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Over the course of the CogX project we have built a series of increas-
ingly sophisticated integrated cognitive systems that are capable of self-
understanding and self-extension. This has required us to combine several
capabilities for sensing, acting and reasoning into a coherent architecture.
We present the CogX Layered Architecture Schema (CLAS) which is a new
conceptual view of the design that we have used throughout the project.
CLAS explicitly separates a system into three functional layers: at the top
is the domain-independent deliberative layer; at the bottom is a (mostly)
domain-dependent competence layer which contains subsystems that provide
(modal) knowledge to the system and may be tasked to carry out actions;
and in the middle is the belief layer which combines information from the
competences into an amodal, probabilistic representation that is used by the
deliberative layer. We also discuss some of the methods that we used to
implement systems following this design.

1



DR 7.4: Design Methodologies for Integrated Cognitive Systems

1 Introduction 3

2 CogX Layered Architecture Schema (CLAS) 3
2.1 Mediation framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Methods for developing CLAS systems 8
3.1 Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Component interaction choices . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Testing and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Conclusion 14

References 15

A Annex 17
A.1 A Visualization and User Interface Framework for Heterogeneous Distributed

Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

EU FP7 CogX 2



DR 7.4: Design Methodologies for Integrated Cognitive Systems

1 Introduction

During the four years of the CogX project we have built a series of increas-
ingly sophisticated integrated cognitive systems which have been described
in published papers and deliverable reports1.

An Integrated Cognitive System combines multiple capabilities, includ-
ing reasoning, perception and action, in order to (robustly) achieve tasks
in incomplete, uncertain, dynamic environments. Such a system must be
capable of processing inputs from multiple modalities (e.g. vision and range
sensors, text or speech) and acting using multiple output modalities (e.g.
moving the robot base or sensors, actively capturing images or interacting
with people via speech or text-based dialogue). The core capability, how-
ever, is the ability to carry out reasoning based on models that the system
creates about the world in which it operates.

The overall aim of work package 7 was to create experimental integrated
systems and to analyse them systematically. This report addresses the last
of the specific objectives for the work package: Understanding appropriate
methodologies to empirically and formally analyse the behaviour of integrated
robot systems.

This report presents the methodology that was used to build two such
integrated cognitive systems: Dora, a mobile robot that extends its knowl-
edge of its environment [2] and George, a robot with vision and manipulation
capabilities that learns from a tutor [3]. In the next section, we describe our
design for architectures for integrated cognitive systems. We then present
some methods that we used when implementing systems following this de-
sign. Together these constitute our methodology.

2 CogX Layered Architecture Schema (CLAS)

We base our approach to architectures on that used in the CoSy project2 be-
cause the requirements against which the CoSy Architecture Schema (CAS)
[9] was developed were also valid for CogX. In particular, CAS deals with the
following run-time requirements: dynamism – the environment in which the
robot operates is constantly changing; uncertainty – sensors are inaccurate
and the robot’s actions may fail to have the consequences that were planned
for; multiple modalities – information from multiple sensory modalities must
be combined in order to make decisions, and multiple action modalities must
be used in a coordinated manner; re-taskability – the robot must be able to
switch to new tasks or interleave them with existing ones, based on goals
generated internally or by others.

1See http://cogx.eu
2http://www.cognitivesystems.org

EU FP7 CogX 3



DR 7.4: Design Methodologies for Integrated Cognitive Systems

An architecture built using CAS consists of a collection of subarchi-
tectures. Each subarchitecture contains a number of concurrently active
processing components which exchange information via a shared working
memory. Software development is carried out using CAST, a toolkit that
implements CAS [8]. Information processing is primarily event-driven – com-
ponents register change filters with working memories and receive change
events when the change filter is matched by a change to the contents of the
working memory.

In general, integration architectures following CAS are composed of a
number of (usually modal) subarchitectures which are all endowed with
equal rights, permissions, and policies. However, for systems featuring task-
driven self-understanding and self-extension, we need to have a deliberation
subarchitecture that considers existing knowledge gaps in the context of
the overall tasks given to the system, using unified, amodal, representations.
This approach (of combining modal representations into unified amodal rep-
resentations which can be reasoned with) has been taken in both the CoSy
and CogX projects. Here we present a new conceptual view of this ap-
proach which explicitly maps CAS subarchitectures into functional layers –
these layers have been implicitly present in the architectures used through-
out these two projects. We refer to this as the CogX Layered Architecture
Schema (CLAS); as shown in Figure 1. The layers can be considered to be
an organisational tool that separates the modal and amodal elements of an
architecture.

At the lowest level we have the modality specific competence layer. Com-
petences consist of a set of components designed to jointly provide a certain
rather well encapsulated and independent behaviour or functionality. A
competence can be thought of as a subsystem that provides knowledge to
the system and which can possibly be tasked to carry out actions. Com-
petences are inherently domain-dependent and the ones present in different
CogX systems vary. Most of the competences are realised by a single sub-
architecture (some subarchitectures may provide multiple competences) but
some competences require cross-modal interactions and hence are provided
through the collaboration of multiple subarchitectures. For example, the
Dora system includes competences to build and navigate maps, categorise
places and manage dialogue, which are realised in the dedicated subarchi-
tectures “spatial”, “categorisation”, and “dialogue”, respectively. It also
includes competences to search for objects and persons, and these are pro-
vided by a combination of components within the “spatial” and “vision”
subarchitectures.

The deliberative layer at the top of the architecture contains motivation
management and planning components . This layer is shared across differ-
ent CogX systems (both Dora and George) and is designed to be domain-
independent. The “switching planner” uses either a continual planner or a
decision theoretic planner depending on the robot’s subjective degrees of be-
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Figure 1: CogX Layered Architecture Schema (CLAS).
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lief (see below) and progress in plan execution. Motivation management pri-
oritises the execution of goals given to the robot or generated internally [1].

