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1 Introduction

In the CogX project we strive to build integrated robotic systems that self-
understand and self-extend and study these in a systemic way. This docu-
ment is the first of a series of deliverables that will take a systemic perspec-
tive and discuss the robots’ system architectures, their specific contributions
to the overall project’s goals and theories, and their evaluation with respect
to demonstrated robot behaviour and validation of theories.

Our general roadmap in systemic evaluation is based on an interweaved
release and experiment strategy. This document reports on the development
towards an experimental integrated system conducted in year 1 and its sub-
sequent analysis. This strategy for the systemic evaluation will be retained
throughout the project: A major release of the system is targeted for the
annuals reviews, its detailed analysis is carried out afterwards.

In the first year, work has been carried out in three scenario named
Dora, George, and Dexter. Our integration effort in this first year were
focused on the first two which already integrate quite a number of different
components and functionalities developed in different WPs. Therefore, these
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two scenarios are subject to discussion in this document. They have been
designed to be complementary, focusing on dedicated aspects of the CogX
theories and accordingly emphasising different work packages. Both systems
are fully integrated using the same framework (CAST) and schema (PECAS)
which has been extended to meet the requirements of CogX’s systems. The
scenario Dexter is up to now fully covered by work in WP2. Hence, its
analysis is fully reported in that WP’s deliverables.

The document is structured according to the two key scenarios. The
structure for each scenario is similar. First, we briefly summarise the sce-
nario and their underlying motivation. Afterwards, we outline the general
evaluation strategy and report on the system architecture and abilities of
the release to be studied. Finally we present and discuss some of the insights
gathered in the systemic evaluation.

2 Dora the Explorer

Dora is our mobile robotic demonstrator that focuses on spatial representa-
tion. In year 1 we focused on partial information by explicitly representing
knowledge gaps and taking actions to fill these gaps, resulting in a “curious
exploring robot” that is driven by its general objective to learn more about
the world. Consequently, all our evaluation efforts are gathered around
studies of the exploratory behaviour of Dora. Fig. 1 shows the mobile robot
platform and also sketches parts of the spatial representation that robot is
building up incrementally.

2.1 Scenario

The general theme of the demonstrator “Dora” is self-understanding and
-extension with respect to representations of space. Dora is a mobile robot
with an understanding of spatial structures, categories, and functions. Dora’s
use case is motivated by the vision of robots in people’s homes that fulfil
certain tasks, such as fetch-and-carry. Therefore a robot requires a very
rich and most complete knowledge of its environment. Teaching a robot
this knowledge implicitly is however a very tedious task for a human. Dora
instead, given an incomplete tour of an indoor environment, is driven by
motivations to probe the gaps in her spatial knowledge and extend it. Dora
implements curiosity-driven self-extension with regard to its hierarchical
spatial knowledge as detailed in the attached paper [3]. While Dexter is
focused on manipulation, the Dora scenario is designed as a test case for
the various aspects and challenge of mobile robot that has to cope with
incomplete knowledge. While in year 1 interaction with humans was minor
in Dora, human interaction partners are considered as potential sources of
knowledge in the coming years of CogX. This will enable concepts of the
two demonstrators Dora and George to converge in the longer run. The
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(a) The Dora platform: a P3 mo-
bile robot base with a custom-
built super-structure and differ-
ent sensors.

(b) Visualisation of Dora’s map of a partially
explored environment. Coloured disks de-
note place nodes (colour indicates segmenta-
tion into different rooms, area0,1,2). Small
green circles represent opportunities for spa-
tial exploration (placeholders). Red nodes in-
dicate places where doorways are located.

Figure 1: Dora the Explorer: a robot system for goal-driven spatial explo-
ration.

scenario in year 1 focused on generating behaviour to self-extend by spatial
exploration. The robot basically is able to explore places it has not been
to before to more completely map the environment and to categorise rooms
by exploiting ontological knowledge about objects it searches for in these
rooms.

2.2 Evaluation Approach and Framework

In the integration of Dora we follow a release strategy of one stable release of
the system each year corresponding to the review dates. In between such two
stable releases we are committed to at least one release that is related to the
regular spring or summer school organised by CogX. The releases are each
also available as a Live CD distribution to document and preserve project
progress. Besides these major releases we follow a continuous integration
strategy as many of the scientific question we are investigating can only be
studied in an integrated manner.

2.2.1 Description of Release Yr 1

It is key to the approach in CogX that all research is instantiated in the
scenarios and consequently in year 1 already many conceptual contributions
have made it into the integrated system of Dora as dedicated subarchitecture
that roughly correspond to WPs:
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Figure 2: Sketch of the spatial representation as implemented in Dora

subarchitecture WP

spatial.sa & coma.sa 3
planner.sa 1&4
binder.sa 6

Work of other work packages and subarchitectures is as well relevant for
Dora but was not in the focus of the scientific progress to be demonstrated
in this integration scenario.

The year 1 release which constitutes the basis for the analyses presented
in this paper comprises the following abilities developed in dedicated WPs:

• A first instantiation of the four layer spatial representation (WP3)[6].
The sensory layer provides continuous low-level readings from sensors.
Readings are clustered and classified quantitatively in the categorical
layer. The results are used in the place layer to form discrete Places
and Placeholders, and their associated properties. The components
of the conceptual map layer (coma.sa) perform qualitative reasoning
over these abstractions. Firstly, the conceptual map layer segments
interconnected Places into rooms and maintains room instance repre-
sentations. Non-monotonic reasoning is employed here to encounter
errors in perception and to assure a consistent representation. Sec-
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ond, the reasoner tries to infer more special categories for rooms, e.g.,
office or kitchen. One novelty is that the association between room
categories and salient objects is established through the “locations”
table of the OpenMind Indoor Common Sense database. For further
details about the spatial representation please refer to the attached
document [9].

• Binding serves to fuse information from different modalities, into sin-
gular amodal representations [5]. In the current implementation of
Dora it provides a unified view of the system’s state to support rea-
soning and planning. The approach of probabilistic binding itself is
key to the George scenario, however the framework is also used in Dora
to provide the same technological framework for both scenarios to ease
future integration.

• Continual planning and monitoring: The planner developed as part of
the efforts in WP4 is a multi-agent continual planner [1], capable of
replanning and execution monitoring. It is essential that a continual
approach is used when planning in interactive robot systems such as
Dora. Such an approach is required to handle changes in state, changes
in goals, and the sensing and execution failures which naturally occur
in such systems.

• A framework for goal generation and management: As part of the
planning.sa developed in WP1 of CogX we introduced an architec-
tural concept of goal generation and management referred to as mo-
tivation framework. With our focus on self-extension, it is this layer
that generates epistemic goals by analysing the spatial representation,
initiates planning algorithms in order to achieve epistemic goals, and
finally monitors the execution of plans. In the context of the current
exploration system of year 1 it decides on a behavioral level which
exploration goals to pursue next. Basically, we consider two types of
goals: exploration to extend the spatial coverage of the map, or explo-
ration to increase the amount of categorical instance information in
the conceptual map. Details about goal generation and management
can be found in the attached document [2].

With the current implementation of Dora being focused on spatial rep-
resentations two types of knowledge gaps give rise to epistemic goals: yet
unexplored places and detected rooms that are not yet categorised. Ac-
cordingly, the robot can have to simple epistemic goals: explore a place or
categorise a room.

Dora’s system architecture is composed of five of the subarchitectures
running all on one Laptop computer on the autonomous robot, cf. Fig. 1(a).
The composition is sketched in Fig. 3. The diagram is adopted from UML
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CategorizeRoomGenerator

PlaceMonitor
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Figure 3: Dora system architecture. For clarity, all memory interactions are
not depicted as information flow mediated through working memories in the
subarchitectures but as directed dotted connections of sources and sinks.
The dashed lines represent synchronous request-reply calls to components
by mutually modifying memory structures.

2.0 specification and illustrates the information flow between components,
and across subarchitectures. Most of the flow is realised by interactions
with the working memories in an event-driven manner as proposed by CAS
(CoSy Architectural Schema). The diagram does however not include all
components. We focus here on those that are required to understand the ar-
chitecture facilitating self-understanding and -extension, disregarding those
that can be seen as support services and sensor abstraction only.

Taking a closer look at the actual processes in the current implementa-
tion of Dora, we can see how the interactions between components work.
Fig. 4 pictures the activity that the robot goes through from the detection
of a knowledge gap to its filling. The example illustrated in the figure is
corresponding to “explore place” only, but the structure is quite similar for
“categorise room”. It starts with spatial.sa hypothesising a new place and
thus generating a Place in the working memory that is marked as being
hypothetical. This generation triggers binding and ExplorePlaceGenerator
to create a Belief about this place and an epistemic Goal to explore this
place. After the motivation-related components have filtered and scheduled
the generated goal, the planner is triggered to generate a plan to actually
achieve it. The Executor then executes the actions of the plan. One action
will be to navigate towards the placeholder which will – in this example –
make it explored. This update is again propagated through the working
memory, resulting in the goal to be removed and the belief being updated
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Figure 4: Activity diagram illustrating the “path” of a knowledge gap from
its generation to its filling.
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asynchronously.

2.2.2 Evaluation Schemes

We generally employ a staged evaluation scheme going hand in hand with
the release management outline before.

component tests (CoT): For most of our research-relevant components
we also developed “dummy components” that can substitute the orig-
inal one. This allows us to individually test relevant components.
Using CAST’s working memory based integration [4] the substitution
of a dummy component by the real one is done transparently. Addi-
tionally, a generic memory recorder and player have been developed
to transparently simulate information flow and test on a component
level. For some components, standardised test (e.g. using JUnit) have
been implemented, too.

systemic evaluation in controlled environments (SEICE): In order
to facilitate meaningful and structured development and evaluation,
the Dora system is concurrently integrated in the simulation environ-
ment provided by the stage toolkit and the real robots at all institution
involved in research on Dora. The simulation environment which em-
ulates the sensors and motors of our robot allows to study systemic
aspects of our systems in more efficient way but still being very close
to reality. Our integration approach allows us to run the same compo-
sition of components – the same system architecture – both in reality
and simulation with only very minor changes on a driver and sensor
level. SEICE allows us to derive meaningful, also quantitative, mea-
sures of overall system performance. Batch experiments in this scheme
are reproducable and more comparable than in reality while still being
a close-to-reality system.

systemic evaluation in reality (SEVIRE): The ultimate test for any
integrated robot system is of course its application in real world. How-
ever, the effort for real robot runs is quite high considering safety as-
pects, recharge and setup times, and the fact that experiments cannot
be parallised. Accordingly, our strategy is to use SEVIRE to (i) prove
the general (qualitative) applicability of our approach in real worlds,
i.e. by video recordings, and (ii) to explore and discuss the limitations
of insights gathered in SEICE when it comes to real world problems.
Additionally, aspects of real interaction (with humans) and the real
non-determinstic nature of real world systems can only be studied in
a SEVIRE setting.
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2.2.3 Tool Support

When studying specific aspects in a systemic context or even striving to deal
with the complex assessment of the overall system performance adequate
tool support is key to success. Powerful introspection, logging, and analy-
sis functionalities to allow for comprehensive post-mortem analysis (after a
number of experiments have been carried out) needed to be implemented.
In CogX we employ a combination of CAST [4]1-innate logging, standard
tools (log4j and log4cxx), and XML-based selection and transformation tech-
niques (based on XQuery) in conjunction with MatLab or similar tools to
compute quantified measures of system behaviour and performance for ded-
icated purposes as illustrated also in [2].

2.3 Insights Gathered from Release 1

In this report we focus on insights that have been gathered by studying the
integrated robot systems (SEICE and SEVIRE evaluations). Component
evaluations are subject to WP-specific deliverables. The experiments we
conducted in the first year were tailored to the analysis of the exploration
behaviour of Dora and studied the course of actions the robot undertook to
achieve self-extension accounting for non-monotonicity, incompleteness, and
uncertainty of the representations being build up.

In our aim to study the exploratory behaviour of Dora in a structured
way also quantitatively two systemic studies in controlled settings have been
conducted, both being reported in publications [2, 9]. They comply to the
SEICE approach outlined before. Accordingly, we created a simulated en-
vironment of a real place (part of DFKI building, upper floor, Saarbrücken,
Germany) to test the systems in (sketched in Fig. 5). We decided for SEICE
because we wanted to have quantitative measures in a more controlled fash-
ion and repeated experiment under the same conditions several times. With
the SEICE approach we still can study the effects of uncertainty and non-
determinism as we only simulated low-level sensors and actuators which can
be modelled to have realistic operation characteristics (e.g. a typical de-
tection rate of only 90% for the simulated object visibility). Hence, even
in a simulated environment the system’s behaviour is therefore not inher-
ently deterministic. In the two studies we were interested in the following
questions:

1. How does the robot extend its spatial representations in a consistent
way by its generated behaviour?

2. Is the system robust enough to explore a realistically sized environ-
ment? Robustness is not only considered in terms of software or hard-

1CAST is the CoSy Architecture Schema Toolkit that is employed as integration frame-
work for all the systems in CogX.
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Figure 5: Stage simulation model used in the experiments (l) and screen-
shots of the visualisation tool acquired during one of the three runs of the
exploration study (r). In the second study a smaller section of the whole
environment is used (highlighted in cyan colour). The small coloured boxes
depict objects in the environment used for room categorisation.

ware failures (though this is relevant as well), but also on a task level,
i.e., is the robot able to generate appropriate behaviour.

3. Is our model of non-monotonic inference and self-extension adequate
to the exploration task we study?

4. What is the effect of the goal management mechanisms and how does
it impact the self-extending behaviour of the robot?

5. What is the planning effort in the integrated system when filling knowl-
edge gaps?

6. What are the bottlenecks and drawbacks identified in the system so
far?

In the following, we briefly summarise the two studies we carried out
to analyse how Dora achieves tasks under partial information and how she
extends her knowledge.

2.3.1 Exploration and non-monotonic reasoning

One consequence of the uncertainty and partiality of the observations Dora
is dealing with is that the map building process is non-monotonic. Struc-
tural and conceptual abstractions may need to be reconsidered in the light
of new evidence acquired during the active exploration. In this study we
were interested in the behaviour of the robot tailored to autonomously ex-
plore yet unknown spaces. So in this experiment the robot only attained
to explore goals and did not consider to categorise any of the rooms it de-
tects during this exploration. We were basically interested in the overall
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Figure 6: Plots for precision, recall, balanced f-score and coverage of each
of the three experimental runs. The Y-axis shows the normalised values for
precision, recall, balanced f-score, and coverage (0–1). The X-axis is time,
in milliseconds.

coverage the robot achieves in exploration (thus, evaluating the spatial rep-
resentation and the goal generation from gaps in spatial knowledge) and the
non-monotonicity in the formation of rooms derived from the analysis of
connected places. This analysis is tailored to question 1-3 mentioned above.
Details of this analysis can be found in the attached document [9].

To evaluate the coverage an exploration of the full environment depicted
in Fig. 5 yields, we determined a gold standard of 60 Place nodes to be
generated in order to fully and densely cover the simulated environment. We
achieved this by manually steering the robot to yield a complete coverage,
staying close to walls and move in narrow, parallel lanes. We performed
three runs with the robot in different starting positions, each time with
an empty map. Each run was cut-off after 30 minutes. The robot was
then manually controlled to take the shortest route back to its starting
position. Fig. 6 illustrates that in all three runs the robot at the end of the
autonomous exploration explored more than half of the number of places
we defined as gold standard (denoted as relative coverage in the diagrams).
Though this appears to be a rather low ratio it is still sufficient to cover
most of the space and comprises all the rooms as exemplary shown in Fig. 5
for one of the runs (on the right side). It shall be noted that it is not the
goal of the robot to explore the map similarly to the gold standard but
to acquire a representation that does not have any more knowledge gaps
detected in the spatial model. Furthermore, the 30 minutes cut-off of the
experiment left some hypotheses still being unexplored. The employed goal
management scheme developed in WP1 schedules according to a trade-off
of information gain and associated costs of a goal (in this case of exploring
a place hypothesis). This strategy led to an exploration behaviour that
was not tailored to the exploration of all hypotheses in the 30 minute time.
However, the analysis of individual runs and the global assessment of the
coverage indicate a suitability of our integration of the spatial model and
the goal selection with regard to the generation of hypotheses about place
and the subsequent generation of epistemic goals from these hypotheses to
drive the robot’s behaviour.

