
aged by telling the participants that the robot is un-
able to perceive color. The stimuli consisted of 8
corresponding scenes of the table-top and the do-
mestic setting (cf. Fig. 2). In order to preclude the
specific phenomena of collaborative, task-oriented
dialogue (cf., e.g., (Garrod and Pickering, 2004)),
the participants had to instruct an imaginary recip-
ient of orders. The choice of a robot was made to
rule out potential social implications when imag-
ining, e.g., talking to a child, a butler, or a friend.

The SSS scenes show a bird’s-eye view of the
table including the robot’s position (similar to (Fu-
nakoshi et al., 2004)). The way the objects are ar-
ranged allows to refer to their location with respect
to the corners of the table, with plates as additional
landmarks. The LSS scenes depict an indoor envi-
ronment with a corridor and, parallel to SSS, four
rooms with tables as landmarks. The scenes show



Table 1: Example from the small-scale (1–2) and large-scale space (3–4) scenes in Fig. 2.
1. nimm [das plätzchen unten links]mG,A , leg es [in die schachtel unten rechts auf dem teller]oG,A

‘take the cookie on the bottom left, put it into the bottom right box on the plate’
2. nimm [das plätzchen unten rechts]mG,oA , leg es [in die schachtel oben links auf dem teller]mG,A

‘take the cookie on the bottom right, put it into the top left box on the plate’
3. geh [ins wohnzimmer]mG,A,R und nimm [den ball]uG,mA,R und bring ihn [ins arbeitszimmer]mG,A,R , leg ihn [in die

kiste auf dem tisch]uG,oA,R

‘go to the living room and take the ball and bring it to the study; put it into the box on the table’
4. und nimm [den ball]uG,R,mA und bring ihn [in die küche]mG,A,R und leg ihn [in die kiste auf dem boden]uG,mA,R

‘and take the ball and bring it to the kitchen and put it into the box on the floor’

(a) Small-scale space: squares represent small boxes,
stars cookies, and white circles plates.

ArbeitszimmerKüche

Wohnzimmer Bad

(b) Large-scale space: squares represent boxes placed on the
floor or on a table, circles represent balls, rooms are labeled.

Figure 2: Two stimuli scenes from the experiment.

the robot and the participant in the corridor.
In order to gather more comparable data we

opted for a within-participants approach. Each
person participated in the SSS treatment and in the
LSS treatment. To counterbalance potential carry-
over effects, half of the participants were shown
the treatments in inverse order, and the sequence
of the 8 scenes in each treatment was varied in a
principled way. In order to make the participants
produce multi-utterance discourses, they were re-
quired to refer to all target object pairs. The exact
wording of their instructions was up to them.

Participants were placed in front of a screen and
a microphone into which they spoke their orders
to the imaginary robot, followed by a self-paced
keyword after which the experimenter showed the
next scene. The experiment was conducted in Ger-
man and consisted of a pilot study (10 partici-
pants) and the main part (19 female and 14 male
students, aged 19–53, German native speakers).
The data of three participants who did not behave
according to the instructions was discarded. The
individual sessions took 20–35 min., and the par-
ticipants were paid for their efforts.

Using the UAM CorpusTool software, tran-
scriptions of the recorded spoken instructions
were annotated for occurrences of the linguistic
phenomenon we are interested in, i.e., REs. Sam-

ples were cross-checked by a second annotator.
REs were marked as shallow ‘refex’ segments,
i.e., complex NPs were not decomposed into their
constituents. Only definite NPs representing ex-
ophoric REs (cf. Sec. 2) qualify as ‘refex’ seg-
ments. If a turn contained an indefinite NP, the
whole turn was discarded. The ‘refex’ segments
were coded according to the amount of informa-
tion they contain, and under which disambigua-
tion model M ∈ {G,A,R} (R only for LSS)
they succeed in singling out the described refer-
ent. Following Engelhardt et al. (2006), we dis-
tinguish three types of semantic specificity. A RE
is an over-description with respect to M (overM )
if it contains redundant information, and it is an
under-description (underM ) if it is ambiguous ac-
cording to M . Minimal descriptions (minM ) con-
tain just enough information to uniquely identify
the referent. Table 1 shows annotated examples.

4 Results

The collected corpus consists of 30 annotated ses-
sions with 2 treatments comprising 8 scenes with
4 turns. In total, it contains 4,589 annotated REs,
out of which only 83 are errors. Except for the
error rate calculation, we only consider non-error
‘refex’ segments as the universe. The SSS treat-



Table 2: Mean frequencies (with standard deviation in italics) of minimal (min), over-descriptions
(over), and under-descriptions (under) with respect to the models (A, R, G) in both treatments.

overG overA overR minG minA minR underG underA underR
small-scale 13.94% 34.45% 78.90% 60.11% 7.16% 5.43%

space 15.85% 14.37% 17.66% 13.13% 12.07% 10.50%

large-scale 6.81% 34.75% 20.06 % 68.04% 64.55% 76.73% 25.16% 0.69% 3.21%
space 7.53% 12.13% 10.10% 17.87% 13.13% 10.66% 19.48% 1.72% 5.06%

ment contains 1,902 ‘refex’, with a mean number
of 63.4 and a std. dev. σ=1.98 per participant. This
corresponds to the expected number of 64 REs to
be uttered: 8 scenes × 4 target object pairs. The
LSS treatment contains 2,604 ‘refex’ with an aver-
age of 86.8 correct REs (σ=18.19) per participant.
As can be seen in Table 1 (3–4), this difference
is due to the participants’ referring to intermediate
waypoints in addition to the target objects. Table 2
summarizes the analysis of the annotated data.

Overall, the participants had no difficulties with
the experiment. The mean error rates are low in
both treatments: 1.78% (σ=3.36%) in SSS, and
1.80% (σ=2.98%) in LSS. A paired sample t-
test of both scores for each participant shows that
there is no significant difference between the error
rates in the treatments (p=0.985), supporting the
claim that both treatments were of equal difficulty.
Moreover, a MANOVA shows no significant effect
of treatment-order for the verbal behavior under
study, ruling out potential carry-over effects.

Production experiments always exhibit a con-
siderable variation between participants. When
modeling natural language processing systems,
one needs to take this into account. A GRE com-
ponent should produce REs that are easy to un-
derstand, i.e., ambiguities should be avoided and
over-descriptions should occur sparingly. A GRE
algorithm will always try to produce minimal de-
scriptions. The generation of an under-description
means a failure to construct an identifying RE,
while over-descriptions are usually the result of
a globally ‘bad’ incremental construction of the
generated REs (as is the case, e.g., in the IA). An
RRE component, on the other hand, should be able
to identify as many referents as possible by treat-
ing as few as possible REs as under-descriptions.

The analysis of the SSS data with respect to
G establishes the baseline for a comparison with
other experiments and GRE approaches. 13.9% of
the REs contain redundant information (overG),
compared to 21% in (Viethen and Dale, 2006). In
contrast, however, our SSS scenes did not provide
the possibility for producing more-than-minimal
REs for every target object, which might account

for the difference. underG REs occur with a fre-
quency of 7.2% in the SSS data. Because under-
descriptions result in the the hearer being unable to
reliably resolve the reference, this means that the
robot in our experiment cannot fulfill its task. This
might explain the difference to the 16% observed
in the task-independent study by Viethen and Dale
(2006). The significantly (p<0.001) higher mean
frequency of minG than minA underpins that G
is an accurate model for the verbal behavior in
SSS. However, G does not fit the LSS data well.
An RRE algorithm with model G would fail to
resolve the intended referent in 1 out of 4 cases
(cf. underG in LSS). With only 0.7% underA
REs on average, A models the LSS data signifi-
cantly better (p<0.001). Still, there is is a high
rate of overA REs. In comparison, R yields a
significantly (p<0.001) lower amount of overR.
The mean frequency of underR is significantly
(p=0.010) higher than for underA, but still below
underG in the SSS data. With a mean frequency
of 76.7% minR, R models the data better than
both G and A. For the REs in LSS minR is in
the same range as minG for the REs in SSS.

5 Conclusions

Overall, the data exhibit a high mean frequency of
over-descriptions. However, since this means that
the human-produced REs contain more informa-
tion than minimally necessary, this does not nega-
tively affect the performance of an RRE algorithm.
For a GRE algorithm, however, a more cautious
approach might be desirable. In situated discourse
about LSS, we thus suggest that A is suitable for
the RRE task because it yields the least amount
of unresolvable under-descriptions. For the GRE
task R is more appropriate. It strikes a balance
between producing short descriptions and supple-
menting navigational information.
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Kruijff-Korbayová. 2009a. A situated context
model for resolution and generation of referring ex-
pressions. In Proceedings of the 12th European
Workshop on Natural Language Generation (ENLG
2009), pages 126–129, Athens, Greece, March.