In between the competence and deliberative layers, the belief layer ful-
fills three main functions: (i) select (modal) information gathered through
different competences; (ii) maintain relations between pieces of information
(entities); and (iii) unify the gathered and pre-defined knowledge of the sys-
tem into a formal amodal, probabilistic representation facilitating reasoning
and planning within the deliberative layer. The binding subarchitecture
fills this role in the George system. In the Dora system we consider the
conceptual and default subarchitectures to be in this layer.

In CogX, we represent beliefs as multivariate probability distributions
over logical formulas [14]. They constitute the main representational frame-
work in the belief layer, and this formalism is domain-independent and used
by both George and Dora. Multiple inference mechanisms can be used. In
Dora, the probabilistic relations between entities are encoded in a conceptual
map and a probabilistic inference mechanism using chain graph reasoning
can infer new, unseen relations [11, 7]. In George, Markov Logic Networks
are used to infer relations and references for shared beliefs.

The belief layer as a whole (including the probabilistic relations and
the pre-defined knowledge) forms the probabilistic belief state that is then
accessible to the deliberative layer, i.e. the planning framework. There
is a clear separation between the layers, as the planners cannot access any
information in the competence layer. This strict decoupling ensures that the
top layer remains domain-independent. To actually devise plans, the belief
layer representation is compiled into a DTPDDL [5] state that represents
the initial state of the planning problem.

The actual information encoded in the belief layer is domain-dependent,
according to the domain model (used for planning) and the mediators (see
below) deployed.

The representation and processes that form the belief layer have certain
requirements that need to be fulfilled:

• Coverage: Because of the strict decoupling, the belief layer needs to
cover every aspect that shall be considered in planning. Anything
that is not translated into the belief layer will not be accessible to the
planners.

• Traceability: In order to be able to relate any generated plans back
to the original information generated in the competence layer, back-
references always have to be maintained for any information in the
belief layer.

• Recency: The representation needs to be kept up to date, i.e. effects
of actions observed in the world need to be propagated through the
belief state in a timely way.
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Figure 2: An excerpt from the Mediator class hierachy

• Consistency: The overall state needs to be both structurally and prob-
abilistically consistent. This entails that all entities that are referred to
from relations need to exist and be valid, and also that all probabilities
fulfill the basic laws of probabilistic calculus, e.g. that probabilities
for one random variable sum up to 1.

2.1 Mediation framework

All of these requirements are met by the mediation framework, which is im-
plemented as part of the belief layer. The general idea for mediators is that
they are small, computationally light-weight, and reusable components that
are specialised for different types of information generated on the compe-
tence level. There are a number of different abstract types which can be
specialised. Coverage is assured by the specialisation that selects exactly
the information required from the dedicated working memories and trans-
lates it into the belief structures. When we talk about small components
here, we refer to the fact that the whole framework is not implemented as
one monolithic block, but that for each modal type of information (e.g. the
detection of an object announced in the visual working memory) there is
one mediator each which monitors the shared memory space in the system
for the addition, deletion or modification of any such entity it is registered
for. As a consequence, our current systems feature between 5 (George)
and 10 (Dora) different mediators. The decomposition into individual com-
ponents in CAST contributes to the “recency” as updates are dispatched
asynchronously and can occur in parallel as all processing in mediators fol-
lows the event-driven processing paradigm. Of course this yields issues for
synchronisation, and in consequence consistency, which need to be addressed
explicitly by those mediators.

As described earlier, there is a hierarchy of abstract components that
can be specialised for the individual types (excerpt depicted in Figure 2).
Hence, the framework is easily extensible. The most simple abstract me-
diator is the SimpleTransformMediator which monitors one specific type
and transforms the modal, domain-specific data type into a belief structure
by selecting relevant information. It does not require any other information
or relate to anything outside the currently processed entity. It ensures con-
sistency by making sure that any generated distribution over logical forms

EU FP7 CogX 7



DR 7.4: Design Methodologies for Integrated Cognitive Systems

follow the laws of probabilistic calculus (and normalises accordingly if they
don’t) and by processing modifications to the belief in the order of events re-
ceived. Based on this simple mediator a DependentTransformMediator im-
plements an abstract class to implement mediators that need to consult other
information not available in the entity that raised the event or that have to
maintain or form a relation to another belief. These mediators need to make
sure that the information they consult or refer to is (i) already present as a
belief, (ii) is up to date, and (iii) that the correct reference (realised through
unique CAST IDs) is available. Such DependentTransformMediators fea-
ture support for this through appropriate synchronisation techniques, that
will invoke a separate worker thread that waits for any references to “exter-
nal” information to be available in the belief state before committing the
update itself. This certainly results in delays as there are synchronisation
points introduced in the otherwise asynchronous dispatch. However, this is
unavoidable if one needs to ensure consistency. These two subclasses are
the major abstract mediator types. They also maintain a full history over
any entities that contributed to the respective belief to allow to refer back
to the original source and implement traceability.

An example is the ObjectMediator, which translates detection of an
object into a belief about the existence of that object at a particular place
in the world. It is a subclass of the DependentTransformMediator. There-
fore, this mediator conceptually monitors both the “Object Search” and the
“Mapping & Navigation” competences. Whenever a new object detection
occurs it is published on the “vision” working memory (in accordance with
the general CAS processing principles). This sighting will be picked up by
the mediator and will be related to the current location, obtained from the
“spatial” working memory, to form a belief that comprises a relation to the
place where the object has been seen.