Also meaningful is the analysis of the precision, recall, and f-score with
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respect to the detection and consistent representation of rooms in Dora as
shown in Fig. 6. It can be seen that the accuracy (balanced f-score) of
the representation is monotonically increasing towards a high end result
(0.8, 0.79 and 0.93, resp.). The increases and decreases in precision dur-
ing the individual runs are due to the introduction and retraction of false
room instances generated by, i.e. false detection of gateways. Recall can
be interpreted as coverage in terms of room instances. After 30 minutes
the exploration algorithm yielded a relatively high recall value (0.75, 0.75
and 0.875, resp.), i.e., most of the rooms had been visited. For details and
further discussion of the results please cf. [9].

From this analysis we can conclude that the incremental self-extending
behaviour of the spatial representation (including places and rooms) in Dora
is a first successful implementation of an integrated approach for an explo-
ration task. The system is functionally and technologically robust enough
to explore realistic environments.

2.3.2 Selection of and planning for epistemic goals

In order to study the goal generation and management processes and the
continual planning more in detail a second study was conducted, again fol-
lowing the SEICE approach exploring a smaller section of the environment
shown in Fig. 5. This time, the robot’s task has been extended. Not only
did the robot have goals to explore hypotheses about places it could visit
but it also tries to categorise the rooms it detected using the ontological rea-
soning about the objects found in this rooms. The focus of this study was
therefore designed to approach basically questions 4 and 5 outlined above,
hence to investigate the interplay of planning and goal management. Ex-
tending the first study which only considered one class of epistemic goals,
namely to explore as yet unexplored places, this study investigated how the
goal selection scheme chooses between the different classes of goals (namely
explore place and categorise room) generated from the gaps in the spatial
representation in the course of the experiment. Fig. 7 pictures the course
of action in one of the 15 runs conducted in this setting. It illustrates when
a new knowledge gap of a dedicated class has been detected and when a
gap has been filled after the goal has been scheduled and the corresponding
actions have been executed. This diagram helps us understanding the goal
selection strategy. It is apparent that the robot interleaves different goals
reflecting their respective information gain and costs.

To investigate the interplay of planning and goal management we imple-
mented two configurations of the system. The first configuration explicitly
encodes its two drives (to explore space and categorise rooms) as the single
planning goal:

(and (forall (?p - place) (= (explored ?p) true))

(forall (?r - room) (kval ’robot’ (areaclass ?r))))
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Figure 7: Exemplary course of action for filling knowledge gaps in a real
run.

This goal, literally interpreted as “explore all places and know a category
for every room”, is passed to the continual planner directly as one com-
plex goal that needs to be achieved. In this configuration, termed conjunct
goal set (CGS), all system behaviour is determined by the continual plan-
ner in response to this unchanging goal. The planner continuously monitors
the system’s state, triggering replanning if any relevant state changes occur
(e.g. unexplored places appearing on the spatial WM). In this set we intro-
duced the complete exploration of a room (all places being in a room) as a
precondition for the categorisation of that particular room. The second con-
figuration, termed managed goal set (MGS), employs our implementation of
the goal generation and management framework of WP1. In this configu-
ration the planner is fed the individual goals selected by the management
mechanisms. For details on the management mechanisms please cf. [2].

In the experiments, we were able to show that in both configurations
the robot was able to do the exploration task. It proves that the approach
of continual planning with its monitoring of the system state accounts well
for the open-endness of the exploration task. However, in CGS plans have
to be revised with new gaps appearing and being removed. In average,
in the CGS configuration the robot had to generate new plans 79.0 times
during the runs. With 31.12 the number is significantly lower in the MGS
configuration where the individual goals are much more simple. Not only
does the complexity of the conjunct goal affect the number of replanning
actions but it also has an impact on the overall time spend planning as
indicated by table 1 which summarises the time measurements of planning
in the two configurations. The differences between the averaged timings
taken for the two configurations are statistically significant with p < 0.0001
in Mann-Whitney testing for all measures shown in the table.

Fig. 8(a) underpins the hypothesis that planning becomes harder with

2These numbers include not only replanning but also the first invocation of planning
to generate a plan for a given goal. In CGS there is only one initial planning invoked and
all later ones are replanning.
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CGS MGS
avg. time per planning call 0.621 s 0.292 s

avg. time spent on planning 48.843 s 8.858 s
avg. time spent on actions 1000.923 s 757.312 s

Table 1: Planning time measures (all in seconds).
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Figure 8: Dora timing information.

the exploration progressing. The planning time is averaged at discrete time
steps across all the successful runs of each setup. The error bars indicate the
standard error in averaging. It can be seen that the progression over runtime
is different in the two cases. While the trend, indicated by a linear fitting
shown as a dotted line in Fig. 8(a), is a shallowly included line for MGS, a
steeper increase in average planning time can be seen for CGS. This steeper
increase can be associated with the increasing size of the planning problems
the CGS configuration faces as Dora’s knowledge increases: planning for
all possible goals over a larger and larger state space becomes increasingly
difficult.

Concluding, we can say that the rather limited complexity of the current
exploration task in the year 1 release of Dora can well be mastered in both
configurations. However, with goal management we have a framework that
ensures tractability and advanced goal selection in our scenarios. It is also
interesting to take a look at the differences in the resulting behaviours of
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the robot. While the CGS configuration only considers the costs of the
actions to achieve the overall goal the goal management scheme uses the
predicted heuristic information gains and the costs to schedule the single
goals. This results in different behaviour as indicated in Fig. 8(b). The
plot depicts the time (y-axis) by which a given number of rooms have been
categorised (x-axis), averaged over all successful runs. It shows that the
MGS configuration takes longest to categorise the first two rooms before
speeding up to be the fastest to complete four and five rooms. In our runs,
the MGS configuration did not choose to immediately categorise the room
it start its autonomous operation in. Instead it chose to visit unexplored
places that were attributed with a high information gain, even though the
precondition for categorising this first room was fulfilled. In contrast, the
CGS configuration always categorises the first room immediately as soon as
all its places have previously been explored because it deems this to be the
cheapest approach to achieve the overall goal. This illustrates the potential
for future investigation of self-extending behaviour. An informed strategy for
goal selection taking into account a currently executed plan while considering
alternative and opportunistically interleaving task-oriented behaviour with
other epistemic goals contributing to potential future tasks is one ambition
in the scenario of Dora.

2.3.3 Further aspects and conclusions

The Dora release of year 1 has successfully demonstrated all relevant pieces of
software working in an integrated system. The level of integration achieved
allowed for both quantitative and qualitative evaluation of a fully integrated
system. The quantitative studies were supported by a simulation environ-
ment (SEICE) which allows us to achieve better repeatability and more
(statistically) significant results in shorter times. However, the system runs
robustly in real world enabling us to demonstrate it to other researcher to
gain further qualitative insights from their comments and criticisms. In sum-
mary, researchers were quite impressed by the level of integration achieved
with the system. Quite many liked to see more and different tasks being
achieved by the robot autonomously. They asked for more informed model
of information gain and commented on the limited rationale of the robot’s
behaviour. Generally, the approach we have chosen has been well received
and we have been encouraged to continue in this direction.

Besides numerous such demonstrations at CogX-involved institutes Dora
participated as a finalist in the BCS Machine Intelligence Competition3 in
December 2009. The year 1 release of Dora is also accepted as a demo
for the AAMAS 2010 conference [3]. We are further on committed to con-
tinuous integration of the Dora system at all research sites that are in-

3http://www.comp.leeds.ac.uk/chrisn/micomp/2009entries.html
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volved. So, systemic testing in the SEICE and SEVIRE settings will con-
tinue and intensify. A video of a SEVIRE run in real world is available at
http://cogx.eu/results/dora.

The studies conducted with Dora have provided us with a deeper un-
derstanding on the challenges ahead. The insights gained have already
been compiled into the updated implementation plan for the next release
reported in the supplementary deliverable D.7.X1: “Integration Scenarios -
Implementation & Evaluation Plan Year 2”.

The framework is now in place and is well understood in terms of the
studies presented here. It allows us to study different strategies in task
planning and execution with goal management, to further investigate our
spatial representations, and in general proceed towards more informed self-
extension and autonomous task execution under partial information.

3 Curious George

The George scenario has been designed to demonstrate, monitor, and show
progress on the development of the integrated system for learning the as-
sociation between visual features of an object and its linguistically expressed
properties. The main goal is, therefore, to integrate the developed vision rou-
tines, learning and recognition competencies, dialogue capabilities, as well
as different kinds of representations and belief models in an overall system.

3.1 Scenario

The robot operates in a table-top scenario, which involves a robot and a
human tutor (see Fig. 9(a)). The robot is asked to recognize and describe the
objects in the scene (in terms of their properties like colour and shape). The
scene contains a single object or several objects, with limited occlusion. The
human positions new objects on the table and removes the objects from the
table while being involved in a dialogue with the robot. In the beginning the
robot does not have any representation of object properties, therefore it fails
to recognize the objects and has to learn. To begin with, the tutor guides the
learning process and teaches the robot about the objects. After a while, the
robot takes the initiative and tries to detect its own ignorance and to learn
autonomously, or asks the tutor for assistance when necessary. The tutor
can supervise the learning process and correct the robot when necessary;
the robot is able to correct erroneously learned representations. The robot
establishes transparency and verbalizes its knowledge and knowledge gaps.
In a dialogue with the tutor, the robot keeps extending and improving the
knowledge. The tutor can also ask questions about the scene, and the robot
is able to answer (and keeps giving better and better answers). At the end,
the representations are rich enough for the robot to accomplish the task,
that is, to correctly describe the initial scene.
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(a) Scenario setup. (b) Observed scene.

Figure 9: Continuous interactive learning of visual properties.

3.2 Evaluation Approach and Framework

3.2.1 Description of Release Yr 1

According to the Technical annex, the main goal in year 1 was set to develop
a learning mechanism for learning basic visual concepts grounded to signals.
The system should be able to build associations between features extracted
from input visual data (colour and depth images) and visual attributes (e.g.,
colour, shape) and to connect them using language in a dialogue with the tu-
tor. Adequate mechanisms for unlearning should be investigated as well. The
main goal was, therefore, to integrate approaches developed in WP 5 into
an overall system, exploiting the methods developed in other workpackages
(mainly WP 2, WP 6, as well as WP 7 and WP 1).

The George Y1 system consists of three subarchitectures that have been
mainly developed within the following WPs:

subarchitecture WP

visual.sa 2&5
binder.sa 6
comsys.sa 6

Fig. 10 depicts the relationships between these subarchitectures and also
shows some of the components that are involved.

The main competencies of the robot that have been developed within
the WPs and integrated in the robot George are the following:

• Vision routines. We have developed the low-level vision routines that
provide visual information, which is used by higher levels for learning,
recognition and verbalisation. We have implemented a bottom-up at-
tention mechanism based on detection of the parts of the scene that
are sticking out from the main surface. These spaces of interest are
then filtered and further processed and segmented providing object
candidates.
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Figure 10: Architecture of the George system.

• Online learning and unlearning. We have developed novel methods for
online learning and unlearning that are based on Kernel Density Esti-
mation and serve as a main representation for learning and recognition
of visual properties. During online operation, a KDA-based multivari-
ate generative model is continually maintained for each of the visual
concepts and for mutually exclusive sets of concepts the feature sub-
space is continually being determined allowing the construction of a
Bayesian classifier, which is then used for recognition of object prop-
erties.

• Binding. A new binder has also been developed. The task of the binder
is to decide which information originating from different modalities
belong to the same real-world entity, and should therefore be merged
into a belief. These beliefs integrate the information included in the
perceptual inputs in a compact representation. They can therefore be
used directly by the deliberative processes for planning, reasoning and
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learning.

• Situated dialogue. Situated dialogue provides one means for a robot
to gain more information about the environment. A robot can discuss
what it sees and understands with a human. Or ask about what it is
unclear about or would like to know more about. We have integrated
these abilities, since they are an important part of interactive learning.
The communication subsystem operates with the beliefs in the binder
and fulfills the clarification requests that are received yielding a mixed
initiative dialogue for learning visual properties.

A detailed description of the system is available in the attached paper [7].
Here, we just very briefly describe the processing flow, i.e., what happens
when a new object is introduced to the scene4? First, from a stereo pair
of images, a colour image and a 3D point cloud are obtained. Then, using
the bottom-up attention mechanism, spaces of interest (SOIs) are detected
[10]. SOIs are analysed and segmented and proto-objects are created. They
are processed further by an Object analyser, which recognizes the object’s
visual properties. A Visual Mediator then packs the visual information and
creates a vision proxy in the Binder. The Binder binds the visual infor-
mation with information from other modalities and a belief is created from
the obtained multi-modal information. The beliefs can also be altered by
the communication subsystem through dialogue processing. In the current
implementation of the robot, a keyboard is used as the input device, how-
ever speech recognition could be used instead. The Visual Mediator also
monitors the beliefs in the binder, waiting for learning opportunities. When
such an opportunity is spotted, a learning instruction is sent to the learner
which updates the models. When the Visual Mediator is uncertain about
recognition results, it can send a clarification request. The communication
subsystem forms a corresponding question, and the human’s answer is then
used to update the models.

3.2.2 Evaluation Schemes

From the description of the system and the processing pipeline it is evi-
dent that the subsystems are closely connected to each other and that for
a reliable performance of the system it is crucial that all the individual
components perform reliably and that the integration is done correctly. We
evaluated the developed system in two different ways.

Component tests (CoT): We tested individual competencies of the robot
independently by simulating other competencies. Individual subarchi-
tectures and even individual components within a subarchitecture were
tested in this manner.

4The robot can be seen in action in the video, which is accessible at
http://cogx.eu/results/george.
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There are two main reasons for such testing schema. First, due to the
high complexity of the system, it is necessary to test individual compo-
nents independently before they are integrated in the system, so as not
to introduce additional sources of non-reliability. These tests are made
by simulating other components using ”dummy components”. These
components are assumed to perform correctly, so all the problems can
be attributed to the component being developed and therefore they can
be more easily detected and removed. Debugging in a complex dis-
tributed nonhomogeneous and asynchronous system is very painful,
therefore such testing techniques using a smaller number of compo-
nents are absolutely necessary. Of course, the testing protocols and
the requirements for the individual components have to be made while
keeping the entire system and the requirements of other components
in mind.

The second reason for performing component tests is the feasibility of
large scale evaluation. If we want to comprehensively analyse some of
the competencies, such as interactive learning, interactive work with
the system is very time consuming and impractical. Learning is a
gradual process and the system has to be exposed to a number (tens,
hundreds, or even more) of training examples to build reliable models.
Furthermore, we would like to test different learning strategies in the
same conditions and directly compare the results, which is close to
impossible if the real system is used for evaluation. Therefore, we in-
stead performed quantitative evaluation in simulation. The simulation
environment uses stored images, which were previously captured and
automatically segmented. We used a number of everyday objects, sim-
ilar to those presented in Fig. 9. Each image, containing a detected
and segmented object, was then manually labeled. In the learning
process the tutor is replaced by an omniscient oracle, which has the
ground truth data available. In this way the extensive tests could
be automatically performed and a reliable evaluation of the proposed
methods were obtained. The results of this evaluation are reported
in [8] for the vision subsystem.

Systematic evaluation in reality (SEVIRE): Of course, the ultimate
test for any integrated robot system is its application in the real world.
Again, there are two main reasons for doing system-wide evaluation.

The first one is obvious; we have to test how well the system per-
forms as a whole. It may turn out that the individual components
perform very well in isolation, assuming an ideal input from other com-
ponents. However when these assumptions are only slightly violated
(and other components provide less reliable data), the performance
of the particular component may degrade considerably, resulting in a
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non-satisfactory performance of the system as a whole. The main goal
of such an evaluation was to find the weak points of the system and
to design the solution for the next release of the system. We have
encountered problems, particulary in the low-level vision routines that
did not perform as robustly as we had hoped. When the vision deliv-
ered data that was too unreliable, this problem propagated throughout
the entire system. The analysis of this problem helped us to design a
solution that would improve the visual subsystem and the system as
a whole and is presented in the next subsection.

The second reason is that there are some competencies that can only
be tested in the integrated system; the main functionality of these
competencies arise from the integration of different components. Such
competencies cannot be tested in isolation. This is also the main
advantage of having such an integrated system; it enables us to per-
form research and to develop functionalities that could not be done
otherwise. The simulated environment we mentioned above can sim-
ulate only certain situations and a simple dialogue. Therefore, more
complex situations, involving complex tasks, mixed initiative dialogue,
combination of task-driven and curiosity driven learning etc., are too
complex and cannot be reliably simulated. For evaluation of such
competencies we need to run and test the entire system. In the next
subsection we will discuss, which parts of the developed system have to
be improved in order to implement the aforementioned functionalities.