Hendrik Zender, Geert-Jan M. Kruijff, and Ivana
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The use of natural language processing systems is no longer limited to small, fixed, fully known
and fully observable domains. In interaction with mobile robots, with non-player characters
in virtual worlds, or with mobile location-based applications alike references to entities out-
side the currently observable scene (i.e., in large-scale space) are becoming more and more
important. Referring expressions (e.g., definite noun phrases, pronouns, and proper names) are
used to convey which entities in the world are being talked about. Ideally, the natural language
communication with such systems is not restricted to single one-way utterances. The way
successful reference between such a system and its user is established must thus be viewed
from a discourse-oriented perspective. Successful reference is established by the interplay of
referring expressions and the way the discourse unfolds.
In this paper we address the challenge of producing and understanding referring expressions
to entities in large-scale space during a discourse. To this end, we propose a general principle
of topological abstraction (TA) for determining an appropriate spatial context. This principle
is applied to the tasks of generating and resolving referring expressions. Further, we propose
anchor-progression and anchor-resetting mechanisms to track the origin of the TA algorithms
throughout the discourse. Finally, we present an empirical experiment that evaluates the utility
of the proposed methods with respect to situated instruction-giving in small-scale space on the
one hand, and large-scale space on the other.

Introduction

For situated interaction with intelligent systems
we need methods for establishing the relationship
between entities in the world and the representa-
tions that the system has of its environment. Hu-
man natural language processing and algorithmic
approaches alike have been extensively studied for
application domains that are restricted to small vi-
sual scenes and other small-scale surroundings.

With autonomous mobile robots slowly finding
their way into our everyday lives, non-player char-
acters in 3D virtual worlds evolving from game
opponents to social companions, and a rapidly
growing market for mobile location-based and
context-aware technology, we are faced with the

This work has been supported by the European Com-
munity under contract number FP7-ICT-215181-CogX
in the EU FP7 ICT Cognitive Systems Large-Scale In-
tegrating Project “CogX – Cognitive Systems that Self-
Understand and Self-Extend.”

challenge of situated communication about large-
scale environments. That is, robotic assistants
must understand instructions to fetch coffee “from
the kitchen”, and 3D avatars might want to em-
phasize the fact that a particular couch would fit
perfectly well with “the armchair in your living
room”. Still, rather little research has addressed
the specific difficulties involved in establishing
reference to entities outside the currently visible
scene. The challenge that we will address here
is how the focus of attention can move over the
course of a discourse if the domain is larger than
the currently visible scene.

In this paper, we identify attention-direction
and context determination as crucial steps towards
the generation and resolution of references to en-
tities in large-scale space. We propose a general
principle of topological abstraction for determin-
ing an appropriate spatial context. This princi-
ple is applied to the tasks of generating and re-
solving referring expressions. Then we move on
from individual referring expressions to the mech-
anisms that determine the origin of the topolog-
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ical abstraction algorithms along the course of a
discourse. We propose the principle of anchor-
progression, which models the way attention-
directing information unfolds during the course of
a discourse. Finally, we present an empirical ex-
periment that evaluates the utility of the proposed
methods with respect to situated instruction-giving
in small-scale space on the one hand, and large-
scale space on the other.

Background

Referring Expressions
In natural language generation (NLG) the task

of generating referring expressions (GRE) is find-
ing an appropriate verbal expression that success-
fully identifies an intended referent to the hearer
on first mention. Conversely, in natural lan-
guage comprehension, resolving referring expres-
sions (RRE) is concerned with identifying which
domain entity is referred to by the speaker.

Usually, GRE has been viewed as an isolated
problem, focussing on efficient algorithms for de-
termining which information from the domain
must be incorporated in a noun phrase such that
this noun phrase allows the hearer to optimally
understand which referent is meant. Other chal-
lenges addressed in the GRE field involved psy-
cholinguistic plausibility, algorithmic elegance,
and representational efficiency. The domains of
such approaches usually consist of small, static
domains or simple visual scenes. In their semi-
nal work Dale and Reiter (1995) present the In-
cremental Algorithm (IA) for generating referring
expressions. In more recent work, van Deemter
(2002), and Krahmer and Theune (2002) propose
extensions to the IA that address some of its short-
comings, such as negated and disjoined properties
(van Deemter, 2002) and an account of salience
for generating contextually appropriate shorter re-
ferring expressions (Krahmer & Theune, 2002).
Other, alternative GRE algorithms exist (Horacek,
1997; Bateman, 1999; Krahmer, van Erk, & Ver-
leg, 2003). What all these GRE algorithms have
in common is that they rely on a given domain of
discourse that constitutes the current context, also
called focus of attention. The task of the GRE al-
gorithm is then to single out the intended refer-
ent against the other members of the context set
that act as potential distractors. As long as the
domains of discourse are small visual scenes or
other closed-context scenarios, the intended refer-
ents are always in the current focus of attention.

We address the challenge of producing and under-
standing of references to entities that are outside
the current focus of attention, e.g., because they
have not been mentioned yet and are beyond the
currently observable scene.

Paraboni, van Deemter, and Masthoff (2007)
are among the few to address the issue of generat-
ing references to entities outside the immediate en-
vironment. They present an algorithm for context
determination in hierarchically ordered domains,
mainly targeted at producing textual references to
entities in written documents (e.g., figures and ta-
bles in book chapters). As a result they do not
touch upon the challenges of physically and per-
ceptually situated dialogue.

All the different components of natural lan-
guage dialogue systems contribute to the overall
success of reference. Besides the already men-
tioned GRE algorithms this not only involves the
other linguistic processes, such as discourse plan-
ning, sentence aggregation, lexical choice, and
surface realization, but also knowledge base con-
struction and maintenance, and the interface be-
tween the knowledge base and the NLP system.
Moreover, dialogue systems need to perform bi-
directional communication. In addition to natu-
ral language generation, a dialogue system must
be capable of natural language understanding. Its
counterpart for the GRE task is the task of resolv-
ing referring expressions to entities in the system’s
knowledge base (RRE).

In a nutshell, establishing reference is in gen-
eral not solvable by an isolated GRE or RRE al-
gorithm. Reference is established by conveying or
processing the right information at the right point
during the course of a discourse. For NLG it is not
sufficient to determine which information needs to
be included, but also when and where it should be
realized. A natural language understanding sys-
tem must be able to take into account the influence
previous utterances have on the reference at hand.

With respect to this, we are addressing
attention-directing factors that arise during a dis-
course, moving beyond the single, isolated refer-
ring expression. Together, our approach accounts
for the progression of the focus of attention dur-
ing a discourse about entities that are located in
a domain that is larger than the immediate visual
context.

Existing Corpora
We want to investigate the different forms re-

ferring expressions to entities in large-scale space
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can have during a discourse. There exist many cor-
pora of referring expressions to entities in small-
scale visual scenes, such as, the GRE3D3 corpus
(Viethen & Dale, 2008b, 2008a), and the Drawer
data set (Viethen & Dale, 2006). These corpora
provide insights in the different processes involved
in the production of referring expressions. They
do not, however, cover the specifities of references
in large-scale space.

Other corpora address situated task-oriented
natural language in large-scale spatial settings.
The OSU Quake 2004 corpus (Byron & Fosler-
Lussier, 2006) and the SCARE corpus (Stoia,
Shockley, Byron, & Fosler-Lussier, 2008) are
recordings of experiments performed using “first
person graphics” 3D games. The drawback of
these corpora, however, is that the process of es-
tablishing reference develops in a task-oriented
situated dialogue while the participants are ex-
ploring their virtual 3D environment. This elic-
its phenomena of interactive alignment (Garrod &
Pickering, 2004; Pickering & Garrod, 2006) and
conceptual pacts (Brennan & Clark, 1996), which
among other things, include the use of “risky ref-
erences” (Carletta & Mellish, 1996). This can
then be followed by interactive repair processes,
and indefinite descriptions to introduce new ref-
erents to the shared context. It has been shown
that two interlocutors who are faced with a sit-
uation that is new to them, will spend quite an
amount of time and effort to collaboratively es-
tablish mutual reference. This involves the devel-
opment of shorter, sometimes even idiosyncratic
verbal descriptions over the course of such a di-
alogue (Clark & Wilkes-Gibbs, 1986). For sev-
eral reasons these phenomena are very prominent
in the aforementioned corpora. For one, the indi-
vidual conversations recorded are rather short (15
minutes on average per session in the SCARE cor-
pus, 9–35 minutes per session in the OSU cor-
pus). And, secondly, the participants were em-
bodied and situated in a virtual world that was
new to them. All in all, this leads to an over-
representation of verbal behaviors that serve the
purpose of building up common ground.

The GIVE challenge (Koller et al., 2007; Byron
et al., 2009) follows a similar approach as the OSU
and SCARE experiments. Participants embody an
avatar in a 3D environment. They have to nav-
igate their large-scale environment following the
orders of an NLG-system that acts as instruction-
giver. Most referring expressions (that is, definite
exophoric noun phrases) in such scenarios will be

generated in-situ, treating the local visual scene as
a small-scale spatial context. Embodied motion
within the domain, visual salience, and short-term
memory effects determine which objects qualify
as referents and distractors.

Many of these experiments trace back to the
HCRC Map Task experiments (Anderson et al.,
1991), which yielded a large corpus of instruction
giver-instruction follower dialogues. The experi-
mental setting was collaborative route replication
using incomplete and differing maps of pseudo-
large-scale space. The map was not meant as a de-
piction of a realistic large-scale domain, but rather
the map was the domain itself, rendering the situ-
ation effectively to a small-scale space.

Taking into account the shortcomings of exist-
ing corpora with respect to the verbal phenomena
we want to investigate, we conducted an empirical
data gathering experiment. Our experiment, like
many of the more recent experiments on estab-
lishing mutual reference, draws inspiration from
the original Map Task experiments. The design
of our experiment is aimed at controlling mem-
ory effects and common knowledge of the do-
main, and specifically at eliciting exophoric def-
inite noun phrases.

