
EU FP7 CogX
ICT-215181

May 1 2008 (52months)

DR 9.2:

Title

P. Jensfelt, Nick Hawes & Michael Zillich

KTH

〈patric@kth.se〉

Due date of deliverable: July 31, 2009
Actual submission date: July 27, 2009
Lead partner: KTH
Revision: final
Dissemination level: PU

This document describes the CogX Summer School organised at KTH in
Stockholm, Sweden March 1-7, 2009. This was the first out of three Summer
Schools planned for. The main parts of the school were, invited talks to
provide a glimpse of activities in related projects, tutorials covering the use
of the common software and hardware in CogX and a project to be solved
in groups to get hands-on experience and act as a team building activity.

1 Tasks, objectives, results 4
1.1 Preparations . 4

1.1.1 Project Work . 5
1.1.2 Lessons Learned . 6
1.1.3 Relation to the state-of-the-art . 6

2 Proceedings 7

1

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Executive Summary

The first out of three Summer Schools planned for in the CogX project was
organised by KTH March 1-71, 2009. As promised in the workplan for the
project, rather than having many invited speakers and a full schedule which
is the standard setup for summer schools, the emphasis was on hands-on
project work. The rationale behind this being that participants should get
to use the common hardware platform and sensors as well as work with the
common software platform CAST [1].

There were two invited speakers. Giorgio Metta from the Cognitive
Humanoids Laboratory at the Italian Institute of Technology presented the
work on the iCub and the software framework YARP2 (Yet Another. Robot
Platform) which has gained a lot of interest in the robotics community. Marc
Hanheide from the Applied Informatics group at the University of Bielefeld
presented the group’s work on cognitive systems such as the work on active
memory architectures that is of particular interest as it is similar in spirit
to the CogX approach but with interesting differences.

At the end of the week, each participant had helped create one of six
integrated systems where components, both new and existing had been com-
bined to allow the robot to move around autonomously and visually detect
objects. The summer school provided an important opportunity for the
participants to meet and interact both in work and social situations. In-
tegration is at the heart of an IP project and knowing the hardware and
software system as well as each other are important ingredients for making
this process smooth and efficient. To conclude, the summer school was very
successful.

Role of the Summer Schools in CogX

The CogX project aims not only to contribute new theories but also to
implement and create instantiations in robots to test these theories. In
CogX the Summer Schools provide an important vehicle towards this.

The objectives of the CogX Summer Schools include:

• train the researchers in the techniques and tools to be used in the
project, and in the methods employed in the state of the art in the
community.

• efficiently communicate knowledge to the researcher, both from exter-
nal parties in the form of invited speaker and researchers within the
consortium

1Sunday to Saturday
2developed for the iCub but not limited in use to it

EU FP7 CogX 2

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

• increase impact of the dissemination by including external parties (in-
vited speakers and participants) in the summer school who get a close
at the project

• build strong connections between the researchers within the consor-
tium by getting together for an extended time, interacting in working
and as well as social contexts

Contribution to the CogX scenarios and prototypes

The first Summer School introduced the common hardware and software
platforms. Because CogX builds on a software framework (CAST) devel-
oped in CoSy it was important that new researchers were familiarised with
this integration tool. All integration in CogX is done using CAST. In addi-
tion CAST underwent a significant revision early in CogX, primarily to the
underlying communication framework. This meant it was important that
researchers familiar with CAST were able to understand the impact of these
changes. Finally the consortium purchased six identical robot platforms to
support integration as well as training. To enable early integration it was
important that CAST and key components and sub- architectures (naviga-
tion, mapping, object recognition) were tested with the robots. In addition
the task picked was the active visual search part of the Dora scenario. The
spring school in Stockholm enabled us to fulfil all these requirements. It has
therefore made a very important contribution to scenario based integration.

EU FP7 CogX 3

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

1 Tasks, objectives, results

1.1 Preparations

As already mentioned the summer school aimed at introducing the hard-
ware and software that is going to be used in the project. To this end a
large portion of the school was allocated to project work where each partici-
pant worked actively with both hardware (platform, sensors, computers) and
software (architecture framework (CAST), components, algorithms, etc) in
a group of 4-5 people.

The six identical robot platforms bought by the project for the integra-
tion effort and training were retrofitted after the summer school instead of
as initially planned before. There were two important reasons for this. The
design of the platform has an important impact on the rest of the project
and it is therefore essential that it is well done. The summer school provided
valuable input for this process. A simpler robot setup for the school with
a single camera and a laser scanner provided a better balance in terms of
hardware complexity as it was the first contact with robotics for some of the
researchers. There was thus, no superstructure, no arm, no pan-tilt-unit,
and only one instead of three cameras. In hindsight it is clear that this was
the right decision. The challenge was just right with the intermediate setup
and some of the experience from the summer school could go into the final
design of the robot platform.

In terms of software, the common architectural framework CAST [1] was
largely re-implemented before the summer school using a new underlying
communication framework (ICE instead of CORBA). Each participant was
asked to install CAST before arriving at the summer school and go through
a tutorial illustrating CAST. This worked well and saved time at the summer
school.

CAST divides the system into so called subarchitectures (SAs). Two
such subarchitectures were prepared for the participants to use, the vision
SA and the navigation SA. The vision SA provided means to acquire images
(from file or camera) and perform object detection using the FERNS based
planar object detector by Vincent Lepetit et al [2]. The navigation SA pro-
vided means to move the robot without running into obstacles and perform
localisation and mapping [3]. An introduction with all participants of each
SA was given in a lecture like fashion, followed by a hands-on tutorial that
illustrated the finer details of the components in each SA.

Given these basic building blocks a task was designed for the project
where each project group would need to add some functionality and equally
important get valuable experience in integrating it all. The task was in-
spired by the active visual search task for the Dora integration scenario. It
consisted of moving through the environment looking for objects and move
these objects to a designated drop-off area.

EU FP7 CogX 4

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

In addition to the project work and introduction to software and hard-
ware used in the project, two invited speakers were invited. Giorgio Metta
from the Cognitive Humanoids Laboratory at the Italian Institute of Tech-
nology presented the work on the iCub and the software framework YARP.
Marc Hanheide from the Applied Informatics group at the University of
Bielefeld presented gave an overview of the group’s work on cognitive sys-
tems and went in to detail about the their work on active memory archi-
tectures which is of particular interest as it is similar in spirit to the CogX
approach but with interesting differences.

In addition to the scientific program there was a program for social
integration to even further make people interact and get to know each other.
All but the last lunch was organised for all to have together and most dinners
were also common. A tournament was organised in the indoor sport ”floor
ball” which is one of the most popular sports in Sweden but not played in
many other countries.

The full program for the summer school, a more detailed description of
the project task, the SA tutorials and the slides presented by the invited
speakers can be found in the proceedings at the end of this document.

1.1.1 Project Work

All participants where divided into project groups. This included PIs and
one of the invited speakers. The two main factors when forming the groups
were i) to make people that would work together later start to know each
other and ii) to distribute the knowledge and skills as evenly as possible
among the groups. The tutorials introducing the two SAs provided the
foundation for the task that had to be solved by each group. Wednesday
afternoon to Saturday lunch was set aside for each group to work on the
project without any tutorials or invited talks. All groups but one managed
to build a system that could move the robot through the environment and
search for objects. Most groups detected at least one object. One group
successfully completed the task by transporting one object to the drop-off
area.

Looking more closely at what the groups implemented, integrated and
tested reveals that all groups were able to build maps and localise and move
around autonomously in the environment. All groups could use the object
recogniser and train it on novel objects and thereby expand the set of known
objects. Most groups created a sensor model for the FERNS object detector
to be able to incorporate the information provided it in a probabilistic way.
Most groups had a strategy for exploring the environment and most groups
even had a strategy for grabbing the object to be able to move it.

EU FP7 CogX 5

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

1.1.2 Lessons Learned

Given the aims of the summer school, the decision to only have two invited
speakers was good. In fact, one might have been enough to even further
emphasise the work on the project task which in the end probably would
have helped the overall CogX integration project more. Ensuring a common
view both in terms of software and hardware is very valuable. It creates a
better understanding and makes people more open to accept that problems
in other domains than their own can be equally challenging and effectively
illustrates that integration is hard, very hard.

Each participant also learned that even with limited time, a small group
of people working together can accomplish very much. The importance of
communication in this process was also highlighted. This experience will in
the integration effort in the project.

1.1.3 Relation to the state-of-the-art

During the first year the main emphasis was on getting all members in the
project comfortable to work with the software framework used in the project
and get some hands-on experience using the common robot platform. As
such, the work was not aiming at state-of-the-art in the work but to build
the group and set the stage for moving beyond state-of-the-art in the future.

References

[1] N. Hawes, A. Sloman, J. Wyatt, M. Zillich, H. Jacobsson, G. J. Krui-
jff, M. Brenner, G. Berginc, and D. Skočaj, “Towards an integrated
robot with multiple cognitive functions,” in Proceedings of the Twenty-
Second Conference on Artificial Intelligence (AAAI 2008), R. C. Holte
and A. Howe, Eds. Vancouver, Canada: AAAI Press, July 2007, pp.
1548 – 1553.

[2] M. Ozuysal, P. Fua, and V. Lepetit, “Fast Keypoint Recognition in Ten
Lines of Code,” in CVPR’07, 2007.

[3] J. Folkesson, P. Jensfelt, and H. Christensen, “The m-space feature rep-
resentation for slam,” IEEE Transactions on Robotics, vol. 23, no. 5, pp.
1024–1035, Oct. 2007.

EU FP7 CogX 6

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

2 Proceedings

The proceedings is a modified version of the proceedings handed out to the
participants of the CogX School. Most of the local information has been
removed and some of the information that was only provided online on the
CogX intranet has been included.

EU FP7 CogX 7

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Proceedings for
CogX “Spring” School

Stockholm, March 2009

P. Jensfelt, N. Hawes & M. Zillich

Table of contents
1. Program
2. Task overview
3. nav.sa tutorial
4. vision.sa tutorial
5. Invited talk Tuesday 3/3: Giorgio Metta
6. Invited talk Wednesday 4/3: Marc Hanheide

EU FP7 CogX 8

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Program

Sunday 1/3

Time Activity
day Arrival
19:30- Dinner

Monday 2/3

Time Activity
09:00-09:15 Introduction (Jeremy)
09:15-09:40 Local arrangements (Patric + Jeanna)
09:40-10:30 Practical content overview (Nick)
10:40-11:00 Coffee, CAS floor 5
11:00-12:30 Installation and setup (Patric, Nick, Michael)
12:30-14:00 Lunch Syster & Bror
14:00-14:30 nav.sa (Patric)
14:30-15:40 nav.sa tutorial
15:40-16:00 Coffee
16:00- nav.sa tutorial
19:00- Dinner

Tuesday 3/3

09:00-10:40 Invited talk Giorgio Metta
10:40-11:00 Coffee
09:40-10:30 Invited talk Giorgio Metta, cont’d
12:30-14:00 Lunch Syster & Bror
14:00-14:30 vision.sa (Michael Z.)
14:30-15:40 vision.sa tutorial
15:40-16:00 Coffee
16:00- visions.sa tutorial
19:00- Dinner

Wednesday 4/3

09:00-10:40 Invited talk Marc Hanheide
10:40-11:00 Coffee
09:40-10:30 Invited talk Marc Hanheide, cont’d
12:30-14:00 Lunch Syster & Bror
14:00-15:40 Project work
15:40-16:00 Coffee
- Optional visit at Nordiska Museet or Vasa museeum
18:00- Dinner

EU FP7 CogX 9

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Thursday 5/3

09:00-09:30 Inspection of the test area
09:30-10:40 Project work
10:40-11:00 Coffee
09:40-10:30 Project work
12:30-14:00 Lunch Syster & Bror
14:00-15:40 Project work
15:40-16:00 Coffee
16:00- Project work

Friday 6/3

09:00-10:30 Inspection of the test area
10:30-11:00 Travel to “Frescatihallen”
11:00-13:00 Innebandy tournament
13:00-14:00 Change and lunch
14:00-15:40 Project work
15:40-16:00 Coffee
16:00- Project work

Saturday 7/3

09:00-14:00 Final tuning and lunch on your own
14:00-17:00 Project presentations
17:00-18:00 Closing the spring school (Jeremy)

EU FP7 CogX 10

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Task Overview

CogX “Spring” School
Task Overview

EU FP7 CogX 11

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Carrie, The Robot Gopher
• The robot starts from a fixed point in a known

environment.

Carrie, The Robot Gopher
• It must find 3 target objects amidst

distractors....

EU FP7 CogX 12

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Carrie, The Robot Gopher
• ... and return them to a fixed collection point.

• How they’re moved is up to you!

Objects and Environment

• The task area will have multiple rooms linked by
a corridor.

• Each object will:
• be planar, with at least 2 distinct sides,

• be at least 35cm tall,

• have a (fairly) distinct set of colours,

• be placed on the floor in a room.

• The environment will also contain distractor
objects.