3.3 Insights Gathered from Release 1

In year 1, we have made several contributions at the level of individual com-
ponents (modelling beliefs, dialogue processing, incremental learning), as
well as at the system level (by integrating the individual components in a
coherent multimodal distributed asynchronous system). Such an integrated
robotic implementation now enables us to conduct system-wide research
with all its benefits (information provided by other components) as well as
problems and challenges (that do not occur in simulated or isolated envi-
ronments). We are, therefore, now able to directly investigate the relations
between individual components and analyse the performance of the robot
at the sub-system and system level. This allows us to set new requirements
for individual components and to adapt the components, which will result
in a more advanced and robust system.

The main goal in year 1 was to set up a framework that would allow
the system to process, to fuse, and to use the information from different
modalities in a consistent and scalable manner on different levels of abstrac-
tion involving different kinds of representations. This framework has been
implemented in the robot George, which is still limited in several respects;
it operates in a constrained environment, the set of visual concepts that are
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being learned is relatively small, and the mixed initiative dialogue is not
yet matured. We analysed these problems and set up a plan for overcoming
them.

There is a need to robustify the vision capabilities of the system and
to extend the visual subsystem to work more reliably in more complex en-
vironments. We will achieve this by restructuring and extending several
components in the Visual SA. This will also allow us to deal with a richer
set of object properties, which will in turn enrich the dialogues and the
learning process.

The current system operates in a probabilistic framework; the proba-
bilities are attached to recognized object properties, they are used in the
probabilistic binder, etc. However, the entire probabilistic framework relies
on the correctness of the detection (and to some extent also the segmen-
tation) of the individual objects in the scene. Once a miss-detection or
unwanted re-detection occurs, this error is propagated throughout the sys-
tem. There is a need to deal with this problem and to provide mechanisms
that will prevent such error propagation and that will handle the uncertainty
in object detection as well.

One additional limitation of the Year 1 system was that it did not include
the Motivation SA. The Visual SA was monitoring the beliefs in the binder
and waiting for learning opportunities and was also sending clarification
requests directly to the ComSys SA. This is not the best solution nor from
the conceptual nor from the practical point of view. The Motivation SA
should play its role here, taking care of learning requests and clarification
requests and mediating between vision and communication in a principled
way. The motives for learning should be adequately formed and processed
and the corresponding plans should be created and executed. This will
also allow us to engage George in more complex dialogues and perform
more complex tasks, and also to include other functionalities that are being
developed in other workpackages.

Also, the current implementation of detection of incompleteness in the
robot’s knowledge should be improved. Together with the integration of
the motivational mechanism, this should result in a more realistic and user
friendly mixed initiative dialogue, which should in turn result in more effi-
cient learning.

And finally, during the development of the individual components and
their integration in the overall system, as well as during system evaluation
and testing, we faced a lot of problems when debugging the errors. We have
been therefore developing a toll CastControl, that will facilitate the debug-
ging process and will make the development and testing of the integrated
distributed system easier.

We believe that the presented system forms a firm basis for further devel-
opment. Building on this system, our final goal is to produce an autonomous
robot that will be able to efficiently learn and adapt to an everchanging world
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by capturing and processing cross-modal information in the interaction with
the environment and other cognitive agents. Considering insights we have
garnered from the George Y1 system, we will take another step toward this
final goal in year2.

4 Lessons learnt & future challenges

Looking at the integration and evaluation in retrospection we can identify
some lessons learnt and identified some future challenges from a system’s
perspective:

• The (revised) CAST [4] framework employed in the integration proved
its suitability very well. The interaction between the components of
subarchitectures facilitates very well the processes required to gen-
erate behaviour to tackle the incompleteness of the representations.
Any piece of new information or explicit knowledge gaps submitted to
working memories is being picked up by those components that can
make use of it. With the tri-lingual support of CAST (java, C++,
python) the systems have also successfully integrated legacy and con-
tributed code to achieve progress beyond the state of the art already
in the first year of CogX.

• It is in the nature of event-driven systems that synchronisation of sys-
tem states can be an issue. By employing the binder as a central
mediator of consistent representation we have widely compassed these
issues. Binding not only becomes a process of consolidation and aggre-
gation, but also from an architectural point serves as a synchronisation
point.

• Many components (binder, speech synthesis, object recognition,. . . )
and core features (event-driven processing, binder usage,. . . ) of the
architectures are shared between both scenarios, easing future conver-
gence of the scenarios.

• As discussed we see the stronger exchange of components between the
two scenarios not as an end in itself. We expect, that the goal manage-
ment scheme introduced as motivation will contribute to the George
scenario as well and will solve some of the issue there. It conjunction
with planning these two can decide which feature to ask for or which
object to choose first for interactive learning, for instance. Similarly,
Dora will benefit from the dialogue abilities and more advanced belief
models adopted from George in the future.
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A Annexes

A.1 Goal Generation and Management for a Mobile Robot

Bibliography Kristoffer Sjöö, Alper Aydemir, Moritz Göbelbecker, Michael
Brenner, Marc Hanheide, Nick Hawes, Patric Jensfelt, Jeremy Wyatt, Hen-
drik Zender, and Geert-Jan M. Kruijff: Goal Generation and Management
for a Mobile Robot, submitted to IROS 2010

Abstract Goal-directed behaviour is often viewed as an essential charac-
teristic of an intelligent system, but mechanisms to generate and manage
goals are often overlooked. This paper addresses this by presenting a frame-
work for autonomous goal generation and selection. The framework has
been implemented as part of an intelligent mobile robot capable of explor-
ing unknown space and determining the category of rooms autonomously.
We demonstrate the efficacy of our approach by comparing the performance
of two versions of our integrated system: one with the framework, the other
without. This investigation leads us conclude about that such a framework
is desirable for an integrated intelligent system because it reduces the com-
plexity of the problems that must be solved by other behaviour-generation
mechanisms, it makes goal-directed behaviour more robust in the face of a
dynamic and unpredictable environments, and it provides an entry point for
domain-specific knowledge in a more general system.

Relation to WP This paper details the approach on goal generation and
management developed in WP1 and integrated as integral of WP7.
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Abstract— Goal-directed behaviour is often viewed as an
essential characteristic of an intelligent system, but mecha-
nisms to generate and manage goals are often overlooked.
This paper addresses this by presenting a framework for
autonomous goal generation and selection. The framework has
been implemented as part of an intelligent mobile robot capable
of exploring unknown space and determining the category
of rooms autonomously. We demonstrate the efficacy of our
approach by comparing the performance of two versions of
our integrated system: one with the framework, the other
without. This investigation leads us conclude about that such
a framework is desirable for an integrated intelligent system
because it reduces the complexity of the problems that must
be solved by other behaviour-generation mechanisms, it makes
goal-directed behaviour more robust in the face of a dynamic
and unpredictable environments, and it provides an entry point
for domain-specific knowledge in a more general system.

INTRODUCTION

For an integrated system to be described as intelligent it
is usually important for it to display goal-directed behaviour.
The field of AI is rich in approaches for determining what
actions a system should perform next to achieve a particular
goal. However, a comparably small amount of time and
effort has been expended on investigating approaches for
generating and managing the goals of an intelligent system.
In this paper we argue that such mechanisms can have a
positive impact on the behaviour of a goal-directed system,
and we support our position using data gathered from an
integrated robot system that can be run both with and without
goal generation and management capabilities.

Our research is motivated by the goal of implementing
intelligent robot assistants which can perform tasks for, and
with, humans in every-day environments. The complexity
and open-ended requirements of the scenarios such robots
must take part in has caused us to design our systems so
that they are capable of generating their own behaviour at
run-time, rather than having it determined explicitly by a
programmer at design-time. The remainder of this paper
assumes a general approach in which a system explicitly
plans about how to bring about a particular state before
executing the required actions.

Goal-directed behaviour requires a system to change the
world in order to attain a predetermined state-of-affairs. We
refer to the disposition to bring about a particular state-of-
affairs as a drive. A waiter working in a busy restaurant may
have a drive to make as much money in tips as possible,
which could produce drives to keep his customers happy by
making sure their food arrives quickly, that they do not run
out of drinks, and that they are happy with their food. This
example shows that a system’s collection of drives may have
internal structure. For this work we shall ignore this structure
but instead focus on the problem of how a system’s drives
ultimately come to be realised in behaviour. For behaviour
generation approaches such as planning to be applied, it is
not enough to have an abstract specification of the state-of-
affairs to bring about (e.g. making sure customers are happy
with their food). Instead, these approaches typically require
a description of a concrete state-of-affairs (i.e. an instance of
the more general type) which can be brought about from the
current state (e.g. that the customers sat at Table 12 are happy
with their food). Following planning terminology we refer to
this description of a concrete state-of-affairs as a goal. We
refer to the process of producing a goal from a drive as goal
generation. It is important that systems are able to perform
goal generation in domains where all possible goals cannot
be determined in advance. Goal generation allows a system
to be autonomous in such domains by providing the ability
to react to state changes where existing drives should give
rise to new goals (e.g. unexpected customers entering the
restaurant).

Our busy waiter does not just have the problem of gener-
ating goals; he must also choose which goals to pursue from
of the collection of goals he has previously generated. For
example, for each table of customers he might have a goal to
take a drink or food order, enquire if they’re enjoying their
meal, clear plates from the table or bring their bill. Some
goals may ultimately contribute to the waiter’s original drive
more (e.g. goals relating to a table of particularly generous
customers he knows from a previous visit) and some less
(e.g. goals from customers which didn’t tip last time). Some
goals may be quicker or easier to achieve (e.g. taking a



drinks order), and some less so (e.g. bringing the food
for a large birthday party). Some goals may be achievable
together and some not (e.g. depending on whether they fully
occupy the waiter’s arms), and some may have more pressing
deadlines than others. Reasoning about constraints such as
these in order to determine which collection of goals should
be pursued is a process we refer to as goal management.
It is important to realise that goal management is not a
monolithic process in which a set of goals and constraints
are considered and a subset selected for action; changes in
a system’s state (including new goals and observations) may
require the reconsideration of any previously selected goals.
When you consider planning and execution failures in such
a framework, it becomes apparent that goal management can
also play a part in increasing system robustness, in addition
to prioritising which goals should be pursued.

GOAL GENERATION & MANAGEMENT FRAMEWORK
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Fig. 1. The goal generation and management framework.

We would like to endow our integrated systems with the
goal generation and management (GGM) capabilities of our
fictional waiter. To this end we have built on the work of [1],
to produce the design illustrated in Figure 1. This design
is a general framework, or schema, for an architecture for
goal generation and management. It specifies a collection
of interacting elements which must be included in any
instantiation of the framework, although the precise details
of the instantiation will inevitably vary between instances.
The elements of the framework are described in more detail
below.

At the bottom of the framework, a system’s drives are
encoded as multiple goal generators. These are concurrently
active processes which monitor the system’s state (both the
external world and internal representations) and produce
goals to satisfy the system’s drives. Generators can also

remove previously generated goals if they are judged to no
longer be appropriate. In this manner we can say that the
system’s drives are encoded in the goal generators (either
explicitly or implicitly). We work from the assumption that
as a goal passes up through the framework from a generator
and influences a system’s behaviour, it is inspected by
processes of greater and greater computational complexity.
Therefore the lower strata of the framework exist to protect
these processes (and thus overall system resources) from
having to consider more goals than is necessary (where this
could be a contingent judgement). The main mechanism
in the framework for protecting the management processes
is the attention filter. This is a coarse barrier which uses
simple, fast processing to let some some goals through to
the management mechanisms whilst blocking others. Goals
which make it through this filter are described as surfaced,
thus the goals which fail to pass the filter are referred to as
unsurfaced. A collection of management processes determine
which of the surfaced goals should be combined to serve as
the goals being actively pursued by the system. If a goal is
selected in this way we describe it as activated. If a goal is
removed from the set of goals being pursued by the system
we refer to it as suspended.

In order to fulfil their roles, the filtering and management
processes require information on which to base their deci-
sions. Following the original work of [1], the framework
requires that goal generators annotate each goal with a
description of the goal’s importance and urgency, and keep
these descriptions up to date as long as the goal exists.
Importance should reflect the significance of the goal to the
agent (as motivated by the related drive). Urgency should
reflect the necessity of achieving the goal sooner rather
than later. As we shall see later, producing importance
and urgency descriptions for use in such a framework is
a problem in itself. In addition to these descriptions, the
framework allows the management processes to use whatever
approaches are required to select and maintain a set of active
goals. Perhaps the minimum requirements on these processes
is the ability to check whether a goal, or collection of goals,
can be achieved (thus positing planning as a goal activation,
as well as achievement, mechanism).

DORA THE EXPLORER

To explore the implications of this design, we have imple-
mented the framework described above as part of a intelli-
gent mobile robot called Dora the Explorer. The following
sections describe the domain in which Dora operates, the
subsystems which have been integrated to create Dora, and
the implementation of the GGM framework in this context.

Domain: Dora is intended as a research precursor to
a mobile service robot able to interact with, and perform
tasks for, humans in indoor environments. Within this broad
context, our particular interest lies in providing Dora with
the capacity to model the limits of its own knowledge, and
to plan and execute actions to extend its knowledge beyond
these limits. To this end we have been investigating how Dora
can represent its knowledge gaps (i.e. the things that it knows



(a) Dora. (b) A map constructed during a system run. The
circles represent places Dora has visited.

Fig. 2. Robot and spatial environment.

it doesn’t know) and how it can fill these gaps. A service
robot in an office environment could have a wide variety of
knowledge gaps. For example, it may know that it does not
know the names, properties or functions of particular objects;
the names or locations of certain people; or how to perform
the actions required of it (e.g. picking up an unknown object).
Although we ultimately wish to address as many of these
gaps as possible, in this work we focus on two types of
knowledge gap: gaps in Dora’s knowledge about space, and
gaps in Dora’s knowledge of the function of rooms. This
focus has produced an integrated robot system tailored to
the problems entailed by these knowledge gaps, rather than
the entire Dora domain, The design and implementation of
this system is summarised in the following paragraphs.

System: The Dora robot, pictured in Figure 2(a) is based
on a Pioneer 3DX with a custom super structure. The system
architecture for Dora is based on the PECAS architec-
ture [8]. PECAS divides components within a system into
subarchitectures (SAs). SAs are collections of components
plus a shared working memory (WM) which serves as the
communication channel between components (similar to a
blackboard architecture). Each WM therefore contains the
representations which are shared between components in
that SA. As PECAS suggests that SAs be determined by
function, Dora contains SAs for the major functions required
in its domain: spatial mapping; conceptual mapping; vision;
and communication. These are coordinated by the SAs for
planning and cross-modal fusion which are part of PECAS
itself.

As our work relies heavily on planning, we will briefly
describe how the planning SA in PECAS operates. Planning
state is provided by the cross-modal fusion SA, which
fuses representations from other SAs to produce a single,
unified view of the system’s knowledge. Planning goals are
written to the planning WM in a format known as MAPL,
the planning language used by PECAS’s planner [2]. The
planner itself is a multi-agent continual planner, capable
of replanning and execution monitoring. It is essential that
a continual approach is used when planning in interactive

robot systems such as Dora. Such an approach is required
to handle changes in state, changes in goals, and the sensing
and execution failures which naturally occur in such systems.
In PECAS the planner is notified of such events via changes
to WM content. These changes occur asynchronously with
respect to planner operation. PECAS, and any additional goal
generation and management mechanisms, must be robust in
the face of these events.

Dora has two SAs which contribute to its understanding
of space: the spatial mapping and conceptual mapping SAs.
The former of these interprets sensor data (primarily laser
scans and odometry) to perform simultaneous localisation
and mapping (SLAM), enabling the robot to determine
its position in a local metric map. On top of these local
metric maps, the spatial SA constructs a representation based
on small connected regions within the the world called
places [11]. These places represent a first order abstraction
of the maps generated during SLAM and are the low-
est level of spatial representation available to other SAs
within the system. Furthermore, the spatial SA detects gaps
in its spatial knowledge. So-called placeholders associated
with free space represent potential places that could be
explored further. The spatial SA also provides functionality
for collision-free robot movement within both local metric
maps and the place graph. A map produced by the spatial
SA (during an experiment) can be seen in Figure 2(b). The
conceptual mapping SA allows Dora to reason and abstract
over entities which can appear in the maps produced by
the spatial SA. It clusters collections of places which are
bounded by doors into room representations. It also contains
a knowledge from the OpenMind Indoor Common Sense
database1 which allows it to reason from the presence of
objects in a room to the possible functional categories which
could be assigned to the room (e.g. the presence of a kettle in
a room may support the inference that the room is a kitchen
or coffee room).