Cognitive Models of Large-Scale Space
The work presented here relies on the di-

chotomy between small-scale space and large-
scale space for human spatial cognition (Herman
& Siegel, 1978; Hazen, Lockman, & Pick, 1978).
Kuipers (1977) defines large-scale space as “a
space which cannot be perceived at once; its global
structure must be derived from local observations
over time,” whereas small-scale space consist of
the here-and-now. For example, a drawing is a
large-scale space “when viewed through a small
movable hole, while a city can be small-scale
when viewed from an airplane” (Kuipers, 1977).
In more common everyday situations, an office en-
vironment, one’s house, a city, or a university cam-
pus are large-scale spaces. A table-top or a partic-
ular corner of one’s office are examples of small-
scale space.

Despite large-scale space being not fully ob-
servable, people can nevertheless have a reason-
ably complete mental representation of, e.g., their
domestic or work environments in their cognitive
map. Details might be missing, and people might
be uncertain about particular things and states of
affairs that are known to change frequently. Still,
people regularly engage in a conversation about
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such an environment, making successful refer-
ences to spatially located entities.

Following the results of empirical studies, it is
nowadays generally assumed that humans adopt a
partially hierarchical representation of spatial or-
ganization (Stevens & Coupe, 1978; McNamara,
1986). The basic units of such a qualitative spatial
representation are topological regions correspond-
ing to more or less clearly bounded spatial areas
(Hirtle & Jonides, 1985).

Context Determination
in Hierarchically
Ordered Domains

Large-scale space can be viewed as a hierarchi-
cally ordered domain. To keep track of the correct
referential context in such a domain, we propose a
general principle of topological abstraction (TA)
for context extension, which is rooted in what we
will call the referential anchor.

This model is similar to Ancestral Search by
Paraboni et al. (2007). However, their approach
suffers from the shortcoming that their GRE algo-
rithm treats spatial relationships as one-place at-
tributes. For example a spatial containment rela-
tion that holds between a room entity and a build-
ing entity (“the library in the Cockroft building”)
is given as a property of the room entity (building
name = Cockroft), rather than a two-place relation
(in(library,Cockroft)).Thereby they avoid re-
cursive calls to the GRE algorithm. In principle,
recursive calls to the algorithm are necessary if an
intended referent is related to another entity that
must be identified to the hearer through a definite
description. We believe that this imposes an un-
necessary restriction onto the design of the knowl-
edge base. Moreover, it makes it hard to separate
the process of context determination from the ac-
tual GRE algorithm. In order to be compatible
with the many existing GRE algorithms, and also
to be useful for the RRE task, we propose an al-
gorithm for situated context determination. It can
be applied to the input knowledge bases of exist-
ing GRE approaches, and can determine the part
of the knowledge base against which to perform
the RRE task. Another drawback of the approach
is the omission of formalizing the notion of the
referential anchor, and its progression during the
course of a discourse.

TA relies on two parameters. One involves the
location of the intended referent ‘r’. The other pa-
rameter is the referential anchor ‘a’. For single
expressions the referential anchor corresponds to

the “position of the speaker and the hearer in the
domain” (Paraboni et al., 2007). For longer dis-
courses about large-scale space, we will propose a
model for referential anchor-progression and eval-
uate it against real-world data.

Topological Abstraction

TA is designed for a multiple spatial abstraction
hierarchy. Such a spatial representation decom-
poses space into into parts that are related through
a tree or lattice structure in which edges denote
a containment relation (cf., Figure 1a). The ref-
erential anchor a corresponds to the current fo-
cus of attention, and it thus forms the nucleus of
the context to be generated. In the basic case, a
corresponds to the hearer’s physical location. But
during a longer discourse, a can move along the
“spatial progression” of the most salient discourse
entity. If the intended referent is outside the cur-
rent context, TA extends the context by incremen-
tally ascending the spatial abstraction hierarchy
until the intended referent is in the resulting sub-
hierarchy (cf. Figure 1b).

Below we describe two instantiations of the TA
principle, a TA algorithm for reference generation
(TAA1) and TAA2 for reference resolution. They
differ only minimally, namely in their use of an
intended referent r or an RE desc(x) to determine
the conditions for entering and exiting the loop for
topological abstraction. The way they determine
a context through topological abstraction is identi-
cal.

Context Determination for GRE. TAA1 (cf. Al-
gorithm 1 on page 6) constructs a set of entities
dominated by the referential anchor a (including
a itself). If this set contains the intended referent
r, it is taken as the current utterance context set.
Else TAA1 moves up one level of abstraction and
adds the set of all descendant nodes to the context
set. This loop continues until r is in the thus con-
structed set. At that point TAA1 stops and returns
the constructed context set.

TAA1 is formulated to be neutral to the kind of
GRE algorithm that it is used for. It can be used
with the original Incremental Algorithm (Dale &
Reiter, 1995), augmented by a recursive call if a
relation to another entity is selected as a discrim-
inatory feature. It could in principle also be used
with the standard approach to GRE involving rela-
tions (Dale & Haddock, 1991), but we agree with
Paraboni et al. (2007) that the mutually qualified
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...office1 office4 office1

floor1 floor2

building 1A building 3B

old campus

kitchen office2 helpdesk office3office5

floor1 floor2 floor1

building 2C building 3B

new campus

Dienstag, 14. April 2009

(a) Example for a hierarchical representation of space.

(b) Illustration of the TA principle: starting from the referential anchor (a), the smallest sub-hierarchy containing both
a and the intended referent (r) is formed incrementally.

Figure 1. : Topological abstraction (TA) in a spatial hierarchy.

references that it can produce1 are not easily re-
solvable if they pertain to circumstances where
a confirmatory search is costly (such as in large-
scale space). More recent approaches to avoiding
infinite loops when using relations in GRE make
use of a graph-based knowledge representation
(Krahmer et al., 2003; Croitoru & van Deemter,
2007). TAA1 is compatible with these approaches,
as well as with the salience based approach of
Krahmer and Theune (2002), which also provides
a recursive variant that is able to handle relations.

Context Determination for Reference Resolu-
tion. Analogous to the GRE task, a dialogue sys-
tem must be able to resolve verbal descriptions by
its users to symbols in its knowledge base. In or-
der to avoid overgenerating possible referents, we
propose TAA2 (cf. Algorithm 2 on the next page)
which tries to select an appropriate referent from a
relevant subset of the full knowledge base.

It is initialized with a given semantic repre-
sentation of the referential expression, desc(x),
in a format compatible with the knowledge base.

Then, an appropriate entity satisfying this descrip-
tion is searched for in the knowledge base. Sim-
ilarly to TAA1, the description is first matched
against the current context set C consisting of a
and its child nodes. If this set does not contain any
instances that match desc(x), TAA2 increases the
context set along the spatial abstraction axis un-
til at least one possible referent can be identified
within C.

A Model for Referential
Anchor-progression in

Discourse about
Large-Scale Space

In order to account for the determination of
the referential anchor, we propose a model that
we call anchor-progression. The model assumes

1 An example for such a phenomenon is the expres-
sion “the ball on the table” in a context with several ta-
bles and several balls, but of which only one is on a ta-
ble. Humans find such REs natural and easy to resolve
in visual scenes.



6

Algorithm 1 TAA1 (for reference generation)
Input: referential anchor a, intended referent r
Output: the smallest sub-hierarchy containing a and r

Initialize context: C := ∅
C := C ∪ {a} ∪ topologicalDescendants(a)
if r ∈ C then

return C
else

Initialize abstraction queue: Q := [a]
while size(Q) > 0 do

n := pop(Q)
for each p ∈ topologicalParents(n) do

push(Q, p)
C := C ∪ {p} ∪ topologicalDescendants(p)

end for
if r ∈ C then

return C
end if

end while
return failure

end if

that each reference to an extra-linguistic entity in
large-scale space serves as referential anchor for
the subsequent reference. Formally speaking, each
exophoric referring expression will set a new an-
chor. This excludes pronominal anaphora as well
as other “short” descriptions that pick up an ex-
isting referent from the linguistic context, as, e.g.,
addressed in the salience-based GRE approach of
Krahmer and Theune (2002). The referential an-
chor and the intended referent are then passed to
the respective TA algorithms. Taking into account
the verbal bevhavior observed in the experiment,
cf. Section , we also propose a refined model of
anchor-resetting. In this model, for each new turn
(e.g., a new instruction), the referential anchor is
re-set to the position of the interlocutors. This
model leads to the inclusion of navigational infor-
mation for each first referring expression in a turn,
and thus makes it easier for the hearer to follow.

Data Gathering
Experiment

We are interested in the way the disambigua-
tion strategies change when producing expressions
during a discourse about large-scale space versus
discourse about small-scale space. In our exper-
iment, we hence gathered a corpus of spoken in-
structions in two different situations: small-scale
space and large-scale space. We use the gath-
ered data to evaluate the utility of the anchor-

Algorithm 2 TAA2 (for reference resolution)
Input: referential anchor a,

referential description desc(x)
Output: set of possible referents in the smallest

sub-hierarchy containing a and at least one referent
satisfying desc(x)

Initialize context: C := ∅
Initialize possible referents: R := ∅
C := C ∪ {a} ∪ topologicalDescendants(a)
R := desc(x) ∩C
if R ! ∅ then

return R
else

Initialize abstraction queue: Q := [a]
while size(Q) > 0 do

n := pop(Q)
for each p ∈ topologicalParents(n) do

push(Q, p)
C := C ∪ {p} ∪ topologicalDescendants(p)

end for
R := desc(x) ∩C
if R ! ∅ then

return R
end if

end while
return failure

end if

progression/resetting model. We specifically eval-
uate it against the traditional (global) model in
which the indented referent must be singled out
against all entities in the domain.

