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1 Introduction

This document is the second in the series of deliverables reporting on evalua-
tion results and insights gathered from studies of the integrated systems de-
veloped in CogX. We continue to follow the evaluation and analysis schemes
outlined in deliverable D.7.1. Evaluation and assessment of individual com-
ponents and smaller subsystems are reported in the respective deliverables in
the other work packages, while in this document we focus on the evaluation
of the integrated systems as a whole.
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Our general roadmap in system evaluation is based on an interweaved
software release and experiment strategy. Here, we report the relevant build-
ing blocks and implementations that led to the major release 2 of the robots
Dora and George. The release the evaluation is based on is functionally
equivalent to the systems demonstrated at the review in 2010. The focus
of this year’s integration was to deal with uncertainty on a system level.
Accordingly have most of the representations and reasoning abilities in the
systems been extended or substituted to account for uncertainty in percep-
tion and knowledge. In our aim to deal with uncertainty and incomplete
knowledge in a theoretically sound way, discrete and deterministic represen-
tations have made room for probabilistic (Bayesian) ones. In extension to
the last deliverable D.7.1, this time we also report integration and evaluation
efforts carried out in the Dexter scenario, where further steps to integrate
components from several partners have been made.

We continued to employ CAST [5] as the unifying integration frame-
work, build around the ideas of interacting working memories. CAST is
the basis for building systems in all three scenarios and also ensures con-
tinuous convergence of the systems. Indeed, Dora and George systems are
based on the very same software release, only the orchestration of compo-
nents and the evaluation setting is different. Also, the hardware platform
employed in both scenarios are the same. In order to help the evaluation
also from an architectural point of view, the consortium has invested efforts
to instrument CAST and the developed system to make them accessible to
qualitative and quantitative analyses. As part of these efforts, a generic
architecture description language and suitable software metrics have been
proposed that support the assessment of particular system architectures [14,
in annex A.3]. We have show-cased the ability to generate a model of a run-
ning system and analyse it by means of those proposed metrics for a reduced
version of the Dora system. In the following, the demonstration scenarios
and their evaluation will be discussed in separate sections.

2 Dora

2.1 Scenario

While in Dora release 1 we emphasised self-extension and exploration, Dora
release 2 is focused on the exploitation of and reasoning with uncertain in-
formation and uncertain sensing to achieve tasks. While in general Dora
is designed and orchestrated to serve a number of different tasks, for the
evaluation we chose an object search task. Choosing one single well-defined
task makes it possible to run a number of experiments in real world repeat-
edly so that empirically significant evaluation becomes possible. However,
we did not tailor the system to the object search task particularly. Instead,
task-independent representations, and reasoning and planning techniques
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WP2 WP3

WP4 WP1 & 3

Figure 1: Major processes and conceptual representation employed in
Dora 2.

are employed in this year’s system. The scenario is particularly chosen to
showcase and assess our combination of structural and probabilistic knowl-
edge, the conceptual spatial representation and its reasoning abilities, and
the switching planner.

2.2 Description of Dora 2

Dora release 2 is a successor of version 1, described in the deliverable D.7.1.
Hence, in the following we will describe the modifications and extensions
which are mostly devoted to deal with uncertainty in a principled way.

Fig. 1 depicts the most relevant processes and conceptual representation
in Dora 2. It shall be noted that this figure does by far not illustrate all
the processes but focuses very much on the loop of maintaining a spatial
probabilistic, relational representation and planning with it to achieve a
given task.

In the following, the relevant building blocks and their role within Dora
will be detailed.

Dialogue management and goal generation: Dora features the dialogue
subarchitecture, responsible for the interaction with human users. In

EU FP7 CogX 4



DR 7.2: Analysis of a robot that acts under partial information and uncertainty CogX consortium

the current system of Dora, dialogue.sa only is employed to receive
tasks from the human. However, it already does this in the very same
way – using the same implementation – we employ in the George sce-
nario for the interactive learning. Whenever a human expresses the
intention to assign the robot a task, e.g. to find some cornflakes,
dialogue.sa’s linguistic and formal analysis forms a belief about the
human’s intention and stores it as an epistemic structure in the work-
ing memory. The goal generation and management system, being part
of the planning subarchitecture, picks up this intention and by these
means adopts the human’s intention as a task for the robot. As such,
intentions expressed by humans complement the set of goals that were
already present in Dora 1 as a result of goal generation from knowledge
gaps.

Topology and map maintenance: For Dora 2 we kept the place layer,
representing the topology of the acquired map of Dora, mostly un-
modified from the previous version. Non-monotonic reasoning about
the decomposition into rooms and incremental, also active, extension
of this representation are still in place and allow to interleave task-
driven behaviour with curiosity-driven extension [4, in annex A.2].

Shape and appearance categorisation: This entirely new subsystem has
been added to provide the system with evidence on the category of
rooms. We integrated the approach to categorisation from [15]. It ex-
tracts simple geometrical features from laser scans and uses Composed
Receptive Field Histograms from acquired camera images as visual
features. These features are evaluated on the basis of Support Vec-
tor Machine (SVM) models representing specialised concepts of Room
Property (e.g. elongated, office-like etc.). Accumulated confidence
gained from the SVM models for all views obtained at a topological
place are normalised to gain probabilities.

Conceptual representation and Bayesian reasoning: In our aim to de-
velop a unifying representation that can accomodate both, instance
and conceptual knowledge, we integrated a novel conceptual layer com-
posed of relations between concepts and instances. This model is one of
the two major contribution discussed in [2, in annex A.1]. An excerpt
of this model in a particular situation is depicted in Fig. 1. Imple-
mented on top of the qualitative spatial framework proposed in [15]
and inherent part of Dora’s architecture from the very beginning, this
layer facilitates inference that accounts for general high-level taxo-
nomic conceptual knowledge, and the outputs of sensing. The former
corresponds to a rich probabilistic ontology that specifies categories
of room (kitchen, office, etc), how rooms are composed of topologi-
cal places, and the likelihood that certain types of rooms will contain
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particular objects. The outputs of sensing include the results of shape
and appearance categorisation mentioned above. We distinguish three
primary sources of knowledge: (1) predefined conceptual knowledge,
e.g. the likelihood that cornflakes occur in kitchens; (2) knowledge
acquired directly according to sensing, e.g. the likelihood of being lo-
cated adjacent cornflakes given the result of an object detection; and
(3) inferred knowledge, e.g. that the room is likely to be a kitchen,
because you are likely to have observed cornflakes in it.

For inference, we instantiate the entire conceptual layer including con-
cepts (depicted as rectangles), instances (ellipses) and relation (di-
rected or undirected edges) as a probabilistic graphical model, a chain
graph representation [9]. Chain graphs provide a natural generalisa-
tion of directed (Bayesian Networks) and undirected (Markov Ran-
dom Fields) graphical models. As such, they allow us to model both
“directed” causal as well as “undirected” symmetric or associative re-
lationships, including circular dependencies. In Dora, this allows to
present conditional probabilities, such as the ”has-a” relation, but also
undirected relations. The ”connected” relation illustrated in Fig. 1 is
one example of the latter. In the chain graph, belief updates are event-
driven. Whenever a significant change is detected, either be creating
a new instance or removing one or by a change of the probability of a
relation, the change is propagated throughout the chain graph model.
The underlying inference is approximate to be fast. We employ the
fast Loopy Belief Propagation [10] algorithm to realise this inference.

As can be seen from Fig. 1 some of the relations are quantified while
others are still deterministic. The probabilistic relations have to be
quantified appropriately to draw inferences in the chain graph model.
For probabilistic relations between instances and concepts, such as
the ’is-a’-relation linking shape properties to concepts like ’Elongated’
are derived from the sensing processes. Probabilities quantifying re-
lations between concepts, e.g. ’has-a’ between ’Milk’ and ’Kitchen’ in
the example shown, are pre-acquired offline. This particular relation,
modeling the cooccurrence of objects of a certain type in specific types
of rooms, represents a sort of common-sense knowledge which should
be valid in general and shall be exploited when the robot is engaged in
a task to search specific objects. Hence, this “has-a” relation linking
rooms and objects was bootstrapped using a part of the Open Mind
Indoor Common Sense database1. This contains a list of associations,
gathered by asking humans, between common everyday objects and
their typical locations, providing us with a set of 5,800 deterministic
relations between locations and objects. In order to quantify these
relations we then used the object-location pairs to generate ‘obj in

1http://openmind.hri-us.com/
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the location’ queries to an online image search engine. The number
of hits returned was then correlated with the total number of hits for
querying ‘location’ images, yielding a co-occurrence frequency distri-
bution of approximately 1.5 million object-location pairs. These have
been normalised to yield conditional probabilities quantifying the re-
spective relation. The ’has-a’ relations linking subtypes of ’Room’ and
’Room Property’ have been estimated offline from acquired training
sets comprising data recorded in a number of different rooms of the
respective categories.

Switching planner: To generate flexible goal-oriented behaviour the Dora
system (and George as well) employs a domain-independent planner.
The goal is defined by the goal management system and the current
belief state for the planner is given through the probabilistic relational
model of the conceptual layer2. It shall be noted that this belief state
is continuously updated as a consequence of the event-driven infer-
ence mechanisms and therefore can trigger replanning in the continual
planning approach we integrate in our system.

In order to act intelligently also in the presence of uncertainty in knowl-
edge (e.g., of finding milk in kitchens) and sensing (e.g., failing to see
the milk even if it’s there), contingent planning techniques are desir-
able to account for potential failures and to consider alternative solu-
tions in a principled way. However, it turns out that the state spaces
we are dealing with in the Dora system are at the order of ∼ 1027

states, rendering planning on the basis of POMDPs with state of the
art techniques an intractable problem given the time constraints of the
scenario [2, in annex A.1]. Therefore, we integrated the switching plan-
ner [1] developed recently in the CogX project. Like the planner in
Dora 1 it is a planning system that operates according to the continual
planning paradigm. The system switches, in the sense that the under-
lying planning procedure changes depending on our robot’s subjective
degrees of belief, and progress in plan execution. When the underlying
planner is a deterministic sequential planner, i.e., a classical planner,
we say planning is in a sequential session, and otherwise it is in a con-
tingent session. Finally, planning is continual in the usual sense that,
whatever the session, plans are adapted and rebuilt online in reaction
to changes to the planning model (e.g. when objectives are modified,
or when our robot’s path is obstructed by a door being closed). By
autonomously mixing these two types of sessions our robot is able to

2In fact, the belief state is still derived from two sources of information: the belief
models in the binding subarchitecture encoding the current instance knowledge of the
system obtained from sensing and interaction with the user, and the ontology capturing
the conceptual default knowledge of the system. However, this distinction is entirely
implementation-specific and therefore ignored in the discussion.
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be robust and responsive to changes in its environment and make ap-
propriate decisions in the face of uncertainty. As such, the switching
planner is employed for combined task and observation planning. Pre-
defined observation models enable it take the possibilities of failures
in sensing into account. Further details about the switching planner
and its role in Dora 2 can be found in the annex A.1.

View point generation: While in Dora 1, the actual search for object
was very limited and implemented as a monolithic action in the sys-
tem, Dora 2 featured a so-called view cone generation algorithm that
makes the actual object search more efficient by constraining the space
to search through the exploitation of topological spatial relation [16]
developed as part of work package 3 on CogX. In Dora 2 we restricted
ourselves to on-ness relations [17] that help to find objects located
on tables more efficiently if a table is known to be in a room. View
cone generation in this notion describes the process of determining a
minimal set of optimal poses and camera orientations maximising the
likelihood of finding the object, taking into account default knowledge
about the object’s common location and relations. The resulting set of
this view point generation is available to the planning process to ini-
tiation sense action (object detection) in those generated view cones,
governed by their estimated likelihood of containing a respective ob-
ject.

Object detection: In contrast to Dora 1 where an off-the-shelf object de-
tection algorithm had been employed, Dora 2 featured the BLORT
vision system [11], developed in the CogX project. In the current sys-
tem we use it to reliably detect pre-trained objects. Object detection
is an active process, explicitly planned for by the switching planner.

2.3 Evaluation and Analysis Approach

The evaluation carried out with Dora is fully done in real world with the
integrated release 2. For the assessment and evaluation we ran the system
at two sites (office environment at KTH and a home environment in BHAM,
see Fig. 3 and 4, respectively) with a similar setting and the same task. The
evaluation approach is two-fold: First we carry out a detailed analysis of the
course of actions to understand and justify the robot’s behaviour. Second, a
quantitative analysis comparing a lesioned system, that does not have access
to the evidence obtained from room properties and therefore cannot infer
the category of rooms, with the full system is presented.

EU FP7 CogX 8
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Figure 2: A sketch of the exemplary setup: The robot starts in the living
room to search an object that actually is to be found in the kitchen.

2.3.1 Analysis of an exemplary course of action

A sketch of the object search setting as it was in BHAM for the evaluation
is depicted in Fig. 2. In this setting the object (’cornflakes’) that the robot
is asked to find is located in the kitchen, while the robot starts in the living
room. The following course of actions is also shown in the video to be found
in the annex A.6.1 of this report. The following description complements
the results presented in [2, in annex A.1]).

1. For this case study we assume that the topological structure of the
map remains unchanged throughout the run, i.e. all places are already
present as displayed in Fig. 4. Dora starts by autonomously moving
(e.g. as part of an exploration strategy) from place 0 to place 2 and
recognises room properties for visual appearance and geometric shape
for these three places, shown as text attached to the nodes in Fig. 4.

2. The acquisition of these properties triggers inference in the chain graph
model leading to an update of the beliefs about the category of the
room these places are in. The new evidence is therefore propagated and
yields new probabilities for the ’is-a’ relation connecting the instance
of this room to the subtypes of the ’Room’ concept (see Fig 1). The
situation resulting from this update is exactly what is shown in Fig. 4
with the pie charts representing the probability distribution over these
particular ’is-a’ relations. It can be seen, that Dora inferred that the
current room is unlikely to be a kitchen, and quite likely a living room.

EU FP7 CogX 9
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Figure 3: A screenshot of the map acquired in the office setting at KTH.

3. A human says to the robot ”Dora, find me some cornflakes”. This
prompt is processed by the dialogue subarchitecture resulting in an
intention attributed to the human representing this request. The in-
tention is then picked up by a goal generation component [3] which
translates it into a high priority planning goal. It is assigned a high
priority to ensure the robot will instantaneously attend to it.

4. As soon as this new goal is then activated the switching planner gen-
erates a sequential plan by making assumptions about the probabilis-
tic state. In this sequential session a rewarding trace of a possible
execution is computed which trades action costs, goal rewards, and
determinacy. Taking the form of a classical plan, the trace specifies
a sequence of actions that achieves the objectives following a deter-
ministic approximation of the problem at hand. In our case this plan
makes the assumptions that the room in the lower right of Fig. 4 is a
kitchen and that the cornflakes can be found in that particular room.
These assumptions are explicitly represented in the plan so that they
can be partially revoked in case of a contingent planning session (cf.
[2, in annex A.1]) of the switching planner. However, in the present
case the assumptions made are indeed correct.

5. The sequential plan generated is now executed and takes Dora straight
to the room that is (correctly) assumed to be a kitchen (place labelled

EU FP7 CogX 10
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Figure 4: An exemplary representation in the moment the robot receives
the command to find ”cornflakes” in the real world home environment. The
visualisation features numbered places and pie charts indicating probabili-
ties of room categories (yellow=living room, red=kitchen, green=corridor,
blue=office, grey=others). The labels attached to place nodes in the liv-
ing room (upper right) indicate the most likely values in the distribution of
classified shape (top) and visual (bottom) properties, respectively. Detected
doors, used for room partitioning, are shown as door frames. The kitchen is
at the lower right.

EU FP7 CogX 11



DR 7.2: Analysis of a robot that acts under partial information and uncertainty CogX consortium

Figure 5: View cones generated trying to search for objects. This figure is
just an illustration of two view cones, in reality there are more view cones
generated the planner can then choose the best ones from.

6 in Fig. 4).

6. Once arrived at place 6 in our example Dora invokes the view point
generation to determine promising views to find the object. In order to
test the exploitation of on-ness relations in the system we pre-defined
a table to be present in the kitchen. In Dora 2 this table surface is not
recognised by the robot visually yet. The result of this processing step
is a set of view cones oriented towards that table surface (illustrated
in Fig. 5). Each view cones has attached the probability of finding the
designated object in it, enabling the planner to choose among them
intelligently.

7. Once the view cones have been generated, the switching planner enters
a contingent session in order to do the observation planning. In this
contingent session it reconsiders some of the assumptions made and
also the observation models of its object detector, accounting for the
uncertainty in perception and knowledge.

8. As part of the contingent session Dora in this exemplary course of
action ran object detection in two of the view cones and found the
object it searched for in the second.

9. In order to complete the task, which is not only to find the object but
to also share the so far private belief about the object location with the
human who was attributed the intention to know it, Dora heads back
to the place she was at when she received the command and reports
the position of the object again through the dialogue subsystem: ”The
cornflakes are in the kitchen at place 7.”
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2.3.2 Comparison of full versus lesioned system

In order to test the effectiveness of (i) exploiting default probabilistic knowl-
edge in a conceptual layer of our representation, (ii) the switching planner,
and (iii) our implementation of the overall system, we ran two configura-
tions (’full’ and ’lesioned’) of the system in the two environments a number
of times and measured time to complete the task as well as success rates.
Our evaluation compares the full system with a lesioned system in which the
categorisation of visual appearance and shape properties has been disabled,
emulating the limited reasoning capabilities available in our previous system
Dora 1 [4, in annex A.2], where no such evidence was available.