Dora is able to use this functionality to determine possible
categories for rooms. Dora’s vision SA contains an object
recogniser which uses the Ferns algorithm [10] to identify
known objects in the images it receives from Dora’s cameras.
The process of choosing where to capture images from in
order to find objects is known as active visual search (AVS).
Dora performs AVS by sampling the space of views of
object-containing space until a coverage threshold is met.
Dora is designed to assume that all non-free space on its
spatial map may potentially contain objects (forcing it to
look at desks, worktops and shelves in addition to featureless
walls). This requires that a room must be adequately mapped
prior to AVS.

Dora is implemented in C++ and Java using the CAS
Toolkit [7]. It has been run on at least eight different
robots (all derived from Pioneer 3s) at six institutions2. It
is composed of 28 major components.

1Available from http://openmind.hri-us.com.
2An anonymised video of Dora running can be viewed at http://www.

vimeo.com/8891653.



Current Implementation of Framework: The framework
described earlier has been implemented in Dora as an ex-
tension to the PECAS planning SA. Dora includes two goal
generator components, one for each type of knowledge gap
corresponding to placeholders and yet uncategorized rooms.
These components monitor representations on WMs and then
generate goal representations on the WM in the planning
SA. As Dora is primarily concerned with filling gaps in
knowledge, the importance measure proposed by the GGM
framework is implemented using a heuristic measure of the
information gain a particular goal may provide for Dora.
Goals are also annotated with a heuristic value represent-
ing the estimated cost (usually in terms of time used) of
achieving them. We currently do not use urgency measures
as there are no meaningful time constraints in our domain.
Additionally, we only employ a very limited attention filter
mechanisms in order to focus on more general management
principles. In accordance with the GGM framework, surfaced
goals are actively managed. The goal management processes
in Dora currently rank all surfaced goals according the ratio
of information gain to costs, before selecting the highest-
ranked goal as the next one to pursue.

In Dora, both information gain and costs are designed
to reflect domain specific conditions, though their specific
implementation is beyond the scope of this paper. In brief,
the information gain for achieving the goal of visiting an
unexplored place is derived from a measure of the amount of
space predicted to be covered by this place. The information
gain of categorizing a room is similarly designed, assuming
that a categorising bigger rooms yields more information.
The cost of exploring a place is determined by the distance
to that place. The cost of categorising a room is the cost of
getting there plus the predicted cost of performing AVS.

Room categorisation via AVS provides an example on how
domain knowledge can be modelled in the GGM framework.
Because AVS requires a map of non-free space in order to
calculate a search plan, a room must be adequately explored
before AVS can be performed in it. However, Dora does
not have to completely explore the room (by visiting every
place it contains) before this can happen. While a heuristic,
dynamic definition of “adequate” can easily be implemented
in a domain specific goal generator, it is more difficult
to define this vague precondition in a planning domain.
If we wished to remove the GGM framework from Dora
(as we shall do for evaluation purposes in the subsequent
section), the only natural way to encode the relationship
between exploration and AVS is to add a precondition to
Dora’s AVS action. This precondition would have to state
that no unexplored places can exist in a room if it is to be
categorised, thus losing the notion of adequate exploration.

SYSTEMIC EVALUATION

To investigate the influence our GGM framework has on
an integrated system, we have gathered data from multiple
runs of two configurations of the Dora system. The first
configuration explicitly encodes its two drives (to explore
space and categorise rooms) as the single planning goal:

(and (forall (?p - place) (= (explored ?p) true))
(forall (?r - room) (kval ’robot’ (areaclass ?r))))

This goal, literally interpreted as “explore all places and
know a category for every room”, is passed to the continual
planner directly, rather than via the GGM framework. In this
configuration, termed conjunct goal set (CGS), all system
behaviour is determined by the continual planner in the
PECAS architecture in response to this unchanging goal.
The planner continuously monitors WM content, triggering
replanning if any relevant state changes occur (e.g. unex-
plored places appearing on the spatial WM). The second
configuration, termed managed goal set (MGS), employs our
implementation of the GGM framework. In this configuration
the planner is fed the individual goals selected by the
management mechanisms described previously.

The GGM framework is an integral part of the robotic sys-
tem Dora which is being run in different office environments
on a regular basis. A video3 of the real robot operating in
one of these office environments can support comprehension
of our evaluation setup and provides the reader with a better
understanding of Dora’s generated behaviour. Though Dora
is usually run in such real world environments, for this study
we performed the experiment in simulation for the sake
of control and consistency. We used a test arena with five
rooms and a corridor in the robotic simulator Stage4. The
structure of the environment, which covers approximately
93m2, is captured in the map in Figure 2(b). Dora’s sensors
are simulated by Stage, allowing us to employ the same
system architecture in the simulated setting as we use in the
real world, with the exception of the object recogniser. This is
replaced with Stage’s “blobfinder”. Whenever the camera is
pointed towards a near-by simulated object in Stage an object
is recognised. Two simulated objects are placed in each room
in the arena. The objects describe one of three categories
according to the OpenMind Indoor Common Sense Database
(room, office, and kitchen), allowing the conceptual mapping
SA to categorise these rooms.

We ran the system on a standard 2.4Ghz Core2Duo
notebook with 4GB RAM. A single run is defined as follow:
First, the system starts from scratch every run. Next, the
robot is being given a short, predefined tour (superimposed
on Figure 2(b) as a dotted arrow) during which the robot
builds up its initial knowledge but it does not take any action
itself. Finally, the system is switched to autonomous mode
and starts acting in response to its goals
In total we ran the system 15 times: 8 in MGS configuration
and 7 in CGS. This set is referred to as Sall. A run for
the CGS configuration was defined as complete when the
conjunctive goal was achieved (i.e. no places left unexplored
and no rooms uncategorised). The MGS configuration was
said to be complete when no more surfaced goals remained.

Results
As we are evaluating Dora under full-system conditions

(rather testing using isolated components) we have to accept

3http://cogx.eu/results/dora/
4Available from http://playerstage.sf.net.



CGS MGS
avg. time per planning call 0.621 s 0.292 s

avg. time spent on planning 48.843 s 8.858 s
TABLE I

PLANNING TIME MEASURES (ALL IN SECONDS).

the performance limitations of the real (research) components
which can occasionally fail to perform correctly. The effect
of this is visible in a large variation in the time taken
by Dora to complete a run (between 10 and 23 minutes).
When looking at the number of rooms actually found and
categorized in each run, we find a number of runs in which
the robot completed the mission to categorize all five rooms.
We select these runs as a subset termed SR5 composed
of four runs of each configuration. We argue that runs in
this set are comparable because the qualitative extent of the
information acquired is equivalent.

To measure the influence of the GGM framework we can
examine the time Dora spends planning. These measures
are obtained from Sall and summarised in Table I. The
differences between the averaged timings taken for the two
configurations are statistically significant with p < 0.0001 in
Mann-Whitney testing for all measures shown in the table.

As the first row of the table indicates, there is a significant
difference between the average time taken by a single call to
the planner. A call occurs either when the goal management
activates a new goal or when replanning is triggered by a
state change. Planning calls in CGS take more than twice the
time compared tp MGS. This is due to the higher complexity
of the planning problems in the CGS configuration (it is
planning for all possible goals rather than a single goal). If
we look at the average time spent on planning in total in a
run (second row in Table I) the difference is more prominent.
This is due to the fact that in the CGS configuration the
planner is triggered more often: 79.0 times on average,
compared to 31.1 times for the MGS configuration. This is
because the longer plan lengths required in CGS are more
likely to be affected by state changes and thus require more
frequent replanning.

Figure 3(a) shows how the complexity of planning prob-
lems evolves as the system is running. This presents the
length of single planner calls against the runtime of the
system. This plot has been created using SR5 for compa-
rability. We average the planning time at discrete time steps
during the system’s runtime, across all selected runs of each
configuration. The error bars indicate the standard error in
averaging. From this figure it is apparent that, in agreement
with the data in Table I, less planning effort is required
in MGS compared to CGS. It can also be seen that the
progression over runtime is different in the two cases. While
the trend, indicated by a linear fitting shown as a dotted line
in Figure 3(a), is a shallowly included line for MGS, a steeper
increase in average planning time can be seen for CGS. This
steeper increase can be associated with the increasing size of
the planning problems the CGS configuration faces as Dora’s
knowledge increases: planning for all possible goals over a

larger and larger state becomes increasingly difficult.
The results so far underpin our hypothesis that planning

effort can significantly be reduced by employing GGM
mechanisms that allow a system to select the goals that
should be planned for now, rather than forcing it to plan
for all goals that could be possible. The reduction in effort
is not a surprise, as one can argue that we are only looking
at parts of the problem at a time, and thus that we are trading
planning speed against the opportunity to generate plans
which satisfy all the system’s desires in the most efficient
way possible. Contrary to this view, our experiments show
that the MGS configuration satisfies its drives in a shorter
time, exploring the environment more efficiently on average
than the CGS configuration. So, why is this the case in our
system, even though the planner considers costs by means of
minimizing the number of actions to achieve the conjunctive
goal? Figure 3(b) can help us understand this effect and
illustrates an advantage of the MGS approach.

The plot depicts the time (y-axis) by which a given number
of rooms have been categorised (x-axis), averaged over all
runs of set SR5. It shows that the MGS configuration takes
longest to categorise the first two rooms before speeding
up to be the fastest to complete four and five rooms.
This observation can be explained by the use of domain-
specific information gain for goal activation in the MGS
configuration, information which is not available to the
planner in either configuration. In our experiments, the MGS
configuration did not choose to immediately categorise the
room the tour ended in (see the arrow in Figure 2(b)). Instead
it chose to visit unexplored places that were attributed with
a high information gain, even though the precondition for
categorising the first room was fulfilled. In contrast, the CGS
configuration always categorises the first room immediately
because it deems this to be the cheapest approach to achieve
the overall goal. The domain knowledge encoded in the
information gain used to select the goals leads to more effi-
cient behaviour because it drives the system to explore large
unexplored areas first due to their high potential information
gain. This leads to the MGS configuration building up a
map capable of supporting AVS on all rooms faster than
the CGS configuration is able to, even if it means ignoring
categorisation early on in a system run. For this reason
we would expect the trend in Figure 3(b) to become more
pronounced given longer runs in larger areas.

DISCUSSION & RELATED WORK

Although the problem of generating and managing goals
for an integrated system has not been studied widely by
the AI community, there is a body of work to which
our work relates. The work of Coddington [4] supports
the link between motivation and planning complexity. In a
limited setting she compared two approaches to generating
goals for an agent: reactive generation (comparable to our
MGS configuration), and encoding all the system’s goals as
resources in its planning domain (comparable to our CGS
configuration). This work demonstrated that by only using
reactive goal generators the system could not guarantee to
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satisfy all of its desires, as the effects of actions in current
or future plans were not reasoned about by the generators.
Coddington views using a planning process to decide which
goals should be pursued as a solution to this. As a planning
approach would consider all interactions between possible
goals and current actions it prevents potentially deleterious
situations occurring. However, Coddington demonstrated that
the computational cost of encoding all possible goals in a
planning problem prevented the system tackling problems
beyond a certain size. Our findings, particularly those related
to planning time, agree with this. Dora suffers from the prob-
lems Coddington identified with reactive goal generation, as
we currently activate just one goal at a time for planning
(our domain does not require more). In future work we
will investigate methods for informed activation of multiple
goals using oversubscription planning. This will provide a
variable scale of complexity and deliberation between the
two extremes of reactive and planned goal generation.

The problems and benefits of autonomous goal generation
in an integrated system setting are demonstrated by the work
of Schermerhorn et al. [12] present a system that can use
the preconditions and effects of planning actions to generate
new goals for a system at run-time. This approach has
clear benefits in unpredictable worlds and would fit cleanly
within a generator in our framework. [13] highlights the
problems of treating goal activation as a rational decision
making problem. The primary difficulty is getting reliable,
comparable models of actions and the environment. Dora
faces this problem when attempting to compare measures of
information gain from different types of knowledge gaps.

Other frameworks for goal generation or management have
been proposed previously. These approaches typically fail to
make the distinction between generation, surfacing and ac-
tivation, instead assuming that generation implies activation
(ignoring the requirement to deliberate about possible goals).
We can consider such approaches (in terms of goal genera-
tion and management) as implementations of a subset of our
framework. Examples can be found in belief-desire-intention
systems (e.g. [5]), behaviour-based systems (e.g. [3]), and
reactive planners with goal management extensions (which
represents perhaps the largest body of work on this subject)
(e.g. [6], [9]).

CONCLUSION

In this paper we presented a framework for goal gen-
eration and management and demonstrated its efficacy in

a first implementation in Dora the Explorer, an intelligent
mobile robot. Our evaluation shows that a system using the
framework outperforms (in terms of both planning effort and
task completion time) a system in which the drives of the
robot are encoded as a single planning goal. Though our
current implementation is limited, we are convinced that a
goal generation and management framework will allow us
to work towards a principled coupling between reactive and
deliberative behaviours in open-ended integrated systems in
general and robotics in particular.
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felt, M. Hanheide, and N. Hawes: Autonomous semantic-driven indoor ex-
ploration, submitted to IROS 2010

Abstract Recent work in human-robot interaction shows how a human
can guide a robot around the house on a home tour. The robot uses the
interaction to include semantic information into a conceptual map, as part
of the spatial model it builds up for the environment. Yet, a home tour-
constructed map is typically only partial. The paper presents an approach
in which a conceptual map is acquired or extended autonomously, through
a closely-coupled integration of bottom-up mapping, reasoning, and active
observation of the environment. The approach is novel in the non-monotonic
way in which the conceptual map can be built up, and the two-way connec-
tions between perception, mapping and inference to guide semantic mapping.
The approach has been fully implemented in an integrated mobile robot sys-
tem. It uses OWL-based reasoning with rules and non-monotonic inference
over an OpenMindderived ontology of common sense spatial knowledge, to-
gether with active visual search and information gain-driven exploration. It
has been tested in different environments.

Relation to WP This paper describes the results of our systemc studies
on the exploratory behaviour of our robot Dora and the non-monotinistic
reasoning about the spatial composition of the explored place.
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Abstract

Recent work in human-robot interaction shows how a human
can guide a robot around the house on a “home tour.” The
robot uses the interaction to include semantic information
into a conceptual map, as part of the spatial model it builds up
for the environment. Yet, a home tour-constructed map is typ-
ically only partial. The paper presents an approach in which
a conceptual map is acquired or extended autonomously,
through a closely-coupled integration of bottom-up mapping,
reasoning, and active observation of the environment. The
approach is novel in the non-monotonic way in which the
conceptual map can be built up, and the two-way connections
between perception, mapping and inference to guide semantic
mapping. The approach has been fully implemented in an in-
tegrated mobile robot system. It uses OWL-based reasoning
with rules and non-monotonic inference over an OpenMind-
derived ontology of common sense spatial knowledge, to-
gether with active visual search and information gain-driven
exploration. It has been tested in different environments.

Introduction
Several approaches to human-augmented mapping have re-
cently been proposed. A human guides a robot around an
indoor environment, and the robot uses the information ob-
tained through interaction with the human to semantically
annotate its map. The Explorer (Zender et al. 2007), BIRON
(Peltason et al. 2009), and ISAC (Kawamura et al. 2008) are
just a few examples of such mobile robots.