3 Methods for developing CLAS systems

In this section we present some of the methods that we developed when
implementing actual system architectures following our proposed schema.
Systems built following CLAS (using CAST) are inherently concurrent and
this can lead to complex interaction patterns between components. Sections
3.1 to 3.3 describe design patterns that can be used to control the interac-
tions between components via command strucutures on working memories.
Section 3.4 and 3.5 describe how the shared state space provided by the
working memories can be exploited for testing, debugging and visualisation
using tools that we have developed in CogX.

EU FP7 CogX 8
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3.1 Synchronisation

We have described how the mediators provide synchronisation between knowl-
edge held within individual competences and knowledge held in the belief
layer. There is also a need to provide a degree of sychronisation between
the planner and the competences which carry out actions specified in the
generated plans, in order to avoid frequent changes to the data on which
the planner operates. Crucially, if the planner is triggered while the robot is
still moving, the resulting plan is likely to be based on outdated information,
leading to re-planning and unnecessary processing. It may also cause the
planner to conclude that an action it has just taken was unsuccessful, erro-
neously, because the results of the action did not yet have time to appear
on the working memory.

Hence the need to ensure synchronisation between, for example, the
movement competence (provided by the spatial subarchitecture) and the
planner. This is achieved by placing command structures on working mem-
ory at the competence level. The planner writes actions for execution (which
are translated by the (domain specific) Executor (cf Figure 1) into actions
understood by the competences), and it is up to the executing competence to
guarantee that all of the effects of the action are present, and that the state
is stable, before the action is flagged as complete. Inside the subarchitec-
ture itself, the action is decomposed into various activities, also controlled
by command structures placed on the working memory. These too carry
completion flags which are overwritten once the activity is complete, allow-
ing synchronisation both with the planner and within the subarchitecture
where necessary.

3.2 Component interaction choices

One of the key features of CAS (and therefore also CLAS) is that infor-
mation is shared between components by writing it in structures held in
working memories that are (potentially) accessible for any other compo-
nent to read and update. This has the benefits of reducing the coupling
between components and of exposing information for introspection by addi-
tional components (e.g. for visualisation, see section 3.5).

Plan execution in a robotic system involves controlling hardware – for
example, using a manipulator to pick up an object or moving the robot base
to a new location. The closed loop control necessary for such subsystems is
not naturally expressed using interactions on working memories. Similarly,
interfacing with sensors is more naturally done using a remote procedure call
(RPC) framework to inject sensor data into components in the competence
layer. To this end, an RPC facility was added to CAST to provide both
another form of publish-subscribe communication (the other being registra-
tion for changes on working memories and subsequent propagation of change
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events) and service calls to trigger processing in specific Server components.
The existence of the RPC framework led to some developers choosing

to use it for interactions between components within the competence layer.
This was done for two main reasons: for convenience (because it is easier to
think in those terms rather than in terms of working memory interactions);
and for performance (holding the obstacle map in a single component which
can perform calculations on behalf of other components is faster than sharing
the obstacle map via working memory). However, undisciplined use of RPC
can lead to complex inter-dependencies between components and, moreover,
it breaks the information sharing approach by passing data directly between
components.

A design pattern was therefore developed to implement service calls over
working memory (WM) interactions via a request-reply protocol. The proto-
col is based on WM entries that have three parts: the request, the result and
the status. The request and the result are arbitrary data structures. The
status represents three general states of the WM entry: ‘init’; ‘succeeded’;
and ‘failed’. The caller starts the communication when it writes a new WM
entry. The initial status of the entry is ‘init’ and the request field is filled.
Then the caller waits for an overwrite change event on the written entry. In
some cases the caller component implements a time-out which aborts the
communication if the processing of a request takes too long. In this case
the overwrite event is ignored, but the callee is not notified. A ‘cancel’ state
could be added in the future, to avoid nugatory processing in the callee.
The callee waits for a WM-ADD event. When it arrives, the parameters of
the call are read from the WM entry and processed. If processing is suc-
cessful the callee fills the result part of the WM entry and sets the status
to ‘succeeded’. Otherwise the result part is invalid and the status is set to
‘failed’.

Using this request-reply protocol allows developers to avoid the need for
protective measures (such as locks on data structures) in the server compo-
nent.

3.3 Transactions

A transaction groups multiple interdependent actions into an atomic unit
of work in order to ensure that the state of the system is maintained in a
consistent state. Event-based systems do not naturally support transactions,
so a design pattern has been developed to allow these to be carried out
efficiently. The pattern is to use a dedicated control structure on working
memory, as described below.

An example transaction in the Dora system is map loading. In many
cases, it is desirable to start the system with a degree of knowledge already
gathered from earlier runs. As this knowledge is stored distributed over
multiple components, some care is required when restoring the knowledge
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state.
The basic method is for each component to load its state from a file,

and process the items as they arrive, in the same manner as when they
are created during a live run. However, this can be problematic when the
knowledge in one component is in relation to that in another. For example,
observations of the shape properties of a Place are naturally dependent
upon the existence of that place; similarly, knowledge pertaining to rooms
is dependent upon the Places constituting that room. When the robot is
running, these dependencies are satisfied naturally by the order in which
each item is first created.

A related issue is that some components do expensive processing in re-
action to each new map item added to working memory; processing which is
overridden if more data is added immediately afterward. This includes the
conceptual map inference procedure which runs afresh with each new Place
added. During map loading the intermediate map states are of no use to
the system and represent a waste of resources.

To address these issues a map loading control structure is created on the
working memory. This structure has flag fields which allow each component
involved in loading a map to signal when it has completed its own portion
of the load process, and has written to WM the entirety of its loaded state.
Other components dependent on this state can then proceed with their own
intialisation.

3.4 Testing and Debugging

Developing and debugging concurrent systems that consist of large numbers
of components (about 100 in Dora v4) is hard. We adopted standard best
practices of using a continuous integration system3 to build the software and
run tests every night (using the Stage simulation4). We regularly ran the
systems on the real hardware in realistic environments.