• Start and end points will be clearly, visually,
marked during the preparation period.

EU FP7 CogX 13

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Carrie-on Items

• You will be provided with two CAST
subarchitectures (navigation and vision) to get
you started, plus a training environment and
objects.

• You can modify anything you like about the
software and hardware.

• However, all sensing and actuation must be done
on the mobile platform.

• And the objects must not be modified.

Schedule

• Monday & Tuesday: instruction on the robot and
the navigation and vision subarchitectures.

• Wednesday & Thursday: inspection of the test
area, development.

• Friday: development and Innebandy for seeding.

• Saturday am: test area reconfigured for
mapping, and test objects available.

• Saturday pm: show time!

EU FP7 CogX 14

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Red Team
Ivana

Marko
Charles
Alper
Moritz

Yellow Team
Hendrik

Vero
Patrick
Alen
Marc

Green Team
Kristoffer

Luka
Kai

Richard
Thomas K

Blue Team
Rustam
Yasemin

Thomas M
Pierre

Purple Team
Adrian
Manuel
Michael

GJ

Black Team
Andrzej
Andreas
Sergio
Danijel

Groups

Human In-The-Loop

• Map the area by hand (i.e. pen and pencil)

• One person drives the robot using the joystick,
but is only allowed to look at the map.

• The remaining team members act as sensors:

• rangers: can only shout distances.

• object detectors: can only shout class labels, distance and
relative orientation.

• bumpers: can only shout “BUMP!”

• Try to navigate through a cluttered
environment.

EU FP7 CogX 15

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

CogX Spring School ’09: Getting Started Guide

After coffee find your group and retire to your team HQ. These are all on
CAS floor 5 and are as follows (including which robot you will be bonding
with):

1. Red Team: Room 521, BHAM robot

2. Yellow Team: Room 518, ALU robot

3. Green Team: Room 525, KTH robot

4. Blue Team: Room 513, TUW robot

5. Purple Team: Room 519, DFKI robot

6. Black Team: Room 520, UOL robot

The two remaining rooms open to us are 514 and 523. These are room in
which you can test your robots (lookout though, 514 may also contain some
humans!). Please do not use any other rooms as these are working offices
for our hosts and another department.

Once you’re in your room one of the organising team will come along and
give you a quick overview of the robot and answer any burning questions
you may already have. In the meantime, we suggest you go through the
following steps.

1. Get yourself on the wireless network. There are two SSIDs for the
school: cogx24 (2.4 GHz band) and cogx5 (5 GHz band). They both
have the same WPA password: cogxxgoc.

2. Check out a copy of your group’s subversion repository. Each group
has a repository containing all the supplied code which only they can
read from and write to. To access it do the following (where ? should
be replaced by the list number which mentions your group above):

svn co https://codex.cs.bham.ac.uk/svn/nah/cogx/css09/group?/trunk

3. Using this newly checked out code, compile and install CAST.

4. you have not completed the CAST tutorial yet, shame on you! Do so
now.

5. If you get this far you can try installing the prerequisites for the nav-
igation subarchitecture.

6. Once over that hurdle, do the same for the vision subarchitecture.

7. Is that the time? Go for lunch!

EU FP7 CogX 16

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Project: Competion Scores

Score Sheet

• Each object found: +1 point.

• Each object returned: +4 points.

• Object touched by human, or robot assisted in obtaining or releasing
object: -3 points (-2 in rooms and corridors, -1 in drop-off area)

– Robot and human must be stationary.
– Human can only touch an object previously touched by the robot.
– Human cannot move feet when holding object.
– Human cannot move feet when holding object.

• Marks for overall style: +5 points.

– System crashes or restarts –
– Human steering or assistance –
– Robot in control of a human ++

• In the event of a tie on points, the quicker team will win. The clock
will start

• In the event of a tie with no separating time, a final task will be used
to separate the teams.

System, Objects and Environment

• Each object will:

– be planar, with at least 2 distinct sides,
– be at least 35cm tall,
– have a (fairly) distinct set of colours,
– be placed on the floor in a room.

• The environment will also contain distractor objects.

• Start and end points will be clearly, visually, marked during the prepa-
ration period.

• The task area will have multiple rooms linked by a corridor.

• You can modify anything you like about the software and hardware.

• However, all sensing and actuation must be done on the mobile plat-
form.

• And the objects must not be modified.

EU FP7 CogX 17

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

The Competition Day Itself

In the morning each team will be given at least 30 minutes in the test
environment and at least 30 minutes with the test objects. The environment
will be as it will be for the test, minus the target and distractor objects
(which will be repositioned for each team).

In the afternoon you will be given a strict 30 minutes to perform the
task. The clock will start when the previous team has vacated the test area.

EU FP7 CogX 18

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

The Navigation Subarchitecture - nav.sa

The navigation subarchitecture or nav.sa for short is responsible for main-
taining the lower levels of the spatial representation, keeping the robot lo-
calized and for moving it around in the environment. The lower levels of
the spatial representation refers to a metric, line based map and a so called
navigation graph that encodes free space and its connectivity.

Installation

CURE To build and run the nav.sa you need to have CURE installed.
CURE is a software package developed at KTH aiming at providing a ”turn
key solution” for navigation, localization and mapping. Most of the com-
ponents in the version of nav.sa that you will be working with are in fact
wrappers around components in CURE. CURE also contains some nifty lit-
tle helper classes for performing transformations between coordinate frames
and working with matrices. To install CURE you need to do the following.
Below, $COGX ROOT is the place where you got the code for the summer
school, that is the directory where the css folder resides.

sudo apt-get install automake autoconf libtool
cd $COGX_ROOT
svn co https://codex.cs.bham.ac.uk/svn/nah/cosy/development/kth/cosycure
cd cosycure
./do-it-all.sh

This will install cosycure in the directory cosycure itself. When you build
the nav.sa you need to specify where CURE is installed and in the example
above that would be in $COGX ROOT/cosycure.

Peekabot Peekabot is the visualization tool used in nav.sa. It is not
strictly necessary to have peekabot installed but working with nav.sa is
much easier when you see what is going on ”inside” it. The homepage of
peekabot can be found at http://www.peekabot.org. You need boost 1.35
to compile peekabot plus some additional libraries. Under ubuntu 8.10 you
would need to do

sudo apt-get install libboost1.35-dev libfltk1.1-dev libpng12-dev
libxerces-c2-dev bzr libfreetype6-dev libglut3-dev libtool
automake autoconf
cd <SOMEWHERE NICE>
bzr branch lp:peekabot
cd peekabot
autoreconf -i
./configure

EU FP7 CogX 19

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

make
sudo make install

If you’re on an Intel Mac you can install the binary version of Peekabot
from sourceforge. This is not the latest and greatest version, but it should
be enough to get you started. Peekabot allows you to load model from file.
These models could for example be of robot base, arms and objects that the
robot can recognize. Some of these models have been made specifically for
CoSy/CogX. The models are found in subarchitectures/nav.sa/config/peekabot-
models. You need help peekabot to find these models. There are two ways
to accomplish that. One is to copy the files from the subdirectories models
and scenes into the corresponding directories under /.peekabot. The other
way to do it is to configure peekabot to look in for model and scene files
directly in the nav.sa subdirectory. You do this by editing the file /peek-
abot/config.xml. You need to add paths to the scenes and models directories
under the ”model dir” section and a path to the scenes directory under the
”scene dirs” section. When you have compiled and installed peekabot and
made the CogX model files available you should be able to test the instal-
lation by starting peekabot with ”peekabot&” and selecting ”Load Scene”
under the File menu. If you enter ”CogXp3.xml” you should see a model of
the CogX demo platform. If you get a black screen instead of a 3D scene, you
may have to deactivate the 3D visual effects of your desktop (on Ubuntu:
System –> Preferences –> Appearance –> Visual effects). If you want to
update peekabot from the repository you do

cd peekabot
bzr pull
make
sudo make install

Player To interface all(?) the hardware except cameras (so robots, lasers,
etc) we use player at the bottom. The main advantage of this is that it
allows us to run the system in simulation without any changes to any of
the code in the system. You should use player version 2.1.1. If you get
player 2.1.1 from sourceforge you will need to edit some files to get it to run.
Therefore we recommend that you download the version linked to below
instead We use player 2.1.1 since the 2.1.2 has a broken driver for the P3DX
robots it seems. Before compiling player please install the ltdl development
files (stage needs player to be compiled with it)

sudo apt-get install libltdl7-dev libgtk2.0-dev

Also make sure that you have the file /etc/X11/rgb.txt. Get a copy of
it under subarchitectures/nav.sa/config/rgb.txt and copy it into /etc/X11
Building and installing player follows the standard automake routine

EU FP7 CogX 20

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

./configure
make
sudo make install

Stage Download stage 2.1.1. Building and installing stage follows the
standard automake routine

./configure
make
sudo make install
sudo ldconfig

When you run configure make sure that stage finds your installation of
player. Otherwise it will not build the stageplugin for player. To test that
the installation worked do

cd stage-2.1.1/worlds
player simple.cfg

this should bring up a window with a simulated world. If not follow the error
messages (did you install the rgb.txt as instructed when building player? Did
you install libltdl-dev before building player? If not fix and re-configure and
recompile player and then stage) subarchitectures/nav.sa + tools Besides
CAST itself the code that is relevant when using the nav.sa is

subarchitectures/nav.sa/
tools/hardware/robotbase
tools/hardware/laser
tools/hardware/utils

Build it in the standard cmake style, i.e. go into the BUILD directory and
make sure that these are set to compile

Components

The following section will describe the components inside the nav.sa. The
most important files in nav.sa are found in {{{subarchitectures/nav.sa/src/slice/
subarchitectures/nav.sa/src/c++/components/ }}} The first is where you
find the NavData.ice file that defines the structures used inside the SA. The
latter contains the components that do processing.

SlamProcess This component has as its main task to keep track of the
position of the robot. It does so either in SLAM mode in which case it
estimates the map as well as the pose of the robot, or in localization mode
where a map is given and only the robot pose is estimated. This component
will write/overwrite a NavData::RobotPose object with information about

EU FP7 CogX 21

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

the current robot pose to working memory. It will also write the current
NavData::LineMap to working memory.
Needs: LaserServer, RobotbaseServer running

OdomLocalizer This is a dummy component that translates Robotbase::Odometry
from the RobotbaseServer into NavData::RobotPose and writes this to work-
ing memory. The idea is that you can use this in cases where you for one
reason or another do to want to run the SlamProcess to do real localiza-
tion/SLAM but still need a NavData::RobotPose updated when the robot
is moving.
Needs: RobotbaseServer running

NavGraphProcess This component builds a navigation graph consisting
of nodes (NavData::FNode) and edges (NavData::AEdge) connecting these.
The nodes represent free space where the robot has been and the edges con-
nectivtity between them. Together the nodes and the edges model the free
space and how to move in it. The nodes can be of two types, normal nodes
and gateway nodes. The latter are doors and these divide the graph into
topological units (ideally roughly corresponding to rooms). It detects the
doors using the laser scanner. It looks for openings of a certain width that
the robot is in, i.e. it can only detect a door if it is in it.
Needs: LaserServer, RobotbaseServer running and NavData::RobotPose (from
SlamProcess or OdomLocalizer)

NavControl This component handles the motion of the platform. If you
want to move the robot you should write a struct NavData::NavCommand
to the nav.sa WM. The enum NavData::CommandType tells what command
types that are available. It uses the navigation graph produced by the Nav-
GraphProcess to know how to move from A to B.
Needs: LaserServer, RobotbaseServer running, NavData::RobotPose (from
SlamProcess or OdomLocalizer) and NavData::NavGraph (from NavGraph-
Process)

TranslationProcess The task of this component is to listen for mes-
sages/events of type NavData::NavCommand and translate these into struc-
tures of type NavData::InternalNavCommand which is what the NavControl
component is controlled by.
Needs: nothing

DisplayNavInPB This component display the robot when it is moving
around, the line map, the navigation graph with object, etc
Needs: peekabot

EU FP7 CogX 22

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

CureDataLogger This component can log scan, odometry and world po-
sition to file
Needs: LaserServer, RobotbaseServer running and optinal NavData::RobotPose
(from SlamProcess if you want the world position)

EU FP7 CogX 23

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Tutorial: nav.sa

Part I : Getting to know what is there

Hooking up to the robot with Player/stage

Stage To start things off fire up stage by opening a new terminal window
and

cd subarchitectures/nav.sa/config/stage_models/cas_floor7
player cogxp3.cfg

This should open up a window with a model of the 7th floor of CAS. It
looks much like the 5th floor where you are probably now.