Fig. 6 shows the total runtime to complete the object search task in
the lesioned (denoted as ’uninformed’ in the figure) and the full system in
both environments. What can clearly be seen from the figure is that the
full system which can exploit the evidence about the categories of rooms
achieves the task significantly faster (Mann-Whitney test p < 0.01 for both
environments) on average. This is not a big surprise, as in these runs the
system was facing what we call a canonical situation, in which the assump-
tions made by the planner in first place proved entirely correct during the
execution of that plan. On the contrary, in the lesioned case the robot had
less information and had to conduct a full exhaustive search. So it started
its search in the living room because the object was as likely to be in this
room than it was in any other.

However, an interesting case is represented by the outlier in Fig. 6(a). In
this case the object to search was indeed in the kitchen, but the robot failed
to detect it when it was executing its contingent plan due to recognition
errors. As we added disconfirm and confirm actions to the planning domain,
in this case the contingent session disconfirmed the existence of the object
in this room and therefore handed control back to the sequential session of
the planner, retracting the assumption that the cornflakes are in that room.
As a consequence, the robot went back to the living room and performed
another search in that room until it also (this time correctly) disconfirmed
the existence of the object in it. At this point, there is still some probability
mass left representing the likelihood of finding the object in the kitchen
due to the fact that not all places have been searched during the first run.
Also, the observation model of the object detector could account for the
fact that we might just have missed the object in first place. In any case,
the remaining probability mass causes the planner to make the assumption
about finding the object in the room that actually is a kitchen again. This
time Dora indeed finds the object. This case confirms the necessity and
eligibility of a contingent planner in our system. It allowed the system to
handle a perceptual error and still achieve the task.

We also tested the system in a non-canonical constellation. In this con-
stellation the object was not located in the room that was a kitchen, but in
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(a) BHAM.

(b) KTH.

Figure 6: Box and whisker diagrams of total runtime to achieve the given
task in two environments comparing the ’knowledgable’ or ’full’ system to
the ’uninformed’ or ’lesioned’ case.
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the living room, hence, violating the default assumption about the location
of objects. The behaviour observed was very much what we expected and
quite similar to the outlier case discussed above: Dora started in the living
room and went straight to the kitchen because the assumption was made to
find the cornflakes in it. Again, the contingent planner drove Dora to search
for the object until it was certain enough to disconfirm its existence in that
room. Then, the next assumption made was that the object is in the living
room, where in all three cases we tested, Dora eventually found the object
and successfully accomplished its task.

2.4 Insights Gathered from Release 2

Integration for release 2 of Dora was identified with significant changes of
the underlying representation to accommodate the uncertainty while still
maintaining support for deterministic knowledge as well. This led to an in-
cremental migration from one representation to another that is still reflected
by the partially distributed state space mentioned earlier. Conceptually,
this distribution is not problematic, but considering implementation it is
still non-optimal and subject to further improvement.

CAST in general has proven to scale to more complex systems, with
Dora 2 now being orchestrated of more than 90 components and a signif-
icantly increased coupling between these components. But managing this
growing complexity also admittedly was a very demanding challenge. Dis-
tributed integration and flexible interaction pattern implemented through
decoupled interaction on memory spaces, as put forward by CAST, impose
issues such as synchronisation and implicit assumptions silently made by de-
velopers impeding the robustness of our systems. In order to conquer these
challenges we already developed an analysis approach [14, in annex A.3]
that helps us to gain more control and a better understanding of the system
architectures.

Admittedly, the set of actions the planner can choose from is currently
still quite limited and therefore it cannot yet play to its full strengths. In the
current system, recognition of properties that are evident to room categories
are acquired opportunistically, i.e. it is not planned for. For now, the
only observation planning currently implemented in the system is on object
detection.

Observation models for the object detector, occurrences of objects in
rooms, and the occurrence of certain properties in dedicated types of rooms
are all acquired offline from gathered data and assumed to be generic knowl-
edge. However, a particular instance or situation the robot is in, e.g. a
dedicated house, might not comply to the generic world assumption. In
our current system, Dora is able to also achieve the task in such so-called
non-canonical cases as has been proven when the object was located in the
living room, but the robot does not yet learn from this experience for future
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tasks.
Despite these limitations, this report demonstrates significant progress

on a system level towards the CogX objectives of systems that self-understand
and self-extend. The major contributions made enabled the system to cope
with the uncertainty of knowledge and perception. The novel switching
planner (WP 4) made it possible to handle hard decision-theoretic problems
by partially revoking assumption made in a sequential session and consider
alternatives. With the use of a chain graph model to reason in the concep-
tual layer of our representation (WP 3) we presented a coherent theory to
combine instance and conceptual default knowledge, partially probabilistic
and partially deterministic.
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3 George

The main purpose of the George scenario is the development, demonstration
and evaluation of our system for interactive learning in a dialogue with a tu-
tor. The main goal this year was, therefore, to integrate the developed vision
routines, learning and recognition competencies, dialogue capabilities, moti-
vation and planning framework as well as different kinds of representations
into an overall system.

3.1 Scenario

The robot operates in a table-top scenario, which involves a robot and a
human tutor. The robot is asked to recognize and describe the objects in
the scene (in terms of their properties like colour and shape). The scene
contains a single object or several objects, with limited occlusion. The
human positions new objects on the table and removes the objects from the
table while being involved in a dialogue with the robot.

The robot has built-in abilities for communication with a human, visual
processing, planning, etc. It also has built-in learning abilities, however
it does not have any representations of objects or object properties given
in advance. They are gradually built by observing objects in the scene
and interacting with the human tutor in a mixed-initiative dialogue. Our
objective is to demonstrate that the developed system can efficiently acquire
conceptual models in an interactive learning process that is not overly taxing
with respect to tutor supervision and is performed in an intuitive, user-
friendly way.

We demonstrate these principles in the case of learning about object
colours and basic shapes. We also (partially) integrated into the system
the components for object recognition, affordance recognition, and high-
level cross-modal learning. However, since they were not integrated into the
main system, we did not evaluate them on the system level and we do not
report this work in this deliverable.

3.2 Description of Release Yr 2

Our starting point was the George Year 1 system. The scenario setup and the
main goals are similar to those we had in Year 1. However, we substantially
improved the competencies of the Year 1 system and added new ones. Fig. 7
concisely depicts the main competencies of our system and the relationships
between them, as well as the workpackages in which these competencies were
developed. In short, by processing visual information (WP2 and WP5) and
communicating with the human (WP6), the system forms beliefs about the
world. They are exploited by the behaviour generation mechanism (WP1
and WP4) that selects the actions to be performed in order to extend the
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system’s knowledge about visual properties. In the following we first list
the major improvements over the Y1 release and then focus on learning
mechanisms that were in the focus of research in Year 2 in George scenario.

Visual 

processing

Situated 

dialogue

Behaviour 

generation

Beliefs

WP2 & WP5 WP6

WP1 & WP4

Figure 7: System competencies and relationships between them.

3.2.1 Major improvements

Underlying vision. When completing the integration of Year 1 system we
found out that the underlying vision was not as robust as we wanted. There-
fore we advanced the underlying computer vision routines to enable robust
and persistent detection of objects in the scene (WP 2). We extended the
detection of supporting planes to cover cases with multiple planes. To sup-
port increasingly dynamic scenes we added tracking mechanisms to maintain
identity of proto-objects during short occlusions (caused e. g. by a manip-
ulating hand) and during observer motion. We relaxed several assumptions
and enable the learning framework to work in more realistic settings.

Motivation and planning. In the Year 1 system, the learning process
was managed directly form Vision SA in a rather ad-hoc way. Now, we also
integrated Planning SA in the system and the learning process is completely
controlled by motivation (WP 1) and planning (WP 4) in a consistent way.
Motivation mechanism monitors beliefs in the binder and generates and fil-
ters goals that are then used by the planner to determine which actions
to execute in order to increase the knowledge about the objects. To sup-
port these processes we also integrated the new belief models and binding
mechanism, as well as the new Dialogue SA (WP 6). We use very similar
mechanisms as in Dora scenario, which will make a future merging of these
two scenarios easier.
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Learning of object properties. We improved the methods for learn-
ing object properties, which are now based on Discriminative Online Kernel
Density Estimation (odKDE) [8] that we have developed (WP 5). The
odKDE penalizes discrimination loss during compression of the generative
models that it builds from the data stream, thus introducing a discrimina-
tive criterion function in the construction of generative models. As a con-
sequence, the system builds the models of a lower complexity and achieves
better recognition rate.

Knowledge gap detection and learning mechanisms. We imple-
mented and integrated the knowledge gap detection methodology presented
in WP 5, which detects the incompleteness in knowledge and provides the in-
formation needed by the planner to plan further actions. Using this method-
ology three major learning mechanisms have been implemented, which can
be used in combination, i.e. in mixed-initiative learning. These learning
mechanisms are presented in the next subsection.

3.2.2 Learning mechanisms

Fig. 8 depicts the schematic system architecture (here, the components are
depicted as rounded boxes and exchanged data structures as rectangles, with
arrows indicating a conceptual information flow). The system is composed
of four subarchitectures, Visual SA implementing low-level vision routines
and visual learning and recognition; Dialogue SA, implementing situated
dialogue competence; Binder SA, storing the beliefs; and the Planning SA,
implementing the goal generation and planning framework. The system is
described a little bit more in detail in the attached Annex A.4 [18]; here
we will only describe different learning mechanisms that drive the learning
process in George and are also outlined in Fig. 8.

Tutor-driven learning. In the tutor-driven learning mechanism, the robot
relies on the tutors initiative to provide information about the visible ob-
jects. The learning act occurs, when the visual subsystem detects an object
and processes its visual features and the information provided by the tutor
is successfully attributed to the same object. The motivation framework
therefore monitors the Binder and when a new attributed belief is added,
which carries information about an object, a goal is generated to update the
representation with this information. The planner generates a trivial plan
to updtate the visual representations; the execution subsystem delegates the
visual learner in the visual subsystem to carry out this action. The tutor
therefore drives the learning by providing the information to the tutor (e.g.,
T: ”This object is red.”).
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Situated tutor assisted learning. In situated tutor-assisted learning
the robot shows a greater degree of initiative. The robot can, depending on
its current ability to recognise an object, ask a question about the object’s
properties. In this case, the motivation subsystem reacts to the private be-
lief. The robot asks about the object property with the highest information
gain, since it expects that the model of the corresponding object property
will profit most if it gets the information it asks for. The information gain
estimates how much the system would increase its knowledge, if it were to
receive information from the tutor about the particular concept related to
a particular object in the scene (e.g., the colour of the object). The planner
generates a plan to ask questions about missing information. The execution
subsystem generates a corresponding robot intention, which is further man-
aged by the Dialogue SA, resulting in the synthesis of the corresponding
generated utterance. Depending on the confidence in the recognition results
the planner can select between polar questions (e.g., G: “Is the color of this
object red?”) and open questions when the recognition confidence is very
low (e.g., G: “What is the color of this object?”). After the tutor provides
the answer, the workflow is similar to the tutor-driven learning.

Non-situated tutor assisted learning. The robot’s initiative goes even
a step further in non-situated tutor-assisted learning. Here the robot also
tries to influence the visual information it is getting by making requests to
the tutor (e.g., G:“Could you show me something red?”). The model status
(an epistemic structure similar to a belief) has a key role in deciding if and
what kind of request to make. The model status contains key information
about the visual models (knowledge) maintained by the visual learner. The
most important information is again the information gain, which in this
case estimates the reliability of a model in general, not relating this utility
to a particular object in the scene. The goal generator that triggers this
learning mechanism has the lowest priority and is usually triggered when
no objects are present in the scene. Therefore, when the robot doesn’t have
anything else to do, it asks the tutor to show it an object with particular
visual properties that would potentially increase the robot’s models of these
properties most.

3.3 Evaluation Approach and Framework

We evaluated the developed system in three ways: by running the system
and interacting with it; by emulating the tutor and performing a systematic
evaluation of the entire system; and by performing evaluation in a simulated
environment. In the following we describe each of these approaches and
briefly report the experimental results. The experiments are described more
in detail in Annex A.4 [18].
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Figure 8: Schematic system architecture with indicated process flow for
three learning mechanisms.

3.3.1 Interactive evaluation

The system has been designed to be used in interaction with a human tutor.
We, therefore, engaged ourselves in dialogues with the robot and tested
several aspects of the robot. By performing different actions we were trying
to estimate where the limits of the system are. Such interactive work also
helped us to update the requirements of the system and later to test and
debug the developed system.

Fig.9 depicts fragments from one such run. The first fragment shows the
dialogue at the beginning, when the system has not formed any model of any
concept yet, so it cannot recognize the object properties. Then, in a mixed-
initiative dialogue, the system first creates and then sequentially updates the
models of the concepts that are being learned using the learning mechanisms
presented above (tutor-driven learning, TD, situated tutor-assisted learning,
TA, and non-situated tutor-assisted learning, NS ). After a while George can
successfully recognise the acquired concepts and provide reliable answers.
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· H: Hi, Robot.
· R: Hi, there.
· H places an unknown object in front 

of the robot: 
Do you know what this is?

· R: I don’t know.

· H: This is an elongated object.
· R: Let me see.
· R verifies the assertion and 

modifies its model: OK.

· R: What colour is this object?
· H: It is blue.
· R: OK.

· H: Is this object red?
· R: No, it is blue.
· H places a green ball on the table: 

Could you tell me what shape it is?
· R: It is compact.
· H: Is the compact object green?
· R: Probably yes.

· H places another object 
on the table.

· R: Is this object red?
· H: No. It is blue.
· R: OK.

· H removes the objects from 
the table.

· R: Would you show me 
something yellow?

· H places a banana in front 
of the robot: 
This is yellow.

· R: I see. Is it also elongated?
· H: Yes, it is.
· OK.

· H places several objects 
on the table: What colour 
is the compact object?

· R: It is orange.
· H: Thanks.
· R: Good bye.

NS

TD

TA

TA

Figure 9: Fragments from a mixed-initiative dialogue.

3.3.2 System evaluation

The direct interactive work with the system is very time consuming and
using this alone it is impractical to perform a thorough evaluation of the
system. Learning is a long-term phenomenon; the system needs to observe
a number of training samples to build a reliable and robust representation of
the concept that is being modeled. And in order to obtain reliable results,
the experiment has to be repeated several times. We therefore developed a
component for automatic testing of the entire system.

We captured pairs of images and manually labelled them. Then, we
replaced the image stream coming from the live cameras by reading these
images from file. We also implemented a simple finite automata that em-
ulated the tutor behaviour in the case of the tutor-driven learning; since
the ground truth information about the visual properties of the objects was
known, the emulated tutor could describe every image that was shown to
the system. Apart from the camera input and speech recognition, the entire
system worked in the same way as in the case of live operation, therefore we
were able to evaluate the performance of the whole system.
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The basic state machine is presented in Fig.10 (later it was extended,
see Section 3.4). When the table is empty, the testing component loads the
scene (i.e., loads the pair of images from the disc). Then it describes the
object (by providing it the ground truth colour or shape label). When both
visual attributes (colour and shape) are processed, the scene is unloaded
and the entire cycle repeats.

Figure 10: Basic state machine for the emulated tutor.

The extended version of this state machine was used for a systematic
evaluation of the entire system. We collected a database of 1120 images of
129 objects. We used 500 pairs of images as training samples and the rest of
them for testing the recognition performance. Eight colours and two basic
shapes were being taught. After each update we evaluated the models by
trying to recognize the colours of the objects in all test images. The model
performance was evaluated in terms of recognition rate. We repeated the
experiment three times by randomly splitting the set of images into training
and test sets and averaged the results across all runs.

The experimental results are shown in Fig. 11. It shows the evolution of
the learning performance over time. It is evident that the recognition rate
improves with increasing numbers of observed images. The growth of the
recognition rate is very rapid at the beginning when new models of newly
introduced concepts are being added, and still remains positive even after

EU FP7 CogX 23



DR 7.2: Analysis of a robot that acts under partial information and uncertainty CogX consortium

all models are formed due to refinement of the corresponding representa-
tions. These experimental results show that the entire system performs as
expected; it is able to successfully detect the objects, understand the tutor
describing these objects and build reliable models of visual properties.
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Figure 11: System evaluation - recognition rate.

3.3.3 Evaluation in simulated environment

To test the other learning mechanisms we would have to implement signifi-
cantly more advanced tutor emulation (in fact, we would have to implement
another Dialogue SA that would understand the robot’s utterances), there-
fore we performed the evaluation of the proposed learning mechanisms in a
simulated environment in Matlab.

We used the same set of 1120 pairs of images as in the previous experi-
ment. We ran the visual subsystem of George, which was used for detecting
and segmenting the objects. The extracted features were then used for eval-
uation of the learning mechanisms.

We tested the performance of all three learning mechanisms presented
above (TD, TA, NS). In the tutor-driven case we also wanted to test the
influence of order of training samples, so we evaluated two variants of the
tutor-driven strategy; in the first case the training images were presented in
a random order (TDrnd), while in the second case the order was sequential
(TDseq).

We evaluated the performance of the learned models in terms of the
recognition rate obtained on the training set. However, in such interactive
learning settings, the success of recognition is not the only measure that
matters. It is also very important how the learned models were obtained,
i.e., how much effort the tutor had to invest in order to teach the robot.
Measuring the tutoring cost in such a mixed-initiative learning framework is
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quite a challenging problem; in this experiment we resorted to the following
simple criterion: if the tutor had to provide the description of an object,
it provided 3 bits of information (3 bits encode 8 classes of colours), while
a polar answer was evaluated as a 1 bit cost. We therefore evaluated the
different learning methods by comparing their recognition rate with respect
to the cumulative tutoring costs. The evolution of the results over time is
shown in Fig. 12.