Design Considerations

As discussed in the introductory sections,
small-scale space and large-scale space differ sig-
nificantly. Large-scale space is a space that can-
not be fully perceived from a single viewpoint –
whereas small-scale space is defined by its im-
mediate observability. This poses a fundamental
problem when designing comparable stimuli for
both conditions.

There is an inherent difficulty to conducting sit-
uated experiments in large-scale space. In a real-
istic physical environment with which the partic-
ipants are familiar, the factors that influence the
participants’ behavior are hard, if not nearly im-
possible, to control. That is why, usually, such
experiments are conducted in specificly instru-
mented dedicated environments in order to be able
to record the participants as unobtrusively as pos-
sible. Most participants will thus be unfamiliar
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with the experimental environment. Memory ef-
fects as well as different spatial reasoning capabil-
ities in the participants will probably overshadow
the observed verbal behavior. Embodiment in a
virtual 3D world has a similar disadvantage, be-
cause the participants’ mental map of the environ-
ment will be very brittle.

A common practice for the study of language
processing is the use of drawings to depict small-
scale scenes, e.g., using the visual world paradigm
for correlating eye-movement and utterance pro-
cessing (Cooper, 1974; Knoeferle, Crocker, Pick-
ering, & Scheepers, 2005). Production and reso-
lution of referring expressions has also been ex-
tensively studied using drawings or other artifi-
cial renderings of small-scale scenes, such as the
work done by Funakoshi, Watanabe, Kuriyama,
and Tokunaga (2004), Kelleher and van Genabith
(2006), Kelleher (2007), or Viethen and Dale
(2008b) to name a few.

In order to study the differences in language use
for small-scale and large-scale environments, we
adopt the well-studied approach of using drawings
of table-top scenes as the comparison standard.
For the large-scale counterparts we draw inspira-
tion from the Map Task experiments, as well as
from more recent work by Hois and Kutz (2008).
The large-scale scenes are depicted by a floor-plan
like depiction of a domestic indoor environment.
Hois and Kutz (2008) report on an experiment
with a bird’s-eye view of an office represented in
a traditional floor-plan style, which succeeded in
situating the participants’ imagination in a room.
In contrast to their study, however, we do not want
to address the problems of spatial orientation for
spatial calculi and their natural language realiza-
tions. We hence need to exclude perspectivization
induced by spatial orientation of the objects as a
factor for verbalization. In our experiment, we
hence depict the target objects in an upright fash-
ion. This violates the strict bird’s-eye perspective
most people are used to from realistic floor plans.
However, it has the advantage of emphasizing the
hierarchical structure of the scene, rather than its
exact interior design.

Strictly speaking, a fully observable map of
an environment violates the definition of large-
scale space. However, we claim that maps, being
common abstractions of mental representations of
large-scale space, can stimulate the participants’
imagination of a scene such as to induce a realistic
verbal behavior.

Stimulus Design
The stimuli consist of a set of corresponding

scenes depicting a table-top setting (small-scale
space), and a domestic indoor setting (large-scale
space), cf. Figure 2 on the following page. For
each scene in one setting, there is a scene in the
other one that has the target, landmark, and dis-
tractor objects placed in a parallel fashion.

In order to preclude the aforementioned spe-
cific phenomena of collaborative, task-oriented di-
alogue, the participants had to utter instructions
to an imaginary recipient of orders. The stimuli
hence provide the participants a template for giv-
ing instructions to a service robot. The choice of a
robot as instruction recipient was made to rule out
potential social implications when imagining, e.g.,
talking to a child, a butler, or a friend.

The small-scale setting shows a similar per-
spective on the scene as the experiment done by
Funakoshi et al. (2004), i.e., a bird’s-eye view of
the table-top including an illustration of the robot’s
position with respect to the table. The target,
landmark and distractor objects consist of cook-
ies, small boxes, and plates. The way the objects
are arranged allows to refer to their location with
respect to the four corners of the table. The large-
scale scenes depict an indoor environment consist-
ing of a corridor and four rooms, parallel to the
four corners in the small-scale scenes. The parallel
target, landmark, and distractor objects are balls,
boxes, and tables. The scenes show the robot and
the participant in one end of the corridor.

Experiment Design
In order to gather more comparable data we

opted for a within-participants approach. Each
person participated in the small-scale space treat-
ment and in the large-scale space treatment. To
counterbalance any potential carry-over effects,
half of the participants were shown the two treat-
ments in inverse order. The treatments consisted
of eight different scenes. The sequence of the
scenes was varied in a principled way in order to
smoothen learning and habituation effects between
the participants of each group.

In order to make the participants produce multi-
utterance discourses, they were required to refer to
all the four target object pairs. The pairs could be
identified by their equal color. The exact wording
of their instructions was up to the participants.

The cover story for the experiment was that we
wanted to record spoken instructions in order to



8

(a) Small-scale space scene: squares represent small
boxes, stars represent cookies, white circles represent
plates.

ArbeitszimmerKüche

Wohnzimmer Bad

(b) Large-scale space scene: squares represent boxes that
are either placed on the floor or on a table, circles rep-
resent balls, rooms are labelled Küche ‘kitchen’, Arbeit-
szimmer ‘study’, Bad ‘bathroom’, Wohnzimmer ‘living
room’.

Figure 2. : Two of the scenes shown in the experiment.

improve a speech recognition system for intelli-
gent robots. The participants were asked to imag-
ine an intelligent service robot capable of under-
standing natural language and familiar with its en-
vironment. The purpose of the service robot is
to help humans in household tasks. The task that
the robot was to perform was to clean up a work-
ing space, i.e., a table-top (small-scale space) and
an indoor environment (large-scale space), respec-
tively. Cleaning up meant to place target objects
(cookies or balls) in boxes of the same color. An
influence of visual salience on the participants’
performance can be ruled out for several reasons.
First of all, in each scene the same set of four
colors (yellow, blue, red, green) occurs. Second,
the participants had to refer to all objects in each
scene, and they were free to choose their order.
Moreover, part of the experiment design was that
the use of color terms to identify objects verbally
was discouraged. This was achieved by telling the
participants that the robot is unable to perceive and
understand color terms. The fact that objects of the
same type always had the same size also served the
exclusion of visual salience as a factor.

The experiment was conducted in German.

Experiment Procedure

Each participant was placed in front of a screen
and a microphone. First they were shown the
general instructions on the screen. Then they

were presented the specific instructions for the first
treatment, followed by three practice scenes that
were showing stimuli of the same kind than the
experimental scenes but with a lower complexity.
After that the participants were given the oppor-
tunity to rest or ask clarifying questions before
they were presented the eight scenes of the first
treatment. After one more opportunity for a short
pause the instructions for the second treatment and
three corresponding practice scenes were shown,
again allowing them to ask for clarification before
starting with the eight experimental scenes.

During the practice runs and the experiments,
the participants would utter their orders to the
imaginary robots into the microphone, followed
by a self-paced keyword that would allow the ex-
perimenter to know when to proceed to the next
scene. Whenever participants asked clarifying
questions the experimenter would repeat the ap-
propriate part of the experiment’s instructions to
them. The experimenter was operating the com-
puter that the screen was attached to and hit the
forward button to advance to the next scene when-
ever the participants uttered the keyword.

Participants

The experiment consisted of a pilot study with
ten participants and the main experiment with 33
participants (19 female, 14 male students). Their
median age was 22 (19–53 years). All of them



9

were native speakers of German. One male par-
ticipant had a color vision deficiency. He reported
that he was able to discriminate the differently col-
ored target objects based on their shade, rather
than hue. Due to his above average performance
with respect to accuracy and reasonable comple-
tion time of the task it was not necessary to discard
his session. The data of three other participants
had to be discarded because they did not behave
according to the instructions. The individual ex-
periments took between 20 and 35 minutes, and
the participants were paid for their efforts.

Annotation
The recorded spoken instructions were first

manually transcribed. Then the transcriptions
were automatically transformed to a machine-
readable XML-based mark-up format encoding
the different parameters of the experiment (age
and gender of the participant, order and type of
treatments, order of scenes per treatment). These
XML files were then imported into the UAM Cor-
pusTool annotation software.2

The linguistic phenomenon we are interested
in, i.e., referring expressions, was then manually
annotated. Each session was annotated by one an-
notator. Samples of the annotations were cross-
checked by a second or third annotator.

The annotation part consisted of several tasks.
First of all, referring expressions were marked as
‘refex’ segments. Only definite noun phrases qual-
ify as ‘refex’ segments. If a turn contained an
indefinite noun phrase to introduce a new refer-
ent, the whole turn was discarded. Only exophoric
references were marked as ‘refex’. This excludes
pronouns and mentions of already introduced ref-
erents. The segmentation was done in a shallow
manner, i.e., complex noun phrases were not de-
composed into their constituents. The ‘refex’ seg-
ment thus spanned across the head noun and its
determiner, and all other modifiers, such as adver-
bials, adjectives, dependent propositional phrases,
and relative clauses.