Attach a joytsick to the computer (which cannot be a Mac at this point,
sorry GJ!). Run the cast-file

subarchitectures/nav.sa/config/tutorial/first-glance-1.cast

If you look in the system log (with ”dmesg” or ”tail /var/log/messages”)
you should see something similar to this

[14700.596136] usb 5-1: new low speed USB device using uhci_hcd and address 8
[14700.806095] usb 5-1: configuration #1 chosen from 1 choice
[14700.869442] input: Logitech Logitech Cordless RumblePad 2 as /devices/pci0000:00/0000:00:1d.0/usb5/5-1/5-1:1.0/input/input11
[14700.892134] input,hidraw0: USB HID v1.10 Gamepad [Logitech Logitech Cordless RumblePad 2] on usb-0000:00:1d.0-1

You should now be able to drive the robot around inside stage using the
gamepad. Things should run just fine without a gamepad but you cannot
drive the robot around.

Using the gamepad To move the robot using the gamepad you always
need to keep key ”5” pressed. You move the robot with the left joystick. If
you simultaneously press key ”6” you will force the translation speed to be
0 (ie will not listen to the forward/backward motion of the joystick). Key
”8” does the same for rotation. These last two buttons are handy when you
want to drive straight or turn on the spot.

5 dead switch (all control requires this to be pressed)

6 set translation speed to 0

8 set rotation speed to 0

left joystick : move around

EU FP7 CogX 24

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Player with the real robot Now to do the same as above but with the
real robot all you need to do is to change the configuration file for player.
You are provided with a config file that should work

subarchitectures/nav.sa/config/player_cfg/botx.cfg

This file looks like

driver
(

name "p2os"
provides ["odometry:::position2d:0"

"sonar:0"
"power:0"
"bumper:0"

]
port "/dev/ttyUSB11"
pulse "2"

)

driver
(

name "urglaser"
provides ["laser:0"]
port "/dev/ttyACM0"

)

Before you firing up player you need to connect the hardware to the
computer that will run player. When you connect the usb-serial adapter
connecting the robot to the computer you should see something like this in
the system log (with ”dmesg” or ”tail /var/log/messages”)

[14653.876305] usb 5-1: new full speed USB device using uhci_hcd and address 5
[14654.033388] usb 5-1: configuration #1 chosen from 1 choice
[14654.037772] pl2303 5-1:1.0: pl2303 converter detected
[14654.054593] usb 5-1: pl2303 converter now attached to ttyUSB0

The key here is the device name, in this case ttyUSB0. It should match
the one in the configuration file.

When you connect the laser scanner to the computer you should see
something like

[14667.556288] usb 5-1: new full speed USB device using uhci_hcd and address 6
[14667.720818] usb 5-1: configuration #1 chosen from 1 choice
[14667.724529] cdc_acm 5-1:1.0: ttyACM0: USB ACM device

EU FP7 CogX 25

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

again it is the device name (ttyACM0) that is important and should
match the config file for player.

Now we are ready to start. Close player if it is running and then do

player subarchitectures/nav.sa/config/player_cfg/botx.cfg

This should result in a printout like this

Registering driver
Player v.2.1.1

* Part of the Player/Stage/Gazebo Project [http://playerstage.sourceforge.net].
* Copyright (C) 2000 - 2006 Brian Gerkey, Richard Vaughan, Andrew Howard,
* Nate Koenig, and contributors. Released under the GNU General Public License.
* Player comes with ABSOLUTELY NO WARRANTY. This is free software, and you
* are welcome to redistribute it under certain conditions; see COPYING
* for details.

listening on 6665
Added file watch 4
Added file watch 5
Listening on ports: 6665

If you hook up a gamepad and run the same cast file as above, i.e.
subarchitectures/nav.sa/config/first-glance-1.cast, you should be able to move
the real robot around.

Displaying stuff in peekabot Being able to see what is going on inside
the nav.sa is quite helpful, for this purpose we use peekabot (http://www.peekabot.org).
Repeat the same exercise as above but now with the following cast file

subarchitectures/nav.sa/config/tutorial/first-glance-2.cast

and also with peekabot running. You should see the robot on the screen,
the laser scan should be displayed and the robot should move inside peekabot
as you drive.

Building a map Now let us build a map!
We will build a line based map and the navigation graph. You will need

peekabot started and you can chose between using the real robot or stage
like you did before.

Run the system with the cast file from

subarchitectures/nav.sa/config/tutorial/build-map.cast

EU FP7 CogX 26

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

As you drive the robot around you should see nodes and edges forming
a graph and you should see wall popping up. Each node is marked with
a circle. The nodes are space 1m apart approximately. The color of the
nodes changes with the id of the area. Try moving through a door to see
that the robot detects it and displays it on the screen. Notice that the door
detector only detects doors that the robot passes through and that it is
has no way of knowing that it really is a door or not. This means that if
obstacles/people happen to form an opening that has the right width and
the robot drives there it will think that it found a door. You can set the
min and max distances for a door with the options –min-door-width and
–max-door-width for NavGraphProcess.

As the system is running you should see three files being updated. A file
called tmpmap.graph contains the data in the graph. The file tmpmap.metric
contains the line map in a hard to parse format and robotpose.ccf contains
the current pose of the robot.

If you want to keep the map you made you can copy the files graph/metric
to files with other names.

Notice how changing the values inside the robotpose.ccf file will affect
the map building. This file tells the system where the robot starts. If you
delete the file it will be interpreted as the start pose is 0,0,0. (The file
format for robotpose.ccf is for a 6D representation so x,y,z and three angles.
) A good rule is to make sure that the robotpose.ccf file is removed before
you start building a map, this way you will know that the position from
where you started is 0,0,0 with the x-axis being defined by the direction the
robot was facing.

Localizaiton In localization mode the robot will use an existing map to
stay localized. For this to work you obviously need a map first. To test
this build map like above. Make sure that the robot is not moved after
the system is closed and do not touch the robotpose.ccf file. I should now
contain the pose of the robot in the map. Edit the cast file so that you
give the SlamProcess? an additional argument ”-m <mapfile>”, if you
have not changed the name of the map file you should thus be adding ”-m
tmpmap.metric”. You can do the same for the NavGraphProcess? to make
it read the graph file, e.g. ”-m tmpmap.graph”. The line map will not be
extended in localization mode but the graph can be extended. It will simply
add to it.

As long as you do not move the robot after stopping the system the
robotpose.ccf file should do the trick and you should be able to continue as
you were. However, if you want to use an old map, move the robot when the
system is not running or otherwise make the robotpose.ccf file not contain
the right information you need to supply the system with the information
about the starting position of the robot.

EU FP7 CogX 27

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Task: Build a map. Shut down the system, move the robot and make
sure that you know how to initialize it again in the map.

Moving about autonomously The motion of the robot is taken care of
by the component NavControl. It takes commands of type NavData::InternalNavCommand.
You should NOT write these commands directly to the working memory. In-
stead write commands of type NavData::NavCommand and let the Transla-
tion process create the internal commands and manage the task queue, the
priorities etc

Makes sure you have player or stage running as well as peekabot. Run
the cast file

subarchitectures/nav.sa/config/tutorial/test-navctrl.cast

You should see three more object popping up in peekabot, one big green
circle and two markers, one grey and one green. Drag the grey marker to a
desired location of the robot. Have look here if you do not remember how to
do this. Then drag the green marker inside the big green circle. The robot
should start moving toward the grey marker.

Take a look inside the PeekabotControl component to see how it was
done.

Part II : Change events

Task 1: Write a component that listens for changes to the following object
types in working memory, NavData::RobotPose, NavData::TopologicalRobotPose,
NavData::FNode, NavData::AEdge, NavData::NavGraph, NavData::NavCommand
and see how these events come when you move the robot around.

Task 2: Modifify the !DisplayNavInPB component so that it displays the
status of the current NavCommand in peekabot as a text string on the
ground as it is executed. It should update the string when the status of the
command changes.

Part III : Move autonomously

Task: Write a component that makes the robot drive autonomously be-
tween the nodes in a graph. It should stop at a node and for nodes with
odd id turn to 0 degs in the world frame, and for nodes with even id to turn
45 degrees relative to the position it arived at the node with.

When you reach a node you should also write an NavData::ObjObs to
the working memory pretening that you made an object observation. Notice
what happens in peekabot and experiment with the optional flags in struct.
Notice that you need to set the time. Use the getCASTTime() function for
this

EU FP7 CogX 28

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Part IV : Person following

Task: Write a component that hooks up to the LaserServer and gets the
RobotPose from working memory. Find the closest point around the robot
(watch for outliers) and assume that this is a person. Hook up to the
RobotbaseServer (see NavControl for an example) and send motion com-
mands directly to it. The commands should be designed so that the robot
maintains a distance of 1m from the person (or whatever was closest) and
looks in the direction of him/her.

To avoid getting conflicting commands from NavControl you either have
to make sure that it is not running or write an object of type !NavData::InhibitNavControl
to the working memory. As long as such an object is in the working memory
NavControl will not send any commands.

Now do the same using the NavData::NavCommands, i.e. do not talk
directly to the RobotbaseServer. Notice that the NavControl component
is not particularly fond of going to places which are already occupied by
something.

EU FP7 CogX 29

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

The Vision Subarchitecture

Vision at this point only provides object detection and tracking.

Prerequisites

You will need to have OpenCV installed. It is used for image capture and
for various lower level image processing.

First make sure You uninstall any previous OpenCV version (e.g. via
ubuntu package manager or in case You installed from source by doing make
uninstall in the installation directory).

Then get the svn sources with

svn co https://opencvlibrary.svn.sourceforge.net/svnroot/opencvlibrary/
trunk/opencv

The newest version is needed because only that supports the latest libdc1394
version 2.x for image capture. Also install the ubuntu package libdc1394-
22-dev. And also libdc1394-utils is highly recommended.

IMPORTANT: The configure script is outdated! Use the cmake file
instead.

mkdir BUILD
cd BUILD
ccmake ..

type ’c’
set OPENCV_CONFIG_FILE_INCLUDE_DIR /usr/local/include/opencv
type ’c’ ’g’

make install

And do not use

./configure
make install

cmake will output something like

...
-- Video I/O:
-- DC1394 1.x:
-- DC1394 2.x: 1 <===== This is what we want so see!
-- FFMPEG:
-- GStreamer: 0
-- UniCap:
-- V4L/V4L2: 1/1
-- Xine: 0
...

EU FP7 CogX 30

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Caveats

• Never have two components on one machine doing OpenCV-based vi-
sualisation (i.e. calling cvNamedWindow(), cvShowImage()). CAST
components are threads, i.e. share memory space. Having two OpenCV
event loops screws things up and crashes the system.

• In case the kernel module for the firewire Express Card is not loaded
automatically, do

sudo modprobe pciehp

• In order to use firewire cameras as non-root, do

sudo chmod a+rw /dev/raw1394 /dev/video1394/*

• if you get an error

libdc1394 error: Error: Failed to allocate iso bandwidth
libdc1394 error: Error: Failed to setup DMA capture

call dc1394 reset bus from the command line. This is contained in the
package libdc1394-utils.

Video Servers Video servers are the sources of images in the CogX sys-
tem. They also provide camera parameters for each image. There can be
any number of them and each one can handle any number of video in-
puts. Currently there are two implementations: OpenCVImgSeqServer and
OpenCVLiveServer.

VideoServer base class
The base class for all video servers. Note that You will never instantiate
one of those, but there are some CAST command line parameters that are
common for all derived video servers:

• –videoname <string> .. a string ID specifying this servers name, e.g
video1. Video names must be unique in the system.

• –camids <int list> .. a list of integer IDs that specifies which camera
this video server handles, e.g. 0 or ”1 2 3”. Camera IDs must be unique
in the system. If more than one ID, enclosing quotes are needed.

• –camconfigs <string list> .. a list of config files for the cameras,
e.g. config/logitech.cal or ”config/logitech1.cal config/logitech2.cal”.
These calibration files follow the .ini file format and contain internal
and external camera and distortion parameters. You can create cali-
bration files with e.g. camcalb.

EU FP7 CogX 31

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

OpenCvImgSeqServer
Reads stored image sequences, where images are stored as individual files
(e.g. img000.jpg, img001.jpg, ... img999.jpg). Supports all common file
formats.

CAST command line parameters are

• –files <string list> .. a list of filename template strings, e.g. subarchitectures/vision.sa/config/test-
ferns/tea%03d.jpg or ”test/img%03d-left.jpg test/img%03d-right.jpg”.
If more than one string, enclosing quotes are needed.

• –start <int> .. number of the first frame.

• –end <int> .. number of the last frame, must be >= start.

• –framerate ms <int> .. frame rate in milliseconds

OpenCvLiveServer
Captures live images from USB or Firewire cameras. Currently image size
is fixed to 640x480.

CAST command line parameters are

• –devnums <int list> .. a list of integer device numbers, e.g. 0 or ”0
3”. Specifies which of the attached video cameras to use. E.g. device
0 corresponds to /dev/video0.

Video Clients To get data from a video server you need to implement a
client.

VideoClient base class
The base class for all video clients. Note that You will never instantiate
one of those, but there are some CAST command line parameters that are
common for all derived video clients:

• –videohost <string> .. hostname (or IP address) of the machine the
server is running on, e.g. localhost, 192.168.1.4. Defaults to localhost.

• –videoname <string> .. name of the video server to connect to

VideoViewer
Just a simple component to display current camera images. Also good as a
template for components doing image processing.