The full description of the experiment is given in Annex A.4 [18]. Here we
present just the most important results. The learning strategy TA was the
most successful in terms of reaching top performance with minimal informa-
tion provided. The strategies TDrnd, TDseq and NS were equal in amount
of information provided by the tutor, but there is a striking difference in the
learning rate. We can see that the order in which the images were presented,
played a very important role. When the images were presented in sequen-
tial order (TDseq), the learning progress was very slow, while learning with
the random sequence (TDrnd) lead to significantly better performance. The
tutor, would therefore have to pay a lot of attention to which of the objects
to present. The NS approach achieved very similar results to the best TD
approach; in this case, however, the sequence of learning was dictated by the
system, which would relieve the tutor. We can expect that by combining
these learning strategies we could achieve even better results.
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Figure 12: Evaluation of different learning strategies.

3.4 Insights Gathered from Release 2

George is a very complex system and interactive learning in dialogue with
a tutor is a complex scenario, therefore there are many unexpected events
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that can happen during operation. A human tutor can easily handle most
of these exceptions, therefore in interactive work they do not tend to cause
severe problems. The human tutor can, for instance, reposition the object if
it was not detected, and repeat its description, or wait for the robot reply a
little bit longer than usual. Since the system was designed to have a human
in the loop, such problems are not critical.

When it comes to automatic evaluation of the system, these exceptions
initially turned out to be a problem that prevented us to perform a thorough
evaluation. The human tutor was in this case replaced with a rather simple
finite automata, which cannot handle such exceptions. When we applied a
simple state machine presented in Fig. 10, the system often stopped working
as planned when an unexpected event happened. Therefore, we identified
the problems and extended the state machine to detect and handle such
events. The state machine of the enhanced emulated tutor that was used
in the actual test is shown in Fig. 13. It handles the exceptions that the
human would take into account in an interactive settings. This automata
enabled us to perform thorough experiments as described in Section 3.3.2.

In our usual work with the robot we ran the full system for shorter peri-
ods of time, e.g., 15-20 minutes. To perform the evaluation of the learning
mechanism we had to run the system for longer time. We successfully run
the full system, observing the objects and learning their properties, for more
than two hours. And since it is not the primary goal of the project to pro-
duce a system that would actively and robustly run for hours, we have not
payed a special attention to the problems that arise in longer runs. Longer
test runs therefore introduced new problems, mostly technical, but also some
of conceptual nature. Until now we have not integrated into the system a
variant of episodic memory. A cognitive architecture would from conceptual
point of view need to support different levels and types of memory. When
performing long test runs we also got a practical confirmation; the working
memory entries that were not deleted, decreased the performance of the sys-
tem and filled up the memory. If we want to run the system for long periods
of time, we would have to implement a mechanism to abstract or/and move
some of the content of the working memories to episodic-like-memory.

The current George system assumes a static robot platform and static
cameras. This means that the active learning (as the central paradigm
of the George scenario) is limited to the dialogue with the human tutor.
The platform staticity also implies other limitations, like the single-view
representation of the objects, while the robot has no notion of anything
outside its static field of view (not visible is equivalent to not existing). In
this sense the next logical step of the George scenario is the introduction of
limited platform mobility, i.e. pan-tilt unit and limited movement around
the table. This would extend the robot’s awareness from the current field of
view to all potentially perceivable environment (i.e. the whole table instead
of just a part of it), introduce new possible actions for active learning (e.g.
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stStart stTableEmpty

stFinished

No more tests

opLoadScene

stWaitToAppear

stObjectOn

stTeaching

lock-VO

stTimedOut

stUnloadScene

opDescribe

Exactly 1 object,
Known attribute

stEndOfTeaching

stWaitForResponse

stWaitForLearningTask

Got Response

Got LearningTask

opUnloadScene
unlock-VO

stWaitToDisappear

Figure 13: Complete state machine for the emulated tutor.

focus on object, look at it from another side, search the table for an object
with particular properties, etc.) and extend the context in situated dialogue.
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4 Dexter

Dexter implements scenarios that demonstrate the advances contributed by
CogX partners in terms of manipulation under partial information.

Performing manipulation with partial information generally means that
the effect on the agent’s environment of even the most elementary actions is
uncertain. Humans deal with this issue by performing manipulation within
a tight sensorimotor loop. Within this loop, we seem to be able to predict
the repercussions of manipulative actions onto sensory channels. This skill
relies on a (learned) model of expected sensory feedback [6] which allows us
to react to unexpected situations – e.g., slippage. The work lead at BHAM
and KTH aims at endowing Dexter with such models (referred to as forward
models below). Our aim is to provide our agent with means of learning what
it feels like to manipulate an object, and what effect manipulative actions
have on the kinematic behaviour of an object. During manipulation, sensory
signals are compared to the signals predicted by the forward model. This
comparison provides Dexter with means of detecting unexpected situations,
possibly triggering corrections to the manipulation plan.

In this context, BHAM has developed a model that predicts the kine-
matic transformations that an object undergoes when pushed by a manip-
ulator. For a given object configuration and a set of parameters defining a
pushing action, the model provides the agent with the configuration in which
the object will be after the push. In effect, this model works much like a
kinematics simulator. However, contrary to classical simulators, the BHAM
forward model is not parametrized by an expert. Instead, the agent learns
model parameters from experience, by interacting with objects. This allows
it to intimately capture the complex behaviours that result from the inter-
actions of its manipulator and the world, and to capture object properties
that would be difficult to measure otherwise (centre of mass, friction, etc.).
Concurrently, KTH has developed models for predicting the stability of a
grasp from the tactile feedback available to the robot before attempting to
lift up and transport an object. By observing the tactile patterns that result
from grasps applied onto different objects, our agent becomes increasingly
efficient at predicting the tactile feedback that characterises robust grasps.
Subsequently, when executing a grasp, afferent tactile signals are compared
to those predicted by the learned model, yielding an estimate of the stability
of the grasp.

To date, the behaviours made available by BHAM and KTH are imple-
mented on two distinct platforms. Both are described below.

4.1 Object Behaviour under Pushing Actions (BHAM)

At BHAM we have been investigating the problem of learning to predict
how objects behave under pushing manipulative actions. This enables us to
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look at issues such as how the robot can learn about new objects, and how
it can revise or add new models to its repertoire.

4.1.1 Scenario

Although pushing manipulation can be considered a simple experimental
domain, yet in order to be able to plan and act in this domain, a robot must
incorporate knowledge about various object properties which may or may
not be observable. These properties can involve shape or frequently complex
contact relations with other objects, but also mass, friction or elasticity.

We consider pushing manipulation as fundamental to grasping (in par-
ticular to in-hand manipulation) due to multiple (and variable) contacts
between fingers and the manipulated object. This allows us to develop new
prediction approaches which base on the work done so far in the pushing
manipulation domain.

Most of the presented work has been published in two conference papers:
learning predictive models in [7, in annex A.5] and visual tracking using
predictive models in [13].

What is new As compared to the previous release, this year we made sev-
eral advances as described in the paper that analyses the system. First we
focussed on learning the predictors from real physical experiments. Second
we introduced objects with more complex shapes and physical properties.
Third a new experimental setup demonstrates an improved ability to gen-
eralise to novel shapes and novel pushing actions.

Importantly, we developed several new extensions to our prediction learn-
ing approach which greatly improve prediction performance and decrease
the required minimum number of learning samples [7]. In particular, we
introduced:

• A similarity transformation between local expert reference frames and
the inertial frame.

• A new conditional kernel density estimator which uses quaternions and
orientation statistics.

Relation with other CogX systems The prediction learning framework
has been integrated with a visual tracking system [13] which has been also
used in Dora scenario.

4.1.2 Evaluation approach

This deliverable is concerned with the analysis of the scenario systems. In
the attached deliverable on Dexter we analysed the performance of our year
2 Dexter system in detail. We summarise this analysis here.
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Algorithms We have investigated two groups of prediction algorithms,
in which a robot learns to predict the object motions that will result from
various applied pushes (for details see [7]).

1. In regression learning we used the LWPR regression learning technique
[19] to learn the mapping between the current pose of an object, the
planned push and the resultant pose of an abject.

2. A multiple experts approach also learns the mapping between current
pose of an object, the planned push and the resultant pose of an abject.
This mapping is approximated by a global expert. In addition, the
approach takes into account information about local contacts between
the robotic finger and the object (local expert) as well as contacts
between the object and environment (surface patch experts).

All experts are approximated by conditional non-parametric density
estimation techniques similar to kernel density estimation.

The motion of the object as well as the motion of the object parts is repre-
sented by rigid body transformations where SO(3) rotation is parametrised
by Euler angles. The most recent versions also use quaternions and von
Mises-Fisher distribution to represent conditional distributions in our mul-
tiple expert-based approaches.

Furthermore, in multiple expert-based approaches we used a similarity
transformation which effectively moves the global inertial frame to the in-
stantaneous local frame of the object and the object parts (see [7]). Because
the observed motion frequently has a simple structure as observed in the
local frame, an appropriate choice of the local frame rotates the entire man-
ifold so that it is aligned with one of the axes of the local coordinate frame.
This allows us to approximate the full sample covariance by its diagonal
elements only.

Experiments To test our prediction algorithms we performed several ex-
periments, each consisting of multiple trials in which a robotic arm equipped
with a finger performs a random pushing movement towards an object. A
typical setup is shown in Figure 14. We used 5-axis robotic manipulator,
and the motion of pushed objects is captured by a single camera and a visual
tracking system [12].

We require the prediction algorithm to predict the entire object motion
as a sequence of single-step predictions, before the physical push is initiated
and without any correction from visual feedback during the push execu-
tion. We split experiments into three groups, where each group addresses a
qualitatively different problem:

1. Learning to predict motion of real objects. We have shown that
physics-based predictors (e.g. NVIDIA PhysX) are unable to ap-
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l


Figure 14: A 5-DOF robotic arm equipped with a finger performs a random
straight-line pushing movement of a variable length l within a cone with an-
gle α towards an object (top left). Each single movement lasts 10 seconds,
while data samples every 1/15th of a second. The object behaviour can be
complex and varies depending on the finger trajectory and its pose relative
to the object. In the image sequence shown above, the object begins to
rotate anti-clockwise (top right - bottom left) before tilting (bottom right).
The red wire-frame shows the output from the vision tracking system. The
green wire-frame indicates the object pose predicted by the multiple-expert
learning method, while the blue wire-frame is generated by the PhysX sim-
ulator.

proximate this motion as opposed to the introduced learning-based
approaches.

2. Generalisation with respect to novel actions - learning to predict the
object motion after applying novel pushes which has not been observed
before. We have shown that the multiple expert approaches has clear
advantage over the regression based ones. This is due to the fact that
local experts and patch experts carry information which can be re-used
in situations which are novel from a perspective of a gross motion of
the object.

3. Generalisation with respect to novel shape of objects - learning to
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predict the object motion which shape has not been observed before.
Again, we have shown that the multiple expert approaches perform
better than regression approaches. Local experts and patch experts
prevent the multiple experts predictor from physically impossible mo-
tions which violate physics.

4.2 Tactile-based Grasp Stability Prediction (KTH)

The KTH Dexter platform consists in a Kuka arm and a Schunk hand
equipped with tactile arrays. The KTH tactile-based stability model aims
at predicting whether a grasp will be stable or unstable based on the stream
of tactile data produced while the robot is closing its hand around an object,
up until the hand is fully closed. The model is learned by executing sets of
grasps on multiple objects and training stable vs. unstable classifiers on the
collected data. By integrating tactile models with the pose tracker devel-
oped at TUW, our agent is also able to learn what objects should feel like
when grasped from a specific side, which allows for further disambiguation
of stable and unstable configurations. In a recent experiment, it was shown
that the tactile-based stability model proved especially helpful when used in
combination with a simulation-based grasp planner. Simulation-based grasp
planners usually overlook many important object properties, such as friction
or mass distribution. Moreover, plans can never be executed perfectly due
to uncertainty in perceptual input (e.g., noise in a vision-based computation
of an object’s pose). The grasps suggested by simulation-based planners are
thus often of uncertain practical usability. By combining a simulation-based
planner with the tactile-based stability model, the agent is able to estimate,
before lifting up an object, whether the object-gripper contacts that were
actually achieved are likely to lead to a stable grasp. If the tactile infor-
mation does not predict a stable grasp, the agent can adjust its grasping
configuration or retract its manipulator and try a new grasping plan.

The work discussed above is well under way, and it will be included in
the upcoming WP2 deliverables.
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Pronobis, Jeremy Wyatt, Moritz Göbelbecker, and Alper Aydemir. Ex-
ploiting Probabilistic Knowledge under Uncertain Sensing for Efficient
Robot Behaviour. In Proc. Int. Joint Conf. on Artificial Intelligence
(IJCAI), 2011. accepted for publication.

[3] Marc Hanheide, Nick Hawes, Jeremy L Wyatt, Moritz Göbelbecker,
Michael Brenner, Kristoffer Sjöö, Alper Aydemir, Patric Jensfelt, Hen-
drik Zender, and Geert-Jan M Kruijff. A Framework for Goal Gen-
eration and Management. In Proceedings of the AAAI Workshop on
Goal-Directed Autonomy, 2010.

[4] Nick Hawes, Marc Hanheide, Jack Hargreaves, Ben Page, Hendrik Zen-
der, and Patric Jensfelt. Home Alone : Autonomous Extension and
Correction of Spatial Representations. In Proc. Int. Conf. on Robotics
and Automation, 2011.

[5] Nick Hawes and Jeremy L Wyatt. Engineering intelligent information-
processing systems with CAST. Adv. Eng. Inform., 24(1):27–39, 2010.

[6] R.S. Johansson. Sensory input and control of grip. In Novartis Foun-
dation Symposium, pages 45–58, 1998.

[7] Marek Kopicki, Sebastian Zurek, Rustam Stolkin, Thomas Mörwald,
and Jeremy Wyatt. Learning to predict how rigid objects behave under
simple manipulation. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA11), May 2011.

[8] M. Kristan and A. Leonardis. Online discriminative kernel density
estimation. In International Conference on Pattern Recognition, pages
581–584, Istanbul, Turkey, 23-26 August 2010.

[9] S. L. Lauritzen and T. S. Richardson. Chain graph models and their
causal interpretations. J. Roy. Statistical Society, Series B, 64(3):321–
348, 2002.

[10] J. M. Mooij. libDAI: A free and open source C++ library for dis-
crete approximate inference in graphical models. J. Mach. Learn. Res.,
11:2169–2173, August 2010.

[11] T. Mörwald, J. Prankl, A. Richtsfeld, M. Zillich, and M. Vincze.
BLORT – The Blocks World Robotic Vision Toolbox. In Proc. ICRA

EU FP7 CogX 33



DR 7.2: Analysis of a robot that acts under partial information and uncertainty CogX consortium

Workshop Best Practice in 3D Perception and Modeling for Mobile Ma-
nipulation, 2010.

[12] T. Mörwald, M. Zillich, and M. Vincze. Edge tracking of textured
objects with a recursive particle filter. In Proceedings of the Graphicon
2009, Moscow, Russia, 2009.

[13] Thomas Mörwald, Marek Kopicki, Rustam Stolkin, Jeremy Wyatt, Se-
bastian Zurek, Michael Zillich, and Markus Vincze. Predicting the
unobservable, visual 3d tracking with a probabilistic motion model. In
Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA11), May 2011.

[14] Jens Otto, Sebastian Wrede, Marc Hanheide, and Nick Hawes. A
Unifying Model-Centric Analysis Approach for Robotic Systems. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2011. submitted.

[15] A. Pronobis, O. M. Mozos, B. Caputo, and P. Jensfelt. Multi-modal se-
mantic place classification. Int. J. Robot. Res., 29(2-3):298–320, Febru-
ary 2010.
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Abstract We present a mobile robot system that showcases two original
contributions addressing uncertainty. Our first contribution is a probabilistic
model for representing sensed and common-sense properties of space. Our
second contribution is a continual planning system which is able to plan in
large problems posed according to that model, by automatically switching
between using decision-theoretic and classical procedures. We evaluate our
system by having it perform object search tasks in two different real-world
indoor environments. By reasoning about the trade-offs between possible
courses of action with different informational effects, and exploiting the cues
and general structures of those environments, our robot is able to consis-
tently demonstrate efficient and robust goal-directed behaviours.

Relation to WP This paper is the major conference paper reporting the
system evaluation carried out in the Dora scenario. It presents the switching
planner, being the major contribution in WP4, the new conceptual layer of
the spatial representation as a contribution from WP1 and WP3, and the
overall integration and evaluation efforts being part of WP7. Integrated
works from WP2 and WP6 are briefly mentioned as well. The evaluation
reported was carried out in a real world environment of an inhabited house.
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omitted for review

Abstract
We present a mobile robot system that showcases
two original contributions addressing uncertainty.
Our first contribution is a probabilistic model for
representing sensed and common-sense properties
of space. Our second contribution is a continual
planning system which is able to plan in large prob-
lems posed according to that model, by automat-
ically switching between using decision-theoretic
and classical procedures. We evaluate our sys-
tem by having it perform object search tasks in
two different real-world indoor environments. By
reasoning about the trade-offs between possible
courses of action with different informational ef-
fects, and exploiting the cues and general struc-
tures of those environments, our robot is able to
consistently demonstrate efficient and robust goal-
directed behaviours.

1 Introduction
One dream of the AI community is to build a robot capable
of performing tasks on demand in dynamic real-world envi-
ronments like homes and offices. Such a robot must perform
task and observation planning under uncertainty in pursuit of
its current goals. It must do this whilst exploiting knowledge
about the nature of the environments in which it is expected
to operate. Towards realising the stated dream, this paper
presents a robot system that uses a new planning approach to
reason with new representations of space. Our approach inte-
grates probabilistic models of background conceptual knowl-
edge, and the visual appearance of objects and of room cat-
egories, to solve an object search task. These are used to
create and maintain a probability distribution over possible
maps that respect explicit representations of qualitative spa-
tial structure. In order to allow the robot to effectively ex-
ploit this knowledge, we have developed a novel system for
continual planning that automatically switches between us-
ing decision-theoretic and classical procedures to synthesise
efficient action strategies.