Debugging also needs introspection of state at runtime. One of the sig-
nificant benefits of having a shared state space is that it is easy to write
additional components that can monitor working memory interactions and
display working memory contents. We ported the data-driven failure detec-
tion approach developed at Bielefeld University [6] to the Dora system and
a final-year undergraduate student at the University of Birmingham carried
out some initial investigations as to its efficacy for detecting failures due to
the absence of expected working memory interactions. Early results were
promising although we have some concerns over its relevance to the types
of system errors that we tend to encounter most often. We developed a
Working Memory Editor component that uses the Java reflection API to
both display the contents of selected working memory contents in a human

3http://jenkins-ci.org/
4http://playerstage.sourceforge.net/
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readable format and also enable the contents to be changed at runtime –
which is useful for generating test cases.

3.5 Visualisation

The use of visualisation tools is essential, both during development and de-
ployment (in our case, when carrying out experiments or demonstrating the
system’s capabilities). A visualisation and user interface framework has been
developed that was designed to support complex, potentially distributed,
systems such as those we have developed.

The framework is client-server based. The main part of the framework
is the Display Server with a public API implemented on top of the TCP/IP
protocol. The clients can establish a 2-way communication with the server.
Visualisation data is sent from the clients to the server while user interface
events are optionally sent from the server to the clients. The server manages
the received data and composes the data into configurable 2D, 3D or HTML
views that are displayed on demand. A more detailed description of the
visualisation framework is given in Annex A.1 [10].

For visualisation of data with a metric spatial interpretation in the Dora
system, the open-source tool Peekabot5 is used. Peekabot is a client-server
architecture where the server does the displaying, and multiple clients may
connect over a network to add different 3-dimensional graphical primitives.
This feature is very useful in a system with multiple, separate components,
since it allows each to provide its own data for visualisation independently.
This is especially true for debug visualisation.

The system instantiates a central visualisation component that is tasked
with displaying spatial knowledge that appears on the working memory –
including the robot and its position, places, and objects, as well as inferred
conceptual information. Reading this information from the WM ensures
that visualisation accords with what all the other components of the sys-
tem receive; its “public state”. By constrast, information displayed directly
by the various processing components themselves pertains to their respec-
tive internal state, and can be used to verify the proper functioning of the
component itself; this includes such things as raw sensor data and obstacle
maps. Figure 3 shows an example of Dora visualisation in Peekabot.

5http://www.peekabot.org/
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Figure 3: Peekabot visualisation for the Dora system. Obstacles are shown
as green blocks. The Places used for planning are shown as pins on the
ground, together with the paths connecting them. The “pie charts” around
each Place represents the confidence in various classifications of the room
in question. Blue dots and beige rectangles show laser scans and SLAM
line features, respectively, while a red pyramid shape represents a view cone
used to search for an object. Each component in the system can contribute
its own visualisation independently.
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4 Conclusion

We have described our methodology for building integrated cognitive sys-
tems using layered architectures that separate domain independent function-
ality for deliberative processing (goal management and planning) from (typi-
cally) domain specific competences that provide (typically modal) knowledge
about the world and may be taskable to act in the world. The separation is
achieved by combining knowledge from the competences into a probabilistic
belief state that is used by the deliberative layer.

The CogX Layered Architecture Schema is a subspace of the CoSy Ar-
chitecture Schema. Each of the layers consists of one or more subarchitec-
tures which each has a working memory. In this layered design, access to
the shared working memories is restricted to components in adjacent layers
only.

The integrated cognitive systems that we have produced, George and
Dora, show that this approach can be used successfully to support the type
of knowledge handling required for a system that reflects on its knowledge,
detects knowledge gaps and plans for knowlege gathering actions. In partic-
ular, the deliberative layer, the representations in the belief layer, and many
of the competences, are common to both systems.

There is a clear tension in a cognitive robotic system between the needs of
the higher and lower levels. The high-level, deliberative, part of the system
requires a centralised representation of beliefs for which the CAST approach
of shared working memories (shared knowledge and shared state) has been
shown to be a good one. For low level components that consume sensor
data or control hardware, a more natural approach would be to use pub-
lish/subscribe or service calls. For components within the competence level
a mixture of the two approaches can be appropriate. The approach taken
by the NIFTi project [4] is to use CAST for high-level, cognitive, compo-
nents and ROS [12], which provides both stream-based communication and
services, for lower-level subsystems.

We believe that the event-driven paradigm, used by CAST, is well-suited
to support a number of different interaction patterns such as working mem-
ories, data publishing, and also remote procedure calls. This has also been
considered by other recent middleware frameworks such as the Robotics
Service Bus[13]. CAST could be extended to provide the state-free mes-
sage passing that ROS offers (through topics) – for example, by adding
“non-persistent” memories that allow components to “add” (publish) data
which is propagated to subscribing components – in order to use a single
middleware for the whole system.
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user interface framework for heterogeneous distributed environments. In
MIPRO, 2012 Proceedings of the 35th International Convention, Opatija,
Croatia, May 2012. Attached paper, Annex A.1

Abstract Systems that require complex computations are frequently im-
plemented in a distributed manner. Such systems are often split into com-
ponents where each component is employed to perform a specific type of
processing. The components of a system may be implemented in different
programming languages because some languages are more suited for express-
ing and solving certain kinds of problems. The user of the system must have
a way to monitor the state of individual components and also to modify their
execution parameters through a user interface while the system is running.
The distributed execution and programming language diversity represent a
problem for the development of graphic user interfaces.

In this paper we describe a framework in which a server provides two
types of services to the components of a distributed system. First it manages
visualization objects provided by individual components and combines and
displays those objects in various views. Second, it displays and executes
graphic user interface objects defined at runtime by the components and
communicates with the components when changes occur in the user interface
or in the internal state of the components.