The single CAST command line parameters is

• –camid int .. ID of the camera to use

EU FP7 CogX 32

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

ObjectDetectorFERNS The FERNS based planar object detector by
Vincent Lepetit et al. http://cvlab.epfl.ch/software/ferns/index.php, which
estimates a homography for a planar surface from detected keypoints on the
surface texture. The component takes DectionCommands and returns Visu-
alObjects. These currently contain a label, the 2D contour of the detected
planar surface as well as a 2D bounding box. Note that the homography can
be used to calculate a proper 3D pose, which is however not implemented
at this time.

The detector expects a file foo.jpg.roi containing four corner points file
for each foo.jpg model file. Use e.g. tools/genroi/genroi for generating the
.roi file. Points should be added in clockwise manner or the learning process
will fail.

For the first run the detector will train its models using the image and
ROI and save foo.jpg.detector data and foo.jpg.tracker data files. Training
will take several minutes per model. For subsequent runs the detector will
read (and decompress) the generated data files, which takes approx. 10
seconds per model.

The models for detection can get quite large, e.g. 20 MB for the tea.jpg.detector data
(tracker data always is small). You might want to play with the parameters
of the detector, in order to tune model size vs. detection rate. Param-
eters for the detector are passed via its constructor method. In method
ObjectDetectorFERNS::setupFERNS()

detectors[i] = planar_pattern_detector_builder::build_with_cache(
model_images[i].c_str(),
&range,
400,
5000,
0.0,
32, 7, 4,
30, 12,
10000, 200);

These are the default values chosen by the original authors of the de-
tector. The parameters of the constructor can be seen in ObjectDetector-
FERNS/ferns demo-1.0/planar pattern detector builder.h:

static planar_pattern_detector * build_with_cache(const char * image_name,
affine_transformation_range * range,
int maximum_number_of_points_on_model,
int number_of_generated_images_to_find_stable_points,
double minimum_number_of_views_rate,
int patch_size, int yape_radius, int number_of_octaves,
int number_of_ferns, int number_of_tests_per_fern,
int number_of_samples_for_refinement,

EU FP7 CogX 33

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

int number_of_samples_for_test,
char * given_detector_data_filename = 0,
int roi_up_left_u = -1, int roi_up_left_v = -1,
int roi_bottom_right_u = -1,

int roi_bottom_right_v = -1);

Setting e.g. maximum number of points on model to 40 instead of 400
and number of generated images to find stable points to 500 instead of 5000
reduced the model size for tea.jpg.detector data from 20 MB to 2 MB and
model loading time from 10 to 2 seconds, without noticeable decrease of
detection performance (on the stored tea image sequence)

Note that in order to have one display where everything in the system
is visualised, ObjectDetectorFERNS can output its detected objects also
to nav.sa WM where peekabot will pick it up and add to its display. In
order to do so, You have to set option FERNS OUTPUT TO NAV to ”on”
in ccmake. Of course You then also need to have option BUILD SA NAV
turned on (and the other various nav.sa bits).

CAST command line parameters are

• –videohost <string> .. hostname (or IP address) of the machine the
server is running on, e.g. localhost, 192.168.1.4. Defaults to localhost.

• –videoname <string> .. name of the video server to connect to

• –camid int .. ID of the camera to use

• –models <string list> .. list of model image filenames, e.g. ”con-
fig/experiment1/tea.jpg config/experiment1/poster.jpg”. The base of
the model image filename become the labels of the detected objects,
e.g. tea and poster in this case.

• –mode <string> .. specifies one of two modes the component can
run in: DETECT ONLY only does keypoint-based detection. DE-
TECT AND TRACK does detection first and then tries to track using
a template based tracker. If the tracker fails (e.g. too much motion),
it falls back to detection.

• –displaylevel <int> .. specifies how much should be displayed: 0 - no
display window, 1 - display bounding box, 2 - display actual surface
boundary, 3 - display all the keypoints

Stereo

Stereo Server Provides 3D point clouds, calculated from two video server
images. The stereo server thus is a video client.

EU FP7 CogX 34

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Prerequisites
The stereo server uses the GPU, so You need to have nvidia CUDA installed
(and needless to say an nvidia graphics card). Get CUDA from

http://www.nvidia.com/object/cuda get.html
Choose Your OS, 32/64 Bit, and CUDA version. Note that You need the

correct version of CUDA that matches Your graphics card driver. I am using
ubuntu 8.10 and use the nvidia driver supplied by ”Hardware Drivers”, which
is ”NVIDIA accelerated graphics driver (version 180) [Recommended]”. This
matches CUDA version 2.1 (using CUDA version 2.2 leads to errors of some
things being ”not yet implemented” that are required by the GPU stereo
code). NOTE: You will have to choose ”Linux Version: ubuntu 8.04” to be
offered CUDA 2.1. If You choose ”Linux Version: ubuntu 8.10” You will
only be offered the latest CUDA 2.2.

So You would e.g. get the files cudatoolkit 2.1 linux64 ubuntu8.04.run
cuda-sdk-linux-2.10.1215.2015-3233425.run. If You have a newer nvidia driver
installed (e.g. 185.something), You might be able to use CUDA 2.2. But I
did not test that, as I assume the standard Cogx ubuntu 8.10 32 bit laptop).

Installation of CUDA toolkit and sdk are simple. Just sudo sh thefile.run.
The toolkit is installed into /usr/local/cuda. After that make a directory
/usr/local/cuda/sdk and install the SDK there. Do a sudo make there.
NOTE: You can ignore the errors

make[1]: Entering directory
‘/usr/local/cuda/sdk/projects/convolutionSeparable’
/usr/include/bits/stdio2.h(35):
error: identifier "__builtin_va_arg_pack" is undefined

These errors only affect some of the example projects (and could be
resolved by downgrading gcc to 4.2 which You don’t really want to do). But
the libraries we are actually interested in are already built ok before the
example projects.

You then need /usr/local/cuda/bin/ in Your $PATH, so the nvidia nvcc
can be found.

Building
At the moment the CUDA things can not be built from within a cmake file,
so You have to build externally. Go to tools/hardware/stereo/src/c++/components/gpustereo
and do a make there. I hope to resolve this issue soon.

CAST command line parameters are (from subarchitectures/vision.sa/config/stereoviewer.cast)

...
COMPONENT CPP VideoServer OpenCvImgSeqServer --videoname video \
--camids "0 1" \
--files "subarchitectures/vision.sa/config/test-stereo/img%03d-L.jpg \
subarchitectures/vision.sa/config/test-stereo/img%03d-R.jpg" \
--start 0 --end 1 --framerate_ms 30

EU FP7 CogX 35

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

...
COMPONENT CPP stereoserver StereoServer --stereoname stereo \
--videoname video --camids "0 1" \
--stereoconfig subarchitectures/vision.sa/config/test-stereo/stereo.ini \
--display
...

• –videohost <string> .. hostname (or IP address) of the machine the
server is running on, e.g. localhost, 192.168.1.4. Defaults to localhost.

• –videoname <string> .. name of the video server to connect to

• –camids <”int int”> .. IDs of the left and right camera

• –stereoconfig <string> .. stereo calibration file, in the format gener-
ated by SVS (Small Vision System) IMPORTANT: SVS outputs an
.ini file, where the ’=’ are missing. Proper .ini format is with ’=’. The
stereo server requires such a proper .ini file with ’=’, so You have to
add the ’=’ by hand after running the SVS calibration program.

• –display .. turn on display of left, right and disparity image

Other Stuff

Dummy Driver The DummyDriver component is just a simple compo-
nent continuously sending detection commands to the visual WM, where
they are picked up by ObjectDetectorFERNS. In order not to flood the
WM, DummyDriver only asks for new detections, once it received a detec-
tion result (where the confidence level of the detected object can actually
be 0, indicating that the object was in fact not detected).

CAST command line parameters are

• –labels <string list> .. list of objects to look for, e.g. ”tea poster”

EU FP7 CogX 36

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Invited talk: Giorgio Metta

2/25/2009

1

Cognitive Humanoids Laboratory @iit
Giorgio Metta

The Italian Institute of Technology

Robotics, Brain and Cognitive Sciences Department

Exploring the brain mechanisms at the basis of
motor behavior and motor learning

Human behavior

Contact PADsCNT-coated Pt
electrodes Micromachined

substrates

CNT-
coated
electrode

Contact PADsCNT-coated Pt
electrodes Micromachined

substrates

CNT-
coated
electrode

Brain machine interface
Human behavior

The development of new generation brain imaging systems:
open magnet high resolution FMRI system targeted to brain research

and natural behavior analysis (manipulation).

Design and fabrication of neural probes for in-vivo applications bases on
conductive and biocompatible nano-materials for electrodes

Humanoid robotics

Brain machine interface

Designing new generation, intelligent and interacting
platforms

Toward next generation hybrid systems realized with soft materials and
with cognitive abilities allowing operating in human environmentHumanoid robotics

The near-infrared spectroscopy: a new non-invasive
technique to investigate brain functions in human subjects

Cognitive Humanoids Lab

Our main focus

• The main focus of the Cognitive
Humanoids Laboratory activities is in the
implementation of biologically sound
models of cognition in robots of humanoid
shape

• This has the two-fold aim of
– furthering our understanding of brain functions

– realizing robot controllers that can learn and
adapt from their mistakes

2/25/2009

1

Cognitive Humanoids Laboratory @iit
Giorgio Metta

The Italian Institute of Technology

Robotics, Brain and Cognitive Sciences Department

Exploring the brain mechanisms at the basis of
motor behavior and motor learning

Human behavior

Contact PADsCNT-coated Pt
electrodes Micromachined

substrates

CNT-
coated
electrode

Contact PADsCNT-coated Pt
electrodes Micromachined

substrates

CNT-
coated
electrode

Brain machine interface
Human behavior

The development of new generation brain imaging systems:
open magnet high resolution FMRI system targeted to brain research

and natural behavior analysis (manipulation).

Design and fabrication of neural probes for in-vivo applications bases on
conductive and biocompatible nano-materials for electrodes

Humanoid robotics

Brain machine interface

Designing new generation, intelligent and interacting
platforms

Toward next generation hybrid systems realized with soft materials and
with cognitive abilities allowing operating in human environmentHumanoid robotics

The near-infrared spectroscopy: a new non-invasive
technique to investigate brain functions in human subjects

Cognitive Humanoids Lab

Our main focus

• The main focus of the Cognitive
Humanoids Laboratory activities is in the
implementation of biologically sound
models of cognition in robots of humanoid
shape

• This has the two-fold aim of
– furthering our understanding of brain functions

– realizing robot controllers that can learn and
adapt from their mistakes

2/25/2009

2

By means of…

• Reverse engineering:
– Study and be inspired by biological systems

• Models:
– Robots and mathematical/control modelsRobots and mathematical/control models

• Global approach:
– Sanity check by implementing everything

on a real physical platform, complete
systems, real feedback

Our approach

Guiding Philosophy

– Cognition cannot be hand-coded

– It is necessarily the product of a process of embodied
developmentdevelopment

– Initially dealing with immediate events

– Increasingly acquiring a predictive capability

COGNITION = PREDICTION

Why?
• Purposeful manipulatory actions are founded on

predictions of physical events and the effects of
one’s own actions

From Claes von Hofsten and Kerstin Rosander

Main themes

• Mindware
– Architecture, machine learning, and

development
– Embodied active perception

Computational motor control– Computational motor control

• Bodyware
– Mechatronics design
– Tactile, haptic & force sensing
– Microelectronics
– New and future technologies

2/25/2009

2

By means of…

• Reverse engineering:
– Study and be inspired by biological systems

• Models:
– Robots and mathematical/control modelsRobots and mathematical/control models

• Global approach:
– Sanity check by implementing everything

on a real physical platform, complete
systems, real feedback

Our approach

Guiding Philosophy

– Cognition cannot be hand-coded

– It is necessarily the product of a process of embodied
developmentdevelopment

– Initially dealing with immediate events

– Increasingly acquiring a predictive capability

COGNITION = PREDICTION

Why?
• Purposeful manipulatory actions are founded on

predictions of physical events and the effects of
one’s own actions

From Claes von Hofsten and Kerstin Rosander

Main themes

• Mindware
– Architecture, machine learning, and

development
– Embodied active perception

Computational motor control– Computational motor control

• Bodyware
– Mechatronics design
– Tactile, haptic & force sensing
– Microelectronics
– New and future technologies

EU FP7 CogX 37

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

2/25/2009

3

Two main platforms What I’m going to tell you

• Older examples of our research (to 2003)
– Mirror neurons models
– Motor based action recognition

• Newer examples (2004-2008)
– Mechatronics
– Humanoid robots

• Directions (2009)
– More mechatronics
– New cognitive behaviors

F5 canonical neurons
looking at objects

A B

1 s

20 sp/s

Observation + action Observation only

Mirror Neurons
looking at others

The neuron is activated by “seeing” someone else’s hand performing
a manipulative action and while the monkey is performing the same
action

From: Fadiga, L., L. Fogassi, V. Gallese, and G. Rizzolatti, Visuomotor Neurons: ambiguity of the
discharge or "motor“ Perception? Internation Journal of Psychophysiology, 2000. 35: p. 165-177.