We have implemented our approach on the mobile robot
depicted in Fig. 1, and evaluated that system by having it per-
form object search tasks in real-world home and office envi-
ronments. The objects it is able to search for are all instances

Figure 1: Two exemplars of our robot system in the home and office environments they
were tested in. The robots are equipped with a laser scanner and a stereo camera rig.

of categories, e.g. a specific box of cornflakes in the kitchen
is an instance of the category of cornflakes boxes, which is it-
self a sub-category of cereal boxes. The robot uses highly
structured representations of knowledge at this conceptual
level – e.g. cereal boxes are often located in kitchens or din-
ing rooms, and sofas are often located in sitting rooms. Such
relational structure expresses generalisations across multiple
environments, and can be naturally represented probabilisti-
cally in order to support intelligent decision making across
multiple environments. For our work, in an offline step we
have compiled a knowledge base that captures that common-
sense knowledge. Our two key novel contributions are:
1. A chain graph representation that combines general
purpose and contingent spatial knowledge in a single struc-
ture, together with processes for creating and maintaining
that graph. This structure models the (uncertain) contingent
knowledge the robot has about instances (e.g. what category
of room it thinks room 1 is) in conjunction with its (also un-
certain) long term conceptual knowledge (e.g. which types of
objects are located in a particular category of room).
2. A switching continual planner that synthesises action
strategies for very large partially observable decision pro-
cesses posed by the tasks we consider. Our approach is
to switch between decision-theoretic and classical modes of
planning at different levels of abstraction. The classical
system quickly solves a determinisation of the problem at
hand, interpreting probabilistic information in terms of a cost
model. The decision-theoretic system quickly solves abstract
decision problems posed according to the current serial plan,
and underlying belief-state. Overall, this approach allows the
system to exploit our rich representation of spacial knowl-
edge, and generate intelligent behaviour under uncertainty in
a timely manner.



2 Related work
Probabilistic representations are employed for many specific,
localised functions in robots operating in the real-world. For
example, recent systems by [Gross et al., 2009] and [Maier
and Steinbach, 2010] employ probabilistic frameworks to
model human interaction partners or visual appearance re-
spectively. Other systems employ probabilistic representa-
tions across more subsystems but in limited ways. For ex-
ample, [Kraft et al., 2008] treat sensing deterministically and
beliefs qualitatively during planning. We are not aware of any
related system that features both a unifying probabilistic rep-
resentation, and a domain-independent planner which is able
to reason quickly over that unified decision-theoretic model
to generate robot behaviour.

Object search with mobile robots has been studied for al-
most 20 years [Shubina and Tsotsos, 2010], yet no previous
system reasons with uncertain conceptual knowledge about
room and object categories. Instead, most dedicated systems
treat the problem as a geometric one. Closest to our approach
is the work by [Sjöö et al., 2010b] who used common-sense
knowledge encoded into a rule-based ontology to inform a
deterministic planner which previously categorised room to
search for a particular object. [Galindo et al., 2005] make this
relationship bi-directional: objects define room categories,
while room categories provide information on where objects
may be found. In [Bouguerra et al., 2007] this approach was
extended to treat some of the conceptual knowledge as un-
certain, although restricted to the number of occurrences of
object types in rooms. [Vasudevan and Siegwart, 2008] went
beyond this to perform room categorisation through Bayesian
reasoning about the presence of objects, but did not (as none
of these did) include observation models in their reasoning
(thus perception was still considered to be deterministic).

3 System Overview
Driven by the need to exploit conceptual knowledge for more
efficient object search, our robot specifically employs pro-
cesses to perceive instance information which it can relate to
known concepts. The creation of a spatial model (containing
rooms, doors, corridors etc.) is supported by metric and topo-
logical mapping processes. Room categorisation is supported
by object detection (from pre-trained models) plus visual and
geometric feature extraction. These processes are shown at
the bottom of Fig. 2. They feed into the conceptual layer
of a spatial representation designed following the principles
proposed by [Pronobis et al., 2010]. This layer maintains
instances of predefined concepts and the relations between
them. This conceptual layer not only contains the instance
knowledge acquired through sensing, but also the conceptual
knowledge we aim to exploit to generate efficient behaviour.

The system as described so far is similar to its predeces-
sor [X, 20xx]. This previous robot was able to exploit deter-
ministic conceptual and instance knowledge to achieve goal-
directed behaviour and also perform object search. However,
that system was unable to systematically cope with the un-
certainty of sensing and the probabilistic nature of concep-
tual knowledge. For example, the deterministic knowledge
that cornflakes are found in kitchens would cause that robot

Figure 2: An abstract view of the processes and representations of the system. Sens-
ing processes (at the bottom) discretise and categorise sensor input into instances and
acquired relations in conceptual layer. This layer also comprises conceptual and on-
tological knowledge represented as a probabilistic graphical model of which only an
excerpt in shown. The switching planner reasons upon the state distribution defined by
the conceptual layer.

to search only in rooms that have been determined to be
kitchens. It did not allow the robot to account for the like-
lihood that the cornflakes might also be in the living room,
or even that it was simply unable to infer the category of a
room correctly. We have overcome this limitation by em-
ploying a Bayesian approach within the conceptual layer in
order to combine representations of certain knowledge (e.g.
that cornflakes boxes are a type of cereal box) and also uncer-
tain knowledge (e.g. that cereal boxes are located in kitchens
34% of the time) in a unified framework. The style of arrows
in the conceptual layer in Fig. 2 indicate the different types
of relations. The conceptual layer is described in more detail
in Sec. 4. It provides the state distribution on which planning
is based. The planner we developed to meet the constraints
imposed by the probabilistic representation is described in
Sec. 5.

3.1 Sensing & Acting
In our system sensing is managed by a collection of processes
which abstract from odometry data, laser scans and video se-
quences to maintain instances and the probabilistic relations
which link these instances to concepts and other instances.
We distinguish continuous and active sensing. The former
is passive, continuously managing certain beliefs about the
world. It is lightweight, and does not require a planner that
might schedule information gathering actions. In contrast,
active sensing is deliberately planned for.

Mapping and topology maintenance is a continuous sens-
ing process that uses a SLAM algorithm [Folkesson et al.,
2007] to maintain metric and topological maps of the environ-
ment. It continuously localises the robot in those map. It dis-
cretises space into metrically localised places approximately
1m apart (represented by discs in Fig. 3). It also maintains
a navigation graph that supports movement from one place
to another. Place existence and connectivity is treated deter-
ministically in our current system. In order that topological



places be interpreted with respect to higher level spacial con-
cepts, mapping also features door frame detection from laser
data. Doors are used to group places into instances of rooms
following our non-monotonic reasoning approach [X, 20xx].
The results of this continuously running process are instances
of places and rooms with acquired connectivity relations.

Shape and appearance classification is a continuous sens-
ing process which generates properties characterising the
shape and visual appearance of rooms. It extracts simple geo-
metrical features from laser scans and uses Composed Recep-
tive Field Histograms from acquired camera images as visual
features [Pronobis et al., 2010]. These features are evaluated
on the basis of Support Vector Machine (SVM) models repre-
senting specialised concepts of “Room Property” (e.g. elon-
gated, office-like etc.). Accumulated confidence gained from
the SVM models for all views obtained at a topological place
are normalised to gain probabilities. These are represented in
the probabilistic ”is-a” relation that ties property instances to
the specific concepts (cf. Fig. 2).

Object detection is the only active sensing process in our
system. It is triggered as part of the active search strategy de-
scribed in the next paragraph. Objects are detected using the
BLORT 3D object recogniser [Mörwald et al., 2010] applied
to images from one of the robot’s cameras. This detector is
characterised by false positive and false negative detection
rates that characterise the observation model of this sensing
action. Observation models allow the robot to reason that it
might not have sensed an object despite it being perceivable,
and vice-versa. This allows us to quantify the effects of active
sensing processes on our conceptual knowledge. A detected
object leads to the creation of a “has-object” relation for the
specific instance the robot was looking for (cf. Fig. 2).

Actions in our system are all triggered by the planner. The
planner typically solves two sub-problems: navigation and
local active visual search. Navigation in the world is planned
using the navigation graph defined by the connectivity rela-
tions. Movement between places is executed by the naviga-
tion component and includes local object avoidance. Local
active visual search first requires an action to trigger the gen-
eration of discrete viewpoints. Following [Sjöö et al., 2010a],
the generation action is executed as a Monte-Carlo sampling
of local metric maps yielding information about the probabil-
ity of object presence. Viewpoints are assigned an observa-
tion probability for a set of objects. The planner then reasons
using actions to move to a viewpoint and trigger object detec-
tion for appropriate objects.

4 Probabilistic Conceptual Representation
The conceptual layer is the main novel spatial development in
this work. Implemented above the qualitative spatial frame-
work in [X, 20xx], this layer facilitates inference that ac-
counts for general high-level taxonomic conceptual knowl-
edge, and the outputs of sensing. The former corresponds to
a rich probabilistic ontology that specifies categories of room
(kitchen, office, etc), how rooms are composed of topologi-
cal places, and the likelihood that certain types of rooms will
contain particular objects. The outputs of sensing include the

results of shape and appearance classification, and also door
and object detections.

Chain graph model All higher level inference performed by
the robot is done according to a unified model of the concep-
tual knowledge and of the robot’s sensing capabilities. That
unified model is expressed using a chain graph [Lauritzen
and Richardson, 2002], whose structure is adapted online ac-
cording to the state of underlying topological map. Chain
graphs provide a natural generalisation of directed (Bayesian
Networks) and undirected (Markov Random Fields) graphi-
cal models, allowing us to model both “directed” causal (such
as “is-a” relations) as well as “undirected” symmetric or as-
sociative relations (such as connectivity). In particular, our
graph allows the robot to perform inference related to the on-
tology presented in Fig. 2, in addition to belief-state estima-
tion from sensing. For planning, the chain graph is the sole
source of belief-state information. In the chain graph, belief
updates are event-driven. For example, if an appearance prop-
erty, or object detection, alters the probability of a relation,
inference proceeds to propagate the consequences throughout
the graph. In our work, the underlying inference is approx-
imate, and uses the fast Loopy Belief Propagation [Mooij,
2010] procedure.

Structurally, the graph encapsulates a taxonomy of con-
cepts through hyponym relationships (is-a) as well as rela-
tions between rooms and objects (has-a relationships). It dis-
tinguishes three primary sources of knowledge: (1) prede-
fined conceptual knowledge, e.g. the likelihood that corn-
flakes occur in kitchens; (2) knowledge acquired directly ac-
cording to sensing, e.g. the likelihood of being located ad-
jacent cornflakes given the result of an object detection; and
(3) inferred knowledge, e.g. that the room is likely to be a
kitchen, because you are likely to have observed cornflakes
in it.

Quantifying relations It is at the core of our approach that
some classes of representations are uncertain, while others
are deterministic. We quantify the uncertainty in a Bayesian
framework. Probabilities for acquired relations (cf. Fig. 2) are
assigned by sensing processes. For example, when an object
is sensed it is tied to a distribution of places where it might be
located via a “has-object” relation.

It is the common-sense conceptual knowledge that allows
the robot to be efficient in different environments. We want
to endow the robot with knowledge about how likely it is that
different objects will be found in different kinds of indoor lo-
cations, how shape and appearance properties relate to those
locations, and how rooms of different types are typically con-
nected. We do this by quantifying probabilistic relations as
defined in the conceptual layer (cf. Fig. 2). Ideally these
relations should be quantified by appropriate AI techniques
that estimate the distribution as a generic model (although
they could be prescribed in an ad-hoc fashion if the proba-
bility table is small and obvious). In our system, the “has-
object” relation for rooms and objects demanded a principled
approach to quantification due the combinatorial complexity
of object-location cooccurrence applied to real world ontolo-
gies. To achieve this we applied an approach that exploited
common-sense knowledge available through the world wide



web. First, the “has-a” relation linking rooms and objects was
bootstrapped using a part of the Open Mind Indoor Common
Sense database1. This contains a list of user-given associ-
ations between common everyday objects and their typical
locations, providing us with a set of 5,800 deterministic re-
lations between locations and objects. In order to quantify
these relations we then used the object-location pairs to gen-
erate ‘obj in the loc’ queries to an online image search en-
gine. The number of hits returned was then correlated with
the total number of hits for querying ‘loc’ images, yielding
a co-occurrence frequency distribution of approximately 1.5
million object-location pairs.

5 Switching Continual Planner
To generate flexible goal-oriented behaviour our system em-
ploys a domain-independent planner. From a planning per-
spective, mobile robots pose important and contrary chal-
lenges. On the one hand, planning and execution monitor-
ing must be lightweight, robust, timely, and should span the
lifetime of the robot. Those processes must seamlessly ac-
commodate exogenous events, changing objectives, and the
underlying unpredictability of the environment. On the other
hand, in order to act intelligently the agent must perform com-
putationally expensive reasoning about contingencies, and
possible revisions of subjective belief according to quantita-
tively modelled uncertainty in acting and sensing. Address-
ing specifically this second challenge, [Talamadupula et al.,
2010] identify continual planning in the presence of detailed
probabilistic models as an important direction for future re-
search.

There has been much recent work on scaling POMDP
solution procedures to medium-sized instances. In the
case of general domain-independent factored systems, the
state-of-the-art scales to relatively small problems with 222

states [Shani et al., 2008].2 At their limit, these procedures
take over an hour to converge. For classes of POMDP that
feature exploitable structures (e.g., no actions with negative
effects), problems with as many as 1030 states can be targeted
by offline procedures [Brunskill and Russell, 2010]. Moving
someway towards addressing all the challenges we have out-
lined, recent online POMDP solution procedures have been
developed which can exploit highly approximate value func-
tions – typically computed using a point-based procedure –
and heuristic in forward search [Ross et al., 2008]. Their ap-
plicability in our setting is limited due to the large amount
of problem-specific offline processing required to get useful
search guidance. A very recent and promising online ap-
proach for large POMDPs employs Monte-Carlo sampling
to break the curse of dimensionality in situations where goal
reachability is easy [Silver and Veness, 2010]. Although we
suppose it an interesting item for future work to pursue that

1http://openmind.hri-us.com/
2Considering only room categories and distribution of objects,

problems we consider in this paper have ∼ 1027 states. The details
of view points, from local active visual search, and those of robot
location, further increase that figure. Therefore, not only because
they are offline, but also because they have limited scalability, these
approaches are infeasible in our setting.

direction, it should be noted that ease of goal reachability is
not guaranteed in the problems we face, and is certainly not a
property to be assumed in domain independent planning.

In our work we take a concrete step towards addressing all
the challenges we outlined. We have developed a switching
domain-independent planning system that operates accord-
ing to the continual planning paradigm. It uses first-order
declarative problem and domain representations, expressed
in a novel extension of PPDDL [Younes et al., 2005] called
Decision-Theoretic (DT)PDDL, for modelling stochastic de-
cision problems that feature partial observability. The system
switches, in the sense that the underlying planning procedure
changes depending on our robot’s subjective degrees of be-
lief, and progress in plan execution. When the underlying
planner is a deterministic sequential planner, i.e., a classi-
cal planner, we say planning is in a sequential session, and
otherwise it is in a contingent session. Finally, planning is
continual in the usual sense that, whatever the session, plans
are adapted and rebuilt online in reaction to changes to the
planning model (e.g. when objectives are modified, or when
our robot’s path is obstructed by a door being closed). By
autonomously mixing these two types of sessions our robot is
able to be robust and responsive to changes in its environment
and make appropriate decisions in the face of uncertainty.

During a sequential session, a rewarding trace of a pos-
sible execution is computed using a modified version of the
cost-optimising satisficing planner Fast Downward [Helmert,
2006] which trades action costs, goal rewards, and determi-
nacy. Taking the form of a classical plan, the trace specifies
a sequence of actions that achieves the objectives following
a deterministic approximation of the problem at hand, i.e.,
a determinisation [Yoon et al., 2007]. Structurally, it is a
sequence of elements that are either: (i) actions from the
DTPDDL description of the world, or (ii) atomic assump-
tions, modelled as deterministic actions, made about the truth
value of facts that can only be determined at runtime (e.g.,
that a box of cornflakes is located on the corner bench in the
kitchen). The system always begins with a sequential session,
and once Fast Downward produces a trace, plan execution
proceeds by applying actions from that trace in sequence until
the applicability of the next scheduled action is too uncertain
according to a threshold parameter (here, set at 95%). A con-
tingent session then begins which tailors sensory processing
to determine whether the assumptions made in the trace hold,
or which otherwise acts to achieve the overall objectives.

Because decision-theoretic planning in large problems is
too slow for our purpose (we seek response times in seconds),
contingent sessions plan in an abstract decision process deter-
mined by the current trace and underlying belief-state. This
abstraction is constructed by first excluding all propositions
that are not true of any state in the trace, then adding them
back, using as a heuristic the entropy of the trace assump-
tions conditional on a candidate proposition. Propositions are
added, one at a time, until the number of states in the initial
belief-state reaches a given threshold (here, 150 states). To
the resulting abstract model we also add disconfirm and con-
firm actions that the contingent session can schedule in order
to judge an atomic assumption in the trace. In the abstract
model these actions yield a small reward if the corresponding



Figure 3: Environment H with numbered places, and pie charts indicating probabili-
ties of room categories (yellow=living room, red=kitchen, green=corridor, blue=office,
grey=others). The labels attached to place node in the living room (upper right) indicate
the most likely values in the distribution of classified shape (top) and visual (bottom)
properties, respectively. Detected doors, used for room partitioning, are shown as door
frames. The kitchen is at the lower right.

judgement is true (or small penalty otherwise). Once a judge-
ment action is scheduled for execution the contingent session
is terminated, and control is returned to a sequential session.