The framework was successfully used in a distributed robotic environ-
ment.

Relation to WP In this paper we present a client-server oriented visu-
alisation framework that is used for monitoring the operation of a running
system and is an important tool for the integration (WP7) and presentation
(WP9) of the system.
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A Visualization and User Interface Framework
for Heterogeneous Distributed Environments

Marko Mahnič, Danijel Skočaj
University of Ljubljana, Faculty of Computer and Information Science

Abstract—Systems that require complex computations are
frequently implemented in a distributed manner. Such sys-
tems are often split into components where each component
is employed to perform a specific type of processing. The
components of a system may be implemented in different
programming languages because some languages are more
suited for expressing and solving certain kinds of problems.
The user of the system must have a way to monitor the state
of individual components and also to modify their execution
parameters through a user interface while the system is run-
ning. The distributed execution and programming language
diversity represent a problem for the development of graphic
user interfaces.

In this paper we describe a framework in which a server
provides two types of services to the components of a
distributed system. First it manages visualization objects
provided by individual components and combines and dis-
plays those objects in various views. Second, it displays and
executes graphic user interface objects defined at runtime
by the components and communicates with the components
when changes occur in the user interface or in the internal
state of the components.

The framework was successfully used in a distributed
robotic environment.

I. INTRODUCTION

Complex integrated systems often have to perform
different complex tasks in parallel. For example, an intel-
ligent cognitive robotic system has to be able to execute
various tasks, which may heavily differ in complexity,
requirements, and implementation of the corresponding
solutions. Because of the complexity such a system is
often implemented as a set of components that run in
different threads across different processes running on
different computers. Each component might be developed
in a different programming language, either because the
problem it solves is best expressed in that language or
because of a developer’s preference.

The operation of the system has to be monitored and
controlled while the system is running. Often a graphic
user interface (GUI) provides both the means to visualize
the results and the inner state of the system and a set of
actions that the user can execute to modify the behavior
of a running system. It is very important for such a system
to offer a user-friendly user interface that enables efficient
interaction with the system. It is of equal importance to
enable visualization of additional information about the
execution of the system, at different levels of detail, which
also enables efficient debugging and thorough analysis of
such an integrated system. Due to the distributive and
non-homogeneous nature of such a system, a centralized

control and monitoring of the execution is a very chal-
lenging task.

In the research community the importance of develop-
ment of efficient visualization tools and user interfaces is
often under emphasized. Since the main focus of interest
in research is targeted on the research work and problem
solving, less attention is usually payed on the development
of user interfaces (UI). This is even more true when the
research involves multi-threaded or distributed systems in
which a component and its UI run in distinct processes on
separate computers. Quite often the component provides
some kind of UI while it is being developed on its own but
when the component runs with other components the UI
is disabled because of incompatibility with the rest of the
system. While such components could be controlled and
monitored when developed and used in isolation, such an
approach is completely inappropriate when the component
is used as a part of a wider integrated system. It does
not allow for display of information that the user would
require, nor does it allow for efficient debugging of such
a system.

In this paper we present our solution to this problem.
We have developed a framework1, that enables efficient
visualization and UI management in heterogeneous dis-
tributed environments. The framework provides a server
whose primary task is the management and rendering of
objects that represent the information about the results
or inner state of a running system at different levels
of detail. The display objects are provided by different
components and are combined by the server into views
which are rendered in an arbitrary number of frames.
The server displays UI elements such as tool buttons and
dialog windows provided by the components and notifies
the components when actions are performed on those
elements, thus enabling the control of the components.

The paper is organized as follows. In the following
section we define the problem and then present our
solution in Section III as well as implementation details in
Section IV. In Section V we describe the implementation
of the proposed framework in a distributed robotic system.
We conclude the paper with the final discussion and
concluding remarks in Section VI.

II. PROBLEM DEFINITION

As soon as the processing is distributed across multiple
threads, the complexity of the user-interaction subsystem

1The source code is available at https://github.com/mmahnic/cogx-
display-server.



raises. Even more so when the application is split into
multiple processes running on multiple computers (nodes)
possibly under different operating systems and using
different programming languages for the development
of components that constitute the system. In a highly
configurable and scalable system the components can be
configured to run all in a single process or each in a
process dedicated to it. Running a component isolated in a
process is desired when the component is being developed
and tested. In a production environment, especially when
the components share a lot of data it may be more efficient
to execute many of them in a single process using multiple
threads.

In a GUI application based on a standard framework
like Qt, GTK or Java Swing, there is usually a dedicated
thread that processes UI events. The developer has to
be careful not to do too much processing in the event
handling procedures, otherwise the UI code doesn’t run
often enough and the interface becomes unresponsive.
Instead, working threads are created that process the
data and pass the results back to the event processing
thread for display or further processing. The resources
for visualization are shared between multiple threads and
the developer must pay a lot of attention to proper inter-
thread protection mechanisms.

Standard frameworks like Qt or GTK allow only one
event thread so loading two or more components that
implement their own UI would create additional event
threads and crash the application. For this reason the UI
is usually implemented in a separate component, which is
often part of the main application. This means that each
component has to be developed in two parts: one part
that does the actual work on a remote node and one that
provides the UI for the component. The UI part can be
either a source-level module for the main application or
a plugin that can be loaded into the main application at
runtime.

The two parts of the component may be developed
in different languages. Because of this it is usually
impossible to establish the communication between the
parts using communication protocols provided by the
framework like Java Remote Method Invocation (RMI).
Instead, special protocols have to be developed or a more
generic communication infrastructure has to be used.

By analyzing these problems we arrive at the following
technical requirements that the visualization and user
interface framework should fulfill:

• It should make the visualization of different infor-
mation coming from different parts of a distributed
system centralized and clear.