The next step in the annotation process con-
sisted in coding the ‘refex’ segments with respect
to a set of features. These features encode the
amount of semantic information that the segments
contain, and under which disambiguation model
– global (G), anchor-progression (A), or anchor-
resetting (R), the latter only for the large-scale
treatment – this information can be used for sin-
gling out the described referent. We distinguish
three types of semantic specifity with respect to

each model according to the terms introduced by
Engelhardt, Bailey, and Ferreira (2006). A ‘refex’
is coded as an over-description with respect to
a model M ∈ {G, A,M} (overM) if it contains
redundant information according to the respec-
tive model M. Coding as an under-description
(underM) means that the ‘refex’ segment is am-
biguous with respect to the model. Minimal de-
scriptions with respect to the model (minM) con-
tain just enough information to uniquely identify
the referent. If the participants made an error with
respect to the instructions of the experiment, the
respective ‘refex’ was coded as error.

Table 1 on the next page and Table 2 on page 11
show annotated examples taken from the data.

Results
The collected corpus consists of 30 annotated

sessions, each composed of two treatments (small-
scale space and large-scale space). Each treat-
ment comprises eight scenes with four sub-goals
(termed turns) each. In total, the corpus con-
tains 4,589 annotated referring expressions, out of
which 83 are errors. With the exception of the cal-
culation of the error rate, we only consider non-
error ‘refex’ segments as the universe.

The small-scale treatment contains 1,902
‘refex’, with a mean number of 63.4 and a standard
deviation of σ=1.98 per participant. This corre-
sponds to the expected number of 64 referring ex-
pressions to be uttered: 8 scenes × 4 target object
pairs (i.e., cookie and box). The large-scale treat-
ment contains 2,604 ‘refex’. On average the par-
ticipants produced 86.8 correct referring expres-
sions (σ=18.19). As can be seen in Table 1 (3–4),
this difference results from the participants’ refer-
ring to intermediate waypoints that introduce new
spatial contexts in addition to the target objects.

Overall, the participants had no difficulties
completing the two treatments of the experiment.
The error rates are low in both treatments: 1.78%
on average (σ=3.36%) in the small-scale treat-
ment, and 1.80% on average (σ=2.98%) for the
large-scale treatment. A paired sample t-test of
both scores for each participant shows that there is
no significant difference between the error rates in
the treatments (t=-0.019, d f=29, p=0.985). This
supports the claim that both treatments were of
equal difficulty for the participants. In addition, a
multivariate analysis of variance shows that there

2 http://www.wagsoft.com/CorpusTool/
Thanks to Mick O’Donnell for his support.
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Figure 3. : Mean frequencies of overs-descriptions (over), minimal descriptions (min), and under-
descriptions (under) with respect to the two models (anchor-progression, A, and global, G) in both treat-
ments (large-scale space and small-scale space).

Table 1
: Example from the small-scale space scene in Figure 2a.

1. nimm
take

[das
the

plätzchen
cookie

unten
bottom

links]minG,A

left
,
,

leg
put

es
it

[in
into

die
the

schachtel
box

unten
bottom

rechts
right

auf
on

dem
the

teller]overG,A

plate
‘take the cookie on the bottom left, put it into the box on the bottom right’

2. nimm
take

[das
the

plätzchen
cookie

unten
bottom

rechts]minG ,overA

right
,
,

leg
put

es
it

[in
into

die
the

schachtel
box

oben
top

links
left

auf
on

dem
the

teller]minG,A

plate
‘take the cookie on the bottom right, put it into the top left box on the plate’

3. nimm
take

[das
the

plätzchen
cookie

oben
top

links]minG ,overA

left
,
,

leg
put

es
it

[in
into-the

die
box

schachtel
top

oben
right

rechts]minG,A

‘take the top left cookie, put it into the top right box’
4. nimm

take
[das
the

plätzchen
cookie

oben
top

rechts]minG ,overA

right
,
,

leg
put

es
it

[in
into

die
the

schachtel
box

oben
top

links]underG,A

left
‘take the top right cookie, put it into the top left box’

is no significant effect of treatment-order for the
verbal behavior under study. This rules out poten-
tial carry-over effects.

Figure 3 shows the mean frequencies of over-
descriptive, minimally descriptive, and under-
descriptive referring expressions with respect to
the models in both treatments.

As can be seen, evaluating the participants’ re-
ferring expressions in the small-scale space treat-
ment with respect to the global model yields the
expected results: about 13.9% of the referring ex-
pressions contain redundant information (overG).
This is comparable to the results of Viethen and
Dale (2006) who report on a rate of about 21%
of over-descriptive referring expressions. In con-
trast to their experiment, however, the small-scale

scenes in our experiment did not provide the possi-
bility for producing more-than-minimal referring
expressions for every target object. The large stan-
dard deviation of the frequency of overG referring
expressions (σ=15.8%) illustrates that there is a
huge variety in the participants’ verbal behavior.
underG referring expressions – hence unsuccess-
ful and ambiguous references – occur with a fre-
quency of 7.2% in the data of the small-scale space
treatment. This is considerably less than the 16%
reported by Viethen and Dale (2006). Moreover,
among the participants of our experiment there is
one outlier with a rate of 56% underG referring ex-
pressions. This is due to the participant’s inconsis-
tent use of the equivocal prepositional phrase vor
dir ‘in front of you’, which we annotated as am-
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Table 2
: Example from the large-scale space scene in Figure 2b.

1. geh
go

[ins
into-the

wohnzimmer]minG,A,R

living-room
und
and

nimm
take

[den
the

ball]underG ,minA,R

ball
und
and

bring
bring

ihn
it

[ins
into-the

arbeitszimmer]minG,A,R

work-room
,
,

leg
put

ihn
it

[in
into

die
the

kiste
box

auf
on

dem
the

tisch]underG ,overA,R

table
‘go to the living room and take the ball and bring it to the study; put it into the box on the table’

2. und
and

nimm
take

[den
the

ball]underG,R ,minA

ball
und
and

bring
bring

ihn
it

[in
into

die
the

küche]minG,A,R

kitchen
und
and

leg
put

ihn
it

[in
into

die
the

kiste
box

auf
on

dem
the

boden]underG ,minA,R

floor
‘and take the ball and bring it to the kitchen and put it into the box on the floor’

3. und
and

dann
then

nimmst
take

du
you

[den
the

ball
ball

in
in

der
the

küche]minG,R ,overA

kitchen
und
and

legst
put

ihn
it

[in
into

die
the

kiste
box

auf
on

dem
the

tisch]underG ,minA,R

table
‘and then you take the ball in the kitchen and you put it into the box on the table’

4. und
and

dann
then

gehst
go

du
you

[ins
into-the

bad]minG,A,R

bathroom
und
and

nimmst
take

[den
the

ball
ball

der
that

dort
there

liegt]minG ,overA,R

lies
und
and

legst
put

ihn
it

[in
into

die
the

kiste
box

die
that

dort
there

steht]minG ,overA,R

stands
‘and then you go to the bathroom and you take the ball that lies there and you put it into the box that stands there’

biguous. Excluding this outlier results in a mean
frequency of 5.5% of underG ‘refex’.

Although underA has a slightly lower mean fre-
quency than underG for the small-scale scenes,
this difference is not significant (t=2.018, d f=29,
p=0.053). The significantly (t=9.806, d f=29,
p=0.000) higher mean frequency of minG (80.8%,
σ=18.6%) than minA (62.1%, σ=13.6%), how-
ever, shows that global is a much more accu-
rate model for the verbal behavior in the small-
scale space treatment. This observation is sup-
ported by the significantly (t=-13.745, d f=29,
p=0.000) lower mean frequency of overG (13.9%,
σ=15.9%) than overA (34.5%, σ=14.4%).

For the large-scale space treatment, on the other
hand, the global model does not fit the data well.
A mean frequency of 25.2% underG ‘refex’ means
that an RRE algorithm would fail to resolve the in-
tended referent in approximately 1 out of 4 cases.
The high standard deviation σ=19.5% and the
high median of 29% illustrate that for some par-
ticipants the model fits even worse.

With only 0.7% underA referring expressions
(σ=1.7%) on average the anchor-progression as-
sumption models the gathered data significantly
better (t=6.776, d f=29, p=0.000). Still, the
model yields a high rate of overA referring ex-

pressions (mean frequency of 34.8%, σ=12.1%).
In comparison, the anchor-resetting model yields
a significantly (t=-10.348, d f=29, p=0.000)
lower amount of over-descriptions overR (20,1%,
σ=10.1%). The mean frequency of under-
descriptions underR (3.2%, σ=5.1%) is signifi-
cantly (t=2.765, d f=29, p=0.010) higher than for
underA, but still below what the global model gen-
erates in the small-scale space treatment. With a
mean frequency of 76.7% (σ=10.7%) minimal de-
scriptions, anchor-resetting models the data better
than both global and anchor-progression. For the
referring expressions in large-scale space minR is
in the same range as minG for the referring expres-
sions in small-scale space.

Discussion

In total, the data exhibit a high mean frequency
of over-descriptions. This could be a side-effect
of the experiment design. The participants might
have been inclined to make more frequent use of
redundant information because of the imagined in-
telligence level of the robot.