The type of action seen is relevant

2/25/2009

3

Two main platforms What I’m going to tell you

• Older examples of our research (to 2003)
– Mirror neurons models
– Motor based action recognition

• Newer examples (2004-2008)
– Mechatronics
– Humanoid robots

• Directions (2009)
– More mechatronics
– New cognitive behaviors

F5 canonical neurons
looking at objects

A B

1 s

20 sp/s

Observation + action Observation only

Mirror Neurons
looking at others

The neuron is activated by “seeing” someone else’s hand performing
a manipulative action and while the monkey is performing the same
action

From: Fadiga, L., L. Fogassi, V. Gallese, and G. Rizzolatti, Visuomotor Neurons: ambiguity of the
discharge or "motor“ Perception? Internation Journal of Psychophysiology, 2000. 35: p. 165-177.

The type of action seen is relevant 2/25/2009

4

Objects come to existence because
they are manipulated

Fixate target Track visual
motion

(…including
cast shadows)

Detect moment
of impact

Separate arm,
object motion

Segment object
motion… cast shadows) of impact object motion

Which edge should be
considered?

Color of cube and table
are poorly separated

Cube has misleading
surface pattern

Maybe some cruel
grad-student
glued the cube to the
table

With Paul Fitzpatrick

Into object affordances…

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

Bottle, “pointiness”=0.13 Car, “pointiness”=0.07

y
o

f o
cc

u
rr

e
n

ce

Rolls at right
angles to
principal axis

Rolls
along
principal axis

0 10 20 30 40 50 60 70 80 90
0

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90
0

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

Ball, “pointiness”=0.02Cube, “pointiness”=0.03

es
tim

a
te

d
pr

ob
ab

ili
ty

difference between angle of motion and principal axis of object [degrees]

With Paul Fitzpatrick

The qualitative “geometry” of poking

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

backslap

pr
ob

ab
ili

ty

pull in

-200 -150 -100 -50 0 50 100 150 200
0
-200 -150 -100 -50 0 50 100 150 200
0

Direction of movement [deg]

-200 -150 -100 -50 0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

-200 -150 -100 -50 0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

side tap

E
st

im
at

ed

side tap

back slappush away

Interpreting observations

Demonstration by
human

Invoking the object’s natural
rolling affordance

Going against the object’s
natural rolling affordance

Demonstration by
human

Invoking the object’s natural
rolling affordance

Going against the object’s
natural rolling affordance

Mimicry in similar
situation

Mimicry when
object is rotated

Mimicry in similar
situation

Mimicry when
object is rotated

2/25/2009

4

Objects come to existence because
they are manipulated

Fixate target Track visual
motion

(…including
cast shadows)

Detect moment
of impact

Separate arm,
object motion

Segment object
motion… cast shadows) of impact object motion

Which edge should be
considered?

Color of cube and table
are poorly separated

Cube has misleading
surface pattern

Maybe some cruel
grad-student
glued the cube to the
table

With Paul Fitzpatrick

Into object affordances…

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

Bottle, “pointiness”=0.13 Car, “pointiness”=0.07

y
o

f o
cc

u
rr

e
n

ce

Rolls at right
angles to
principal axis

Rolls
along
principal axis

0 10 20 30 40 50 60 70 80 90
0

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90
0

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

Ball, “pointiness”=0.02Cube, “pointiness”=0.03

es
tim

a
te

d
pr

ob
ab

ili
ty

difference between angle of motion and principal axis of object [degrees]

With Paul Fitzpatrick

The qualitative “geometry” of poking

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

backslap

pr
ob

ab
ili

ty

pull in

-200 -150 -100 -50 0 50 100 150 200
0
-200 -150 -100 -50 0 50 100 150 200
0

Direction of movement [deg]

-200 -150 -100 -50 0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

-200 -150 -100 -50 0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

side tap

E
st

im
at

ed

side tap

back slappush away

Interpreting observations

Demonstration by
human

Invoking the object’s natural
rolling affordance

Going against the object’s
natural rolling affordance

Demonstration by
human

Invoking the object’s natural
rolling affordance

Going against the object’s
natural rolling affordance

Mimicry in similar
situation

Mimicry when
object is rotated

Mimicry in similar
situation

Mimicry when
object is rotated

EU FP7 CogX 38

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

2/25/2009

5

Behavior: affordances Behavior: mimicry

Data from human grasping

2 cameras

Images
Frame

grabbers

Cyber-glove

Oth

To disk

Tactile
sensors

RS232

RS232

40 msec

Tracker

Other
sensors

To disk

Bayesian classifier

{Gi}: set of gestures
F: observed features
{Ok}: set of objects

a

76
 c

m

x

y
z

168 sequences per subject
10 subjects

6 complete sets

p(Gi|Ok): priors (affordances)
p(F|Gi,Ok): likelihood to observe F

       | , | , | / |i k i k i k kp G O p G O p G O p OF F F

 ˆ argmax | ,
i

MAP i k
G

G G O F -45° (b)
+90° (a) b

0° (b)
+135° (a)

+45° (b)
+180° (a)

~
 7

2/25/2009

5

Behavior: affordances Behavior: mimicry

Data from human grasping

2 cameras

Images
Frame

grabbers

Cyber-glove

Oth

To disk

Tactile
sensors

RS232

RS232

40 msec

Tracker

Other
sensors

To disk

Bayesian classifier

{Gi}: set of gestures
F: observed features
{Ok}: set of objects

a

76
 c

m

x

y
z

168 sequences per subject
10 subjects

6 complete sets

p(Gi|Ok): priors (affordances)
p(F|Gi,Ok): likelihood to observe F

       | , | , | / |i k i k i k kp G O p G O p G O p OF F F

 ˆ argmax | ,
i

MAP i k
G

G G O F -45° (b)
+90° (a) b

0° (b)
+135° (a)

+45° (b)
+180° (a)

~
 7

2/25/2009

6

Two types of experiments

Vision Classifier

Fv, Ok
Gi

Vision ClassifierVMM

Fv, Ok Fm, Ok
Gi

Learned by backpropagation ANN

Role of motor information in action
understanding

Visual space Motor space

Object affordances (priors)

Classification
(recognition)Grasping actions

Understanding mirror neurons: a bio-robotic approach. G. Metta, G. Sandini, L.
Natale, L. Craighero, L. Fadiga. Interaction Studies. Volume 7 Issue 2. 2006

Some results…
Exp. I
(visual)

Exp. II
(visual)

Exp. III
(visual)

Exp. IV
(motor)

Training
Sequences 16 24 64 24

of view points 1 1 4 1

Classification
rate

100% 100% 97% 98%

F# Features 5 5 5 15
Modes 5-7 5-7 5-7 1-2

Test

Sequences 8 96 32 96

of view points 1 4 4 4

Classification
rate

100% 30% 80% 97%

TMS on the premotor cortex

Modulation due to meaning

Effect due to phoneme

0.0

2/25/2009

6

Two types of experiments

Vision Classifier

Fv, Ok
Gi

Vision ClassifierVMM

Fv, Ok Fm, Ok
Gi

Learned by backpropagation ANN

Role of motor information in action
understanding

Visual space Motor space

Object affordances (priors)

Classification
(recognition)Grasping actions

Understanding mirror neurons: a bio-robotic approach. G. Metta, G. Sandini, L.
Natale, L. Craighero, L. Fadiga. Interaction Studies. Volume 7 Issue 2. 2006

Some results…
Exp. I
(visual)

Exp. II
(visual)

Exp. III
(visual)

Exp. IV
(motor)

Training
Sequences 16 24 64 24

of view points 1 1 4 1

Classification
rate

100% 100% 97% 98%

F# Features 5 5 5 15
Modes 5-7 5-7 5-7 1-2

Test

Sequences 8 96 32 96

of view points 1 4 4 4

Classification
rate

100% 30% 80% 97%

TMS on the premotor cortex

Modulation due to meaning

Effect due to phoneme

0.0

EU FP7 CogX 39

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

2/25/2009

7

Data collection

 9 speakers, 74 (pseudo)words and syllables
 magnetic tracking of tongue, lips and teeth
 ultrasound imaging of tongue
 video of face
 laryngography of vocal folds

The mirror system and speech: with L. Fadiga, L. Craighero & the Contact people

As before…
audio

features extraction

classifier

AMM

speech

b,p,d,t

audio
features

motor
features

green: lips opening velocity

blue: lips opening acceleration

grey zone: the identified motor
invariant for b

The iCub: quick summary

The iCub is the humanoid baby-robot designed
as part of the RobotCub project

– The iCub is a full humanoid robot sized as a three
and half year-old child.

– The total height is 104cm.The total height is 104cm.
– It has 53 degrees of freedom, including

articulated hands to be used for manipulation and
gesturing.

– The robot will be able to crawl and sit and
autonomously transition from crawling to sitting
and vice-versa.

– The robot is GPL/FDL: software, hardware,
drawings, documentation, etc.

Degrees of freedom

• Head: vergence, common tilt + 3 dof neck
• Arms: 7 dof each

– Shoulder (3), elbow (1), wrist (3)
• Hands: 9 dof each ► 19 joints

– 5 fingers ► underactuated

• Legs: 6 dof each
– Hip (3), knee (1), ankle (2)

• Waist: 3 dof

Σ = 53 dof (not counting the facial expressions)

2/25/2009

7

Data collection

 9 speakers, 74 (pseudo)words and syllables
 magnetic tracking of tongue, lips and teeth
 ultrasound imaging of tongue
 video of face
 laryngography of vocal folds

The mirror system and speech: with L. Fadiga, L. Craighero & the Contact people

As before…
audio

features extraction

classifier

AMM

speech

b,p,d,t

audio
features

motor
features

green: lips opening velocity

blue: lips opening acceleration

grey zone: the identified motor
invariant for b

The iCub: quick summary

The iCub is the humanoid baby-robot designed
as part of the RobotCub project

– The iCub is a full humanoid robot sized as a three
and half year-old child.

– The total height is 104cm.The total height is 104cm.
– It has 53 degrees of freedom, including

articulated hands to be used for manipulation and
gesturing.

– The robot will be able to crawl and sit and
autonomously transition from crawling to sitting
and vice-versa.

– The robot is GPL/FDL: software, hardware,
drawings, documentation, etc.

Degrees of freedom

• Head: vergence, common tilt + 3 dof neck
• Arms: 7 dof each

– Shoulder (3), elbow (1), wrist (3)
• Hands: 9 dof each ► 19 joints

– 5 fingers ► underactuated

• Legs: 6 dof each
– Hip (3), knee (1), ankle (2)

• Waist: 3 dof

Σ = 53 dof (not counting the facial expressions)
2/25/2009

8

Sensorization

• For each joint:
– Position (some absolute, some incremental):

• Magnetic absolute position sensors

• Encoders

• Hall-effect sensors

Torque/tension– Torque/tension
• Limb level, but work in progress

to add joint level torque sensing

• Current consumption

– Temperature (monitor, safety)
• Safe operation (but we have a

disclaimer!)

In addition…

• Cameras
– Pointgrey Dragonfly firewire

cameras
• Force/torque sensors

– Custom development: 6 axialCustom development: 6 axial
• Microphones, speaker

– Standard condenser electrect
miniature microphones

– Pinnae
• Gyroscopes, linear accelerometers

– Xsense: Mtx
• Tactile sensors, skin, fingertips

– Capacitive sensors (more later)

Custom electronics
• ADC card

– Special connectors (40 pins
< 1cm length)

– 200μm stainless steel wires,
coated in Teflon

• Motor control
– C programmable DSP 40

MIPS
– Up to 4A DC motor

Motorola DSP56F807 (5680x family)
MAC instructions
PWM generation
ADC
Digital I/O
Can bus
C programmable

80x30mm

58x42mm

2/25/2009

8

Sensorization

• For each joint:
– Position (some absolute, some incremental):

• Magnetic absolute position sensors

• Encoders

• Hall-effect sensors

Torque/tension– Torque/tension
• Limb level, but work in progress

to add joint level torque sensing

• Current consumption

– Temperature (monitor, safety)
• Safe operation (but we have a

disclaimer!)