• It should reduce the amount of communication
needed to transfer the visualization data to the server.

• It should reduce the problems of UI inter-thread
communication.

• It should be scalable in the sense that new compo-
nents and new servers can easily be added.

• It should allow simple extension of existing compo-
nents to support such kind of visualization and UI.

• It should support the development of components in
different programming languages.

We are not aware of any system that would fully meet
these requirements and that would use a dedicated server
for the management and execution of user interfaces de-
fined by remote components at runtime. The technologies
that are the closest to this idea are the X-Window System
and Web Browsers. In X-Window System a client applica-
tion can be configured to export it’s display to a different
machine. This requires that a component is implemented
as a GUI application which is most often not desired.
Web browsers display user interfaces that are generated
by remote servers. Until recently only simple interfaces
could be created but with the emergence of HTML 5 and
WebGL [1] this will improve. For security reasons a Web
browser page can only receive data from a single server
so it can’t communicate with each component separately.
Instead an additional intermediate server is required to
integrate data provided by multiple components.

In the development of robotic systems the Robot Op-
erating System (ROS) [2] is becoming widespread. It
supports two types of visualization. The first type is the
off-line visualization of the messages of various types that
were sent between individual components and were stored
in a log file. The second is the on-line 3D interactive
visualization of the systems state. The client interfaces
exist in C++ and Python.

Other applications that are more task specific, such as
Peekabot [3], are also used for 3D visualization, however
they are not as general as the framework presented in
this paper and they do not address all the requirements
listed above. Having these requirements in mind, we have
designed the system that is described in the following
section.

III. A DISTRIBUTED SYSTEM

As shown in Figure 1 the system has a central dis-
play server that communicates with multiple local and
remote client processes. In every client process a set

Remote Process 1

C1 C2 C3

Remote Process 2

C4 C5

Local
Process 

C7

C8

Display
Server

C6

Fig. 1. Components running in multiple local and remote processes
send objects to the display server and receive events from the UI
elements.



of components is running each in its own thread. The
mapping between processes and components is arbitrary
although the components that process similar data are
often instantiated in the same process.

The components generate and process data. The data
may represent the end result of the processing or serve
as input for other components. One could imagine that
several types of data could be considered. Because of
the variety of data and its interpretation, the display
server doesn’t try to visualize raw data. Instead, the
client components transform the raw data into display
objects (raster images, SVG images, 3D models, HTML
documents) and send them to the server. The server keeps
the objects until they are replaced or deleted and combines
them into user-defined views. The display server creates
windows on demand and offers a quick way to switch
between different views in every window.

The components that support user interaction prepare
the UI elements and send them to the display server which
stores them and displays them when necessary. Simple UI
elements are associated with views and are displayed in
a dynamic toolbar of a window whenever an associated
view is displayed in the window. Dialog forms are usually
more complex so they are displayed in special dialog
windows. Each dialog form is displayed on a separate
page of a tabbed control.

HTML documents can also be used for user interac-
tion if they contain specially prepared elements. In this
case the display server injects additional code into the
document that generates events for the client component
when an active element is clicked or sends the values of
the fields of a form to the component when the form is
submitted.

IV. IMPLEMENTATION DETAILS

A. The Overall Structure

The display server is internally split into three loosely
coupled components: the public Ice interface, the model
and the GUI. The significant components of a client and
a server are shown in Figure 2.
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Fig. 2. The architecture of the framework

The public interface provides a proxy through which
the clients can send requests for adding and modifying
display objects, views and UI elements that are managed
by the server. Each connection from a client runs in a
new thread, but the threads are protected from each other
by the use of locking mechanisms.

The objects are stored in various containers in the
model of the display server. The model implements only
the storage for the objects and is not aware of the types
of objects it stores. This makes the model independent of
the framework chosen for the implementation of the GUI.

The GUI is implemented with the Qt framework [4].
The framework was chosen because it is one of the
most widespread open source C++ frameworks supported
on multiple platforms. It offers excellent support for
visualization of data in 2 and 3 dimensions and it embeds
WebKit [5], one of the most advanced web browser
engines. The communication between the Qt UI elements
(widgets) is based on signals that are emitted when
various events occur. The signals integrate easily with
other non-UI elements and they were used to implement
the event proxies in our framework.

The development environment of the Qt framework
provides also and excellent form designer. The designed
forms are stored as XML documents that can be compiled
into native code of an application or loaded into a running
application and instantiated without compiling. On top of
all a scripting engine is integrated into the framework with
which it is possible to create and execute code on the fly.

B. The Communication Interfaces

The distributed system is built on top of the Zero C’s
Internet Communications Engine (Ice) [6], [7] which pro-
vides the infrastructure for communication between the
components of the system. The communication is based
on remote method invocation (RMI). The communication
interfaces (structures, classes and service interfaces) are
defined in Specification Language for Ice (Slice). Slice
compilers generate communication interfaces for many
programming languages and the generated code is easily
integrated into the components.

The display server Ice service provides only one-way
communication so the clients can only send the data to the
server. The clients that want to handle events emitted by
the UI elements they create, have to instantiate an Event
Receiver Ice service and register it with the server. Once
the connection is established the server starts notifying
the client about the UI events.

C. Views

A view is an entity that holds a list of visualization
objects to be displayed in a window of the graphic user
interface. It is associated with one of the rendering context
types: 2D scenes, 3D scenes and HTML documents.

A view is hidden until the user selects it for display
in a window. At that point a rendering context is created
for the view. When the objects of a view are rendered,
each object is asked to provide a renderer for the view’s



rendering context. If an object can’t provide a renderer,
it is skipped.