However, since this means that the human-
produced referring expressions contain more in-
formation than minimally necessary, this does not
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negatively affect the performance of an RRE algo-
rithm. For a GRE algorithm, however, a more cau-
tious approach might be desirable. One measure
for this can be the principle of anchor-resetting. In
order to reassure the hearer of the current anchor,
the re-mention of attention-directing information
from the current physical location to the location
of the anchor can be useful after a sequence of
minimal descriptions. Whereas an algorithm has
little difficulty in keeping track of long sequences
of transitions between symbols in its knowledge
base, the linguistic performance of humans de-
viates from their competence because of the na-
ture of human memory and cognition (Chomsky,
1957).

We thus suggest that the anchor-progression
model is suitable for the RRE task because it
yields the least amount of unresolvable under-
descriptions, whereas for the GRE task, the
anchor-resetting model is more appropriate. It
strikes a balance between producing short descrip-
tions and supplementing navigational information
at the beginning of each turn. This allows the
hearer to follow the spatial progression with lit-
tle effort. Note that the resolution and generation
of anaphora and other expressions that pick up
already introduced referents are outside the pro-
posed models and must be handled separately.

Another factor that might increase the inclu-
sion of redundant information when referring
to entities outside the visual context is the in-
herent uncertainty involved in knowledge about
large-scale space. Typically, considerable por-
tions of such a dialogue serve the construction
of a common agreement about some particu-
lar state of affairs underlying the topic under
discussion. Whereas in dialogue people some-
times make “risky” utterances, in the specific set-
ting of one-way instruction-giving potential under-
descriptions cannot be tolerated because the robot
cannot “collaborate” on the construction of ref-
erence. The inclusion of redundant information
might thus answer the purpose of increasing the
likelihood of identifying the correct referent in
case the conversation partner has incomplete or di-
vergent knowledge.

Conclusions
We presented an approach to the problem of

generating and resolving referring expressions to
entities in large-scale space. The challenges we
addressed include the determination of an appro-
priate part of the domain as referential context, and

the way exophoric references can shift the focus
of attention during the course of a discourse. We
proposed the principle of topological abstraction
with two specific instantiations in algorithms for
the GRE and RRE tasks. The presented mecha-
nisms of anchor-progression and anchor-resetting
account for the motion of the focus of attention
across multiple utterances. We also reported on a
production experiment for evaluating the proposed
models. The evaluation shows that traditional
global context models fail for situated discourse
about large-scale space. The gathered data support
the claim that the anchor-progression and anchor-
resetting models are a more accurate account of
human verbal behavior in such discourses.
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ABSTRACT
It is established that assigning intonation to dialogue system
output in a way that reflects contrast among entities avail-
able in the discourse context can enhance the acceptability
of system utterances. Previous research has concentrated on
the role of linguistic context in processing; dialogue situat-
edness and hence the role of visual context in determining
the accent placement has not been studied. In this paper,
we present an experimental study addressing the influence
of visual context on the perception of nuclear accent place-
ment in synthesized clarification requests. We predicted that
variation in the placement of nuclear accent is perceivable
and that visual context affects acceptability. We found that
utterances with nuclear accent placement licenced by the
visual scene are perceived as appropriate more often then
utterances with nuclear accent placement not licenced by
the visual scene.

Categories and Subject Descriptors
H.4 [Human-Robot Interaction]: we need to verify with
the HRI conference webpage about the categories.

General Terms
Experimentation, Situatedness

Keywords
intonation, information structure, visual context, experimen-
tal methods, user study/verification

1. INTRODUCTION
Since the pioniering work of Pierrehumbert and Hirschberg
it is generally accepted that speakers choose particular in-
tonation tunes to convey relationships between their utter-
ance, the currently perceived beliefs of a hearer(s), and antic-
ipated contributions of subsequent utterances. These rela-
tionships are conveyed compositionally via selection of pitch

∗Supported by EU FP7 Project ‘CogX’(FP7-ICT-215181).

accents, phrase accents, and boundary tones that make up
tunes [5].

It is established that pitch accents mark the individual words
with which they are associated as salient in the discourse
context. The accented item is rendered salient not only
phonologically but also from an informational standpoint.
That is, the assignment of nuclear accent reflects contrast
between the intended referent and contextually available al-
ternative(s) [5, 8].

Although the discussion on contrast and placement of nu-
clear accent in the literature usually concerns discourse con-
text established linguistically (i.e., by preceding utterances),
it is generally assumed that the relevant observations also
apply to a visual context. Thus, the presence of multiple
objects in the visual scene, and hence the availability of
competing visual properties should similarly affect the use
of contrast and placement of nuclear accent in situated di-
alogue. Consequently, when generating system output in
situated human-robot interaction we should therefore also
account for the contextual appropriateness of its intonation.

Consider the following two possible realizations of the ut-
terance “Is that a red box?” with different placement of the
nuclear accent:1 2

(1) R: Is that a red box?
L* HH%

(2) R: Is that a red box?
L* HH%

Based on the standard view in the literature, (1) but not (2)
is appropriate in the visual context of Figure 1, where the
presence of a ‘red’ and a ‘blue’ box licences the use of con-
trast on the color property for distinguishing the intended
box from the other. The placement of accent in (1) is also ap-
propriate when the robot is uncertain (and actually wrong)

1The words printed in small capitals indicate the align-
ment of the nuclear accent in the intonational contour. The
intonational description shown beneath the utterances fol-
lows [4].
2The text labels on the objects were not present in the orig-
inal pictures. We added them for presentation purposes in
this paper, because the colors are not sufficiently distinguish-
able in black-and-white print.



Figure 1: A visual con-
text that is congruent
for the marked accent
placement in (1) but,
non-congruent to the
unmarked accent place-
ment in (2).

Figure 2: A visual
context that is non-
congruent for the
marked accent place-
ment in (1) but,
congruent to the accent
placement in (2).

about the color of the box it intends to refer to, as in the
visual context of Figure 4. The nuclear accent placement
in (2) is licensed in the visual contexts in Figure 2 and 3,
since both objects have the color ‘red’, thereby offering no
competing visual properties. The accent placement in (1) is
not licenced in this case.

In order to verify the claim that visual context influences
the perception of nuclear accent in an utterance, we have set
up an experiment. In the experiment, a visual scene (such
as those in Figure 1, 2, 3, and 4) is shown to a subject,
and a robot’s clarification request about the visual scene is
played. The subject is asked to judge the appropriateness
of the robot’s utterance irrespective of its correctness. The
underlying hypothesis of the experiment is:

If comprehension is sensitive to the relationship of the visual
context and the nuclear accent placement then variations in
the placement of nuclear accent in an utterance can be per-
ceived. A preference of one pattern of accent placement over
the other provides evidence in support of the role of visual
context in determining the appropriate intonation of an ut-
terance.

2. THE EXPERIMENT
2.1 Goal
In this experiment, we seek to verify whether the visual con-
text influences the perception of nuclear accent in an utter-
ance.

2.2 Methodology
2.2.1 Participants
Thirty-one subjects participated in the experiment. Twenty-
one participants accessed an online version of the exper-
iment. The remaining ten undertook the experiment in
our lab. The experiment was targeted to native English
speakers, but only six of the participants were confirmed
to have English as their (only) mother tongue. Most non-
native speakers claimed to speak US-English. Psycholinguis-

Figure 3: A visual
context that is con-
gruent for the accent
placement in (2) but,
non-congruent to the
marked accent place-
ment in (1).

Figure 4: A visual
context that is con-
gruent for the accent
placement in (1) but,
non-congruent to the
marked accent place-
ment in (2).

tic findings reveal that L2 speakers of English are equally
sensitive to intonational variations. However, their interpre-
tation of tunes vary with the individual’s experience with
the L2 language [2]. Following this, we consider it appropri-
ate to collapse data from both native and non-native English
speakers for the experiment. All participants were offered a
sum of 5 Euros or an Amazon Gift Card worth 5 Euros for
their successful completion of the experiment, provided they
register. Additionally, three participants were drawn for a
prize gift voucher of worth 20 Euros each.

2.2.2 Material and Design
A stimulus in the experiment consists of a visual scene and
an audio. The visual scene is a picture of a robot stand-
ing at a table with one object already present and another
one being introduced by a human (therefore held by a hand,
e.g. Figure 1). The audio consists of the robot’s clarifica-
tion request about the new object followed by the human’s
response ‘Yes’ or ‘No’, depending on the correctness of the
robot’s utterance.

The audio files were synthesized using the Mary3 text-to-
speech synthesizer (TTS) [7]. The MBROLA4 ‘mborla-us2’
voice of a US-English male speaker was used for synthesizing
the robot’s clarification requests. The input to the TTS
was provided in MaryXML format to indicate the type and
location of nuclear accent and intonational boundary type.
The human responses of ‘Yes’ and ‘No’ were also synthesized
using Mary TTS, albeit with a US-English female speaker
unit selection based voice.

Clarification requests of the form “Is that a color type”
were chosen for the robot’s utterances, e.g. “Is that a red
ball”. The color and type values were selected so that they
were monosyllabic words, to maintain uniformity and avoid
any other source of prosodic variation in the clarification
request except for the contrastive accent placement. We

3mary.dfki.de
4http://tcts.fpms.ac.be/synthesis/



used the following eight object types: ball, box, disc, heart,
ring, sphere, star and wedge. Each type appeared in six
colors: black, blue, brown, green, pink and red. Using these
eight object types and the six colors, we designed forty-eight
(6x8) clarification sentences in the aforementioned form.