6 Real World Experiments
To evaluate the implemented representational and planning
techniques, we analysed our robot system performing an ob-
ject search task in two different environments: an larger office
(O, 13 places in 3 rooms) and a smaller home (H , 7 places
in 3 rooms). The acquired map for H is shown in Fig. 3.
Our evaluation compares the full system described in this pa-
per, exploiting probabilistic conceptual knowledge and linked
to sensing, to a baseline system that cannot make use of the
conceptual knowledge. We refer to these as the “full” and “le-
sioned” systems respectively. In the lesioned system contin-
uous sensing of shape and appearance properties is disabled,
emulating the limited reasoning available in our previous sys-
tem [X, 20xx]. Therefore it cannot use these properties to
access the conceptual knowledge about categories of rooms
encoded in the chain graph model, or the conceptual knowl-
edge about object-location co-occurrence.

In all runs, a box of cornflakes (the object to search for)
was placed in the environment among many other objects
belonging to the nine categories the robot has been trained
to detect. In the experiments, only a subset of all object-
location co-occurrence frequencies consisting of 152 rela-
tions between the 19 selected object concepts (cornflakes
among them) and seven given room concepts (among them
kitchen, living room, corridor, and office) was employed. In
a first set of runs directly comparing the full system (FC)
to the lesioned case (LC), the box of cornflakes was in the
kitchen, which is the canonical location for this type of ob-
jects according to the common-sense conceptual knowledge
(with a probability of P (cornflakes|kitchen) = 0.336). In
a second set of runs, the object was at a non-canonical loca-
tion (P (cornflakes|living room) = 0.035) to test the full
configuration (results denoted as FNC).

Hypotheses The hypotheses leading to this study design are
that (i) the exploitation of the conceptual knowledge in the
full system will enable the robot to achieve the task quicker
in canonical cases when compared to the lesioned system in
the same experimental setup, (ii) although more efficient in

conf. obj. loc. lesion ]succ./]tot.
H

]succ./]tot.
O

avg.
time H

avg.
time O

FC kitchen no 10/10 5/6 5.8min 6.8min
LC kitchen yes 9/10 5/5 11.3min 13.5min
FNC liv. room,

office
no 3/3 n/a 10.2min n/a

Table 1: Runtimes for the three cases tested: full system (FC) and lesioned system (LC),
both with object in canonical position; NFC: full system with object in non-canonical
position. Total time to solve the task reported in minutes. The FNC case was only tested
in environment H .
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Figure 4: Total runtime in minutes of the individual runs in the FC (15 runs) and LC
configuration (14 runs, no H10) for environment H: runs H1-H10 and O: runs O1-O5.

the average case, the system will be robust in the presence of
sensing errors, and (iii) that the system will still be able to
achieve its goal, even relatively efficiently, in non-canonical
setups. In all runs, before the robot was given the goal to find
the object, it performed a short exploration of adjacent places
to sense room properties in order to infer the category of the
room (if this evidence was not lesioned).

Results The cornflakes box was found by the robot in 32 of
the 34 runs. In the two failed runs the robot maneuvered it-
self into a corner of the room and required human interven-
tion. The total execution time of the successful FC and LC
runs are plotted in Fig. 4. Hypothesis (i) claims that the robot
is able to be exploit the evidence gained from perceiving its
environment by integrating this with conceptual knowledge
about the commonalities of such environments. That our sys-
tem does this is confirmed by a significant difference (Mann-
Whitney test p < 0.01 for both environments) in average run-
time reported in Tab. 1 for these two configurations. Looking
at the typical sequence of actions for the FC configuration it
becomes apparent that planning inferred lower costs for driv-
ing into the kitchen to begin searching (despite that being an
extra distance to travel without looking for objects). This ob-
servation also explains the relative improvement of FC in the
larger O environment, comprising larger space that has to be
searched exhaustively, being comparatively higher than in H .

The robot was able to exploit the appearance properties for
the room it started in and infer that this is unlikely to be a
kitchen, as indicated by the pie charts in Fig. 3. This caused it
to choose to visit the uncategorised room first in the hope that
it is a kitchen. In all lesioned runs (LC), the robot is not able
to exploit this knowledge and consequently has to conduct an
exhaustive search of all rooms, optimistically starting in the
room it is in, causing significantly longer runtimes.

The outlier FC run number 8 shows that our system is also
able to cope with a deviation in sensing, confirming hypoth-
esis (ii). In this case the robot also first drove to the kitchen,
but failed to detect the object (due to an object detection
false negative). Accordingly the robot went back to the living
room to continue its search there. This was due the non-zero
probability of finding objects also in non-canonical locations.
However, after exploring several places there, the likelihood
of finding the object in the kitchen by looking again became



higher, so the robot went back and finally found it. With re-
gard to hypothesis (iii) we can confirm that the robot was able
to solve non-canonical configurations 100% of the time. In
these runs, the robot also first searched in the kitchen before
returning to the other room and eventually finding the object
there. A system being entirely determined about the corn-
flakes being in kitchens, as it has been in our previous system,
would not have been able to consider this alternative.

7 Conclusion
In this paper we presented a mobile robot system that inte-
grates two original approaches for representing and reasoning
about uncertainty. The first is a representation of space that
combines knowledge about its qualitative structure (e.g. that
cornflakes boxes are are type of cereal box), with probabilis-
tic knowledge (e.g. that cereal boxes are found in kitchens
33% of the time). The second is a continual planning and
execution monitoring system that employs switching to plan
for very large partially observable problems that are posed
by our detailed source of spatial knowledge. It is important
to note that the integration of these approaches is crucial to
the success of our work. Without the novel planner, the rep-
resentation would not be capable of influencing behaviour.
Without the novel representation, the planner would not be
able to reason over both probabilistic instance and conceptual
knowledge at the same time. We evaluated this combination
in our robot in two real-world environments, and found that
it is able to yield efficient and robust behaviours in an object
search task.
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Abstract In this paper we present an account of the problems faced by
a mobile robot given an incomplete tour of an unknown environment, and
introduce a collection of techniques which can generate successful behaviour
even in the presence of such problems. Underlying our approach is the prin-
ciple that an autonomous system must be motivated to act to gather new
knowledge, and to validate and correct existing knowledge. This princi-
ple is embodied in Dora, a mobile robot which features the aforementioned
techniques: shared representa- tions, non-monotonic reasoning, and goal
generation and management. To demonstrate how well this collection of
techniques work in real-world situations we present a comprehensive analy-
sis of the Dora systems performance over multiple tours in an indoor envi-
ronment. In this analysis Dora successfully completed 18 of 21 attempted
runs, with all but 3 of these successes requiring one or more of the integrated
techniques to recover from problems.

Relation to WP In this paper we report on further in-depth evaluation
of the Dora 1 system, carried out in a real world environment of a student
apartment. The focus of this evaluation was on the non-monotonic reason-
ing about space being part of WP3 and WP6, and the goal management
framework developed as part of WP1.
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Home Alone: Autonomous Extension and Correction of Spatial
Representations

Nick Hawes, Marc Hanheide, Jack Hargreaves, Ben Page, Hendrik Zender, Patric Jensfelt

Abstract— In this paper we present an account
of the problems faced by a mobile robot given
an incomplete tour of an unknown environment,
and introduce a collection of techniques which can
generate successful behaviour even in the presence
of such problems. Underlying our approach is the
principle that an autonomous system must be moti-
vated to act to gather new knowledge, and to validate
and correct existing knowledge. This principle is
embodied in Dora, a mobile robot which features
the aforementioned techniques: shared representa-
tions, non-monotonic reasoning, and goal generation
and management. To demonstrate how well this
collection of techniques work in real-world situations
we present a comprehensive analysis of the Dora
system’s performance over multiple tours in an in-
door environment. In this analysis Dora successfully
completed 18 of 21 attempted runs, with all but
3 of these successes requiring one or more of the
integrated techniques to recover from problems.

I. INTRODUCTION

Fig. 1: Dora in the kitchen;
a room of the flat the exper-
iments were conducted in.

Service robots working
in human environments
will require a lot of knowl-
edge about their surround-
ings in order for them
to discharge their duties
successfully (e.g. maps,
names for rooms etc.). In
existing work this knowl-
edge is assumed to be pro-
vided to the system during
a tour in which a human
guides the robot through
the environment indicating important physical fea-
tures and also providing associated descriptions.
For a human, a tour is a rather natural way to con-
vey information to a robot. However, this process is
fraught with problems from a robot’s point of view.

Nick Hawes, Marc Hanheide, Jack Hargreaves, and Ben Page
are with the School of Computer Science at University of Birm-
ingham; email: n.a.hawes@cs.bham.ac.uk. Hendrik Zender
is with the German Research Center for Artificial Intelligence
(DFKI), Saarbrücken. Patric Jensfelt is with the Royal Institute
of Technology (KTH), Stockholm. The research leading to these
results has received funding from the European Community’s
Seventh Framework Programme [FP7/2007-2013] under grant
agreement No. 215181, CogX.

These problems include those familiar to roboti-
cists (sensor noise, incorrect results generated by
components) and those which are based more on
a typical user’s lack of knowledge about a robot’s
requirements. In this paper we present an analysis
of how an intelligent mobile robot can be designed
to overcome some of the problems that it will
face following a home tour by a naı̈ve user. From
this analysis we developed a system with a range
of behaviour and reasoning capabilities, including
functionality related to the explicit representation
of gaps in its knowledge and the ability to reason
about how to act to fill these gaps. Our analysis
focuses on how these abilities allow the system
to recover from common errors that occur during
tours through an environment for the first time. It
is supported by evidence gathered from multiple
runs of the robot in a real flat.

Our system features two main advances beyond
previous work: a drive to validate and refine
spatial knowledge (to detect and correct gaps and
errors); and non-monotonic reasoning about spa-
tial knowledge (necessary to support the revision of
the robot’s representations). These are presented in
Section III. Sections IV and V present quantitative
and qualitative analyses of our system over 18
successfully extended tours. Before this, Section II
presents some background and existing approaches
to dealing with typical tour-related problems.

II. BACKGROUND & RELATED WORK

A tour as a mechanism for providing a robot
with information is a common meme in au-
tonomous and interactive robotics (e.g. [1], [2]).
Whilst previous work has identified problems that
occur during tours due to the guide’s incorrect
expectations about a robot’s abilities [3], to date
no work has provided an account of the problems
that occur from a robot’s point of view, and what
mechanisms can cope with them. When referring
to “problems” we don’t mean the ability for a robot
to solve a particular fixed problem. Instead we refer
to cases where either the robot or the human have
(in some sense) functioned incorrectly.



From the robot’s point of view we can dis-
tinguish two general types of problems: those
caused by the robot not functioning correctly in
a designer-anticipated context (e.g. the failure of a
perceptual routine resulting in an object or feature
going unobserved), and those caused by the robot’s
environment changing to become out of sync with
the robot’s current representation of it (e.g. a
human closing a door which was open during
the tour). Given the limited knowledge of current
robots (including our own), these different types of
problems are actually indistinguishable at a system
level. Both result in the robot having a represen-
tation of the environment which does not reflect
the true state of the world. Thus we propose that
both problem types can be addressed by ensuring
that robots feature a motivating drive to ensure that
their representations are as complete and as cor-
rect as possible. Given that a tour only provides a
robot with part of the knowledge it needs, any ser-
vice robot in this situation must therefore be able
to autonomously explore its environment (after the
tour) in order to fill any knowledge gaps (following
the principle of discovery [4]). And given that the
aforementioned problems can occur both during
the tour and during autonomous exploration, it is
also important that a robot never assumes that its
knowledge is ever entirely complete or correct. In-
stead the aforementioned drive should give rise to
behaviours which attempt to validate and refine its
knowledge as appropriate, in addition to extending
it. This behaviour is an essential part of any system
that must simultaneously learn about, and perform
tasks in, the real world. Such systems do not have
the luxury of separate training and test phases, and
instead must learn online whilst acting.

It could be argued that all the problems we ex-
pect a robot to encounter are actually the result of
a badly designed or engineered system, or a poorly
trained user. However, given the current state-of-
the-art it is unrealistic to expect that complex
intelligent robots deployed into human-populated
environments will not encounter these problems,
or similar ones. The wide range of contexts these
systems must cope with, and the behaviours they
must be capable of generating, mean that it may
prove just too difficult to fully debug a whole sys-
tem before it is deployed in its target environment.
Thus a robot must be equipped with systems that
mitigate the effects of run-time problems. It is also
unrealistic to expect any non-expert user to be able
to reliably provide a current robot system with all
of the information it actually needs during a tour.
For example, localisation and navigation systems

typically require detailed maps of an environment
in order to function correctly, and it is clear that a
busy user may only show a robot some subset of
the environment before moving on to another task.

Existing work typically relies on one of two
different approaches to coping with problems at
run-time: autonomy or interaction. Autonomous
approaches to coping with localisation errors typi-
cally leverage the probabilistic machinery they are
implemented with. For example, most existing sys-
tems are capable of characterising their mapping
and localisation uncertainty, some are capable of
explicitly acting to reduce this uncertainty [5], and
others can explicitly represent possibilities for ex-
tending their metric spatial knowledge beyond the
frontiers of their maps [6]. Interactive approaches
require that the robot asks the human to provide
input if it encounters a problem. For example,
systems have been developed which ask a human
whether it has just passed a door [2], and which use
uncertain categorisations as the basis for dialogue
about room categories [1] and object features [7].

In this paper we focus on the autonomous reso-
lution of some prototypical instances of perceptual
problems: the possible failure of a door detector
to identify doors in the robot’s environment, and
problems in a spatial model resulting in either
failure to identify unvisited areas of space or failure
to move the robot correctly.

III. SYSTEM ARCHITECTURE

We have developed an architecture for an intel-
ligent mobile robot which embodies the principles
described in the previous section. This architecture
is deployed as part of Dora, a robot developed
in the CogX project1 (see Fig. 1). Dora has been
designed to be able to autonomously explore an
unknown environment and patrol a known one.
It is also able to autonomously determine the
functional category of rooms (to support future
human-robot interaction and service tasks). Dora
explicitly represents gaps in its spatial model (i.e.
its map and its knowledge of room categories) and
is able to take action to fill these. When displaying
nominal behaviour, this model is in alignment
with its environment; it contains representations of
all visited rooms and their categories. In case of
misalignment resulting from problems, Dora has
mechanisms for updating these representations.

The Dora architecture is an instantiation of the
CoSy Architecture Schema, and is implemented
using the associated software toolkit, CAST [8].

1http://cogx.eu



This schema is based on a shared working mem-
ory model and is designed to support flexible,
parallel, information sharing in heterogenous, yet
integrated, systems. This support is an essential
requirement for robots such as Dora which must
share a lot of explicit knowledge between its sub-
systems and where this knowledge must be both
used and refined concurrently.

In the following subsections we present two of
the subsystems which allow Dora to act to make its
representation as complete and correct as possible
when faced with the complexity and dynamics of
the real world: its multi-layered spatial model and
its goal management framework. These subsystems
are jointly revising representations and mutually
notify each other about the modifications they
make through the CAST framework. For a more
detailed account of the rest of the Dora architec-
ture, see previous work, e.g. [9], [10].

A. Reasoning with changing spatial knowledge

As a mobile robot, Dora requires a map-based
spatial representation for localisation and naviga-
tion. We take the multi-layer hybrid approach to
map representation described in [10]. Particularly
relevant for this paper are the map’s place and
conceptual layers. Fig. 2 shows visualisations of
maps generated by Dora. The colouring of the
place nodes represents the information about the
containment of places within rooms as provided
by the conceptual layer.

The place layer is responsible for discretising
the continuous representation of space generated
by the layers below it (using a metric SLAM
approach) into a graph-based representation of free
space. The nodes in the graph are called places,
and they are created at 1m intervals along the
robot’s trajectory. Graph-edges indicate immediate
adjacency of places and the possibility of moving
between them. Gateways play an important role
for clustering places into larger coherent areas.
In buildings, doorways are typical gateways. A
door detection component inspects laser scans to
find width changes that look like doorways and
triggers the place layer to mark the corresponding
place as a gateway place. The place layer can also
generate placeholders. A placeholder represents an
unexplored direction that the robot might move
in, thus explicitly representing the possibility of
creating additional places beyond the limits of the
current place graph. The place layer is connected
to a navigation module that can move the robot to
places and placeholders.

It is important that autonomous robots which are
supposed to operate in domestic environments have
a notion of spatial units that are also meaningful
for humans. In our system, the conceptual layer (an
extended and improved variant of the conceptual
map described in [11]), is responsible for linking
the other layers of the spatial model (including
the place layer) to concepts which humans can
relate to. The conceptual layer represents map
knowledge in an OWL-DL ontology consisting
of a taxonomy of spatial concepts (TBox), and
how they can be characterised in terms of human-
compatible categories, as well as the knowledge
about individuals in the domain (ABox). It also
makes use of a combined rule and OWL-DL
reasoner based on the Jena Framework to perform
different reasoning tasks on the ontology. The tax-
onomy defines spatial regions called areas as the
basic units corresponding to a human-compatible
segmentation of space. We distinguish between
two basic kinds of areas. Rooms are spatial areas
whose primary purpose is defined by the kinds
of actions they afford (e.g., WordNet defines a
kitchen as “a room equipped for preparing meals”).
Here, we make the simplified assumption that the
presence of certain objects (e.g. kettle, toothpaste)
determines the respective subcategory of a room
(e.g. kitchen, bathroom). Passages (e.g. corridors)
are areas whose primary purpose is to link rooms
and provide access to other areas.

A prerequisite for reasoning about room cate-
gories is to have a notion of rooms. Based on
the information about the connectivity of places
and whether they constitute gateways or not, the
conceptual layer forms areas (rooms or corridors)
by clustering places that are transitively intercon-
nected without passing a doorway. Since both door
and object detection can malfunction, room for-
mation and categorisation must be non-monotonic
processes in order to support the potential for
knowledge revision. Room formation and mainte-
nance is handled by a general purpose rule engine,
while the OWL-DL reasoner is used to infer which
categories can be applied to known rooms. Both
are able to make non-monotonic inferences in the
ABox: whenever a previously true condition turns
false, the conclusions drawn from it are retracted.
This means that the conceptual layer is capable of
correcting both the assignment of places to rooms
and the assignment of categories to rooms when
additional (counter-)evidence becomes available.