When a view is being displayed, individual objects
and/or their parts can be hidden by the user. The in-
formation about the visibility is stored with the view
since an object can be displayed in multiple views and
keeping visibility information with the object would hide
that object in all views. A view is also associated with
a list of simple UI elements defined by the clients. The
UI elements are added to a dynamic toolbar when the
view is shown in a window and removed when the view
is hidden. Currently only tool buttons are supported.

D. The User Interface Elements

When a component has complex settings that require
more than simple tool buttons, forms can be used. The
framework takes advantage of the Qt XML format that is
used to describe the user interfaces and of the scripting
engine.

The component that needs a form-based interaction
with the user sends two documents to the display server.
The first is the XML document with the design of the form
and the second is the JavaScript code that represents the
logic of the form. The display server instantiates the form
and waits for the user to interact with it.

The communication between the component and the
form is implemented in the following manner. Whenever
a value has to be passed from the form to the component
the function provided by the display server that accepts an
ID and an object is called from JavaScript. This function
transforms the object into JavaScript Object Notation
(JSON) [8] and sends it to the client as an event with
the ID and the data. The component can set the values of
the form if it sends JavaScript code to the display server.
The code is executed in the scripting engine that belongs
to the form and executes its logic.

E. Visualization Objects

The display server supports the following basic types
of objects: raw and encoded raster images, SVG images,
HTML documents and Lua OpenGL scripts. All objects
except raster images can be composed of multiple parts
which can be manipulated individually by the client.
This greatly reduces the amount of data that has to be
transferred from a client to the display server.

1) 2D Objects: Raster images are transfered from a
client to the server as arrays of bytes. Images may be in
any format supported by the Qt library. When the server
receives a raster image it converts it to an uncompressed
RGB image which is suitable for fast rendering.

SVG images were added to the system as a way
to overlay annotations on raster images. For this rea-
son the display server renders only self-contained SVG
documents that don’t reference any external resources
like raster images. To add annotations to an image the
client creates an SVG document with the annotations and
defines a view that includes both the raster image and the
SVG document.

2) HTML Objects: HTML objects are composed of
multiple chunks that belong either to the head or to the
body of the document. The chunks are merged into a full
HTML document every time any of the chunks is updated,
but only if the document is being displayed in a window
and the auto-refresh option is enabled in the GUI.

HTML chunks can contain active elements such as
forms or (active) HTML tags that notify a display client
on onClick events. When such chunks are rendered into
the full document additional JavaScript and HTML code
is added to the document. This code generates events for
the display client when an active element is clicked or a
form is submitted.

3) 3D Objects: To keep the Ice interface simple we
use the Lua programming language [9] with the LuaGL
extension [10] to represent objects in our visualization of
3D scenes. Lua is a scripting language that is used in a
wide range of industrial applications and in particular it
is a leading language in game development. It is simple,
fast and easily embeddable into applications. It’s written
in strict ANSI C so it is quite easy to write extensions in
C/C++. The LuaGL extension maps OpenGL C functions
and constants to Lua. With this it is possible to define 3D
objects and entire scenes by calling OpenGL functions
from Lua scripts.

3D objects are composed of multiple parts and every
part is a Lua script. The scripts are created by the clients
and sent to the display server. A LuaGL object is rendered
into a 3D context by executing the scripts of all its parts.

In a complex 3D scene it is sometimes difficult to find a
view that shows it in a way that gives the most information
to the user. For this purpose a display client can define
positions and orientations of the camera from which the
objects it creates are best visible. These camera positions
show up in the display server GUI as tool buttons and
the user can easily switch between different views of the
scene.

V. IMPLEMENTATION IN A ROBOTIC ENVIRONMENT

A. Description of the Environment

The cognitive robot that we have developed as a part
of the CogX project [11] is a mobile platform that uses
various sensors such as range lasers, odometers, video
cameras and microphones. The cameras are mounted on
a pan-tilt unit (PTU) and a robotic arm is mounted on
the robot base. The robot is used in different scenarios
employing a different set of sensors and performing
different operations in each task. Because of the diversity
and complexity of the tasks the system was designed to
work as a set of components distributed over a network
of computers (nodes).

The system is based on the CoSy Architecture Schema
Toolkit (CAST) [12] that provides the environment in
which the components can communicate with each other.
The communication is based on a set of working memo-
ries (WM) that also serve as the containers of entries that
represent the robot’s state and knowledge. The system
doesn’t have a central server. Instead a set of CAST
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Fig. 3. The components of a cognitive robotic system. The large area on the top left represents the components, the connections between them and
the data they produce. On the right and on the bottom are the windows of the display server showing different views, objects and dialogs created
by the components.

servers is started on every node, one for each supported
programming language: C++, Java and Python. To load
the components into the servers a CAST client is used
that reads a configuration file with the descriptions of the
components and sends to every CAST server information
about which components to load and what configuration
parameters to pass to them.

B. Visualization of the System’s State

The components of a cognitive robotic system that
learns in interaction with a tutor about the properties of
objects [13] are displayed in the top left part of Figure
3. The components generate various visualization views
which are also displayed in the figure. Before the display
server was introduced every component managed its own
interface. Components that had a GUI interface created
a number windows on multiple computers. Components
used a logging system or even terminal output to display
meaningful information about their state. This way the
information about the system’s state was spread across
multiple graphic or terminal windows on different com-
puters. Furthermore the components were not able to
cooperate in the generation of complex views.

The centralized visualization server we have developed
significantly alleviated the problems mentioned above and
solved the visualization problems in a systematic way. In
the following we describe the visualization interface that
we introduced into the system and show a few example
views that are displayed during the execution of the
system. A very brief description of some of the processes

is also given to better illustrate the type and diversity of
the data that is being displayed. A detailed description of
the system and individual components is omitted, since it
is beyond the scope of this paper.