In addition…

• Cameras
– Pointgrey Dragonfly firewire

cameras
• Force/torque sensors

– Custom development: 6 axialCustom development: 6 axial
• Microphones, speaker

– Standard condenser electrect
miniature microphones

– Pinnae
• Gyroscopes, linear accelerometers

– Xsense: Mtx
• Tactile sensors, skin, fingertips

– Capacitive sensors (more later)

Custom electronics
• ADC card

– Special connectors (40 pins
< 1cm length)

– 200μm stainless steel wires,
coated in Teflon

• Motor control
– C programmable DSP 40

MIPS
– Up to 4A DC motor

Motorola DSP56F807 (5680x family)
MAC instructions
PWM generation
ADC
Digital I/O
Can bus
C programmable

80x30mm

58x42mm

EU FP7 CogX 40

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

2/25/2009

9

In the pipeline…

• Force control: joint level sensors, SEL or
stain gauges based sensing

• Skin/tactile sensors: almost everywhere on
the robot surface

• Robot general improvements: e.g. zero-
backlash everywhere, better control
electronics, higher resolution position
sensors

The skin (ideas…)
Principle

Lot of sensing points

Structure of the skin

Some initial results

2/25/2009

9

In the pipeline…

• Force control: joint level sensors, SEL or
stain gauges based sensing

• Skin/tactile sensors: almost everywhere on
the robot surface

• Robot general improvements: e.g. zero-
backlash everywhere, better control
electronics, higher resolution position
sensors

The skin (ideas…)
Principle

Lot of sensing points

Structure of the skin

Some initial results

2/25/2009

10

Fingertips
• Capacitive pressure sensor with 12 sensitive zones
• Natural round shape, 14.5 mm long and 13 mm

wide, for iCub
• Embedded electronics: twelve 16 bits

measurements of capacitance (either all 12 taxels
i d d tl t 50 H f th 12independently at 50 Hz or an average of the 12
taxels at about 500 Hz)

More examples…

With Peter Ford Dominey (INSERM Lyon) With A ke Ijspeert L do ic RighettiWith Peter Ford-Dominey (INSERM, Lyon) With Auke Ijspeert, Ludovic Righetti,
Sarah Degallier (EPFL)

With a lot of students
@ RobotCub summer school 2008 With VisLab (IST Lisbon)

External projects

• The Cognitive Humanoids Laboratory
participates in several externally funded
projects, namely:
– RobotCub, humanoid design & cognition

ITALK development of language– ITALK, development of language
– Poeticon, structure of action
– CHRIS, safety and cognition
– eMorph, VLSI for vision
– RoboSkin, skin technology
– Viactors, actuation technology

People (platform)
• Giulio Sandini, David Vernon: guidance & mentoring
• Lorenzo Natale, Francesco Nori: Software, testing, calibration
• Marco Maggiali, Marco Randazzo: firmware, DSP libraries, tactile sensing
• Francesco Becchi, Paolo Pino, Giulio Maggiolo, Gabriele Careddu: design and

integration
• Roberto Puddu, Gabriele Tabbita, Walter Fancellu: assembly
• Nikos Tsagarakis, William Hinojosa: legs and spine, force/torque sensors
• Bruno Bonino, Fabrizio Larosa, Claudio Lorini: electronics and wiring
• Luciano Pittera, Davide Dellepiane: wiring, p g
• Mattia Salvi: CAD maintenance
• Stefano Sironi: managing quotes, orders and spare parts
• Giovanni Stellin: hand sensors
• Ricardo Beira, Luis Vargas, Miguel Praca: design of the head and face
• Paul Fitzpatrick & Alessandro Scalzo: software middleware
• Alberto Parmiggiani: joint level sensing
• Alexander Schmitz: fingertips
• Nestor Nava: small Harmonic Drive integration
• Ravinder Dahiya: FET-PVDF tactile senors
• Lorenzo Jamone: fingertips
• Daniel Roussy: construction
• Ludovic Righetti: simulation and initial torque specification

2/25/2009

10

Fingertips
• Capacitive pressure sensor with 12 sensitive zones
• Natural round shape, 14.5 mm long and 13 mm

wide, for iCub
• Embedded electronics: twelve 16 bits

measurements of capacitance (either all 12 taxels
i d d tl t 50 H f th 12independently at 50 Hz or an average of the 12
taxels at about 500 Hz)

More examples…

With Peter Ford Dominey (INSERM Lyon) With A ke Ijspeert L do ic RighettiWith Peter Ford-Dominey (INSERM, Lyon) With Auke Ijspeert, Ludovic Righetti,
Sarah Degallier (EPFL)

With a lot of students
@ RobotCub summer school 2008 With VisLab (IST Lisbon)

External projects

• The Cognitive Humanoids Laboratory
participates in several externally funded
projects, namely:
– RobotCub, humanoid design & cognition

ITALK development of language– ITALK, development of language
– Poeticon, structure of action
– CHRIS, safety and cognition
– eMorph, VLSI for vision
– RoboSkin, skin technology
– Viactors, actuation technology

People (platform)
• Giulio Sandini, David Vernon: guidance & mentoring
• Lorenzo Natale, Francesco Nori: Software, testing, calibration
• Marco Maggiali, Marco Randazzo: firmware, DSP libraries, tactile sensing
• Francesco Becchi, Paolo Pino, Giulio Maggiolo, Gabriele Careddu: design and

integration
• Roberto Puddu, Gabriele Tabbita, Walter Fancellu: assembly
• Nikos Tsagarakis, William Hinojosa: legs and spine, force/torque sensors
• Bruno Bonino, Fabrizio Larosa, Claudio Lorini: electronics and wiring
• Luciano Pittera, Davide Dellepiane: wiring, p g
• Mattia Salvi: CAD maintenance
• Stefano Sironi: managing quotes, orders and spare parts
• Giovanni Stellin: hand sensors
• Ricardo Beira, Luis Vargas, Miguel Praca: design of the head and face
• Paul Fitzpatrick & Alessandro Scalzo: software middleware
• Alberto Parmiggiani: joint level sensing
• Alexander Schmitz: fingertips
• Nestor Nava: small Harmonic Drive integration
• Ravinder Dahiya: FET-PVDF tactile senors
• Lorenzo Jamone: fingertips
• Daniel Roussy: construction
• Ludovic Righetti: simulation and initial torque specification

EU FP7 CogX 41

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

2/25/2009

11

People (scientific)
• The Cognitive Humanoids Laboratory @ IIT

– Lorenzo Natale, Francesco Nori
– Marco Maggiali, Marco Randazzo, Ugo Pattacini
– Lorenzo Jamone, Serena Ivaldi, Alessandra Sciutti
– Matteo Fumagalli, Arjan Gijsberts, Andrew Dankers
– Ryo Saegusa, Alexander Schmitz, Ravinder Dahiya
– Alberto Parmiggiani, Chiara Bartolozzi
– Toufik Bentaleb, Biso Maurizio
– Carlo Ciliberto, Francesco Rea
– Massimiliano Izzo, Vishwanathan Mohan
– Mattia Salvi, Alessandro Scalzo

• Giulio Sandini: Italian Institute of Technology
• Luciano Fadiga, Laila Craighero: University of Ferrara
• Claes von Hofsten, Kerstin Rosander: Univ. of Uppsala
• Jose’ Santos-Victor, Alex Bernardino, Manuel Lopez: IST Lisbon
• Claudio Castellini: University of Genoa
• Peter Dominey: INSERM, Lyon
• Paul Fitzpatrick: once at MIT, now University of Genoa

2/25/2009

11

People (scientific)
• The Cognitive Humanoids Laboratory @ IIT

– Lorenzo Natale, Francesco Nori
– Marco Maggiali, Marco Randazzo, Ugo Pattacini
– Lorenzo Jamone, Serena Ivaldi, Alessandra Sciutti
– Matteo Fumagalli, Arjan Gijsberts, Andrew Dankers
– Ryo Saegusa, Alexander Schmitz, Ravinder Dahiya
– Alberto Parmiggiani, Chiara Bartolozzi
– Toufik Bentaleb, Biso Maurizio
– Carlo Ciliberto, Francesco Rea
– Massimiliano Izzo, Vishwanathan Mohan
– Mattia Salvi, Alessandro Scalzo

• Giulio Sandini: Italian Institute of Technology
• Luciano Fadiga, Laila Craighero: University of Ferrara
• Claes von Hofsten, Kerstin Rosander: Univ. of Uppsala
• Jose’ Santos-Victor, Alex Bernardino, Manuel Lopez: IST Lisbon
• Claudio Castellini: University of Genoa
• Peter Dominey: INSERM, Lyon
• Paul Fitzpatrick: once at MIT, now University of Genoa

EU FP7 CogX 42

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

1

The iCub humanoid robot:
an open platform for research in embodied cognition

Giorgio Metta
Italian Institute of Technology

CogX summer school,
Stockholm March, 2009

Summary of the talk

• Overview of the hardware
• The software architecture
• Some examples of code

Collaborations
the RobotCub Consortium

U. of Genoa/IIT Scuola S. Anna U. of Zurich U. of Uppsala U. of Ferrara
Giulio Sandini Paolo Dario Rolf Pfeifer Claes von Hofsten Luciano Fadiga
Giorgio Metta Harold Fernandez Kerstin Rosander Laila Craighero
David Vernon Gabriel Gomez Andrey Oleyinik
Lorenzo Natale

Giovanni Stellin
Cecilia Laschi

Francesco Nori
Paul Fitzpatrick

U. Herthfordshire IST - Lisbon U. Salford EPFL Telerobot S.r.l
Kerstin Dautenhahn Jose’ Santos-Victor Darwin Caldwell Aude Billard Francesco Becchi
Chrystopher. Nehaniv Alexandre Bernardino John Gray Auke Ijspeert
René te Boekhorst Ricardo Beira Sarah Degallier

David Corsini

Nahem Assif Mirza Miguel Praça Ludovic Righetti
Nick Tsagarakis

Further links:
the RobotCub international advisory board

Rodney Brooks
MIT

Gordon Cheng
ATR

Yasuo Kuniyoshi
University of Tokyo

Hideki Kozima
NICT (CRL)

Juergen Konczak
University of Minnesota

1

The iCub humanoid robot:
an open platform for research in embodied cognition

Giorgio Metta
Italian Institute of Technology

CogX summer school,
Stockholm March, 2009

Summary of the talk

• Overview of the hardware
• The software architecture
• Some examples of code

Collaborations
the RobotCub Consortium

U. of Genoa/IIT Scuola S. Anna U. of Zurich U. of Uppsala U. of Ferrara
Giulio Sandini Paolo Dario Rolf Pfeifer Claes von Hofsten Luciano Fadiga
Giorgio Metta Harold Fernandez Kerstin Rosander Laila Craighero
David Vernon Gabriel Gomez Andrey Oleyinik
Lorenzo Natale

Giovanni Stellin
Cecilia Laschi

Francesco Nori
Paul Fitzpatrick

U. Herthfordshire IST - Lisbon U. Salford EPFL Telerobot S.r.l
Kerstin Dautenhahn Jose’ Santos-Victor Darwin Caldwell Aude Billard Francesco Becchi
Chrystopher. Nehaniv Alexandre Bernardino John Gray Auke Ijspeert
René te Boekhorst Ricardo Beira Sarah Degallier

David Corsini

Nahem Assif Mirza Miguel Praça Ludovic Righetti
Nick Tsagarakis

Further links:
the RobotCub international advisory board

Rodney Brooks
MIT

Gordon Cheng
ATR

Yasuo Kuniyoshi
University of Tokyo

Hideki Kozima
NICT (CRL)

Juergen Konczak
University of Minnesota

2

The HardwareThe Hardware

The iCub: quick summary
The iCub is the humanoid baby-robot

designed as part of the RobotCub project

– The iCub is a full humanoid robot sized as a
three and half year-old child.

– The total height is 104cm.
I h 53 d f f d i l di – It has 53 degrees of freedom, including
articulated hands to be used for manipulation
and gesturing.

– The robot will be able to crawl and sit and
autonomously transition from crawling to
sitting and vice-versa.

– The robot is GPL/FDL: software, hardware,
drawings, documentation, etc.

Degrees of freedom

• Head: 3 dof eyes + 3 dof neck
• Arms: 7 dof each

– Shoulder (3), elbow (1), wrist (3)
• Hands: 9 dof each

– 5 fingers, underactuated (19 joints)g (j)
• Legs: 6 dof each

– Hip (3), knee (1), ankle (2)
• Waist: 3 dof

Σ = 53 dof (not counting the facial expressions)

Sensorization
• For each joint:

– Position (some absolute, some incremental):
• Magnetic absolute position sensors
• Encoders
• Hall-effect sensors

– Torque/tension
• Limb level, but work in progress

to add joint level torque sensing
• Current consumption

– Temperature (monitor, safety)

2

The HardwareThe Hardware

The iCub: quick summary
The iCub is the humanoid baby-robot

designed as part of the RobotCub project

– The iCub is a full humanoid robot sized as a
three and half year-old child.

– The total height is 104cm.
I h 53 d f f d i l di – It has 53 degrees of freedom, including
articulated hands to be used for manipulation
and gesturing.

– The robot will be able to crawl and sit and
autonomously transition from crawling to
sitting and vice-versa.

– The robot is GPL/FDL: software, hardware,
drawings, documentation, etc.