In order to perform room categorisation, Dora
must populate the conceptual layer’s ABox with
knowledge about objects in the environment. To



do this Dora has an active visual search behaviour.
This moves Dora around the current room run-
ning an object detector using a set of pre-trained
models. Our visual search implementation is a
derivation of the randomised art gallery algorithm
which only looks at points in the room which are
likely to contain objects [12]. These points are
currently linked to obstacles in Dora’s metric map.

B. Behaviour generation

Dora’s behaviour is generated and coordinated
by a continual planning and execution system
which is controlled by a goal generation and man-
agement framework. This framework is responsi-
ble for generating new goals (i.e. descriptions of
desired future states) for Dora from the outputs
of sensors and other processing, selecting which
goals should be followed, triggering the planner
to create a plan to achieve the selected goals,
then managing the execution of subsequent plans.
Dora has goal generators which aim to satisfy its
overall drive to have accurate knowledge about
its environment (as discussed in Section II) by
creating individual goals to explore each generated
placeholder (yielding a more complete place layer)
and to categorise each generated room (yielding a
more complete conceptual layer). In addition to
this, Dora also generates a goal to patrol each
previously generated place (and consequently each
area too). This allows it to revisit known space,
thus validating previously generated knowledge. If
a goal is no longer valid (if it has been achieved
or it is not longer appropriate) the goal generator
which created it removes it from the framework.

Dora’s goal management framework is respon-
sible for selecting which of the generated goals
should be forwarded to planning and execution. A
goal which has been thus selected is referred to as
activated. Before activation it must pass through
two additional stages. After generation, goals are
first unsurfaced. They must then pass through a
bank of filters to become surfaced before they
can be considered for activation. The management
processes move goals between these stages based
on a variety of conditions. In Dora, goals are
surfaced based on their type (all the goal types
described above are automatically surfaced) and
only unsurfaced if the system fails to achieve them
more than a set number of times (currently 10).

Goals are activated based on a combination
of features. The current implementation ranks all
goals based on the number of previous attempts
to achieve them, then by priority, then by a
calculation of information gain versus estimated

cost. Only the top ranked goal is then selected
for activation. In Dora the information gain for
exploring a placeholder is related to the amount
of free space it covers, the information gain for
categorising a room is related to the number of
places it contains, and for a patrolling a place
it is related to the last time the place was vis-
ited. Cost estimates are based on the distance
Dora would have to travel to achieve the goal.
These values are associated with a goal by its
generator. The generator is also responsible for
maintaining these values as state changes occur
(e.g. the robot moves), and also for removing
goals that are no longer justified by the robot’s
knowledge (e.g. when a placeholder is visited or a
room is categorised). A goal is assigned a priority
when it is generated. Currently these priorities are
inherited from priorities manually assigned to their
generators. Our current scheme assigns explore and
categorise goals the same priority, with patrol goals
having a lower priority. This reflects the need to
generate knowledge before it can be validated or
revised. The effects of this decision are seen in
the case studies discussed below. Ranking goals
first by the number of previous attempts to achieve
them allows goals to be postponed when Dora fails
to achieve them (as they are effectively relegated
to the end of the ranked activation list). This is
designed to prevent the system from repeatedly
trying and failing to achieve one goal when others
still exist. Currently Dora detects some failures by
waiting for the execution system to timeout. The
effects of this design are also discussed below.

The use of a continual planner is essential for
a robot in a dynamic environment. Changes in
the environment and sensor noise mean that plans
often need to be revised on-the-fly as they either
become impossible or more information becomes
available, allowing other plans to become possi-
ble. The continual planner we use is specifically
designed to detect such changes during plan exe-
cution, and replan as appropriate [13]. This allows
Dora to cope with open world problems (e.g. not
knowing how many rooms exist in advance) in a
deliberative way.

IV. EXPERIMENTS

To evaluate how the Dora system copes with the
problems that occur in realistic settings we took the
robot out of the lab and into a flat in Birmingham,
UK2. Here we ran Dora multiple times and gath-
ered data about its performance3. Dora (displayed

2Mason Hall, http://j.mp/9tLEUx
3Video available at http://cogx.eu/results/dora



(a) The door to the lower-right room has not been detected.

(b) Door detection triggers a revision of the representation.

(c) All rooms are now found.

Fig. 2: Snapshots from the evolution of the spatial representation during
one run of Dora. Placeholder are depicted as small unfilled green circles,
places are solid disks. This representation is entirely created from scratch
each run as part of the tour and the autonomous exploration.

in Fig. 1) is based on a MobileRobots P3DX
platform equipped with a Hokuyo laser scanner
and a pan-tilt unit holding two Flea2 cameras.
The software system runs on a single dual-core
laptop. This section describes the methodology we
followed when running the system and presents
some descriptive statistics generated from this ex-
periment.

A. Procedure

The environment we operated Dora in was com-
posed of a kitchen, a corridor, and two bedrooms.
Dora was initially given a short tour, then required
to build a complete map of this environment and
categorise all the rooms except the corridor. Each
bedroom contained 3 or 4 objects that Dora could
recognise and use for room categorisation. The
kitchen, being larger, contained 6 objects. The
objects were placed in relatively normal positions
where they were visible to the robot. Fig. 2(c)
shows a map of the environment as acquired by
Dora. The room to the left is the kitchen, which is

TABLE I: Descriptive statistics from all 18 successful runs. Standard
deviation indicated by ±.

Type (re-)activ. duration dur. per run
categorize room 4.1 (1.1) 216 ± 117s 901s (63%)
explore place 16.6 (0.94) 22.5±15.6s 375s (27%)
patrol places 4.4 (0.0) 9.3 ± 6.0s 41.4s (3%)

connected by the corridor to the bedrooms. Dora
was always started at the right end of the corridor,
then given a tour along the corridor, into the first
bedroom (lower right in Fig. 2(c)), and then into
the kitchen (ignoring the other bedroom), and no
room was assigned a category. After the tour, the
filter bank in the goal management framework was
reconfigured to let goals surface, switching Dora
to autonomous behaviour.

We conducted a systemic analysis of all the
runs, adopting the SInA methodology originally
developed for human-robot interaction [14]. To
support this, Dora was instrumented with logging
mechanisms to record a range of state changes.
The acquired logs were used to generate annota-
tions to support qualitative analysis using visual
tools [15], and quantitative analysis via descriptive
statistics [16]. In the following we take a closer
look at the actual behaviour represented by the
creation and activation of goals in the system.

B. Descriptive statistics

Dora met our criteria for success (i.e. explored
and categorised all rooms) in 18 out of 21 at-
tempted runs (85.7%). In the remaining three
runs Dora failed to explore the bedroom which
was omitted during the tour. This was because
no placeholder was generated in it at any point
during these runs. On average, Dora took 26.25±
8.64 (std. dev.) minutes to accomplish the full task
in the 18 successful runs; of which the system
spent 11.45 seconds planning for goals selected
by the goal management scheme. An average of
23.52±8.93 minutes was dedicated to autonomous
behaviour, the remainder to the tour. The average
total distance Dora travelled was 104 metres.

Tab. I presents some per-run statistics on ac-
tive goals (those that are planned for and exe-
cuted by the robot, thus generating behaviour).
The “(re-)activation” column shows the average
number of activations of goals of each type. In
all runs, there were 3 rooms to categorise. The
average number of goal activations for room cat-
egorisation was greater than three due to goal
postponements. This also explains why we observe
1.1 re-activations in the case of categorise-room
goals. The action execution timeout was set to
6 minutes (360 seconds) which was occasionally



not long enough for a categorisation process to
complete successfully.

Tab. I also shows that 63% of the autonomous
part of each run was spent categorising rooms, i.e.,
looking for objects. The exploration of new places
accounted for 27% and only 3% were dedicated
to patrolling previously-visited places. This is ex-
plained by the setup of the experiment: a run was
deemed be finished when all rooms were explored
and categorised. Patrol goals were assigned a lower
priority than exploration and categorisation, so
they were only activated in five runs when there
were no other surfaced goals, but not all rooms had
already been found and categorised. The remaining
time in each run was taken by Dora deciding
what to do next (activity planning accounted for
roughly 14% of the remaining time) and general
communication overhead between components.

V. CASE STUDIES

The following sections present a detailed anal-
ysis of the different types of system runs we
observed during our experimentation. We start with
the case in which no problems occur and follow
this with cases that cover a number of problems
that occurred during the experiments.

Case A: Ideal case

In the ideal case Dora successfully detects all
doors when first passing through them, puts place-
holders in the bedroom which was not entered
during the tour (thus allowing it to autonomously
explore it), and achieves all goals on the first
attempt. It should be noted that the ideal case
requires the majority of Dora’s capabilities, in-
cluding autonomous extension and handling of
incomplete knowledge. It doesn’t require any non-
monotonic reasoning or active validation of ac-
quired knowledge because the knowledge is correct
when initially obtained.

Fig. 3 shows the progress of a run of Dora.
The run illustrated in the figure is not an ideal
one in total, it is included to serve all the case
studies. However, if we look only at the first 10
minutes (600 seconds) it presents the prototypical
behaviour of Dora. In this behaviour placeholders,
uncategorised rooms, and existing places give rise
to goals to explore, categorise, or patrol them,
respectively. In the ideal case patrol goals never
get activated, as the experiment is finished once
all placeholders have been explored or discarded
and all rooms have been categorised. Patrol goals
are assigned a lower priority, so they are only
pursued if no other goals exist. In the figure we

can see the two phases of the experiment. During
the tour, all the goals were unsurfaced (represented
as green bars). But it can be seen that during the
tour (unsurfaced) goals were created whenever a
placeholder was assigned to an area of open space
that had not yet been visited, or when a new (and
thus uncategorised) room entity was created due
to the detection of a door. During the tour, Dora
frequently created placeholders directly in front of
itself which were immediately visited as part of the
tour and therefore removed immediately. Explore
goals 3, 9, 12-16, 21, and 23 were such cases.
Also, categorisation goals for the first bedroom
and the kitchen (corresponding to goals “Cat-
egorizeRoom 1” and “CategorizeRoom 2”) were
generated during the tour because all doors were
correctly detected. Fig. 2(b) illustrates the spatial
representation of an equivalent case, where the two
rooms were detected.

After roughly 130 seconds of touring the au-
tonomous behaviour was activated. The goal man-
agement framework took control, choosing which
goal to pursue next by trading predicted informa-
tion gain for costs. Goals were activated and then
corresponding plans executed. Dora’s behaviour
caused new goals to be created. In Fig. 3, “Ex-
plore 25” was the first goal to be created while
the robot was pursuing another goal. Shortly after
creation it was activated and the associated plan
executed. In this case, the exploration goal was
removed during plan execution because the spatial
layer concluded that the placeholder was too close
to an already existing place, so the creation of a
new place was not possible (“activated and merged
with an existing place”).

The “active” line in Fig. 3 highlights the class
of the currently activated goal. It shows that Dora
started by exploring 4 placeholders before deciding
to categorise room 2 (the kitchen). This decision
was justified by the cost and gain associated with
that plan at that point: Dora was in room 2 already
(low cost) and it has a large area (high gain).

In the ideal case similar behaviour is demon-
strated throughout the run, with Dora switching
between successful exploration and categorisation
until the task is complete. However, due to the
nature of the real world and robot perception, this
is not guaranteed. Hence, we now look at cases
which deviate from the ideal behaviour.

Case B: Missed placeholder

The first problem case we look at is one in
which Dora does not immediately discover the
open space associated with the bedroom ignored



Fig. 3: A visualisation of the progress of a single Dora run. The x-axis shows the time from the start of the run. The y-axis lists all the goals
generated in the run. The line titled “active” shows the type of the currently activated goal (in yellow, cyan, and magenta). The other lines show
the life-time of each goal, colour-coded according to the respective status (unsurfaced, surfaced or active). Individual patrol goals are omitted for
brevity. The vertical line at second 130 marks the end of the tour when the robot starts autonomous exploration.

during the tour. This occurs when no placeholder
is generated inside the room and consequently no
associated goal to explore is created either. Without
the drive to continuously update and validate its
representations, Dora would not be able to recover
from this problem by revising and extending its
knowledge.

This particular problem occurred in 5 of the
18 successful runs. One instance is depicted in
Fig. 3. We can see that by 1300s only two rooms
had been discovered and there are neither explore
nor categorise goals left to pursue. At this point,
Dora believes she has explored and categorised
everything. She still has the drive to validate her
representation so she starts patrolling, motivated by
the lower priority patrol goals. Though these goals
are not individually visualised we can see a series
of (pink) patrol goal activations in the “active”
line. During this period Dora patrolled from place
to place, eventually reaching the place in front of
the bedroom door. This time, the open space was
detected and a placeholder generated, triggering
the creation of the “Explore 28” goal. Because
explore goals are assigned a higher priority than
patrol goals, Dora immediately stopped patrolling
and started exploring into that open space. While
exploring, the robot detected the door and con-
cluded that this is a new, yet unknown, room.
A corresponding categorisation goal (“Categorize-
Room 3”) was created and subsequently activated.
After finding two objects, Dora concluded that
this room was in fact a bedroom. It can be noted
that during the active visual search in that room
the robot also detected more open space (cf. the
“Explore 31” goal). So, the system is capable
of handling side effects of actions. To end this

case, Dora then also explored this last placeholder,
finally accomplishing the overall task successfully.

Case C: Undetected door

Dora is designed to detect doors when passing
through them. Detection is performed by inspect-
ing the laser scan for changes in width which
might indicate the narrower passage of a door
frame. This process is not completely reliable due
to sensor noise and changes in robot orientation
when moving. This means occasionally (on 1 from
the 18 successful runs) Dora does not detect a
door when one is present in the environment.
Fig. 2(a) visualises how this occurred during our
experiments: the door between the corridor and the
first bedroom (lower right) was not detected during
the tour, so the bedroom was initially considered
to be an extension of the corridor. Later, when
Dora was exploring a placeholder close to the
door, she finally detected it (see Fig. 2(b)). This
caused the conceptual layer to revise its represen-
tation, producing two rooms from the previously
existing one (and yielding the correct map shown
in Fig. 2(c)). This case underlines the necessity
for non-monotonic reasoning and dynamic goal
generation. It was only after revising its represen-
tation in the light of new information that Dora
could determine that although it had already visited
the newly distinguished room, it still lacked a
categorisation result for it.

Case D: Timeouts and re-activations

A problem that occurs for the Dora system once
the initial tour is over is that a planned action occa-
sionally results in actual robot behaviour that both
fails to generate the intended effects, and fails to



terminate. For example, a navigation command to
move the robot to a place or placeholder may rarely
encounter a problem which gets Dora stuck some-
where, and occasionally the active visual search
will fail to find any objects at all. This problem
is due to the planning actions being an opaque
abstraction over the implementing techniques. This
abstraction prevents components performing de-
tailed reasoning about the conditions in which the
actions can safely be executed, and the full range
of their possible effects. In other words the world
model Dora uses for reasoning does not capture
the full range of (uncertain) knowledge it should.
We address this problem by taking the, admittedly
simplistic, approach of defining timeouts for the
achievement of each type of goal (as mentioned
in Sec. III-B). For instance, we set the timeout
for achieving room categorisation goals to 360
seconds. The aim of this approach is to allow
Dora to postpone goals that can’t be achieved
due to problems caused by the aforementioned
incomplete world model. In our experiments, there
was more than one such occasions per run in
average, with only 5 runs featuring no such case.

An example of this behaviour is apparent in
Fig. 3. The goal “CategorizeRoom 1” was active
from 650s–1010s, but Dora failed to categorise the
room. Instead of indefinitely pursuing that single
goal, Dora postponed it and instead continued
exploring, re-activating the still surfaced categori-
sation goal later on. The “Explore 10” goal from
the same run shows a similar life cycle.

VI. CONCLUSION

We started this paper by describing our general
view of the problems faced by a robot when
placed in an unknown environment. From this
view we derived a principle that such a robot
should be driven to ensure that its knowledge of
its environment is complete and correct. This led
us to conclude that robots must be motivated to
extend, validate and refine their knowledge in order
to provide a representation to support action. We
then described Dora, an intelligent mobile robot
which instantiates these principles using shared
representations, non-monotonic reasoning, and a
goal generation and management framework, with
a particular focus on spatial knowledge. To support
our claims we presented a comprehensive analysis
of Dora’s performance when given incomplete
tours of environment by a human, and then left to
act autonomously. The contents of Dora’s architec-
ture allowed it to successfully complete 18 out of
21 of these runs, even in the presence of errors and

unreliable perception. Only 3 of the 18 successes
were ideal cases, with the remaining 15 requiring
either goal management or non-monotonic reason-
ing to recover from one or more problems.

The analysis of the data produced by our ex-
periments has yielded further insights into the
limitations and constraints of our approach. In
future work we will use these insights to support
the introduction of non-monotonic processing into
other Dora subsystems. We will also work towards
closing the loop with humans (both during and
after the tour) in order to exploit them as an
additional source of knowledge.

REFERENCES

[1] J. Peltason, F. H. K. Siepmann, T. P. Spexard, B. Wrede, M. Han-
heide, and E. A. Topp, “Mixed-initiative in human augmented
mapping,” in Proc. Int. Conf. on Robotics and Automation, May
2009, pp. 2146–2153.

[2] G.-J. Kruijff, H. Zender, P. Jensfelt, and H. I. Christensen,
“Clarification dialogues in human-augmented mapping,” in Proc.
Conf. on Human-Robot Interaction, March 2006, pp. 282–288.

[3] K. Fischer and M. Lohse, “Shaping naive users’ models of robots’
situation awareness,” in Proc. Int. Symp. on Robot and Human
Interactive Communication, August 2007, pp. 534–539.