But what happens after the home tour? After a tour, the
robot typically only has a partial representation of the envi-
ronment. Experience shows that human users do not neces-
sarily visit every place, talk about every object. Even when
they do, they still might be blocking the robot’s view. On-
tological reasoning can be used to deal with this partiality,
to an extent. It can infer defaults, e.g., what objects can be
found by default in a given location; cf. (Hawes et al. 2009).
∗The research reported here was performed in the EU FP7 IP

“CogX: Cognitive Systems that Self-Understand and Self-Extend”
(ICT-215181); http://cogx.eu. The authors would like to
thank Honda Research Institute USA Inc. for use of the OpenMind
Indoor Common Sense Project data.
†K. Sjöö was supported by the Swedish Research Council, con-

tract 621-2006-4520
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The paper presents a novel approach to semantic mapping
in which the robot can autonomously build a fully instanti-
ated map. The approach presents a closely-coupled integra-
tion of several forms of cognitive functionality, in a single
system. The approach combines the bottom-up construc-
tion of a conceptual map, typical for a home-tour, with au-
tonomous exploration and top-down mechanisms for guid-
ing visual search. Visual search, and lower levels of sensor
data abstraction such as the building of topological structure,
can make the mapping construction process non-monotonic.
This is a natural consequence of the uncertainty and par-
tiality of observations the robot is dealing with. Structural
and conceptual abstractions may need to be reconsidered in
the light of new evidence. The approach we present is ca-
pable of such non-monotonic reasoning for conceptual map
construction and revision. Existing approaches for human-
augmented mapping do not provide this functionality.

Below we first provide an example to illustrate the prob-
lems, and connect this to relevant background on semantic
mapping. We note shortcomings, and address these in our
approach. The full implementation in a mobile robot system
is then presented, with a discussion of experimental results
obtained in runs in several different office environments, and
in simulation. We focus here on the mapping approach per
se. The use of internal motivation drives and planning pro-
cesses for controlling exploration is only briefly highlighted.

Example
Figure 1 illustrates the inherent non-monotonic nature of the
autonomous semantic mapping process we model. (1) shows
the initial state. Blue points indicate laser range readings,
grey rectangles are walls, and colored circles are (linked)
nodes on a navigation graph. If nodes have the same color,
they are interpreted as belonging to the same room. (2)
shows a sequence of nodes formed after moving around.
All nodes belong to a single room, a “corridor,” because the
robot failed to detect the door it was passing through. In
(3) the robot has passed through, and successfully detected,
a doorway (red node). This triggers the creation of a new
room. In (4) the robot has exited this room through another
doorway, re-entering the corridor. At this point, the robot is
unaware that it has returned to the same corridor as before.
Only in (6) nodes become fully connected. Now, the hypoth-
esis for a new room raised in (4) is fused with the already



Figure 1: Actual exploration sequence. Red nodes are doorways, colored circles are free space nodes. Nodes having the same
color indicates they are interpreted as belonging to the same room. Color changes of a node indicates a revision of a room
hypothesis, e.g. fusion of nodes into a single room (5→ 6) or separation into a new room after observing a doorway (7→ 8).

existing corridor hypothesis, creating a single room. In (7),
the robot detects the doorway that it had not spotted earlier,
in (2). This leads to a separation of already observed nodes,
creating a new room (8). The conceptual mapping approach
presented here manages the potentially non-monotonic for-
mation and maintenance of room representations. It uses
topological information to establish the spatial extent of a
room. Ontological inference is used to reason about the cat-
egory of a room, and what objects it might contain. This
in turn guides active visual search. The observations help
extend the conceptual map with more instance information.

Background
There is an increased interest in including semantic infor-
mation into robot-generated maps. Much of this work is
driven by the need to bridge the gap between how robots
and humans understand spatial organization. Humans see of
spatial organization in an inherently qualitative way, using a
partially hierarchical representation of topological areas.

In our approach, Places are the primitive topological units
of the conceptual map. Rooms are topological units that are
meaningful to humans. They are constructed from intercon-
nected Places. Ontological reasoning determines categorical
properties for a room, storing them in the robot’s conceptual
map. We are concerned with determining appropriate prop-
erties that allow a robot to deal with spatial entities in a way
that is meaningful to a human. Properties can be inferred
defaults, or categorizations of observed instances.

Several recent methods deal with constructing multi-
layered environment models. Layers range from metric
sensor-based maps to abstract conceptual maps that take into
account information about objects acquired through com-
puter vision methods. (Vasudevan et al. 2006) suggest a
hierarchical probabilistic representation of space based on
objects. (Galindo et al. 2005) presents an approach con-
taining two parallel hierarchies, spatial and conceptual, con-
nected through anchoring. Inference about places is based

on objects found in them. The Hybrid Spatial Semantic Hi-
erarchy (HSSH) of (Beeson et al. 2007) allows a mobile
robot to describe the world using different representations,
each with its own ontology. Compared to these our concep-
tual spatial representation is constructed through fusion of
acquired, asserted, inferred and innate knowledge. Further-
more, our approach differs in that it provides the conceptual
map as an additional abstraction layer that can be used for
categorization of topological entities. Approaches like the
HSSH adopt the topological layer as single abstraction.

Conceptual maps have been integrated in several mobile
robots for human-robot interaction. Systems include the
CoSy Explorer (Zender et al. 2007; 2008), the Cogniron
BIRON system (Peltason et al. 2009; Topp et al. 2006), and
ISAC (Kawamura et al. 2008). All these systems rely on the
monotonic construction of a conceptual map.

Design
The design we present is a further development of the se-
mantic mapping approach we developed in the CoSy Ex-
plorer system (Zender et al. 2007; 2008). That approach
still assumed a strongly supervised setting, in which a con-
ceptual map layer was built in a strictly monotonic way. Be-
low, we present a new algorithm for managing the forma-
tion of a conceptual map layer in a way that allows for non-
monotonicity. The algorithm uses the notion of topological
Places and Placeholders. These are – in their turn – abstrac-
tions from metric mapping data. We first discuss the topo-
logical structure, then the conceptual mapping algorithm.

For the purposes of this paper, we only consider concep-
tual structures to apply to disjoint sets of Place nodes in a
topological graph. As a consequence, a flat conceptual map
is built, without a partonomic hierarchy based on topological
inclusion. This assumption can, however, be easily lifted.

Places The robot uses laser range data to autonomously
build up a 2-D metric map. This map is subdivided into dis-



crete zones called Places. A Place provides a basic form of
spatial abstraction, cf. (Pronobis et al. 2009). Here, we de-
fine each Place in terms of a map point called a node. Nodes
indicate “free space,” and are created at regular intervals as
the robot drives around the world. A node defines a Place as
the Voronoi cell surrounding it, see Figure 2(a).

Nodes are connected into a navigation graph as the robot
transits from one Place to another. Figure 2(b) illustrates
such a graph. Graph-edges indicate adjacency of Places, and
the possibility of moving between them. This connectivity
is used in planning and conceptual reasoning.

(a) Places defined by nodes (b) Graph of Place nodes

Figure 2: Places

Placeholders Space that has not yet been explored by the
robot has no Place nodes in it. Nevertheless, high-level pro-
cesses like reasoning and planning do need symbols repre-
senting areas that could potentially be explored. We facili-
tate this by giving unexplored space its own representation
in Placeholders. A placeholder symbolizes an unexplored
direction that the robot might move in – which may or may
not yield new Places. Placeholders are stored internally in
the form of a position in the map termed a node hypothesis,
generated in space that is reachable from the current Place,
but which is devoid of other nearby Place nodes (Figure 3).

Placeholders and Places have the same high-level repre-
sentation, as do the links connecting them. Placeholders are
ascribed the additional attribute of being unexplored, as well
as two quantitative measures of estimated information gain
should the robot explore them. These are used by the moti-
vation system, described in §Implementation.

The quantitative measures used are the coverage estimate
and the frontier length estimate, cf. Figure 3. The former is
obtained by measuring the free space that is visible from the
current node and isn’t near to any existing node (yellow in
the figure), and assigning it to the hypothesis that is closest.
This heuristically estimates the number of new Places that
would result from exploring that direction.

The frontier length estimate is analogously extracted from
the length of the border into unknown space. By prioritizing
these two measures differently, the motivation mechanism
can produce different exploratory behaviours.
Conceptual mapping Conceptual mapping uses the
Place/Placeholder-based topological organization to per-
form two reasoning tasks. One, it maintains a representation
that groups Places into rooms. Two, using observations it
can infer possible categories for a room, and objects that are
likely to be present by default. Performing these tasks yields
a conceptual map of the environment, with room organiza-
tion, instances, and default expectations.

The ongoing construction of the conceptual map is poten-
tially non-monotonic. The overall room organization may be

A

B

C

D

Figure 3: Placeholder creation. Dashed circles are hypothe-
ses, each representing one placeholder. A and B are frontier
length estimates, C and D are coverage estimates for the
respective placeholders.

revised on the basis of new observations. The representation
underlying the conceptual map is an OWL-DL ontology,
consisting of a taxonomy of concepts (TBox) and the knowl-
edge about individuals in the domain of discourse (ABox).
Besides the usual inferences performed by the OWL-DL
reasoner, namely subsumption checking for concepts in
the TBox (i.e., establishing subclass/superclass relations be-
tween concepts) and instance checking for ABox members
(i.e., inferring which concepts an individual instantiates), an
additional rule engine is used to decide whether a pair of
nodes belongs to the same room, or not, cf. (1), (2), (3).
These rules are interpreted non-monotonically: whenever
a previously true antecedent (left-hand side) turns false its
consequent (right-hand side) statements are retracted again
from the A-box. In addition, we use an algorithm responsi-
ble for room instance creation, cf. Algorithm 1.

(1) for place instances x, y:
adjacent(x, y) & ¬door(x) & ¬door(y)
→ sameRoomAs(x, y)

(2) for place instances x, y, z:
adjacent(x, z) &sameRoomAs(y, z)
& ¬door(x) & ¬door(y) & ¬door(z)
→ sameRoomAs(x, y)

(3) for place instances x, y, and room instance z:
sameRoomAs(x, y) & contains(z, x)
→ contains(z, y)

Place instances are generated in a bottom-up fashion
whenever a new place node is created, or an existing place-
holder turns into an explored place. Whenever the system
detects a doorway at place p, the predicate door(p) is added
to the A-box. Likewise, if a place ceases to exist (e.g., if
it gets merged with another place node), its place instance
is automatically removed from the A-box. Edges between
place nodes in the navigation graph are the basis for assert-
ing their adjacency (adjacent(x, y)).

Rules (1) and (2) make sure that only places that are tran-
sitively interconnected (i.e., adjacent) without passing a
doorway place are asserted to belong to the same room. The
reflexive sameRoomAs predicate thus provides an exten-
sional, bottom-up definition of which segments of the navi-
gation graph consist a room. Rule (3) makes sure that places
that are in the same room (through the sameRoomAs pred-
icate), are also asserted to be contained by the same room
instance (through the contains predicate).



Algorithm 1 createAndDeleteRooms()
places← getAllInstances(Place)
rooms← getAllInstances(Room)
for each place ∈ places do

if isInstanceOf(place, Door) then
/* discard doorway places */
places← places− place

else if isRelated(contains, place) then
/* discard place if already part of a room */
places← places− place

else
/* create new room with current place as seed */
new room← createNewRoomSymbol()
addInstance(new room, Room)
addRelation(new room, hasSeedPlace, place)
addRelation(new room, contains, place)
contd places← getRelatedInstances(place, sameRoomAs)
for each p ∈ contd places do

addRelation(new room, contains, p)
places← places− p
seeded rooms← getRelatedInstances(hasSeedPlace, place)
for each seeded room ∈ seeded rooms do

if seeded room 6= new room then
deleteInstance(seeded room)

end if
end for

end for
end if

end for

Algorithm 1 handles the creation of new room instances.
This is necessary as the creation of a new room symbol r
cannot be expressed in the first-order logic-like rule syntax.
Room creation uses the notion of seed place, which usually
is the first node that was found to belong to a new room.

Rooms are usually extended as the robot keeps explor-
ing.Splitting of rooms occurs when a doorway is correctly
detected only later. Merging of rooms occurs when the robot
enters the same room from a different side, and closes the
connection to the already existing places in that room. The
newer one of the two merged room instances is then deleted.

Implementation
Below we discuss how the above design has been fully im-
plemented in a cognitive system running on a mobile plat-
form, Figure 1. The implementation combines the spatial
mapping functionality with active visual search, and moti-
vation mechanisms to drive exploration. Motivation is plan-
ning based. It uses information gain and the current state of
the map to decide whether to plan for further spatial explo-
ration (exploring Placeholders), or for obtaining more cate-
gorical information (active visual search).

Architecture design The integrated system is built using a
cognitive robotics software framework called CAST (Hawes
and Wyatt 2009). CAST is an event-driven architecture,
built from one or more subarchitectures. Each subarchi-
tecture (SA) provides a certain functionality. It consists of
independently executing software processing components,
and a common working memory through which the com-
ponents exchange information. Subarchitectures can like-
wise exchange information through read/write-operations on

each other’s working memories. We typically use robot mid-
dleware like Player/Stage to integrate sensorimotor I/O and
control into a CAST system; cf. e.g. (Zender et al. 2007).

We use five subarchitectures in our system. The spatial
SA constructs the representations of spatial knowledge. The
Active Visual Search SA finds objects using computer vision
and view planning. The binding SA serves to fuse informa-
tion from different modalities, into singular amodal repre-
sentations (Galindo et al. 2005; Jacobsson et al. 2008). The
Motivation and planning SAs use the data from binding to
generate goals and plans for achieving them.

Motivation SA The motivation SA is an architectural con-
cept for goal selection. In the context of exploration as dis-
cussed in this paper it decides on a behavioral level, which
exploration goal should be pursued next. Basically, we con-
sider two types of goals: exploration to extend the spatial
coverage of the map, or exploration to increase the amount
of categorical instance information in the conceptual map.

Planning itself has been widely researched. Yet, compar-
atively little attention has been paid to where the goals for
planning processes come from. We propose an architecture
for goal generation and management based on (Wright, Slo-
man, and Beaudoin 1996). This architecture is composed
of reactive goal generators, filters, and management mech-
anisms. The goal generators create new goals from modal
content in spatial SA, and amodal content on binding SA.
The filters do a first pass selection of goals to be considered
for activation. Management mechanisms determine which
of the remaining goals should be activated, i.e. planned for.

The system can generate multiple new goals asyn-
chronously, e.g. when a new area of space is sensed, or when
a command is given. At the same time it also determines
which collection of goals should currently be pursued by the
system, e.g. which space should be explored, or whether
exploration or categorisation goals should be pursued.

Figure 4: Screenshot of motivation SA state.

Spatial SA The SA most central to exploration is the spa-
tial SA. Its components work together to extract abstract rep-



Figure 5: Data flow in the spatial SA

resentations from raw sensory data, and to translate high-
level actions back to low-level motor commands. Figure 5
illustrates the data flow in the spatial SA. It is organised in
a layered manner. The sensory layer provides continuous
low-level readings from sensors. Readings are clustered and
classified quantitatively in the categorical layer. The results
are used in the place layer to form discrete Places and Place-
holders, along with their associated properties. The compo-
nents of the conceptual map layer perform qualitative rea-
soning over these abstractions.map. Firstly, the conceptual
map layer segments interconnected places into rooms and
maintains room instance representations, as described be-
fore. Second, the the conceptual map reasoner tries to infer
more special categories for rooms, such as office or kitchen.
It makes use of the inference mechanisms described in (?).
One novelty is that the association between room categories
and salient objects is done using the “locations” table of the
OpenMind Indoor Common Sense database.

The output of both place and conceptual layers are pre-
sented to the system at large, through the amodal repre-
sentations of the binding SA. The motivation and planning
SAs use this information to decide on how to continue au-
tonomous exploration. The motivation SA selects a goal to
be pursued, e.g. for a certain placeholder to be explored, and
the planning SA constructs a plan that will fulfill it. The ac-
tions that make up this plan then fed back into spatial SA,
and turned into concrete continuous-space motor commands
by the respective layers (not shown).

Active Visual Search SA The Active Visual Search (AVS)
SA is responsible for finding visual objects in rooms. Visual
search is triggered when the motivation SA selects a mo-
tive for categorizing a certain place or room. The process
maintains several information flows between the AVS SA,
and the spatial SA. One, observed objects are provided to
the conceptual map layer in the spatial SA, to infer the cat-
egory of a room using the OpenMind ontology. Two, given

a motive to locate an object, the AVS SA uses information
from the place- and conceptual map layers to determine in
which (categorized) rooms the particular object is likely to
be found in (e.g. coffee machines in kitchens).

Our implemented algorithm is a derivation of (González-
Banos and Latombe 2001). Once the robot is in a room that
is to be searched, the AVS SA identifies portions of the room
where the object is more likely to be found. The idea behind
such indirect search is that the time cost of finding possi-
bly object-rich portions of a room is almost always smaller
than a full scale random search over the whole space; cf.
e.g. (Tsotsos 1992). For example, free space is assumed
to be devoid of objects. At the same time, “obstacles” like
landmarks that appear on the low-level map are likely to
include objects. The search plan therefore starts from po-
sitions which provide the most coverage of seen obstacles,
and generates view points in an art-gallery problem fashion
(Shermer 1992; O’Rourke 1987).