Degrees of freedom

• Head: 3 dof eyes + 3 dof neck
• Arms: 7 dof each

– Shoulder (3), elbow (1), wrist (3)
• Hands: 9 dof each

– 5 fingers, underactuated (19 joints)g (j)
• Legs: 6 dof each

– Hip (3), knee (1), ankle (2)
• Waist: 3 dof

Σ = 53 dof (not counting the facial expressions)

Sensorization
• For each joint:

– Position (some absolute, some incremental):
• Magnetic absolute position sensors
• Encoders
• Hall-effect sensors

– Torque/tension
• Limb level, but work in progress

to add joint level torque sensing
• Current consumption

– Temperature (monitor, safety)

EU FP7 CogX 43

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

3

In addition…

• Cameras
– Pointgrey Dragonfly firewire

cameras
• Force/torque sensors

– Custom development: 6 axialCustom development 6 axial
• Microphones, speaker

– Standard condenser electrect
miniature microphones

– Pinnae
• Gyroscopes, linear accelerometers

– Xsense: Mtx
• Work in progess:tactile sensors, skin, fingertips

– Capacitive sensors (more later)

Integration:
custom electronics

58x42mm

• PC104 board
• 2 firewire
• 4 can bus interfaces

• Motor control
• C programmable DSP 40 MIPS
• Up to 4A DC motor/2 Brushless

Motorola DSP56F807 (5680x family)
PWM generation
ADC
Digital I/O
Can bus
C programmable

80x30mm

Head
• host a PC104 with new Duo CPU
• Built several copies: at least 9 (IST,

Zurich, Genoa)
• Facial features
• Additional custom electronics to

control the facial expression
(integrated)

Facial expressions

3

In addition…

• Cameras
– Pointgrey Dragonfly firewire

cameras
• Force/torque sensors

– Custom development: 6 axialCustom development 6 axial
• Microphones, speaker

– Standard condenser electrect
miniature microphones

– Pinnae
• Gyroscopes, linear accelerometers

– Xsense: Mtx
• Work in progess:tactile sensors, skin, fingertips

– Capacitive sensors (more later)

Integration:
custom electronics

58x42mm

• PC104 board
• 2 firewire
• 4 can bus interfaces

• Motor control
• C programmable DSP 40 MIPS
• Up to 4A DC motor/2 Brushless

Motorola DSP56F807 (5680x family)
PWM generation
ADC
Digital I/O
Can bus
C programmable

80x30mm

Head
• host a PC104 with new Duo CPU
• Built several copies: at least 9 (IST,

Zurich, Genoa)
• Facial features
• Additional custom electronics to

control the facial expression
(integrated)

Facial expressions

4

Body cover: concept The robot yoga!

Preprogrammed movements

Work in progress:
more sensorsmore sensors

The skin
Principle

Lot of sensing points

Structure of the skin

4

Body cover: concept The robot yoga!

Preprogrammed movements

Work in progress:
more sensorsmore sensors

The skin
Principle

Lot of sensing points

Structure of the skin

EU FP7 CogX 44

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

5

Fingertip

Outline

Silicon cover Electronics

3D CAD Electrode fabrication

Silicon cover

Complete prototype

Electronics

6-axial force/torque sensor

By Nikos Tsagarakis and Darwin Caldwell
Electronics: Claudio Lorini

• Semiconductor strain
gauges

• On board signal
conditioning, sampling,
and calibration

• Digital output:
CAN bus

5

Fingertip

Outline

Silicon cover Electronics

3D CAD Electrode fabrication

Silicon cover

Complete prototype

Electronics

6-axial force/torque sensor

By Nikos Tsagarakis and Darwin Caldwell
Electronics: Claudio Lorini

• Semiconductor strain
gauges

• On board signal
conditioning, sampling,
and calibration

• Digital output:
CAN bus

6

Wiki
CVS

Part lists

Drawings

Promoting the iCub
• RobotCub Open Call

– 31 participants, 6 winners will receive a copy of the
iCub free of charge

• Further development
– FP7 project ITALK: 4 iCub’s will be built languageFP7 project ITALK: 4 iCub s will be built, language

• Collaborations
– Univ. of Karlsruhe: new and longer legs

• Simulator:
– Both Open Source and as a model in Webots

Examples:

6

Wiki
CVS

Part lists

Drawings

Promoting the iCub
• RobotCub Open Call

– 31 participants, 6 winners will receive a copy of the
iCub free of charge

• Further development
– FP7 project ITALK: 4 iCub’s will be built languageFP7 project ITALK: 4 iCub s will be built, language

• Collaborations
– Univ. of Karlsruhe: new and longer legs

• Simulator:
– Both Open Source and as a model in Webots

Examples:

EU FP7 CogX 45

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

7

The Software Architecture

Let’s start from the
Hardware

DSP
DSP

HUB th
er

ne
t

Cluster

PC1Relay station
(head)

DSP

DSP

HUB

G
bi

tE
t

PC104
PCN

Low-level control

Embedded

iCub API
Yarp

higher level capabilities:
control of attention
reaching
grasping
learning
imitation
…
…

Software
Architecture

Level 0 APIs: data acquisition & motor control

Level 1 APIs: perception/action behaviors

Cognitive
Architecture

Innate perception/action primitives
loose federation of behaviors

Based on
phylogenic

configuration

own
learning
model

Level 2 APIs: Prospective Action Behaviors

Coordinated operation: Ontogenic Development

YARP
Multiple YARP processes
Running on multiple processors

Gbit Ethernet

DSP

iCub
Embedded
Systems

HUB

DSP DSP DSP

Sensors & Actuators

pc104: Yarp also here

YARP:
Middleware

The sad fate of
most robot software

• Writing software is difficult and time
consuming

• Our software tends to die with our projects
S d! S f ll b i d hi • Sad! Software collaboration speeds things up

Software
Red
Robot
Project

Robby
Robot
Project

OpenCV

OpenGL

7

The Software Architecture

Let’s start from the
Hardware

DSP
DSP

HUB th
er

ne
t

Cluster

PC1Relay station
(head)

DSP

DSP

HUB

G
bi

tE
t

PC104
PCN

Low-level control

Embedded

iCub API
Yarp

higher level capabilities:
control of attention
reaching
grasping
learning
imitation
…
…

Software
Architecture

Level 0 APIs: data acquisition & motor control

Level 1 APIs: perception/action behaviors

Cognitive
Architecture

Innate perception/action primitives
loose federation of behaviors

Based on
phylogenic

configuration

own
learning
model

Level 2 APIs: Prospective Action Behaviors

Coordinated operation: Ontogenic Development

YARP
Multiple YARP processes
Running on multiple processors

Gbit Ethernet

DSP

iCub
Embedded
Systems

HUB

DSP DSP DSP

Sensors & Actuators

pc104: Yarp also here

YARP:
Middleware

The sad fate of
most robot software

• Writing software is difficult and time
consuming

• Our software tends to die with our projects
S d! S f ll b i d hi • Sad! Software collaboration speeds things up

Software
Red
Robot
Project

Robby
Robot
Project

OpenCV

OpenGL

8

Hardware Diversity
• Research groups that all use a specific robot

(Khepera, Pioneer, AIBO, ...) often form a
natural software community
– But each alone is a small subset of robotics– But each alone is a small subset of robotics

• Groups developing new robots face obstacles
– Differences in sensors, actuators, bodies...
– Differences in processors, operating systems,

libraries, frameworks, languages, compilers...
– Big barriers to software collaboration

the PC

• Constant hardware flux
– Parts change rapidly
– Interfaces change slowly

• Lots of software grew • Lots of software grew
and evolved alongside
the changing hardware
– Parts change rapidly
– Interfaces change slowly
– “Modularity” is rewarded

A Modular Approach
• Robot software is notoriously hardware-specific

and task-specific

• Both hardware and target tasks change quickly,
even within the lifetime of one projecteven within the lifetime of one project

• Our humanoid robots are far more complex than
one person can build and maintain, both in terms of
hardware and software

• They need to be modular

Modular Approaches

• Modular approaches to robotics:

– Player/Stage (mobile robotics)
• Robot control (Khepera, Pioneer), simulator(p ,),

– Orocos (industrial robotics)
• Real-time control, kinematics library, other libs

– YARP (humanoid robotics)
SOURCE: Chad Jenkins, June 11, 2005, Workshop Introduction
Robotics 2005 Workshop on Modular Foundations for Control and Perception

8

Hardware Diversity
• Research groups that all use a specific robot

(Khepera, Pioneer, AIBO, ...) often form a
natural software community
– But each alone is a small subset of robotics– But each alone is a small subset of robotics

• Groups developing new robots face obstacles
– Differences in sensors, actuators, bodies...
– Differences in processors, operating systems,

libraries, frameworks, languages, compilers...
– Big barriers to software collaboration

the PC

• Constant hardware flux
– Parts change rapidly
– Interfaces change slowly

• Lots of software grew • Lots of software grew
and evolved alongside
the changing hardware
– Parts change rapidly
– Interfaces change slowly
– “Modularity” is rewarded

A Modular Approach
• Robot software is notoriously hardware-specific

and task-specific

• Both hardware and target tasks change quickly,
even within the lifetime of one projecteven within the lifetime of one project

• Our humanoid robots are far more complex than
one person can build and maintain, both in terms of
hardware and software

• They need to be modular

Modular Approaches

• Modular approaches to robotics:

– Player/Stage (mobile robotics)
• Robot control (Khepera, Pioneer), simulator(p ,),

– Orocos (industrial robotics)
• Real-time control, kinematics library, other libs

– YARP (humanoid robotics)
SOURCE: Chad Jenkins, June 11, 2005, Workshop Introduction
Robotics 2005 Workshop on Modular Foundations for Control and Perception

EU FP7 CogX 46

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

9

Yet Another Robot Platform

• YARP is an open-source
middleware for humanoid robotics

• History

– An MIT / Univ. of Genoa collaboration

– Born on Kismet, grew on COG

– With a major overhaul, now used by
RobotCub consortium

– Exists as an independent open source
project

– C++ source code

C/C++
library

C/C++
library

C/C++

IDE/OS Portability

Project
description

(.txt)

LINUX:
Makefiles,
Kdevelop
files, ...

WINDOWS:
MSVC files,
Borland files,

...

C/C++
library

y
library

OSX:
Makefiles,

Xcode files,
...OS portability

C++ OS functionality wrapper
e.g. threads, semaphores, sockets

Language Portability (SWIG)

C/C++

Java

PERL

Python

Matlab

library
C#

TCL

Chicken

What is YARP for?
• Factor out details of data flow between programs

from program source code

– Data flow is very specific to robot platform, experimental
setup network layout communication protocol etcsetup, network layout, communication protocol, etc.

– Useful to keep “algorithm” and “plumbing” separate

• Factor out details of devices used by programs
from program source code

– The devices can then be replaced over time by comparable
alternatives; code can be used in other systems

9

Yet Another Robot Platform

• YARP is an open-source
middleware for humanoid robotics

• History

– An MIT / Univ. of Genoa collaboration

– Born on Kismet, grew on COG

– With a major overhaul, now used by
RobotCub consortium

– Exists as an independent open source
project

– C++ source code

C/C++
library

C/C++
library

C/C++

IDE/OS Portability

Project
description

(.txt)

LINUX:
Makefiles,
Kdevelop
files, ...

WINDOWS:
MSVC files,
Borland files,

...

C/C++
library

y
library

OSX:
Makefiles,

Xcode files,
...OS portability

C++ OS functionality wrapper
e.g. threads, semaphores, sockets

Language Portability (SWIG)

C/C++

Java

PERL

Python

Matlab

library
C#

TCL

Chicken

What is YARP for?
• Factor out details of data flow between programs

from program source code

– Data flow is very specific to robot platform, experimental
setup network layout communication protocol etcsetup, network layout, communication protocol, etc.

– Useful to keep “algorithm” and “plumbing” separate

• Factor out details of devices used by programs
from program source code

– The devices can then be replaced over time by comparable
alternatives; code can be used in other systems

10

What is YARP for?
• Factor out details of data flow between programs

from program source code

– Data flow is very specific to robot platform, experimental
setup network layout communication protocol etcsetup, network layout, communication protocol, etc.

– Useful to keep “algorithm” and “plumbing” separate

• Factor out details of devices used by programs
from program source code

– The devices can then be replaced over time by comparable
alternatives; code can be used in other systems

the Observer pattern
• Data source knows nothing about identity of

modules that monitor it
Observer 1

data source, or
stream of events Observer 2

Observer N

YARP Ports
• We follow the Observer design pattern.

• Special “Port” objects deliver data to:

– Any number of observers (other “Port”s) ...

– ... in any number of processes ...

– ... distributed across any number of computers/OSes ...

– using any of several underlying communication protocols
with different technical advantages, streaming or RPC

• This is called the YARP Network

machine 1: linux

machine 3: windows

machine 2: linux

Typical YARP Network

/tracker/position

/motor/position

yarpview

motor_control

tracker

yarpdev

tcp

• Connections can use different protocols
• Ports belong to processes
• Processes can be on different machines/OS

/camera /tracker/image

/viewer1

/viewer2

yarpview

yarpviewyarpdev

mcast

mcast udp

10

What is YARP for?
• Factor out details of data flow between programs

from program source code

– Data flow is very specific to robot platform, experimental
setup network layout communication protocol etcsetup, network layout, communication protocol, etc.