[4] D. Maio and S. Rizzi, “Clustering by discovery on maps,” Pattern
Recognition Letters, vol. 13, no. 2, pp. 89–94, 1992.

[5] F. Amigoni and V. Caglioti, “An information-based exploration
strategy for environment mapping with mobile robots,” Robotics
and Autonomous Systems, vol. 58, no. 5, pp. 684–699, 2010.

[6] B. Yamauchi, “Frontier-based exploration using multiple robots,”
in Proc. Int. Conf. on Autonomous Agents, May 1998, pp. 47–53.

[7] N. Hawes, J. Wyatt, M. Sridharan, M. Kopicki, S. Hongeng,
I. Calvert, A. Sloman, G.-J. Kruijff, H. Jacobsson, M. Brenner,
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A.3 A Unifying Model-Centric Analysis Approach for Robotic
Systems

Bibliography Jens Otto, Sebastian Wrede, Marc Hanheide, and Nick
Hawes. A Unifying Model-Centric Analysis Approach for Robotic Systems.
In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2011. submitted

Abstract Software engineering in robotics increasingly adopts a model-
driven approach for the development of complex robotics systems. Despite
this, popluar robotics software frameworks lack features for modeling ar-
chitectural aspects, for instance the structural decomposition of the system
architecture and its inter-process communication. The lack of modeling sup-
port in these frameworks makes it hard to design, verify and analyze robotics
systems from an architectural viewpoint. To overcome this situation, we pro-
pose a domain-specific meta-model and a corresponding analysis toolchain
which extracts models of robotics systems at runtime and is applicable to
different robotics frameworks. We show the suitability of this approach by
applying it to two service robots integrated with different robotics middle-
ware frameworks and highlight possibilities for further analysis on the basis
of the extracted models. Concluding, we discuss opportunities facilitated by
a model-centric development process for robotics systems.

Relation to WP This paper reports an approach to model-centric anal-
ysis of existing system architectures. As part of the efforts in WP1 and
WP7 to study architectures and assess the implemented system, a novel ar-
chitecture description framework with a dedicated meta-model for CogX’s
integration framework CAST has been proposed and employed in the Dora 1
system.
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A.4 A system for interactive learning in dialogue with a tu-
tor

Bibliography Danijel Skočaj, Matej Kristan, Alen Vrečko, Marko Mahnič,
Miroslav Jańıček, Geert-Jan M. Kruijff, Marc Hanheide, Nick Hawes, Thomas
Keller, Michael Zillich, and Kai Zhou. A system for interactive learning in
dialogue with a tutor. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2011. submitted

Abstract In this paper we present representations and mechanisms that
facilitate continuous learning of visual concepts in dialogue with a tutor
and show the implemented robot system. We present how beliefs about the
world are created by processing visual and linguistic information and show
how they are used for planning system behaviour with the aim at satisfying
its internal drive – to extend its knowledge. The system facilitates different
kinds of learning initiated by the human tutor or by the system itself. We
demonstrate these principles in the case of learning about object colours and
basic shapes.

Relation to WP In this paper we present George Year 2 system. We first
briefly present the individual competencies: vision (WP2), visual learning
(WP5), situated dialogue (WP6), motivation (WP1) and planning (WP4),
and then describe how they are integrated in the robot system (WP7).
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A.5 Learning to predict how rigid objects behave under sim-
ple manipulation

Bibliography Marek Kopicki, Sebastian Zurek, Rustam Stolkin, Thomas
Mörwald, and Jeremy Wyatt. Learning to predict how rigid objects be-
have under simple manipulation. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA11), May 2011

Abstract An important problem in robotic manipulation is the ability
to predict how objects behave under manipulative actions. This ability is
necessary to allow planning of object manipulations. Physics simulators
can be used to do this, but they model many kinds of object interaction
poorly. An alternative is to learn a motion model for objects by interacting
with them. In this paper we address the problem of learning to predict the
interactions of rigid bodies in a probabilistic framework, and demonstrate
the results in the domain of robotic push manipulation. A robot arm ap-
plies random pushes to various objects and observes the resulting motion
with a vision system. The relationship between push actions and object
motions is learned, and enables the robot to predict the motions that will
result from new pushes. The learning does not make explicit use of physics
knowledge, or any pre-coded physical constraints, nor is it even restricted
to domains which obey any particular rules of physics. We use regression
to learn efficiently how to predict the gross motion of a particular object.
We further show how different density functions can encode different kinds
of information about the behaviour of interacting objects. By combining
these as a product of densities, we show how learned predictors can cope
with a degree of generalisation to previously unencountered object shapes,
subjected to previously unencountered push directions. Performance is eval-
uated through a combination of virtual experiments in a physics simulator,
and real experiments with a 5-axis arm equipped with a simple, rigid finger.

Relation to WP This paper presents approaches to learning to predict
behaviour of objects during real word robot-environment interaction. The
presented work contributes to the robot system WP2 (object perception and
manipulation).
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Abstract— An important problem in robotic manipulation is
the ability to predict how objects behave under manipulative
actions. This ability is necessary to allow planning of object
manipulations. Physics simulators can be used to do this,
but they model many kinds of object interaction poorly. An
alternative is to learn a motion model for objects by interacting
with them. In this paper we address the problem of learning
to predict the interactions of rigid bodies in a probabilistic
framework, and demonstrate the results in the domain of
robotic push manipulation. A robot arm applies random pushes
to various objects and observes the resulting motion with a
vision system. The relationship between push actions and object
motions is learned, and enables the robot to predict the motions
that will result from new pushes. The learning does not make
explicit use of physics knowledge, or any pre-coded physical
constraints, nor is it even restricted to domains which obey
any particular rules of physics. We use regression to learn
efficiently how to predict the gross motion of a particular
object. We further show how different density functions can
encode different kinds of information about the behaviour
of interacting objects. By combining these as a product of
densities, we show how learned predictors can cope with a
degree of generalisation to previously unencountered object
shapes, subjected to previously unencountered push directions.
Performance is evaluated through a combination of virtual
experiments in a physics simulator, and real experiments with
a 5-axis arm equipped with a simple, rigid finger.

I. INTRODUCTION

This paper presents algorithms which learn to predict
the motion of a rigid object resulting from an robot push.
These algorithms do not rely on any encoding of Newtonian
mechanics, but can be trained online. Object interactions are
learned as distributions. Our system does not know a priori
about impenetrability, gravity, or kinematic relations between
objects, all being learned from data.

Although work has been done on push manipulation in
robots [1], [2], [3], [4] it is restricted to planar sliding
motions of what are effectively 2D objects. There is little
literature addressing the more complex problem of push
manipulations on real 3D bodies, which are free to tip or roll.
It is possible to use physics simulators to predict the motion
of interacting rigid bodies. However, this approach is reliant
on explicit knowledge of the objects, the environment, and
key physical parameters which can be difficult to tune. Even
then, such predictions may not be possible due to inherent
limitations of the physical model employed, for example
when modeling friction.

Machine learning approaches have been developed to learn

to classify or provide predictions for objects or object classes,
e.g. rolling versus non-rolling objects [5], [6], or liftable
versus non-liftable objects [7]. These kinds of approach are
limited, in that predictions learned may not be generalisable
to a new object, pose or push direction, and explicit 6-
DOF rigid body motions are not predicted. In contrast, our
approach learns to make predictions of explicit 3D rigid
body transformations. The probabilistic nature of the learning
enables generalisation to novel push directions, object poses,
and objects with novel shapes.

This paper extends our previous work [8] in three ways.
First, we modify the prediction scheme to make use of local
coordinate systems that move with parts of the object. This
improves learning and generalisation, since now we predict
relative rather than absolute changes in pose. Second, we
show how a two expert approach can be extended to include a
combination of many experts, which encode new information
about how objects interact. This change allows generalisation
with respect to both push direction, and object shape. Third,
we implement a version of our prediction scheme based
on regression, and show how it can efficiently learn the
gross motion characteristics of a particular object, although it
can struggle with certain kinds of generalisation. Finally we
present results from physical experiments in which various
real objects were subjected to complex 3D motions, such as
tipping and toppling, while pushed by a real robot. The real
experiments are additionally supported by an extensive set
of simulation experiments.

II. REPRESENTATIONS

Consider three reference frames A, B and O in a 3-
dimensional Cartesian space (see Figure 1). While frame O
is fixed, A and B change in time and are observed at discrete
time steps ..., t−1, t, t+1, ... every non-zero ∆t. A frame X
at time step t is denoted by Xt, a rigid body transformation
between a frame X and a frame Y is denoted by TX,Y .

From classical mechanics we know that in order to predict
a state of a body, it is sufficient to know its mass, velocity
and a net force applied to the body. We do not assume
any knowledge of the mass and applied forces, however the
transformations of a body, with attached frame B, over two
time steps TBt−1,Bt and TBt,Bt+1 encode its acceleration
- the effect of the applied net force. Therefore, if the net
force and the body mass are constant, the transformations
TBt−1,Bt and TBt,Bt+1 provide a complete description of
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Fig. 1. A system consisting of two interacting bodies with frames A and B
in some constant environment with frame O can be described by six rigid
body transformations TAt,Bt , TBt,O , TAt−1,At , TAt,At+1 , TBt−1,Bt ,
and TBt,Bt+1 .

the state of a body at time step t in absence of other bodies.
A triple of transformations TBt,O, TBt−1,Bt and TBt,Bt+1

provide a complete description of a state of a body in some
fixed frame of reference O which accounts for a constant
or stationary environment. Similarly, transformations TAt,O,
TAt−1,At and TAt,At+1 provide such a description for some
other body with frame A.

The state of a system consisting of three bodies with
frames A and B in some constant environment with frame
O can be described by the six transformations as it is shown
in Figure 1, where TAt,O has been replaced by a relative
transformation TAt,Bt .

The prediction problem can be stated as: given we
know or observe the starting states and the motion of the
pusher, TAt,At+1 , predict the resulting motion of the object,
TBt,Bt+1 . This is a problem of finding a function:

F : TAt,Bt , TBt,O, TAt−1,At , TBt−1,Bt , TAt,At+1 (1)

−→ TBt,Bt+1

Function F is capable of describing all possible effects of
interactions between rigid bodies A and B, providing their
physical properties and applied net forces are constant in
time, in the limit of infinitesimally small time steps. Fur-
thermore, it can be approximately learned from observations
for some small fixed time interval ∆t between time steps.

In this work, we will focus on robotic manipulations that
are performed relatively slowly, hence we assume quasi-
static conditions, and ignore all frames at time t − 1. This
conveniently reduces the dimensionality of the problem,
giving a simplified function, Fqs:

Fqs : TAt,Bt , TBt,O, TAt,At+1 −→ TBt,Bt+1 (2)

The behaviours of interacting bodies represented by rigid
body transformations as in Figure 1 are independent of their
poses with respect to some inertial frame I [9]. Therefore
instead of using inertial frame-dependent transformation
T

At,At+1

in , one can represent object transformations in the
object body frame (see Figure 2). The body frame trans-
formation T

At,At+1

body is obtained by moving instantaneous
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Fig. 2. In the above two scenes a pose change between time step t and
t + 1 as observed in instantaneous object body frame A(1) and the same
object in another instantaneous body frame A(2) given inertial frame I are
both the same. However because transformations T I,A(1)

and T I,A(2)
are

different, the corresponding transformations in the inertial frame are also

different, i.e. T
A

(1)
t ,A

(1)
t+1

in 6= T
A

(2)
t ,A

(2)
t+1

in .

frame A, so that at time t it overlaps with inertial frame
I . Given some instantaneous object frame At at time t, and
the transformation T

At,At+1

in , one can obtain transformation
T

At,At+1

body in the body frame (via a similarity transform):

T
At,At+1

body = (T I,At)−1T
At,At+1

in T I,At (3)

where we have made use of the identities T I,At+1 =
T

At,At+1

in T I,At = T I,AtT
At,At+1

body .
Given a transformation in the body frame, instantaneous
object frame At at t and using Equation (3), transformation
T

At,At+1

in in the inertial frame is given by:

T
At,At+1

in = T I,AtT
At,At+1

body (T I,At)−1 (4)

In further discussion we will retain subscripts in, but
suppress subscripts body, and assume that all transfor-
mations TX,Y are transformations in the body frame X
obtained using a similarity transform TX,Y ≡ TX,Y

body =

(T I,X)−1TX,Y
in T I,X .

Since the prediction problem is posed as finding a func-
tion, we can now apply our function approximator of choice.
In this paper we use LWPR [10] - a powerful method applied
widely in robotics.

III. LEARNING GLOBAL AND LOCAL EXPERTS AS
DENSITY ESTIMATION

Having now formulated prediction as a function approx-
imation problem, in this section we recast it as a density
estimation problem. The motivation for this is that prediction
learning using functions F or Fqs is limited with respect to
changes in shape and type of manipulation.

Consider a 2D projection at time t of a robotic finger
with global frame At, an object with global frame Bt, and
the constant global frame O (Figure 3). We can identify
local frames Al

t and Bl
t, rigidly attached to small local

planar surface patches at the contact point, or the points of
closest proximity on the object and finger. We define the
global information to be the information about changes of
the pose of the whole object, whereas the local information
is specified by changes in the local frames Al

t and Bl
t.
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Fig. 3. 2D projection at time t of a robotic finger with global frame At,
an object with global frame Bt, and a ground plane with constant global
frame O. Local frames Al

t and Bl
t describe the local shape of the finger

and an object at their point of closest proximity.

In order to combine both global and local informa-
tion, one can incorporate contact information represented
by transformations TAl

t,A
l
t+1 and TAl

t,B
l
t directly into the

domain of function Fqs. This, however, would significantly
increase the dimensionality of the function’s domain. Instead,
we recast the mapping Fqs as a conditional probability
Pqs(T

Bt,Bt+1 |·), i.e. a probability density over rigid body
transformations of the object [8]. This reformulation allows
us to combine the global and local information as a product
of densities to approximate Pqs, so that (schematically, for
some normalisation constant N )

Pqs ≈ N Pglobal Plocal (5)

where

Pglobal ≡ Pglobal(T
Bt,Bt+1 |TAt,At+1 , TAt,Bt , TBt,O) (6)

Plocal ≡ Plocal(T
Bl

t,B
l
t+1 |TAl

t,A
l
t+1 , TAl

t,B
l
t) (7)

denote the global and local density functions or “experts”
[8]. The densities Pglobal and Plocal factorise the condition-
ing variables of Pqs, and hence manage the complexity of
incorporating more information into the predictor.

The above global and local densities encode information
about which candidate rigid body transformations are more
or less feasible for each frame of reference respectively.
However, once we form the product of these two densities,
only transformations which are feasible in both frames will
have high probability in the resulting combined distribution.

The rationale for introducing global and local experts,
instead of using a straightforward function approximation,
can be explained by considering a backward-push experiment
as shown in Figure 4.

The configuration of finger and object during a backward
push is very different to those present in a training set
consisting only of forward pushes. A predictor comprised
of just a global expert will fail to generalize to a new push
direction that differs markedly from any observed in the
training set for the expert. However, by also using the local
expert Plocal, the predictor can learn that the finger does
not penetrate the object after contact. Any candidate motion
preferred by the global expert will be ‘vetoed’ by the local
expert if impenetrability is violated. Nevertheless, there are
other constraints on the object motion, such as the ground

Global (G)
predictor

Training Test

G & Local (L)
predictor

G & L & Shape
predictor

Fig. 4. Schematic diagram (2D projection of 3D scene) in which an object
(of L-shaped cross-section) on a supporting surface is pushed by a robotic
finger. Various predictors are trained solely on forward pushes (top left),
but tested on backwards pushes (top right). The top panels show the push
trajectory for the training and test phases, whereas the bottom panels show
the outputs from three types of predictor in the test phase. A predictor
comprised of just a global expert will fail to generalize, and will predict
that the object does not move as the finger passes through it (bottom left).
Adding a local expert will stop the finger penetrating the object, but does not
guarantee that the predicted object motion will respect other impenetrability
constraints (bottom middle). Finally, using an additional ‘local shape’ expert
attached to the base of the object, a physically plausible motion is obtained
(bottom right).

plane, which are not encoded by the local expert. To model
these other facts about possible object motion requires the
use of additional experts as described in the next section.

Returning to the formal development, we now consider
the relations between transformations expressed in the body
frame of the local patches and corresponding transformations
in the inertial frames. For coordinate frames as shown shown
in Figure 3, from object rigidity and using Equation (3) we
have:

TAl
t,A

l
t+1 = (T I,Al

t)−1T
At,At+1

in T I,Al
t (8a)

TBl
t,B

l
t+1 = (T I,Bl

t)−1T
Bt,Bt+1

in T I,Bl
t (8b)

where I is the inertial frame. TAl
t,B

l
t can be determined

directly from the shape frame:

TAl
t,B

l
t = (T I,Al

t)−1T
Al

t,B
l
t

in T I,Al
t (9)

For the finger-object scenario, a prediction problem can
then be defined as finding that transformation T̃

Bt,Bt+1

in in
the inertial frame which maximises the product of the two
conditional densities (experts) (6) and (7):

T̃
Bt,Bt+1

in = argmax
T

Bt,Bt+1
in

{
Pglobal Plocal

}
(10)

where the similarity transforms (3) (in frame Bt) and (8b)
must be used to evaluate Pglobal and Plocal for a given
T

Bt,Bt+1

in .
Starting with some initial state of the finger TA0 and object

TB0 , and knowing the trajectory of the finger A1, . . . AT

over T time steps, one can predict a whole trajectory of the
object B1, . . . BT , by iterating the prediction obtained from



Equation (10). That is, the output of the prediction at time t
is used as input to the prediction for the next time step.