Experiment
We tested our approach using Player/Stage, to assess the ac-
curacy and appropriateness of our non-monotonically built
spatial representation as the robot keeps exploring.

The experimental set-up was a faithful model of the real
robotic platform along with its simulated sensors in a floor-
plan map of a part of one of our office environments, Figure
6. The map consisted of eight rooms: a corridor, a terminal
room, a lab, two offices, two restrooms, and a printer room.
This constitues the ground truth for our tests of the accuracy
of the room maintenance. The robot was ordered to per-
form an autonomous exploration. The exploration was con-
trolled by a symbolic planner and a top-level motivation sys-
tem that would select appropriate locations for exploration
based on the notion of placeholders. To assess the coverage
that this exploration yields, we determined a gold standard
of 60 place nodes to be generated to fully, densely and op-
timally cover the simulated environment. We achieved this
by manually steering the robot to yield an optimal coverage,
staying close to walls and move in narrow, parallel lanes.
We performed three runs with the robot in different starting
positions, each time with an empty map. Each run was cut-
off after 30 minutes. The robot was then manually controlled
to take the shortest route back to its starting position.

For the evaluation, the system logged the state of its A-
box each time a new room was created, or an existing one
was deleted. This subsumes cases in which rooms are split
or merged. At each such step, the generated map was
compared to the ground truth for the room representation
and to the gold standard for place node coverage. The
first room instance to cover part of a ground-truth room
is counted as true positive (TP). If that room instance ex-
tends into a second room, it is counted as TP only once,
and once as a false positive (FP). Each additional room in-
stance inside a ground-truth room is also counted as FP.
False negatives (FN) are ground-truth rooms for which no
room instance exists. Using these measures, precision, re-
call and the balanced f-score for the room maintenance are
as follows: precision = #TP/#TP +#FP , recall =
#TP/#TP +#FN , fscore = 2 × ((precision ×



Figure 6: The environment model used in the experiments

recall)/(precision + recall)). We compute a normalized
value for coverage using coverage = #nodes/60.
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Figure 7: Plots for precision, recall, f-score and coverage
of each of the three experimental runs. The Y-axis shows
the normalized values for precision, recall, balanced f-score,
and coverage (0–1). The X-axis is time, in milliseconds.

Figure 7 shows the development of the relevant measures
during the three experimental runs. As can be seen, the ac-
curacy (balanced f-score) of the representation is monoton-
ically increasing. The increases and decreases in precision
are due to the introduction and retraction of false room in-
stances. Recall can be interpreted as coverage in terms of
room instances. After 30 minutes the exploration algorithm
yielded a relatively high recall value (3/4, 3/4 and 7/8, re-
spectively), i.e. most of the rooms had been visited. A re-
curring problem here was that the two smallest rooms were
often only entered by a few decimeters. This was enough
to consider the corresponding placeholder to be explored,
but not enough to create an additional place node beyond
the doorway – which would have been the prerequisite for
room instance creation. The node coverage that the algo-
rithm achieved after 30 minutes (33, 34, 32 out of 60, respec-
tively) can be attributed partly to the 30-minutes cut-off of

the experiment, and partly to the exploration strategy which
goes for high information gain placeholder first. These tend
to be in the middle of a room rather than close to its walls.

Conclusions
We presented an approach that integrates several levels of
cognitive functionality for a mobile robot system. The
robot is able to (a) explore an indoor environment, (b) au-
tonomously construct a multi-layered map of that environ-
ment, and (c) deliberate on the basis of the state of the map
whether to explore new space, or categorize known rooms.

The approach we discussed here extends an earlier one
(Zender et al. 2007). We presented a new algorithm that
is capable of dealing with the partiality and uncertainty in-
herent to mapping. It can handle the non-monotonicity in
forming and maintaining rooms. It uses OWL-DL with
rule-based reasoning for room maintenance, and it is in-
tegrated with an ontology of common sense indoor envi-
ronment knowledge to reason about room categories and -
properties. This provides for a smooth integration with other
functionality, for example for situated dialogue processing
in human-robot interaction (Zender et al. 2007).

Upcoming research includes tests with the system, in
longer, more complex scenarios. We are working on a setup
in which the functionality described here is combined with
situated dialogue processing, to develop an interactive office
robot capable of finding, tracking and retrieving objects.
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González-Banos, and Latombe. 2001. A randomized art-gallery
algorithm for sensor placement. In Proceedings of the seventeenth
annual symposium on Computational geometry.
Hawes, N., and Wyatt, J. 2009. Engineering intelligent
information-processing systems with CAST. Advanced Engineer-
ing Infomatics. to appear.
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ABSTRACT
Dora the Explorer is mobile robot with a sense of curios-
ity and a drive to explore its world. Given an incomplete
tour of an indoor environment, Dora is driven by internal
motivations to probe the gaps in her spatial knowledge. She
actively explores regions of space which she hasn’t previously
visited but which she expects will lead her to further unex-
plored space. She will also attempt to determine the cate-
gories of rooms through active visual search for functionally
important objects, and through ontology-driven inference on
the results of this search.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Experimentation

Keywords
cognitive robotics, motivation, exploration, mapping, rea-
soning

1. INTRODUCTION
It has been a long standing aim of the robotics commu-

nity to develop a robot capable of being a useful assistant
in the home or workplace. There are a great many bar-
riers facing such a development. One such barrier is that
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current systems require a lot of knowledge about an area
before they can perform tasks in it. If you were to ask
your interactive robot assistant “bring me the milk from the
kitchen”, you would only be likely to get the milk if the
robot knew the complete layout of the building, how the hu-
mans working there describe the rooms, where objects are
typically found, and many other things. This information
could be programmed in a priori, or could be provided by
a human during a tour when the robot was first received.
These approaches have two problems. First, they are rather
demanding on the time of of humans; the more informa-
tion the robot requires, the more work a human has to do
to provide it. This will become increasingly true as mobile
vision and manipulation improves. Second, the world will
continually change throughout the robot’s lifetime. This will
render the initial information useless, and require additional
programming or human-led training.

Our solution to this problem is to allow the robot to gather
knowledge autonomously. We do this by allowing it to ex-
plicitly model gaps in its own knowledge, which it can then
proactively attempt to fill by performing knowledge gather-
ing actions such as sensing and reasoning. This paper sum-
marises a demo which instantiates this approach in Dora
the Explorer, a mobile robot intended to perform human-
specified tasks (such as the one described above) in an office
environment. Dora is able to model two different types of
knowledge gaps: gaps in her spatial knowledge and gaps
in her knowledge about the functional categories of rooms.
Spatial knowledge gaps represent areas in space which Dora
knows about but hasn’t visited yet. They are derived from
laser scan readings combined with a metric map (built at
run-time). These gaps are filled by Dora driving into the
previously unvisited space. Categorical knowledge gaps rep-
resent rooms which Dora knows about, but which haven’t
been assigned categories. Categorical gaps are generated by
ontology-based reasoning over a topological map built on
top of the metric map. These gaps are filled by searching
for objects in the current room and using the results to infer



its function. For example, if a stove was found in a room,
Dora might hypothesise that the room is kitchen. The fol-
lowing section summarises the techniques used in the system
to support such behaviour.

2. ARCHITECTURE
Dora’s knowledge gathering is performed by following plans

generated at run-time. Embedding planning into a het-
erogeneous robot system which itself is embodied in a dy-
namic, unpredictable world, requires a supporting architec-
ture. Our architectural approach is an extension of PECAS [1].
The whole system is divided into function-based subarchi-
tectures, each of which contain processing components shar-
ing information via a working memory (WM). Modal (i.e.
sensor-based) subarchitectures (e.g. mapping, vision, lan-
guage) each store local representations on their WM. These
modal representations are then fused into a single amodal
representation by a binding subarchitecture, which reasons
about connections between modalities. Binding provides a
single view of the system’s knowledge which can be used to
generate planning state. The representation used by the sys-
tem at this level is comparable to predicate logic. Because
PECAS is intended for systems operating in multi-agent,
dynamic worlds, its uses continual planning and execution
monitoring to cope with partial observability and remain
responsive to change.

In addition to this existing core, the Dora system incor-
porates a number of innovations driven by the demands of
autonomous knowledge gathering: goal generation and man-
agement; planned exploration of unknown space in a new
spatial model; and active visual search leading to ontology-
based room categorisation. These developments, and the
role they play in the demonstration, are described in the
following paragraphs.

Although the process of planning has been widely re-
searched, a comparatively small amount of attention has
been directed towards where the goals for planning processes
come from. In Dora we have been exploring an architecture
for goal generation and management based on the work of
Wright et al. [3]. This architecture is composed of reac-
tive goal generators which create new goals from modal and
amodal WM content; a collection of filters which do a first
pass selection of goals to be considered for activation; and
management mechanisms which determine which of the re-
maining goals should be activated (i.e. planned for). The
architecture allows multiple new goals to be generated asyn-
chronously by the system (e.g. when a new area of space is
sensed, or when a command is given), whilst also determin-
ing which collection of goals should currently be pursued by
the system (e.g. which bit of space should be explored, or
which class of goal should be pursued).

A representation of space is an essential part of any mobile
robot. Most current techniques provide the ability to map an
area and localise within this map, but do not lend themselves
to the generation of symbols for planning or other higher-
level reasoning tasks. In Dora we use a new place-based rep-
resentation developed with this purpose in mind [2]. In par-
ticular, Dora has been used to investigate how unexplored
space can be represented in such a model. Areas where
Dora’s laser detects free space which is not already part of
an existing place is noted as a frontier. Frontiers are ag-
gregated into placeholders which indicate the potential for
generating a new place (and thus a new spatial symbol). The

presence of a placeholder triggers a goal generator to create
a goal to fill the corresponding area of space by exploration.
This goal is only selected if it passes through the filter and
management mechanisms.

In Dora we make the assumption that the presence of
particular objects determines the functional category of a
room. To this end we have given Dora a decision logic-based
reasoner populated with facts from the Open Mind Indoor
Commonsense database describing relationships between ob-
ject presence and room type (e.g. if you see a printer you
might be in an office or computer room). When Dora de-
tects a room without a category label, a goal generator cre-
ates a goal to categorise it. If this goal is activated, the
plan produced causes Dora to travel to the room in ques-
tion and perform a visual search for known objects. This is
done by generating a view plan of regions of the room which
might contain objects, then running an object recogniser
from these views. When an object is found, a representa-
tion is stored on WM where the reasoner accesses it and
adds it to its database. These additions, coupled with the
aforementioned rules, allow Dora to infer the category of the
room being searched (satisfying the planning goal).

3. DEMO
In the demo, Dora is given a short tour of an indoor area.

After the tour, her goal filters are switched to allow previ-
ously generated goals to compete for activation. The user
can manually adjust the filters to set priorities for classes of
goals. Depending on these filters, and a cost/benefit analysis
of the individual goals, Dora will select the goal or goals to
pursue next, creating and executing plans to fill knowledge
gaps. As she explores the world, new goals are created which
enter the management architecture and influence behaviour.
An example of this behaviour is that Dora can pass an open
door leading to unexplored space, choose to change direc-
tion to pass through the door, then decide to explore then
categorise the room beyond it. After this she can choose
to readopt the goal that led her past the door originally, or
choose something else that appears more rewarding. A video
of the demo can be seen at http://cogx.eu/results/dora/.
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Abstract Interactive continuous learning is an important characteristic of
a cognitive agent that is supposed to operate and evolve in an everchanging
environment. In this paper we present representations and mechanisms that
are necessary for continuous learning of visual concepts in dialogue with a
tutor. We present an approach for modelling beliefs stemming from multiple
modalities and we show how these beliefs are created by processing visual
and linguistic information and how they are used for learning. We also
present a system that exploits these representations and mechanisms, and
demonstrate these principles in the case of learning about object colours and
basic shapes in dialogue with the tutor.
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methods were developed as well to the WP2 and WP7, where the main
emphasis was on the development of the integrated system.
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A basic cognitive system for interactive continuous learning
of visual concepts

Danijel Skočaj, Miroslav Janı́ček, Matej Kristan, Geert-Jan M. Kruijff,
Aleš Leonardis, Pierre Lison, Alen Vrečko, and Michael Zillich

Abstract— Interactive continuous learning is an important
characteristic of a cognitive agent that is supposed to operate
and evolve in an everchanging environment. In this paper we
present representations and mechanisms that are necessary for
continuous learning of visual concepts in dialogue with a tutor.
We present an approach for modelling beliefs stemming from
multiple modalities and we show how these beliefs are created
by processing visual and linguistic information and how they
are used for learning. We also present a system that exploits
these representations and mechanisms, and demonstrate these
principles in the case of learning about object colours and basic
shapes in dialogue with the tutor.

I. INTRODUCTION

An important characteristic of a cognitive system is the
ability to continuously acquire new knowledge. Communi-
cation with a human tutor should significantly facilitate such
incremental learning processes. In this paper we focus on
representations and mechanisms that enable such interactive
learning and present a system that was designed to acquire
visual concepts through interaction with a human.

Such systems typically have several sources of informa-
tion, vision and language being the most prominent ones.
Based on the processed modal information corresponding
beliefs are created that represent the robot’s interpretation of
the perceived environment. These beliefs rely on the partic-
ular representations of the perceived information in multiple
modalities. These representations along with the cross-modal
learning enable the robot to, based on interaction with
the environment and people, extend its current knowledge
by learning about the relationships between symbols and
features that arise from the interpretation of different modal-
ities. One modality may exploit information from another
to update its current representations, or several modalities
may be used together to form representations of a certain
concept. We focus here on the former type of interaction
between modalities and present the representations that are
used for continuous learning of basic visual concepts in a
dialogue with a human.

We demonstrate this approach on the robot George, which
is engaged in a dialogue with the human tutor. Fig. 1 depicts
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of Ljubljana, Slovenia, {danijel.skocaj, matej.kristan,
ales.leonardis, alen.vrecko}@fri.uni-lj.si
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a typical setup and the scene observed by the robot1. The
main goal is to teach the robot about object properties
(colours and two basic shapes). George has built-in abilities
for visual processing and communication with a human, as
well as learning abilities, however it does not have any model
of object properties given in advance and therefore has to
continuously build them. The tutor can teach the robot about
object properties (e.g., ’H: This is a red thing.’), or the robot
can try to learn autonomously or ask the tutor for help when
necessary (e.g., ’G: Is the elongated thing red?’). Our aim
is that the learning process is efficient in terms of learning
progress, is not overly taxing with respect to tutor supervision
and is performed in a natural, user friendly way.

In this paper we present the methodologies that enable
such learning. First we present an approach for modelling
multi-modal beliefs in §II. We then show how these beliefs
are used in dialogue processing in §III, followed by the
description of representations and the learning process in
vision in §IV. In §V we describe the system we have
developed and in §VI we present an example of the scenario
and the processing flow. We conclude the paper with a
discussion and some concluding remarks.

(a) Scenario setup. (b) Observed scene.

Fig. 1. Continuous interactive learning of visual properties.

II. MODELLING BELIEFS

High-level cognitive capabilities like dialogue operate on
high level (i.e. abstract) representations that collect informa-
tion from multiple modalities. Here we present an approach
that addresses (1) how these high-level representations can
be reliably generated from low-level sensory data, and (2)
how information arising from different modalities can be
efficiently fused into unified multi-modal structures.

The approach is based on a Bayesian framework, using
insights from multi-modal information fusion [1], [2]. We

1The robot can be seen in action in the video accessible at
http://cogx.eu/results/george.
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Fig. 2. Multi-modal information binding: belief construction (left) and application in a reference resolution task (right).

have implemented it as a specific subsystem called the binder
[3]. The binder is linked to all other subsystems. It serves as a
central hub for gathering information about entities currently
perceived in the environment. The information on the binder
is inherently probabilistic, so we can deal with varying levels
of noise and uncertainty.

Based on the available information, the binder seeks to
fuse the perceptual inputs arising from the various subsys-
tems, by checking whether their respective features correlate
with each other. The probability of these correlations are
encoded in a Bayesian network. This Bayesian network can,
for example, express a high compatibility between the haptic
feature “shape: cylindrical” and the visual feature “object:
mug” (since most mugs are cylindrical), but a very low
compatibility between “shape: cylindrical” and “object: ball”.