For the visual stimuli, two (not necessarily different) object
types were paired in a picture (of 300x400 pixels), with a
PeopleBot5 standing at the table, see Figure 1. The pairing
of object types was done such that each object occurs as an
object that is already present on the table, and as an object
that is being introduced (held by a hand). We used sixteen
object-type pairs and twelve color pairs. The twelve color
pairs for each of the sixteen object pairs result in a total of
12x16=192 unique pictures for the visual scenes. The object
being introduced was randomly held in left-hand or right-
hand to avoid visual saturation e.g. Figure 1 and Figure
2.

We used a 2x2x2 design with three factors of two levels each,
i.e. visual context (congruent and non-congruent), intona-
tion (marked and unmarked accent placement) and human
response (‘Yes’ and ‘No’).

Visual Context. The first experimental condition captures
the relationship between the visual context and the place-
ment of nuclear accent in an utterance. Based on the pres-
ence or absence of competitive properties in a scene the nu-
clear accent placement in an utterance is congruent (C) i.e.
licenced by the visual scene, or non-congruent (NC) i.e. not
licenced by the visual context.

For example, the combination of accent placement in (1)
and the visual scene in Figure 1 correspond to a congruent
experimental condition. On the other hand, the combination
of accent placement in (2) and the visual scene in Figure 1
correspond to a non-congruent condition.

Intonation. The second condition captures the placement
of nuclear accent in an utterance. Two types of nuclear ac-
cent placement were chosen – marked and unmarked. In
our stimuli an unmarked placement coincides with the as-
signment of nuclear accent to the last individual word in an
utterance i.e. the noun. This is typically the default location
of nuclear accent placement in a text-to-speech synthesizer.
A marked nuclear accent placement does not correspond to
this default position, instead the nuclear accent is assigned
to the modifier. We label the intonation contour resulting
from a marked nuclear accent placement as tune A (as in
(1)) and the one resulting from an unmarked nuclear accent
placement as tune B (as in (2)).

Response. The third condition in the experiment corre-
sponds to whether the robot’s hypothesis about the target
object as expressed in the clarification request is correct or
incorrect. The robot’s hypothesis indicates the beliefs it
currently holds about the visual scene. Since its perceptory

5One of the robots for the George scenario in the CogX
project.

senses are not perfect, its beliefs may or may not be the
same as those of the human user. The human’s response
‘Yes’ or ‘No’, indicates to the robot whether its perception
about the target object scene is correct or not. Another
reason for introducing this condition is to avoid bias in sub-
ject’s judgement due to rightness or wrongness of the robot’s
clarifications.

We represent the eight combinations of these conditions as
C-A-YES, C-A-NO, C-B-YES, C-B-NO, NC-A-YES, NC-
A-NO, NC-B-YES and NC-B-NO. Each of the forty-eight
stimuli sentences is then distributed over these eight con-
ditions. This results into a stimuli set of 384 clarification
requests.

In order to create the fillers, we introduce two additional nu-
clear accent placements. This is done to overcome auditory
saturation due to tune A and tune B in the stimuli. The
filler tunes exhibit accent placement on either the referen-
tial expression “that” or the verbal head “is”. We label them
as tune C and tune D, respectively. Table 1 summarizes the
tunes and their corresponding intonation contours.

Table 1: Intonation Tunes.
Tune Example
A Is that a red box?

L* HH%
B Is that a red box?

L* HH%
C Is that a red box?

L* HH%
D Is that a red box?

L* HH%

The introduction of equally many filler tunes (i.e. 384 tune
D and tune C in total) in the list results in a total of 768
items. The items are then divided into eight different lists of
ninety-six items each, so that each list has all the forty-eight
sentences, and evenly distributed over the eight conditions
and two filler tunes. The rationale behind this is that by
distributing the items across eight lists we ensure that a
subject never sees an item more than once. For example,
an utterance such as “Is that a red ball” is first distributed
over the eight experimental conditions. Each of these eight
items is then placed in one of the eight stimuli lists. Such
a distribution allows us to ensure that a subject never sees
a combination of a visual and linguistic stimuli twice. The
items in each of these eight lists are randomized so that the
subject cannot guess the next condition.

2.2.3 Predictions
For inferring the role of visual context in acceptability of the
intonation tunes we predict that if comprehension is sensi-
tive to the relationship of visual context and the nuclear
accent placement then the utterances corresponding to the
congruent condition will be judged more appropriate than
utterances in a non-congruent condition.

For inferring the role of visual context in acceptability of a
marked vs. unmarked accent placement we predict that if
comprehension is sensitive to the relationship of visual con-
text and the nuclear accent placement then the marked and



unmarked accent placement will be perceived more appro-
priate in congruent visual scenes than non-congruent scenes.

For inferring the role of visual context in acceptability of ac-
cent placement in a correct and incorrect robot hypothesis
we predict that if comprehension is sensitive only to the rela-
tionship of visual context and the nuclear accent placement
then a subject’s perception of the appropriateness of an ut-
terance will not be affected by the correctness of the robot’s
hypothesis. That is, congruent and non-congruent stimuli
would have the same score distribution for both correct and
incorrect robot hypothesis.

2.2.4 Procedure and Tasks
The experiment was implemented using the WebExp6 sys-
tem for conducting psychological experiments over theWorld
Wide Web. The WebExp server has been hosted on a server
running Linux version 2.6.26-2-amd64 with 1GB RAM. The
Web-Experiment offered us a possibility to reach non-local
native speakers of English for our experiment. We also ran
the experiment in a on-site fashion. Interested participants
were invited to our lab and were provided access to the Web-
Experiment through a laptop.

On arrival at the Web-Experiment page the participants first
read instructions about the task and the procedure. They
were informed that in each robot scene there is one object
already on the table that the robot knows about, and then
another object is being presented by a human; The robot
asks a question to verify whether it recognized correctly the
type and the color of the object being shown; Since its recog-
nition capacity is imperfect, it may make a mistake; The hu-
man responds to the robot with a ‘Yes’ or a ‘No’; Their task
is to evaluate whether the robot asked the question in a way
appropriate to the current scene, irrespective of whether it
recognized the object (its type and color) correctly or not.

Subsequently, the subjects filled in details regarding their
age, gender, mother tongue, English they speak (US, UK,
etc.), educational background, and their past experience
with spoken language interfaces. After this subjects were
automatically assigned one of the eight lists of stimuli. Next,
through a set of six practice stimuli the subjects are intro-
duced to the presentation style of the stimuli and their tasks.

In the practice session and the main experiment, the presen-
tation of stimuli and the evaluation of the stimuli proceeds
in three steps.

In the first step, the visual stimulus (a picture) is shown to
the subject, and with a delay of 1500ms the corresponding
audio stimuli for the robot’s clarification request followed by
the audio of the human user’s response is played. This added
delay is a standard procedure for visual preview as visual
stimuli capture a subject’s visual attention. In the absence
of a visual preview, linking the attention captured by the
visual scene with the audio stimulus from the clarification
would have been a challenging task for the subject. The
sentence would be over before the participants would have
started to pay attention to the spoken stimuli. Once the
audio stops playing, the visual scene disappears after a delay

6http://www.webexp.info/

of 1s. This delay is added to give the subject some time for
linking the dialogue with the visual scene.

In the second step, the subject is asked for their judgement
of the robot’s utterance: “Your evaluation of how appropri-
ately the question was asked.” The subject indicate their
judgement by selecting a radio-button on a 5-point scale be-
tween good and bad.

In the third step, the subject is shown a simple math cal-
culation task and asked to judge whether it is correct. An
audio with the ticking of a clock is also played until the
subject responds. The purpose of the calculation task and
the clock audio is to interrupt the subject’s visual and audio
stimulation, due to the current presentation, before proceed-
ing to the next presentation. Once the subject responds to
the calculation task, the next stimulus is presented as just
described.

The experiment was designed to take 20-25 minutes to finish.

2.3 Results
We analyzed data of thirty-one participants (i.e. 31x96=
2976 data points for analysis). We exclude the filler items
from the analysis (this makes 2976/2=1488 data points un-
der current investigations).

2.3.1 The effect of visual context on perception
We expected the stimuli to be more acceptable in the con-
gruent then the non-congruent condition. That is, congru-
ent stimuli should be judged more often good (score of 5)
then non-congruent stimuli. From Table 2 (last column)
we observe that only 50% of the congruent stimuli were
judged good. However, 44.63% of the non-congruent were
also judged good. Both these findings are unexpected. We
expected the score for congruent stimuli to be much higher,
and for the non-congruent to be very low.

Table 2: Distribution of the scores over 1488 data
points.
Score 1-Bad 2 3 4 5-Good
C 85 83 83 121 372
% 11.42% 11.15% 11.15% 16.26% 50%
NC 77 90 139 106 332
% 10.34% 12.09% 18.68% 14.27% 44.62%
Count 162 173 222 227 704
% 10.88% 11.62% 14.91% 15.25% 47.31%

The plots in Figure 5 and 6 suggest that the distribution
for subjective judgement for congruent and non-congruent
stimuli is rather similar. The high bars for the score of 5
and 4 in Figure 6 and the low score 1 and 2 in Figure 5 are
contrary to our expectation. These are indicators that the
congruent and non-congruent stimuli either failed to make
an impression on the subjects or something hampered the
perception of the visual context.

In order to further compare the subjective score of good and
bad we collapsed the score 5 and 4 under the label ‘GOOD’,
and, the score of 1 and 2 under label ‘BAD’.