IV. INCORPORATING INFORMATION FROM ADDITIONAL
EXPERTS

In addition to learning how an object moves in response
to a push, it is desirable to incorporate learned information
about the inherent tendencies of parts of an object to move
in various directions with respect to the environment or other
objects, regardless of whether the object is being pushed or
not. This additional information may help when predicting
the motion of a previously unseen object, or the response to
a novel push direction (Figure 4), because it provides some
prior knowledge about which kinds of motions are possible
and which are not.

We can incorporate this additional information by attach-
ing an arbitrary number of additional coordinate frames Bsnt

to various parts of the object (Figure 5).
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S 3

Fig. 5. Co-ordinate frames can be attached to an arbitrary number of local
shapes, and local experts can be learned for each of these frames, predicting
a distribution of how the frame may move next, given where it is at the
present time step.

We then learn densities, also known as local shape experts,
for the future motions of each of these frames. To obtain the
results presented in this paper, the number and location of
local shape experts on each of the different objects were
determined by hand.

The local shape densities are conditioned only on their
relative pose TESk

t ,BSk
t with respect to a corresponding pose

ESk
t of a patch on a ground plane at the present time step,

ignoring any information about the motions of the pushing
finger. For the k-th such frame, we estimate the local shape
conditional density:

Pshape,k ≡ Pshape(T
BSk

t ,B
Sk
t+1 |TESk

t ,BSk
t

) (11)

which represents the probability density over possible rigid
body transformations in the body frame of the k-th local
contact. Analogous to Equation (10), the subsequent motion
of the object in the inertial frame can be predicted as:

T̃
Bt,Bt+1

in = argmax
T

Bt,Bt+1
in

{
Pglobal Plocal

∏

k=1...N

Pshape,k

}
(12)

where N is the number of local shape experts (Figure 6).
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Fig. 6. Inputs and outputs of learned prediction system. The two-expert
approach can be extended to include opinions from multiple local shape
experts represented by coordinate frames SN .

V. IMPLEMENTATION

We have now presented two formulations of the prediction
learning problem: 1) as function approximation, and 2) as
density estimation. We have suggested that there may be an
advantage to solving the density problem by applying the
heuristic of a product of experts (densities).

Regression method. We used LWPR [10] to estimate the
mapping described by Equation (2). The regression scheme
was implemented using the LWPR software library [11].

Single expert and multiple expert methods. A variant of
Kernel Density Estimation is used to approximate conditional
densities in (12) (for details see [8]). The single expert
method employed only a global expert (6). The density
product (12) is maximised using the differential evolution
optimisation algorithm [12], which has a run time propor-
tional to the product of the population size and the number
of generations used in the algorithm. The run time also scales
linearly with the number of experts, the number of kernels
and the number of parameters used to encode the rigid body
transform.

Rigid body transformations used in both learners were
parametrised by 6 numbers: Euler angles and a displacement.

VI. EXPERIMENTAL STUDY

We have tested our prediction algorithms in a number
of experiments (see section C), in which a real robot arm
applies pushes to various real objects. The arm has accuracy
of ±1mm in the region of the contacts in the reported
experiments, and the predictors are trained on poses captured
by a particle filter based tracker, which has pose errors of the
order of ±2mm frames for most frames, with up to ±5mm
in 5% of frames for some videos where the polyflap object is
beginning to tip over. These tracking errors are significantly
smaller than the average prediction errors generated by any
of the predictors (± 20 to 80mm) as well as the differences
between those average prediction errors (± 6 to 50mm).

Section D presents the results of simulation experiments,
which are designed to test the ability of learned predictors
to generalise in various different ways. The simulation envi-
ronment usefully provides us with perfect ground-truth data



against which to evaluate predictions, and also enables a very
large number of experiments with many different values of
key parameters (e.g. shape of pushed objects). Replication
of the experiments in Section D on the real robot is planned
future work.

Section C shows that the virtual environment (using
NVIDIA PhysX) does not replicate the physical properties
of the real world perfectly. We hand tuned the parameters of
the physics engine to best fit the world, and in principle this
could also be done automatically. However, we have found
that even when optimised, the parameters neither correspond
to their true values, nor do they generalise well. However,
regardless of how well they correspond to the real world, the
simulations still provide a self-consistent experimental envi-
ronment within which to compare the accuracy of predictors
that have been trained within that environment.

A. Setup

Multiple experimental trials were performed, in which
a robotic arm equipped with a finger performs a random
pushing movement towards an object (Figure 7). In each
experiment data samples are stored over a series of such
random trials. Each trial lasts exactly 10 seconds, while data
samples are stored every 1/15th of a second.

For real experiments, we use a 5-axis Katana robotic
manipulator [13] equipped with a single rigid finger, and the
motion of pushed objects is captured using a single camera
and a visual tracking algorithm [14]. Simulation experiments
are carried out using the NVIDIA PhysX physics engine [15].

Local shape experts in the multiple expert method were
fixed by hand to a L-shaped object (referred to as “polyflap”)
as it is shown in Figure 5). In the case of a box-shaped object
(Experiments 3 and 5), there were 4 local shape experts fixed
to the edges of a box.

The bandwidth of all distributions used in the multiple
experts method as well as parameters of the LWPR regres-
sion method were tuned once by hand and kept constant
throughout all the experiments.

B. Performance measure

In all experiments, we take the output of the tracked 6D
pose of a real object to be ground-truth, and compare it
against predictions which were previously forecast by the
learned prediction system. The vision system does not pro-
vide perfect ground-truth, yielding typical errors of around
±2mm during successful tracking, or arbitrarily large errors
when the track is occasionally lost. However, comparing
predictions to the outputs of the tracker still provides some
useful information about discrepancies in the predictor, al-
though clearly the performance of the predictors is limited by
the accuracy of the data on which they are trained. Prediction
performance is evaluated as follows.

At any particular time step, t, a large number, N , of
randomly chosen points p1,tn , where n = 1 . . . N , are rigidly
attached to an object at the ground-truth pose, and the
corresponding points p2,tn to an object at the predicted pose.
At time step t, an average error Et can now be defined as the

l


Fig. 7. A 5-DOF robotic arm equipped with a finger performs a random
straight-line pushing movement of a variable length l=25±5 cm within a
cone with angle α=20 deg towards an object (top left). The movement begins
at a random location so that every small region on the upper part of an object
is equally likely to be pushed. The object behaviour can be complex and
varies depending on the finger trajectory and its pose relative to the object. In
the image sequence shown above, the object begins to rotate anti-clockwise
(top right - bottom left) before tilting (bottom right). The red wire-frame
shows the output from the vision tracking system. The green wire-frame
indicates the object pose predicted by the multiple-expert learning method,
while the blue wire-frame is generated by the PhysX simulator. Although
the PhysX predictions are qualitatively plausible, it was virtually impossible
to tune the simulator so that its predictions match reality for all training data.
Note that the entire motion sequence is predicted before the physical push
is initiated, without any correction from visual feedback during the push
execution.

mean of displacements between points on the object at the
predicted pose and points on the object at the ground-truth
pose:

Et =
1

N

∑

n=1...N

|p2,tn − p1,tn | (13)

Note that for each robotic push action, we predict ap-
proximately 150 consecutive steps into the future, with no
recursive filtering or corrector steps, hence it is expected
that errors will grow with range from the initial object pose.
We therefore find it more meaningful to normalise all errors
with respect to an “average range”, Rt, of the object from
its starting position, defined as:

Rt =
1

N

∑

n=1...N

|p1,tn − p1,0n | (14)

For a test data set, consisting of K robotic pushes, each of
which breaks down into many consecutive predictions over T
time steps, we can now define average error and normalised
average error:

Eav =
1

K

K∑

k=1

1

T

T∑

t=1

Et, Enorm
av =

1

K

K∑

k=1

1

T

T∑

t=1

Et

Rt

(15)



For each set of test data, we also report final error and nor-
malised final error, which represent the typical discrepancy
between prediction and ground truth that has accumulated
by the end of each full robotic push:

Ef =
1

K

K∑

k=1

|p2,Tn − p1,Tn |, Enorm
f =

1

K

K∑

k=1

|p2,Tn − p1,Tn |
RT

(16)

Note that both normalised errors have no units.
We performed 10-fold cross-validation where at the be-

ginning of each experiment all the trials are randomly
partitioned into 10 subsets. Prediction was then subsequently
performed (10 times) on each single subset, while learning
(only for learned approaches) was always performed on the
remaining 9 subsets of these trials. All the results were then
averaged to produce a single estimation.

C. Experiments with a real robot
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Fig. 8. Experiment 1 with a real robot and a polyflap object. Decrease in
average (left) and final (right) prediction errors with increasing number of
learning trials, for two different prediction methods.

Experiment 1: comparison of learning methods for a real
robot pushing a polyflap object. We have trained the system
on 9, 90 and 900 pushes of a polyflap object with a real
robotic finger (Figure 7). We evaluated the performance of
the multiple expert and regression methods. Figure 8 shows
that the average and final prediction error decreases with
increased number of trials used in learning for both tested
prediction methods. The multiple expert method performed
reasonably well, even when trained on as little as 9 example
pushes. The method performed particularly well with 90
learning trials, as local experts successfully prevented the
predictor from violating impenetrability constraints that were
frequently violated by the regression method. However, the
performance of the multiple expert method did not signifi-
cantly improve with 900 learning trials. One of the reasons
for this is that the visual tracking system is far from perfect.
The tracking often contains significant errors, and the quality
of tracking is not pose-independent. For example, cases of
tipping and toppling movements are particularly difficult
to track, so that the prediction system does not always
have sufficiently accurate training data to precisely learn all
possible motions.

Additionally we obtained predictions using the NVIDIA
PhysX physics simulator, with parameters hand-tuned to

NVIDIA PhysX

regression

multiple experts

0.00 0.05 0.10 0.15 0.20

Normalised average error

NVIDIA PhysX

regression

multiple experts

0.00 0.10 0.20 0.30 0.40

Normalised final error

Fig. 9. Experiment 1. Physics simulation is unable to match the perfor-
mance of learned predictors which have been trained in real experiments.

match the real system. Figure 9 presents a comparison of
the physics simulation and the learned predictors (trained
on 900 trials). Clearly, the physics simulator is unable to
match predictors trained in a real experiment, even though
the real training data contains significant errors due to
occasional failures and inaccuracies of the vision system. In
particular, the physics simulator has difficulty modelling the
frictional interactions of the real world, and often is unable
to accurately simulate a rotational movement of the object.

Experiment 2: comparison of learning methods for a real
robot pushing a small box. We have trained the system on
9, 90 and 450 pushes of a small box object with a real
robotic finger. Figures 11 and 12 show examples of the
multiple expert method making accurate predictions of the
box motion when it topples and when it rotates under manip-
ulative pushes. As with Experiment 1, the learning converges
within a few hundred example pushes. The multiple expert
performed reasonably well, even when trained on as little as
9 example pushes.
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Fig. 10. Experiment 2 with a real robot pushing a small box object.
Decrease in average (left) and final (right) prediction errors with increasing
number of learning trials, for two different prediction methods.

D. Experiments in a virtual environment

Experiment 3: extrapolative generalisation of pushing
directions. In this experiment, a virtual robotic arm applied
random orthogonal and oblique pushes to the outside of
a polyflap which were then used in training. In contrast,
the system was tasked to make predictions for previously
unencountered pushes – those applied to the inside surface
of the polyflap (thus pushing in the opposite direction to the
training pushes). We consider this to be a test of “extrapola-
tive” action generalisation, in that the push directions used



Fig. 11. Experiment 2: accurate predictions of the motion of a small box,
as it translates and rotates under a manipulative push from a real robot. The
green wire-frame indicates the predicted object pose; the red wire-frame
shows the tracked pose from the vision system.

Fig. 12. Experiment 2: accurate predictions of the motion of a small box,
as it topples over, under a manipulative push from a real robot. The green
wire-frame indicates the predicted object pose; the red wire-frame shows
the tracked pose from the vision system.

in testing are all qualitatively different from those used in
training – the test push directions do not lie in the same
region of data covered by the training examples. The regres-
sion and single expert methods failed to predict the polyflap
behaviour, and gave physically implausible predictions in
which the fingertip penetrated the polyflap (Figure 13).
In contrast, the multiple expert method gave a relatively
accurate prediction, in which even inaccurate portions of
the object trajectory were still physically plausible, and did
not violate basic physical constraints on object behaviour
such as impenetrability (Figure 13). Note that the motion
model is entirely learned – there was no pre-programming
of Newtonian laws of motion, gravity, the ground plane, or
impenetrability constraints.

Experiment 4: extrapolative generalisation to novel

Fig. 13. Experiment 3. Simulation experiment in which predictors are
trained only on pushes applied to the inside of the polyflap (moving from
right to left in the figure), but are then tested on pushes applied to the outside
of the polyflap (i.e. from left to right). The multiple expert method (left
panel) predicts a rightwards movement, that comes close to the true motion,
does not violate impenetrability, and is physically plausible. In contrast,
the regression method (right panel) erroneously predicts that the fingertip
(shown as a ball) will pass right through the polyflap. The ground-truth and
the predicted poses are shown as solid and wire-frame shapes respectively.

Fig. 14. Experiment 4. Simulation experiment in which predictors have
been trained on a polyflap, but tasked with making predictions for a box.
The multiple expert method (left panel) predicts a motion which is erroneous
(i.e. fails to predict toppling in this case), but is in the correct direction,
is physically plausible, and does not violate impenetrability constraints.
In contrast, the regression method (right panel) violates impenetrability
constraints, as does the single expert method (not shown). The ground-
truth and the predicted poses are shown as solid and wire-frame shapes
respectively.

shapes. In this experiment, the predictors were trained on
a polyflap, but were then tasked with predicting the motion
of a box - a new shape which had never been encountered in
training. This is a test of “extrapolative” shape generalisation.
The multiple expert method correctly predicts the direction
of motion of the box, and makes a physically plausible
prediction (but fails to predict that the box should topple
over) (Figure 14). In contrast, the regression and single
expert methods constantly violate physics, predicting that the
fingertip will penetrate right through the box.

Fig. 15. Experiment 5 reveals limitations of the regression and single expert
methods, which fail to predict the motion of a polyflap when subjected to a
downward push (left panel). The multiple expert method can cope well with
this kind of shape variation (middle and right panels). The ground-truth and
the predicted poses are shown as solid and wire-frame shapes respectively.

Experiment 5: interpolative generalisation to novel
shapes. This is a virtual experiment, in which all training and
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Fig. 16. Experiments 3, 4 and 5. Action generalisation errors for back
pushes (Experiment 3), shape generalisation errors for a box (Experiment
4), and downward pushes (Experiment 5).

Exp Trials Predictor Eav Enorm
av Ef Ef

norm

[m] [m]
1 900 Multi exp. 0.021 0.078 0.036 0.146

900 Regression 0.027 0.104 0.050 0.206
n/a PhysX 0.044 0.189 0.083 0.372

2 450 Multi exp. 0.023 0.085 0.037 0.136
450 Regression 0.032 0.118 0.056 0.200

3 900 Multi exp. 0.005 0.014 0.015 0.039
900 Single exp. 0.054 0.150 0.143 0.367
900 Regression 0.051 0.139 0.141 0.360

4 900 Multi exp. 0.042 0.111 0.103 0.272
900 Single exp. 0.064 0.167 0.169 0.429
900 Regression 0.045 0.118 0.093 0.233

5 900 Multi exp. 0.002 0.009 0.008 0.036
900 Single exp. 0.007 0.035 0.023 0.119
900 Regression 0.007 0.033 0.026 0.129

TABLE I
COMPARATIVE PERFORMANCE OF TESTED PREDICTORS. Eav AND Ef

ARE MEASURED IN METRES. THE OTHER MEASURES ARE UNITLESS AS

EXPLAINED ABOVE.

testing data involve polyflaps constructed from two square
flanges. Random shape variation consists in varying the
angle at which the two square flanges are connected along
a common edge. This shape variation is very significant -
dramatically changing the finger-object contact relations. For
example, depending on small changes in the angle of the
flanges, the same push from above might cause the entire
object to move either leftwards or rightwards (Figure 15).
The experiment reveals limitations of the regression and
single expert methods. Since these methods do not encode
information about the contact variability, they do not gener-
alise well in situations where small changes in shape can
cause significant and qualitative changes in the resulting
motion, even when the robotic push is the same. In contrast,
the product of experts technique copes much better with
this kind of shape generalisation. We consider this a form
of “interpolative” generalisation task, in that the test and
training shapes are qualitatively similar and the range of test
shapes can be considered to be spanned by the range of
training examples. The results are presented in Figure 16.

VII. CONCLUSIONS

This paper has presented several methods by which a robot
can learn to predict the motions of a rigid object that will
result from manipulative pushing actions. We have shown

how regression can be used to efficiently learn the overall
“global” motion of a body. We have further shown how
multi-modal distributions of local parts of the motion can
be learned by Kernel Density Estimation, and how many
of these “local” experts can be combined as a product
of densities, significantly extending the capabilities of the
system with respect to generalization.

This is the first work of which we are aware, in which
explicit predictions of 3D object motions under push ma-
nipulation are enabled without hard coding of Newtonian
physics and physical constraints, but rather by learning based
on simple proprioceptive sensing and visual observations
of manipulated bodies. The learning approach significantly
outperforms approaches based on physics simulators which
often model real world interactions poorly, and which rely on
physical parameters which may not be known. Furthermore,
the proposed multiple expert approach provides a degree of
generalisation with respect to changes in shape and applied
actions.
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A.6 Videos

A.6.1 Dora 2

http://www.youtube.com/watch?v=0QcmSDZR-c4

This video shows and explains a typical course of action when Dora is
trying to find an object. It illustrates how the probabilistic and structural
default knowledge is exploited and more efficient behaviour is generated by
the switching planner.

A.6.2 George 2

http://cogx.eu/results/george/

This video explains the main principles implemented in George. It de-
scribes the operation of the robot from a system perspective with the empha-
sis on three learning mechanisms and shows fragments of the corresponding
mixed-initiative dialogue.
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