We call the resulting (amodal) information structure a
belief. The task of the binder is to decide which perceptual
inputs belong to the same real-world entity, and should
therefore be unified into a belief. The outcome of this process
is a joint probability distribution over possible beliefs. These
beliefs integrate the information included in the perceptual
inputs in a compact representation. They can therefore be
directly used by the deliberative processes for planning,
reasoning and learning.

In addition to the beliefs, there are two other central data
structures manipulated by the binder, proxies and unions
(see also Fig. 2(a)). A proxy is a uni-modal representation
of a given entity in the environment. Proxies are inserted
onto the binder by the various subarchitectures. They are
defined as a multivariate probabilistic distribution over a set
of features (discrete or continuous). A union is multi-modal
representation of an entity, constructed by merging one or
more proxies. Like proxies, unions are represented as a
multivariate probabilistic distribution over possible features.
They are essentially a transitional layer between proxies and
beliefs.

A belief is an amodal representation of an entity in the
environment. They are typically an abstraction over unions,
expressed in an amodal format. A belief encodes additional
information related to the specific situation and perspective
in which the belief was formed. This includes its spatio-

temporal frame (when and where and how an observation
was made), its epistemic status (for which agents the belief
holds, or is attributed), and a saliency value (a real-valued
measure of the prominency of the entity [4]). Beliefs are
indexed via a unique identifier, which allows us to keep
track of the whole development history of a particular belief.
Beliefs can also be connected with each other using relational
structures of arbitrary complexity.

To create beliefs, the binder decides for each pair of prox-
ies arising from distinct subsystems, whether they should be
bound into a single union, or fork into two separate unions.
The decision algorithm uses a technique from probabilistic
data fusion, called the Independent Likelihood Pool (ILP)
[5]. Using the ILP, we compute the likelihood of every
possible binding of proxies, and use this estimate as a basis
for constructing the beliefs. The multivariate probability
distribution contained in the belief is a linear function of
the feature distributions included in the proxies and the
correlations between these. A Bayesian network encodes
all possible feature correlations as conditional dependencies.
The (normalised) product of these correlations over the com-
plete feature set provides a useful estimate of the “internal
consistency” of the constructed belief.

The beliefs, being high-level symbolic representations
available for the whole cognitive architecture, provide a
unified model of the environment which can be efficiently
used when interacting with the human user.

III. SITUATED DIALOGUE

Situated dialogue provides one means for a robot to gain
more information about the environment. A robot can discuss
what it sees, and understands, with a human. Or it can ask
about what it is unclear about, or would like to know more
about.

That makes this kind of dialogue part of a larger activity.
The human and the robot are working together. They interact
to instruct, and to learn more. For that, they need to build
up a common ground in understanding each other and the
world.

Here we briefly discuss an approach that models dialogue
as a collaborative activity. It models what is being said, and



why. It enables the robot to understand why it was told
something, and what it needs to do with the information.

The approach is based on previous work by Stone &
Thomason [6] (S&T). In their model, an agent uses abductive
inference to construct an explanation of the possible intention
behind a communicative act. This intention directs how an
agent’s belief models need to be updated, and what needs to
be paid attention to next. This kind of inference is performed
both for comprehension, and for production.

The problem with S&T is that they rely on a symmetry
in communication: “What I say is how you understand it.”
This is untenable in human-robot interaction, particularly in a
setting where a robot is learning about the world. Therefore,
we have adapted and extended their approach to deal with
(a) the asymmetry between what has been observed fact, and
what has been asserted, and (b) clarification mechanisms, to
overcome breakdowns in understanding.

Algorithm 1 Continual collaborative acting

Σπ = ∅

loop {
Perception

e ← SENSE()
〈c′, i,Π〉 ← UNDERSTAND(r, Z(c)⊕ Σπ, e)
c ← VERIFIABLE-UPDATE(c′, i,Π)

Determination and Deliberation
c′ ← ACT-TACITLY(p, c)
m ← SELECT(p, c′)
〈i,Π〉 ← GENERATE(r, c′,m, Z(c)⊕ Σπ)

Action
ACT-PUBLICLY(a(i))
c ← VERIFIABLE-UPDATE(c′, i,Π)

}

Algorithm 1 presents the core of the resulting model,
based on S&T. In perception, the agent senses an event
e. It tries to understand it in terms of an intention i that
results in an update of the belief model from context c to c′,
given the current possible ways to do so Z(c) and whatever
issues are still open to be resolved Σπ . Given the inferred
intention i and potential update c′ the agent then tries to
carry out this update, as a verifiable update. To model this,
we use a logical framework of multi-agent beliefs (cf. §II)
that includes a notion of assertion [7]. An assertion is a
proposition that still needs to be verified. This verification
can take various forms. In George, we check whether a
new piece of information can be used to consistently update
a belief model (consistency), or to extend a modal model
(learning) or weaken it (unlearning). Any assertion still in
need of verification ends up on Σπ .

An important aspect of linking dialogue with grounded
beliefs is reference resolution: how to connect linguistic
expressions such as “this box” or “the ball on the floor” to
the corresponding beliefs about entities in the environment.
The binder performs reference resolution using the same

core mechanisms as used for binding. A Bayesian network
specifies the correlations between the linguistic constraints of
the referring expressions and the belief features (particularly,
the entity saliency and associated categorical knowledge).
Resolution yields a probability distribution over alternative
referents (see Fig. 2(b) for an example). Abductive inference
then determines which resolution hypothesis to use, in the
context of establishing the best explanation. This is folded
together with any new information an utterance might pro-
vide, to yield an update of the robot’s current beliefs.

For example, consider an utterance like “This is yellow.”
First, the expression “this” must be resolved to a particular,
proximal entity in the environment. Resolution is performed
on the basis of the saliency measures. Second, the utterance
also provides new information about the entity, namely that
it is yellow. The robot’s beliefs get updated with this asserted
information. Dialogue processing does this by selecting the
belief about the referred-to entity, then incorporating the new
information. Indirectly, this acts as a trigger for learning.

In George, the dynamics of assertions on Σπ provide
the main drive for how learning and dialogue interact. The
vision subarchitecture can pose clarification requests to the
dialogue system. These requests are interpreted as tacit
actions (Algorithm 1), pushing an assertion onto Σπ . This
assertion may be a polar or an open statement. Then similarly
to resolving any breakdown in understanding the user, the
robot can decide to generate a clarification subdialogue. This
dialogue continues until the (original) assertion has been
verified, i.e. a proper answer has been found [8].

IV. LEARNING VISUAL CONCEPTS

In the two previous sections we discussed how the modal
information gathered from individual modalities is fused into
unified multi-modal structures and how they are used in
situated dialogue. In this section we will describe how the
modal information is captured and modelled in the visual
subarchitecture; how these models are being continuously
updated and how they can be queried to provide the ab-
stracted information for higher-level cognitive processing.

To efficiently store and generalize the observed infor-
mation, the visual concepts are represented as generative
models. These generative models take the form of probability
density functions (pdf) over the feature space, and are
constructed in an online fashion from new observations.
The continuous learning proceeds by extracting the visual
data in the form of highdimensional features (e.g., multiple
1D features relating to shape, texture, color and intensity
of the observed object) and the online Kernel Density
Estimator (oKDE) [9] is used to estimate the pdf in this
high-dimensional feature space. The oKDE estimates the
probability density functions by a mixture of Gaussians,
is able to adapt using only a single data-point at a time,
automatically adjusts its complexity and does not assume
specific requirements on the target distribution. A particularly
important feature of the oKDE is that it allows adaptation
from the positive examples (learning) as well as negative
examples (unlearning) [10].



However, concepts such as color red reside only within
a lower dimensional subspace spanned only by features that
relate to color (and not texture or shape). Therefore, during
the learning, this subspace has to be identified to provide
the best performance. This is achieved by determining the
optimal subspace for a set of mutually exclusive concepts
(e.g., all colours, or all shapes). We assume that this cor-
responds to the subspace which minimizes the overlap of
the corresponding distributions. The overlap between the
distributions is measured using the multivariate Hellinger
distance [9]. An example of the learnt models is shown in
Fig. 3.

Fig. 3. Example of the models estimated using the oKDE and the
feature selection algorithm. Note that some concepts are modelled by 3D
distributions (e.g., ”blue” which is denoted by ”Bl”), while others (e.g.,
”compact” which is denoted by ”Co”) is modelled by 1D distributions.

Therefore, during online operation, a multivariate genera-
tive model is continually maintained for each of the visual
concepts and for mutually exclusive sets of concepts the fea-
ture subspace is continually being determined. This feature
subspace is then used to construct a Bayesian classifier for
a set of mutually exclusive concepts, which can be used for
recognition of individual object properties.

However, since the system is operating in an online man-
ner, the closed-world assumption cannot be assumed; at every
step the system should also take into account the probability
that it has encountered a concept that has not been observed
before. Therefore, when constructing the Bayesian classifier,
an ”unknown model” has also to be considered besides the
learned models. It should account for a poor classification
when none of the learnt models supports the current obser-
vation strongly enough. We assume that the probability of
this event is uniformly distributed over the feature space. The
a priori probability of the ”unknown model” is assumed to
be non-stationary and decreases with increasing numbers of
observations; the more training samples the system observes,
the smaller is the probability that it will encounter something
novel.

Having built such a knowledge model and Bayesian clas-
sifier, the recognition is done by inspecting a posteriori
probability (AP) of individual concepts and unknown model;
in fact the AP distribution over the individual concepts is
packed in a vision proxy, which is sent to the binder and
serves as a basis for forming a belief about the observed
object as described in §II (see also Fig. 2(b)).

Furthermore, such a knowledge model is also appropriate
for detecting incompleteness in knowledge. It can be discov-
ered through inspection of the AP distribution. In particular,
we can distinguish two general cases. (1) In the first case the
observation can be best explained by the unknown model,
which indicates a gap in the knowledge; the observation
should most probably be modeled with a model that has not
yet been learned. A clarification request is issued that results
in an open question (e.g., ’Which colour is this?’). (2) In
the second case the AP of the model that best explains the
observation is low, which indicates that the classification is
very uncertain and that the current model cannot provide a
reliable result. A clarification request is issued that results
in a polar question (e.g., ’Is this red?’). In both cases,
after the tutor provides the answer, the system gets the
additional information, which allows it to improve the model
by learning or unlearning.

V. SYSTEM ARCHITECTURE

We have implemented the representations and mechanisms
described in the previous sections in the robot George. In
this section we describe the system architecture and the
individual components that are involved.

For implementation of the robot we employ a specific
architecture schema, which we call CAS (CoSy Architec-
ture Schema) [11]. The schema is essentially a distributed
working memory model, where representations are linked
within and across the working memories, and are updated
asynchronously and in parallel. The system is therefore
composed of several subarchitectures implementing different
functionalities and communicating through their working
memories. The George system is composed of three such
subarchitectures: the Binder SA, the Communications SA and
the Visual SA, as depicted in Fig. 4. Here, the components
of the visual subsystem could be further divided into three
distinct layers: the quantitative layer, the qualitative layer and
the mediative layer.

In the previous subsections we assumed that the modal
information is adequately captured and processed. Here we
briefly describe how the relevant visual information is de-
tected, extracted and converted in the form that is suitable for
processing in the higher level processes. This is the task of
the quantitative layer in the Visual SA. The quantitative layer
processes the visual scene as a whole and implements one
or more bottom-up visual attention mechanisms. A bottom-
up attention mechanism tries to identify regions in the scene
that might be interesting for further visual processing. George
currently has one such mechanism, which uses the stereo 3D
point cloud provided by stereo reconstruction component to
extract the dominant planes and the things sticking out from
those planes [12]. Those sticking-out parts form spherical
3D spaces of interest (SOIs). The SOI Analyzer component
validates the SOIs and, if deemed interesting (considering
SOI persistence, stability, size, etc.), upgrades them to proto-
objects adding information that is needed for the qualitative
processing, e. g. the object segmentation mask (the proto-
object is segmented by the Graph cut algorithm [13] using
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Fig. 4. Architecture of the George system.

the 3D and color information provided by the stereo recon-
struction).

The qualitative layer implements the main functionalities
for recognition and learning of visual concepts that were
described in §IV. This layer processes each interesting scene
part (object) individually, focusing on qualitative properties.
After the extraction of the visual attributes (in the Visual
Learner-recognizer), like color and shape, the Object An-
alyzer upgrades the proto-objects to visual objects. Visual
objects encapsulate all the information available within the
Visual SA and are the final modal representations of the
perceived entities in the scene. Also, the learning of visual
attributes is performed in this layer.

The main purpose of the mediative layer is to exchange
information about the perceived entities with other modal-
ities. This is not done directly, but via the specialised a-
modal subarchitecture Binder SA, that actually creates and
maintains beliefs as described in §II. The Visual Mediator
component adapts and forwards the modal information about
objects to the binder (each visual object is represented by a
dedicated proxy in the binder). The component also monitors
beliefs for possible learning opportunities, which result in
modal learning actions. Another important functionality of
the mediator is to formulate and forward clarification motiva-
tions in the case of missing or ambiguous modal information.
Currently, these motivations are directly intercepted by the
Communication SA.

Given a clarification request, the Communication SA for-
mulates a dialogue goal given the information the system
needs to know and how that can be related to the current
dialogue and belief-context. Dialogue planning turns this
goal into a meaning representation that expresses the request
in context. This is then subsequently synthesized, typically as
a question about a certain object property. When it comes to

understanding, the Communication SA analyses an incoming
audio signal and creates a set of possible word sequences for
it. This is represented as a word lattice, with probabilities
indicating the likelihood that a certain word was heard, in
a particular sequence. The word lattice is then subsequently
parsed, and from the space of possible linguistic meaning
representations for the utterance, the contextually most ap-
propriate one is chosen [14]. Finally, dialogue interpretation
takes the selected linguistic meaning. This meaning is then
interpreted against a belief model, to understand the intention
behind the utterance. We model this is an operation on how
the system’s belief model is intended to be updated with the
information provided. In §VI below we provide more detail,
given an example.

VI. EXAMPLE SCENARIO

A. Scenario setup

The robot operates in a table-top scenario, which involves
a robot and a human tutor (see Fig. 1(a)). The robot is asked
to recognize and describe the objects in the scene (in terms
of their properties like colour and shape). The scene contains
a single object or several objects, with limited occlusion. The
human positions new objects on the table and removes the
objects from the table while being involved in a dialogue
with the robot. In the beginning the robot does not have
any representation of object properties, therefore it fails to
recognize the objects and has to learn. To begin with, the
tutor guides the learning process and teaches the robot about
the objects. After a while, the robot takes the initiative and
tries to detect its own ignorance and to learn autonomously,
or asks the tutor for assistance when necessary. The tutor can
supervise the learning process and correct the robot when
necessary; the robot is able to correct erroneously learned
representations. The robot establishes transparency and ver-
balizes its knowledge and knowledge gaps. In a dialogue
with the tutor, the robot keeps extending and improving
the knowledge. The tutor can also ask questions about the
scene, and the robot is able to answer (and keeps giving
better and better answers). At the end, the representations
are rich enough for the robot to accomplish the task, that is,
to correctly describe the initial scene.

B. Example script

Two main types of learning are present in the George
scenario, which differ on where the motivation for a learning
update comes from. In tutor driven learning the learning
process is initiated by the human teacher, while in tutor
assisted learning, the learning step is triggered by the robot.

Tutor driven learning is suitable during the initial stages,
when the robot has to be given information, which is used
to reliably initiate (and extend) visual concepts. Consider a
scene with a single object present:

H: Do you know what this is?
G: No.
H: This is a red object.
G: Let me see. OK.



Since in the beginning, George doesn’t have any repre-
sentation of visual concepts, he can’t answer the question.
After he gets the information, he can first initiate and later
sequentially update the corresponding information.

After a number of such learning steps, the acquired models
become more reliable and can be used to reference the
objects. Therefore, there can be several objects in the scene,
as in Fig. 1, and George can talk about them:

H: What colour is the elongated object?
G: It is yellow.

When the models are reliable enough, George can take
the initiative and try to learn without being told to. In this
curiosity-driven learning George can pose a question to the
tutor, when he is able to detect the object in the scene,
but he is not certain about his recognition. As described
in §IV in such tutor-assisted learning there are two general
cases of detection of uncertainty and knowledge gaps. If the
robot cannot associate the detected object with any of the
previously learned models, it considers this as a gap in its
knowledge and asks the tutor to provide information:

R: Which colour is this object?
H: It is yellow.
R. OK.