Table 3 shows the exact figures for the distribution of GOOD



Figure 5: Subjective score distribution for con-
gruent stimuli.

Figure 6: Subjective score distribution for non-
congruent stimuli.

and BAD labels over the visual context. We observe that
utterances in a congruent visual context were more often
judged GOOD (66.26%) than BAD (22.53%). However,
the distribution of judgement for the non-congruent visual
context is not very different from the congruent context.
About 58.87% of the stimuli in the non-congruent visual
context were judged GOOD. That is, although the pitch ac-
cent placement was not licenced by the visual context of
the scenes, the utterances were often judged GOOD. This
is contrary to our prediction. We expected the subjective
judgement of utterances in non-congruent visual contexts to
be mostly BAD.

Table 3: Distribution of GOOD and BAD over Vi-
sual Context.

Visual Context GOOD BAD NUTRL
C 493 168 83
% 66.26% 22.58% 11.15%
NC 438 167 139
% 58.87% 22.44% 18.68%

2.3.2 The effect of visual context on perception of
tunes

We predicted that both tune A and tune B should be per-
ceived more acceptable in congruent visual context than
non-congruent context. Table 4 shows that a large portion
(about 62%) of both tunes A and B were judged GOOD.
Whether the visual context influenced these perceptions can
be seen from the distribution of judgement of the tunes over
the congruent and non-congruent visual context.

Table 4: Distribution of GOOD and BAD over
Tunes.

Tune GOOD BAD NUTRL
marked (A) 464 159 121

% 62.36% 21.37% 16.26%
unmarked (B) 467 176 101

% 62.76% 23.65% 13.57%

In Table 5 we see that tune A was judged GOOD more of-
ten in a congruent condition(C) than in a non-congruent
condition(NC). Similar distribution is observed for tune B.
Another way to verify our prediction is to observe the dis-
tribution of BAD label. Tune A has been judged more often
BAD in non-congruent condition than congruent condition
i.e. more often scored BAD in non-congruent. This pro-
vides us evidence in support of our prediction that marked
and unmarked nuclear placement is perceived more accept-
able when the visual context is congruent i.e. licences the
accent placement.

Table 5: Distribution of GOOD and BAD over
Tunes-Visual Scene.

Tune GOOD BAD NUTRL
A-C 241 77 54
% 64.78% 20.69% 14.51%

A-NC 223 82 67
% 59.94% 22.04% 18.01%
B-C 252 91 29
% 67.74% 24.47% 7.79%

B-NC 215 85 72
% 57.79% 22.84% 19.35%

Both tunes A and B, however, have been judged more of-
ten BAD in congruent condition than in the non-congruent
condition. This is contradictory to our expectations and we
didn’t find any explanation for this in the data.

2.3.3 The effect of visual context on robot’s hypoth-
esis

Observing the distribution in Table 6 we see that for a cor-
rect hypothesis i.e. when human response is ‘Yes’, tune A is
judged more often GOOD in congruent condition than non-
congruent condition. The same applies for tune B which is
more often judged GOOD in the congruent condition than
non-congruent condition. However, for an incorrect hypoth-
esis i.e. for a human response of ‘No’, tune A is more often
judged BAD in the congruent condition than non-congruent
condition. The same also applies for hypothesis tune B,
which is judged more often BAD in congruent condition than
non-congruent. This is contradictory to our prediction that



Figure 7: Subjective Judgement vs.
Human Response.

the judgement of tunes in a visual context is not affected by
the correctness or wrongness of the robot’s hypothesis.

Table 6: Distribution of GOOD and BAD over
Tunes–Visual-Scene–Hypothesis.

Tune GOOD BAD NUTRL
A-C-YES 156 13 17

% 83.87% 6.98% 9.13%
A-NC-YES 140 23 23

% 75.26% 12.36% 12.36%
A-C-NO 85 64 37

% 45.69% 34.40% 19.89%
A-NC-NO 83 59 44

% 44.62% 31.72% 23.65%
B-C-YES 167 11 8

% 89.78% 5.91% 4.3%
B-NC-YES 139 27 20

% 74.73% 14.51% 10.75%
B-C-NO 85 80 21

% 45.69% 43.01% 11.29%
B-NC-NO 76 58 52

% 40.86% 31.18% 27.65%

The plot in Figure 7 provides the distribution of the subjec-
tive judgement over the human responses (‘Yes’ and ‘No’)
respectively. It can be inferred from the plot that robot’s
clarification utterances with human response as ‘Yes’ were
judged GOOD more often than those with human response
‘No’. This indicates that the subjects were judging the cor-
rectness of the robot’s hypothesis, rather than judging the
appropriateness of the request in context of the visual scene.

The distribution of judgement over the human response clar-
ifies to an extent why we do not see a significant difference
between the subjective judgement for congruent and non-
congruent visual contexts(cf. Table 3). As the subjects were
judging the correctness of robot’s hypothesis they perhaps
paid attention to only the object being introduced. The
presence of other object in the visual context and the nu-
clear accent placement in the intonation did not factor in
their decisions.

Coming back to the issue of why the wrong hypothesis is

judged more often BAD in a congruent case than non-congruent
case, we observe the stimuli for these specific conditions (A-
C-NO, A-NC-NO, B-C-NO and B-NC-NO). From the anal-
ysis we attribute these distribution to the visual context es-
tablished by the pictures in these stimuli. In both congruent
and non-congruent condition the stimuli was non-congruent
from a subject’s view point. In a congruent condition the
visual scenes offered no ambiguity in the visual context and
therefore a subject’s visual attention is relatively relaxed,
and hence the decision about the“correctness” of the robot’s
hypothesis is easier and harsher i.e. judged more often BAD.
For non-congruent condition the visual scene offers some
ambiguity for the subjects as well, and therefore presum-
ably draws more of subject’s visual attention, and perhaps
this interferes with the subjective judgement as BAD, i.e.
although they were judged BAD because of the “incorrect”
robot hypothesis, the visual context compensated the harsh-
ness of BAD score for non-congruent cases.

3. DISCUSSION AND CONCLUSIONS
Existing attempts to model the intonation of dialogue sys-
tem output in practical systems include [6, 1, 3, 9]. These
systems illustrate various approaches to model the role of
context in realizing intonation, but provide only limited ex-
perimental evaluation.

For example, in [3] intonation assignment in system turns
that are direct answers to questions is done based on in-
formation strcture partitioning according to the preceding
context, both in terms of what question is being answered
and what alternative are salient. Accent placement is de-
termined using semantic parallelism: two basic terms as
parallel when they are either identical or alternative (i.e.
belonging to same sort but non-identical). A perception ex-
periment comparing system generated responses with con-
trolled intonation against defaults indicated that contextual
appropriateness of system output improves when intonation
is assigned based on infromation structure.

A method of synthesizing contextually appropriate intona-
tion with limited domain unit selection voices is presented
in [9]. In a pilot study, they built an APML-aware limited
domain voice for use in flight information dialogues, which
involve comparing and contrasting the most compelling at-
tributes of the most relevant flights available, rather than
simply listing the query results [10]. In a perception exper-
iment comparing the APML voice to a default version built
using the same recordings without the additional structure,
the intonation produced by the APML voice was judged
significantly more contextually appropriate than that of the
default voice.

Situated human-robot dialogue differs from the type of dia-
logue in these applications in that the dialogue context is not
the only source of contextual information: te visual context
is also part of the discourse context, and should be used for
determining the placement of nuclear accent in system utter-
ances. Moreover, whereas the abovementioned systems ad-
dress intonation assignment in statements answering user’s
questions, we concentrate on clarification requests pertain-
ing to changes in the visual context. Such clarification re-
quests may not be related to prior mentions in the dialogue;
they may concern objects or properties that exist in the vi-



sual scene but have not been spoken about.

The analysis of our experiment data reveals that the accept-
ability of a clarification request is influenced by the visual
context. We observe that utterances in which the nuclear
accent placement is licenced by the visual context are per-
ceived more often as good than those where the visual con-
text does not licence the accent placement. We do not know
of any other similar study that investigates the role of visual
context in establishing the appropriateness of intonation.

The findings further support the claim that intonational as-
signment (be it marked and unmarked) is governed by the
visual context. Both marked and unmarked nuclear accent
placements are preferred when the visual context licenses
them.

The distinctive pattern for the condition (C-NO-A and C-
NO-B) provides even stronger evidence on the role of percep-
tion of intonation in a visual context that is non-congruent
from a subject’s view point. The contextually appropriate
usage of intonation in incorrect hypotheses leave no scope
of ambiguity for the speaker in perception of the speaker’s
intentions. It can be claimed that an incorrect query in an
unambiguous situation is least accepted.

In order to establish the role of the visual scene and inton-
tation for comprehension, we are preparing an eye tracker
experiment for verifying if the subjects pay attention to the
already present object when making a judgement. We mod-
ify the design of this experiment with a change that instead
of the human responding to the robot’s query that subject
would be required to answer the query. In this manner we
will be able to involve the subjects in the interaction with
the system. Moreover, since the subjects are required to
respond to the robot’s queries, the objective nature of the
task enables us to measure the influence of visual scene and
the intonation on their reaction. The hypothesis for this ex-
periment is that with congruent intonation subject will be
looking more at the right object, and that they will react
faster. At least for the cases where the hypothesis is cor-
rect. It’s an interesting question whether there will be any
differences between the intonation patterns when the robot’s
hypothesis is wrong.
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