In Fig. 3-a we see an example of cooperation of two
components. The Video Server generates images that
are displayed in a 2D view and are annotated with an
SVG line provided by CSOI analyzer that shows the
direction of the next camera move. In Figures 3(b-c)
the same view is displayed but with different objects
enabled with the tool buttons of the dynamic toolbar. The
view is built with the cooperation of three components.
The Coarse PPO displays the 3D point cloud (Fig. 3-b),
the detected principal plane (red line) and the spaces of
interest (SOIs) which are potentially the objects that the
robot learns about. The components CSOI Analyzer and
Object Analyzer process the SOIs and create new entities
that represent stable SOIs and recognized objects. The
objects from all three components are displayed in a 3D
view shown in Fig. 3-c.

The Visual Learner is the component that has the
knowledge about object properties. Its input are seg-
mented images which are provided by the Segmentor
component. Segmentor extracts an area which represents
the object from a video image using the information
stored in a SOI. The result of the segmentation is dis-
played in a 2D view shown in Fig. 3-d. On the left side
of the window in Fig. 3-d a list box with a list of available
views is shown. Typically a running system creates more
than 40 different views and the list box enables the user



to quickly switch between the views.
The models that the Visual Learner is using for the

recognition and represent the knowledge are shown in
Fig. 3-e. After a successful recognition an image with
the recognition results is created which is shown in Fig.
3-f. The Visual Learner is written in Matlab and doesn’t
communicate directly with the display server. Instead it
writes the figures and the HTML documents to the disk
where they are picked up by the File Monitor component
(not shown) which sends them to the display server every
time they are changed. With the use of the File Monitor
any application that can write a file can be integrated with
the framework with only minor modifications.

Fig. 3-g shows a 2D view with an SVG document that
displays the settings of the motivation subsystem and the
status of the goals that the robot may achieve. A surfaced
goal is passed to the Planner that creates a plan with a
set of actions that lead to the achievement of the goal.
An example of a graph for a plan is shown in Fig. 3-h.
The displayed plan is an SVG document generated by
Graphviz [14] which is called by the File Monitor every
time the Planner writes a file with a textual description
of the graph.

Two dialog forms are shown in Figures 3(i-j). In Fig.
3-i a form created by the PTU control enables the user to
manipulate the pan-tilt unit manually. In Fig. 3-j a form
created by a component from the Dialog SA provides a
way to interact with the robot by typing and is used when
speech recognition is not reliable.

Additionally the server manages various HTML doc-
uments that are generated by different components. One
kind of document is a table of WM entries of a certain
type that is created by a WM Viewer and is composed of
WM entries serialized into HTML chunks that represent
table rows. One document is created for each type of
WM entry that the user wants to monitor. The Component
Status document holds information about the states of the
components that provide the chunks for the document.
The Visual Learner component uses an HTML document
with buttons and loads a different database when a button
is pressed. Each component can generate an arbitrary
number of additional HTML documents. This way the
user can monitor the state of individual components as
well as of the entire system all the time, at any level of
detail.

VI. CONCLUSION

In this paper we addressed the problem of visualization
and user interface in heterogeneous distributed
environments. It is important for such a system to
offer a user-friendly user interface that enables efficient
presentation of results and interaction with the system,
as well as visualization of additional information
about the execution of the system, at different levels
of detail, which also enables efficient debugging and
thorough analysis of such an integrated system. In this
work we analyzed the requirements of a visualization
and user interface framework, presented the designed

solution that fulfills these requirements and described the
implementation details. The framework provides a server
whose primary task is the management and rendering of
objects that represent the information, which is supposed
to be visualized to the user. The display objects are
provided by different components and are combined by
the server into views which are rendered in an arbitrary
number of frames. The server also displays UI elements
such as tool buttons and dialog windows that enable the
user to control the components.

We showed how the proposed framework was used
in the case of an integrated cognitive system. It proved
to be very useful for the development and use of this
system. The centralized visualization server enables more
efficient and focused monitoring of the execution of the
system, which significantly helped to solve problems on
the system level, as well as to debug the individual com-
ponents while working in the integrated system. In this
way, the visualization and user interface server facilitated
integration work and helped to increase the robustness
of the system, as well as significantly improved the user
experience for the final user of the system.

Since the design and implementation of the proposed
framework are very general, the presented solution can
be applied to a variety of problems that are modeled
with heterogeneous distributed systems. It is relatively
easy to integrate it with any application that is able to
communicate through the Ice system. And if that isn’t
possible the File Monitor component can be used for
visualization of data produced by the application using
file-based communication.

VII. ACKNOWLEDGMENT

This work was supported by the EU FP7 IP “CogX:
Cognitive Systems that Self-Understand and Self-Extend”
(ICT–215181) and by the Research program P2-0214(RS).

REFERENCES

[1] “WebGL,” http://www.khronos.org/webgl.
[2] “ROS (Robot operating system),” http://www.ros.org.
[3] “Peekabot,” http://www.peekabot.org.
[4] “Qt - Cross-platform application UI framework,” http://qt.nokia.

com.
[5] “The WebKit open source project,” http://www.webkit.org.
[6] M. Henning, “A new approach to object-oriented middleware,”

IEEE Internet Computing, pp. 66–75, 2004.
[7] “ZeorC, the home of Ice,” http://www.zeroc.com.
[8] “Introducing JSON,” http://www.json.org.
[9] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes, “The

evolution of Lua,” in Proceedings of the third ACM SIGPLAN
conference on History of programming languages, 2007.

[10] “OpenGL binding for Lua 5.1 and 5.2,” http://luagl.sourceforge.
net.

[11] “CogX - cognitive systems that self-understand and self-extend,”
http://cogx.eu.

[12] N. Hawes and J. Wyatt, “Engineering intelligent information-
processing systems with cast,” Advanced Engineering Informatics,
vol. 24, no. 1, pp. 27 – 39, 2010.
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