The robot is now able to initialize the model for yellow
and, after the robot observes a few additional yellow objects,
which make the model of yellow reliable enough, it will be
able to recognize the yellow colour.

In the second case, the robot is able to associate the object
with a particular model, however the recognition is not very
reliable. Therefore, the robot asks the tutor for clarification:

R: Is this red?
H: No. This is yellow.
R. OK.

After the robot receives the answer from the tutor, it corrects
(unlearns) the representation of the concept of red and
updates the representation of yellow and makes these two
representations more reliable.

In such mixed initiative dialogue, George continuously
improves the representations and learns reliable models of
basic visual concepts. After a while George can success-
fully recognize the acquired concepts and provide reliable
answers:

H: Do you know what this is?
G: It is a blue object.
H: What shape is the red object?
G: It is elongated.

C. Processing flow

Here we describe the processing flow for one illustrative
example. We describe in more detail what happens after the
human places several objects in the scene (see Fig. 1) and
refers to the only elongated object in the scene (the yellow
tea box) by asserting ”H: The elongated object is yellow.”.

In the Visual SA the tea box is represented by a SOI on
the quantitative layer, a proto-object on the qualitative layer
and a visual object on the mediative layer. Let us assume
that the Visual Learner-recognizer has recognized the object

as being of elongated shape, but has completely failed to
recognize the color. In the binder this results in a one-proxy
union with the binding features giving the highest probability
to the elongated shape, while the color is considered to be
unknown. This union is referenced by the single robot’s
private belief in the belief model (Fig. 5, step 1).

The tutor’s utterance ’The elongated object is yellow’ is
processed by the Communication SA. Speech recognition
turns the audio signal into a set of possible sequences of
words, represented as a word lattice. The Communication
SA parses this word lattice incrementally, constructing a
representation of the utterance’s most likely linguistic mean-
ing in context [14]. We represent this meaning as a logical
form, an ontologically richly sorted relational structure.
Given this structure, the Communication SA establishes
which meaningful parts might be referring to objects in the
visual context. For each such part, the binder then computes
possible matches with unions present in the binding memory,
using phantom proxies (Fig. 5, step 2). These matches form a
set of reference hypotheses. The actual reference resolution
then takes place when we perform dialogue interpretation.
In this process, we use weighted abductive inference to
establish the intention behind the utterance – why something
was said, and how the provided information is to be used.
The proof with the lowest cost is chosen as the most likely
intention. Reference resolution is done in this larger context
of establishing the “best explanation.” Abduction opts for
that referential hypothesis which leads to the overall best
proof. The resulting proof provides us with an intention,
and a belief attributed to the tutor is constructed from the
meaning of the utterance. In our example, this attributed
belief restricts the shape to elongated, asserts the color to
be yellow and references the union that includes the visual
proxy representing the yellow tea box.

In the Visual SA, the mediator intercepts the event of
adding the attributed belief. The color assertion and the
absence of the color restriction in the robot’s belief is
deemed as a learning opportunity (the mediator knows that
both beliefs reference the same binding union, hence the
same object). The mediator translates the asserted color
information to an equivalent modal color label and compiles
a learning task. The learner-recognizer uses the label and the
lower level visual features of the tea box to update its yellow
color model. After the learning task is complete, the mediator
verifies the attributed belief, which changes its epistemic
status to shared (Fig. 5, step 3). The learning action re-
triggers the recognition. If the updated yellow color model is
good enough, the color information in the binder and belief
model is updated (Fig. 5, step 4).

A similar process also takes place in tutor assisted learning
when the robot initiates the learning process, based on an
unreliable recognition, e.g., by asking ”R: Is this red?”. In
this case, the need for assistance reflects in a robot’s private
belief that contains the assertion about the red color and
references the union representing the object. Based on this
belief, the Communication SA synthesizes the above ques-
tion. When the robot receives a positive answer, it updates
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Fig. 5. Example of processing flow in the binder. The green color represents
restrictive information, while the violet color denotes assertive information.
Only the beliefs and other data structures pertaining to the yellow tea box
are shown.

the representation of red, using a very similar mechanism as
in the case of tutor driven learning.

VII. CONCLUSION

In this paper we presented representations and mechanisms
that are necessary for continuous learning of visual concepts
in dialogue with a tutor. An approach for modelling beliefs
stemming from multiple modalities was presented and it was
shown how these beliefs are created by processing visual and
linguistic information and how they are used for learning. We
also presented a system that exploits these representations
and mechanisms and demonstrated these principles in the
case of learning about object colours and basic shapes in a
dialogue with the tutor.

We have made several contributions at the level of indi-
vidual components (modelling beliefs, dialogue processing,
incremental learning), as well as at the system level (by
integrating the individual components in a coherent multi-
modal distributed asynchronous system). Such an integrated
robotic implementation enables system-wide research with
all its benefits (information provided by other components),
as well its problems and challenges (that do not occur
in simulated or isolated environments). We are, therefore,
now able to directly investigate the relations between the
individual components and analyse the performance of the
robot at the sub-system and system level. This will allow us

to set new requirements for individual components and to
adapt the components, which will result in a more advanced
and robust system.

The main goal was to set up a framework that would allow
the system to process, to fuse, and to use the information
from different modalities in a consistent and scalable way
on different levels of abstraction involving different kinds
of representations. This framework has been implemented in
the robot George, which is still limited in several respects;
it operates in a constrained environment, the set of visual
concepts that are being learned is relatively small, and
the mixed initiative dialogue is not yet matured. We have
been addressing these issues and the robot will gradually
become more and more competent. Furthermore, we also
plan to integrate other functionalities that have been under
development, like motivation and manipulation.

The presented system already exhibits several properties
that we would expect from a cognitive robot that is supposed
to learn in interaction with a human. As such, it forms a firm
basis for further development. Building on this system, our
final goal is to produce an autonomous robot that will be
able to efficiently learn and adapt to an everchanging world
by capturing and processing cross-modal information in an
interaction with the environment and other cognitive agents.
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Abstract

Attention operators based on 2D image cues (such
as colour, texture) are well known and discussed exten-
sively in the vision literature but are not ideally suited
for robotic applications. In such contexts it is the 3D
structure of scene elements that makes them interest-
ing or not. We show how a bottom-up attention op-
erator that selects spaces of interest (SOIs) based on
scene elements that pop out from planes is used within a
larger architecture for a cognitive system. In this system
SOIs extracted from 3D stereo data are further refined
by back-projection onto the 2D image and colour-based
segmentation and finally used for tasks like learning of
object properties or object recognition.

1. Introduction
Imagine a robot entering a room with the task to lo-

cate an object, say the ubiquitous coffee mug. This
is quite a challenge as the mug might be partially oc-
cluded on a cluttered office desk, hidden in shadow on a
shelf, too far away and only a few pixels large or simply
out of the current view. This highlights the importance
of attention mechanisms for robotic vision applications,
as has also been argued previously e.g. in [15]. While
e.g. a lot of the object recognition literature operates on
centered objects which are large in the image (at least
for training) a major problem in robotic applications is
to get such nice views in the first place.

Although attention has received a lot of interest in
the psychology and vision literature, relatively little is
concerned with attention based on 3D cues (see [4] for
a good overview).

However, psychophysical studies show that sponta-
neous, exploratory eye movements are not only depen-
dent on 2D features such as contrast and edge intensity

as used in popular saliency models [7, 14] but are also
influenced by the three-dimensional structure of the vi-
sual scene, e.g. for a slanted plane follow the depth gra-
dient [17] or fall on the 3D center of gravity of objects
rather than the 2D c.o.g. of the projection [16].

Several authors have addressed attention based on
3D cues. [10] combine disparity, image flow and mo-
tion cues into an attentional operator that is designed to
follow close moving targets. [12] extend the standard
Koch & Ullman [8] model of visual attention based on
colour images with a depth channel. Similarly [5] com-
bine two 2D saliency maps from the reflectance and
range image of a 3D laser range scanner and show im-
proved object recognition performance.

Putting an emphasis on biological plausibility the
authors of [3] extend their Selective Tuning Model of
attention to the binocular case to select areas and dis-
parities of optimal match between left and right image.
Moreover their model handles issues of binocular ri-
valry, i.e. can put attention on a salient region in one
eye when the corresponding region in the other eye is
occluded.

Showing the use of attention in a robotic system [15]
present a strategy for a mobile robot equipped with a
stereo head to search for a target object in an unknown
3D environment that optimises the probability of find-
ing the target given a fixed cost limit in terms of total
number of robotic actions required for detection. Their
approach maintains a 3D grid of detection likelihood
that is used to plan next best positions and views.

Most of the above approaches handle 3D attention by
treating the disparity image like another channel next
to colour. [13] use the 3D reconstructed point cloud
for segmenting objects from a ground plane as a pre-
processing step in a robotic scenario for learning ob-
ject properties. The segmentation from stereo data,
which can be of unsatisfactory accuracy depending on



the amount of available texture, is refined with graph-
cut segmentation in the colour image.

We extend that approach to a wider range of scenes
and develop a 3D attention operator for a robotic sys-
tem aimed at various indoor tasks. Among these are ob-
ject recognition and learning of objects and their prop-
erties. We make the assumption that objects presented
to the robot for learning as well as objects the robot is
asked to pick up are resting on supporting surfaces such
as tables, shelves or simply the floor. Accordingly we
place attention on anything that sticks out from support-
ing surfaces.

2. System Overview
Figure 2 shows (part of) the visual processing hap-

pening within a larger robotics framework. The frame-
work is based on a software architecture toolkit [6]
which handles issues like threading, lower level drivers
and communication via shared working memories.
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Figure 1. System overview: Attention
driven visual processing in a cognitive
robotics architecture

Attention in this context serves several purposes.
First of all the obvious usage as a primer for costly ob-
ject recognition. 3D point clouds from stereo recon-
struction are used to extract dominant planes as well as
things sticking out from these planes, a process which
we refer to as plane pop-out. Those sticking-out parts
form spherical 3D spaces of interest (SOIs) (termed so
to avoid confusion with typical 2D image regions of
interest - ROIs) which are handed to the segmentation
component. The segmenter is coarsely initialised with
colours obtained from back-projected 3D points inside
the SOIs and then refines the projected contour of the
SOIs generating what we term proto-objects. These
form an intermediate level more object-like (i.e. more
likely to correspond to an actual scene object) than just
“stuff” that caught our attention but not quite recog-
nised (labelled) objects yet. Proto-objects are subse-

quently handed to the (SIFT-based) recogniser which
only needs to process the segmented image regions.

Moreover features extracted from segmented regions
of interest are used to learn associations between object
properties such as colour or shape and linguistic con-
cepts such as “red” or “round”.

Finally a spatial reasoning component planning
where to look for objects in search tasks maintains lo-
cations of generally likely object positions, i.e. places
where attention fell on in the past. To this end it stores
detected supporting planes in its global map.

3. Plane Pop-Out and Segmentation
There are of course potentially many planes in an

indoor environment but we are only interested in sup-
porting, i.e. horizontal planes. We either know the tilt
angle of the camera from the mounting on the mobile
platform and thus know the horizontal direction or, in
case we don’t have a calibrated system, we find it based
on the assumption that the ground plane is the domi-
nant plane in the first view when entering a new room
(initialisation phase).

Objects

Candidates 
of dominant 

plane

Horizontal 
plane

View angle

Figure 2. Illustration of hypothesis filter
for initialisation: planes parallel to the
stereo baseline

Plane fitting is based on RANSAC with two modi-
fications in the hypothesis generation and in the verifi-
cation stage. For the former we propose a preemptive
consensus sampling scheme to increase the probability
of generating valid hypotheses, i.e. horizontal planes.
A sample for a plane hypothesis consists of three points
and we only accept a hypothesis for further verification
if the vectors between any pair of the sample points are
parallel to the horizontal plane. A special case for the
above initialisation phase where we do not have the hor-
izontal plane yet is illustrated in Figure 2. Here we only
require the hypothesis to be parallel to the stereo base-
line, which we can always assume to be horizontal.

To improve robustness against the type of noise we
have to expect in our system we dynamically adapt

2



the RANSAC tolerance parameter ε in the verification
stage. In our case noise in the reconstructed 3D point
cloud stems from disparity errors due to mismatches
as well as disparity discretisation errors. In both cases
the reconstruction error increases with distance from the
camera. Hence we adapt ε accordingly to be more tol-
erant for far away hypotheses and stricter for nearer hy-
potheses.

We calibrate the system using two planes, the fur-
thest (i.e. ground) and the nearest (given by the max-
imum disparity the stereo matching can handle). For
both calibration scenes we find the smallest ε such that
the best plane hypothesis contains 95% of all points and
call them εf (far) and εn (near). Then with df , dn and
d the distances of the far, near and current hypothe-
sis plane from the camera, ε of the current hypothesis
scales linearly with distance and becomes

ε = εn + (εf − εn)
d− dn
df − dn

(1)

Plane fitting is called iteratively until no more hori-
zontal planes can be found. Then the remaining points
sticking out from these planes are segmented using 3D
flood-filling and the resulting clusters together with a
bounding sphere form SOIs. Note that the bounding
sphere is slightly larger than the actual point cluster to
ensure it also contains a part of the plane points, which
is needed for the following segmentation step. Figure
3 shows the disparity map and corresponding recon-
structed point cloud for a shelf. Different planes are
shown in different colours and remaining sticking out
points are shown in green. Because of the inherent lim-
itation of stereo reconstruction at poorly textured sur-
face parts and shadowing effects between left and right
camera, we refine the results using 2D colour based seg-
mentation.

Figure 3. Disparity map and reconstructed
point cloud

The 2D segmentation is based on energy minimisa-
tion with graph cuts. The back-projected 3D points
within the SOI provide colour and spatial cues for the
object and its background. The cost function for the

object combines the colour cost with the spatial cost,
while the cost function for the background consists of
the colour cost component only. The spatial cost is sim-
ply the distance between the point and the nearest ob-
ject’s back-projected 3D point. The colour cost, on the
other hand, is the average distance between the point’s
colour and the K nearest colours from the sample (K
is determined based on the sample size). Besides fore-
ground and background cost functions, there is a third
cost function with a fixed cost to cover the areas, where
both former functions have high costs. While these ar-
eas are considered uncertain and might be resolved on
higher levels of the system’s cognition, they are mean-
while deemed as background by the recogniser.

The distance between two colours is calculated in the
HLS colour space:

∆HLS = ∆2S + (1 − ∆S)∆HL (2)
∆HL = S̄∆H + (1 − S̄)∆L, (3)

where ∆H , ∆L and ∆S are the distances between the
two colour’s HLS components, while S̄ is the average
saturation of the two colours. All the parameters are
normalised to values between 0 and 1. The H dis-
tance has to be additionally normalised and truncated
because of its circular space. The contribution of each
colour component to the overall distance between the
two colours is thus determined by the saturation differ-
ence and saturation average.

The code for the graph cut algorithm was kindly pro-
vided by Boykov, Kolmogorov and Veksler [1, 2, 9].

4. Experimental Results

We tested our system on various tables and shelves.
Figure 4 shows a typical result for a shelf consisting of
three planes. The images show the detected ROIs (back-
projected SOIs). We can see that most of the SOIs are
correctly positioned on the objects sitting on the shelf
except for the cluster of spray paint cans in the right
corner of the second plane, which could not be reliably
segmented.

Figure 4 shows the results of the subsequent segmen-
tation step. The top images show the position of back-
projected 3D points (green for object, red for back-
ground) and the segmentation (grey for object, white for
background). The bottom images represent the graph
cut cost functions for object and background where the
brighter colour denotes greater cost. We can see that
despite the fact that the backprojected 3D points are not
very precise due to rather large noise, the graph-cut seg-
mentation can be successfully initialised and provides a
precise object contour.

3



Figure 4. Spaces of interest, back-
projected into image

Figure 5. Segmentation of back-projected
spaces of interest

5. Conclusion
We presented an attentional mechanism based on

plane pop-out in 3D stereo data and its use within a
robotic framework. Future work will on one hand fo-
cus on more robust extraction of supporting planes in
cases where only small textured parts of the plane are
visible as in the case of (densely filled) shelves. To this
end we plan to fuse cues from line-based stereo with
dense stereo. On the other hand we are currently in-
tegrating the recently proposed segmentation with fixa-
tion method by [11] as an alternative to the more generic
graph-cut segmentation used now.
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A.6 Videos

• Dora the Explorer: http://cogx.eu/results/dora

• Curious George: http://cogx.eu/results/george
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