– Useful to keep “algorithm” and “plumbing” separate

• Factor out details of devices used by programs
from program source code

– The devices can then be replaced over time by comparable
alternatives; code can be used in other systems

the Observer pattern
• Data source knows nothing about identity of

modules that monitor it
Observer 1

data source, or
stream of events Observer 2

Observer N

YARP Ports
• We follow the Observer design pattern.

• Special “Port” objects deliver data to:

– Any number of observers (other “Port”s) ...

– ... in any number of processes ...

– ... distributed across any number of computers/OSes ...

– using any of several underlying communication protocols
with different technical advantages, streaming or RPC

• This is called the YARP Network

machine 1: linux

machine 3: windows

machine 2: linux

Typical YARP Network

/tracker/position

/motor/position

yarpview

motor_control

tracker

yarpdev

tcp

• Connections can use different protocols
• Ports belong to processes
• Processes can be on different machines/OS

/camera /tracker/image

/viewer1

/viewer2

yarpview

yarpviewyarpdev

mcast

mcast udp

EU FP7 CogX 47

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

11

Physical Network
Example: RobotCub

Gigabit Ethernet (with tcp, udp, multicast traffic)

pc104
(Linux/
Windows)

blade cluster
(Linux)

shuttle PCs
(Linux/Windows)

Why is all this useful?
• We've separated out most of the plumbing
• We get to change it dynamically (handy)
• More importantly, we have better modularity

– Programs can be moved around as load and
OS/device/library dependencies dictate

– Fundamental protocol for communication can be
changed without affecting programs

– Better chance that your code can be used by
others (even just within your group)

What is YARP for?
• Factor out details of data flow between programs

from program source code

– Data flow is very specific to robot platform, experimental
setup network layout etcsetup, network layout, etc.

– Useful to keep “algorithm” and “plumbing” separate

• Factor out details of devices used by programs
from program source code

– The devices can then be replaced over time by comparable
alternatives; code can be used in other systems

What is YARP for?
• Factor out details of data flow between programs

from program source code

– Data flow is very specific to robot platform, experimental
setup network layout etcsetup, network layout, etc.

– Useful to keep “algorithm” and “plumbing” separate

• Factor out details of devices used by programs
from program source code

– The devices can then be replaced over time by comparable
alternatives; code can be used in other systems

11

Physical Network
Example: RobotCub

Gigabit Ethernet (with tcp, udp, multicast traffic)

pc104
(Linux/
Windows)

blade cluster
(Linux)

shuttle PCs
(Linux/Windows)

Why is all this useful?
• We've separated out most of the plumbing
• We get to change it dynamically (handy)
• More importantly, we have better modularity

– Programs can be moved around as load and
OS/device/library dependencies dictate

– Fundamental protocol for communication can be
changed without affecting programs

– Better chance that your code can be used by
others (even just within your group)

What is YARP for?
• Factor out details of data flow between programs

from program source code

– Data flow is very specific to robot platform, experimental
setup network layout etcsetup, network layout, etc.

– Useful to keep “algorithm” and “plumbing” separate

• Factor out details of devices used by programs
from program source code

– The devices can then be replaced over time by comparable
alternatives; code can be used in other systems

What is YARP for?
• Factor out details of data flow between programs

from program source code

– Data flow is very specific to robot platform, experimental
setup network layout etcsetup, network layout, etc.

– Useful to keep “algorithm” and “plumbing” separate

• Factor out details of devices used by programs
from program source code

– The devices can then be replaced over time by comparable
alternatives; code can be used in other systems

12

YARP Devices
• Basic idea: if you view your devices through well

thought out interfaces, the impact of device change
can be minimized.

• There are three separate concerns related to
devices in YARP:

– Defining interfaces for device families

– Implementing specific drivers for particular devices

– Implementing network wrappers for interfaces

• New devices come out all the time – needs to
be easy to connect them to existing code

• YARP needs a minimal “wrapper” class to
match vendor supplied library with relevant

YARP Devices

match vendor-supplied library with relevant
interfaces that capture common capabilities

• YARP encourages separating configuration
from source code

• Devices and communications remain distinct
concerns

Example: New WebCam

Super-WebCam
device

Super-WebCam
Vendor SuppliedVendor-Supplied

Library/Code

Example: New WebCam

Super-WebCam
device

Super-WebCam
Vendor Supplied

Im
ag

e I

YARP Device Interface

Vendor-Supplied
Library/Code

Audio Interface

nterface

Misc

12

YARP Devices
• Basic idea: if you view your devices through well

thought out interfaces, the impact of device change
can be minimized.

• There are three separate concerns related to
devices in YARP:

– Defining interfaces for device families

– Implementing specific drivers for particular devices

– Implementing network wrappers for interfaces

• New devices come out all the time – needs to
be easy to connect them to existing code

• YARP needs a minimal “wrapper” class to
match vendor supplied library with relevant

YARP Devices

match vendor-supplied library with relevant
interfaces that capture common capabilities

• YARP encourages separating configuration
from source code

• Devices and communications remain distinct
concerns

Example: New WebCam

Super-WebCam
device

Super-WebCam
Vendor SuppliedVendor-Supplied

Library/Code

Example: New WebCam

Super-WebCam
device

Super-WebCam
Vendor Supplied

Im
ag

e I

YARP Device Interface

Vendor-Supplied
Library/Code

Audio Interface

nterface

Misc

EU FP7 CogX 48

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

13

Example: Old Framegrabber

analogue
framegrabber

analogue
framegrabber

Im
ag

e I

YARP Device Interface

Reusable codea eg abbe
Vendor-Supplied

Library/Code

nterface

Reusable code

Misc'

Example: New WebCam

Super-WebCam
device

Super-WebCam
Vendor Supplied

Im
ag

e I

YARP Device Interface

Reusable codeVendor-Supplied
Library/Code

Audio Interface

nterface

Misc

Reusable code

Example: Networking
Im

ag
e I

YARP Device Interface

Reusable code
Im

ag
e ISuper-WebCam

Vendor Supplied N t k nterface

Reusable codenterface
Vendor-Supplied

Library/Code
Network proxy

Family of Image Sources

“Get an image”

Picolo
framegrabber

DragonFly
fireware camera

OpenCV Grabber

specific
hardware

widelyg
Interface

(IFrameGrabberImage)

FFMPEG Grabber
library interface

TestGrabber
fake images

Server/Remote
network wrapper

OpenCV Grabber
library interface

widely
supported
libraries
for accessing
image sources

any image source,
on another machine

fake source for
testing

13

Example: Old Framegrabber

analogue
framegrabber

analogue
framegrabber

Im
ag

e I

YARP Device Interface

Reusable codea eg abbe
Vendor-Supplied

Library/Code

nterface

Reusable code

Misc'

Example: New WebCam

Super-WebCam
device

Super-WebCam
Vendor Supplied

Im
ag

e I

YARP Device Interface

Reusable codeVendor-Supplied
Library/Code

Audio Interface

nterface

Misc

Reusable code

Example: Networking

Im
ag

e I

YARP Device Interface

Reusable code

Im
ag

e ISuper-WebCam
Vendor Supplied N t k nterface

Reusable codenterface

Vendor-Supplied
Library/Code

Network proxy

Family of Image Sources

“Get an image”

Picolo
framegrabber

DragonFly
fireware camera

OpenCV Grabber

specific
hardware

widelyg
Interface

(IFrameGrabberImage)

FFMPEG Grabber
library interface

TestGrabber
fake images

Server/Remote
network wrapper

OpenCV Grabber
library interface

widely
supported
libraries
for accessing
image sources

any image source,
on another machine

fake source for
testing

14

Family of Audio Sources

“Get a sound”

Microphone
(windows version)

Microphone
(linux version)

PortAudio

specific
hardware

widely
Interface

(IAudioGrabberSound)

FFMPEG Grabber
library interface

Server/Remote
network wrapper

PortAudio
library interface

widely
supported
libraries
for accessing
audio sources

any audio source,
on another machine

Family of Motor Controllers

“Control Position”

ESD
(Linux,Windows)

Jrkerr
(Windows)

Dimax

specific
hardware

Interface
(IpositionControl)

Server/Remote
network wrapper

TestMotor

Dimax
(Windows)

any control interface,
on another machine

fake motors for
testing

Why is this useful?
• Allows collaboration between groups whose

robots have different devices
• Makes device changes less painful

D i d i i h l • Devices and communications are orthogonal
features
– Can switch from remote use of device to local use

and vice versa without pain
– Local use can be very efficient, just an extra

virtual method call

Publication of software
• The literature of a research community both

expresses its ideas, and aids in their evolution
– Published ideas are read, evaluated, and built upon
– Useful advances get published– Useful advances get published

• Publication of software can speed progress
– Facilitates evaluating and comparing approaches
– Brings new research topics into reach

14

Family of Audio Sources

“Get a sound”

Microphone
(windows version)

Microphone
(linux version)

PortAudio

specific
hardware

widely
Interface

(IAudioGrabberSound)

FFMPEG Grabber
library interface

Server/Remote
network wrapper

PortAudio
library interface

widely
supported
libraries
for accessing
audio sources

any audio source,
on another machine

Family of Motor Controllers

“Control Position”

ESD
(Linux,Windows)

Jrkerr
(Windows)

Dimax

specific
hardware

Interface
(IpositionControl)

Server/Remote
network wrapper

TestMotor

Dimax
(Windows)

any control interface,
on another machine

fake motors for
testing

Why is this useful?
• Allows collaboration between groups whose

robots have different devices
• Makes device changes less painful

D i d i i h l • Devices and communications are orthogonal
features
– Can switch from remote use of device to local use

and vice versa without pain
– Local use can be very efficient, just an extra

virtual method call

Publication of software
• The literature of a research community both

expresses its ideas, and aids in their evolution
– Published ideas are read, evaluated, and built upon
– Useful advances get published– Useful advances get published

• Publication of software can speed progress
– Facilitates evaluating and comparing approaches
– Brings new research topics into reach

EU FP7 CogX 49

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

15

Examples of Codep

A (very) simple example: read data
to/from a port

[on terminal 1] yarp server
[on terminal 2] yarp read /read
[on terminal 3] yarp write /write /read

yarp write

/write

yarp read

/read/write /read

$ yarp write /write /read
Port /write listening at tcp://127.0.0.1:10012
yarp: Sending output from /write to /read using tcp
Added output connection from "/write" to "/read"
hello yarp
1 2 3

$ yarp read /read
Port /read listening at tcp://127.0.0.1:10002
yarp: Receiving input from /write to /read using
tcp
hello yarp
1 2 3

How do we get this?

int main(int argc, char *argv) {
Network yarp;
BufferedPort<Bottle> inPort;
inPort.open("/relay/in");

BufferedPort<Bottle> outPort;
outPort.open("/relay/out");

relay

/relay/in

/relay/out

Let’s now to write a simple “relay” executable which takes whatever
comes from a port and forwards it to another one.

while (true) {
cout << "waiting for input" << endl;
Bottle *input = inPort.read();
if (input!=NULL)
{

Bottle& output = outPort.prepare();
output=*input;
cout << "writing " << output.toString().c_str() << endl;
outPort.write();

}
}
return 0;

}

Connect the new module to our
network

l

yarp write

/write

yarp read

/read

yarp disconnect /write /read

relay

/relay/in

/relay/out
yarp connect /write /relay/in

yarp connect /relay/out /read

15

Examples of Codep

A (very) simple example: read data
to/from a port

[on terminal 1] yarp server
[on terminal 2] yarp read /read
[on terminal 3] yarp write /write /read

yarp write

/write

yarp read

/read/write /read

$ yarp write /write /read
Port /write listening at tcp://127.0.0.1:10012
yarp: Sending output from /write to /read using tcp
Added output connection from "/write" to "/read"
hello yarp
1 2 3

$ yarp read /read
Port /read listening at tcp://127.0.0.1:10002
yarp: Receiving input from /write to /read using
tcp
hello yarp
1 2 3

How do we get this?

int main(int argc, char *argv) {
Network yarp;
BufferedPort<Bottle> inPort;
inPort.open("/relay/in");

BufferedPort<Bottle> outPort;
outPort.open("/relay/out");

relay

/relay/in

/relay/out

Let’s now to write a simple “relay” executable which takes whatever
comes from a port and forwards it to another one.

while (true) {
cout << "waiting for input" << endl;
Bottle *input = inPort.read();
if (input!=NULL)
{

Bottle& output = outPort.prepare();
output=*input;
cout << "writing " << output.toString().c_str() << endl;
outPort.write();

}
}
return 0;

}

Connect the new module to our
network

l

yarp write

/write

yarp read

/read

yarp disconnect /write /read

relay

/relay/in

/relay/out
yarp connect /write /relay/in

yarp connect /relay/out /read

16

relay

/relay/in

/relay/out

how the network grows
It is easy to add, for example, another reader…
Processes can run on different machines, with different OS

yarp write

/write

yarp read

/read

/relay/out

yarp read

/read2

yarp read

/read3

yarp connect /relay/out /read
yarp connect /relay/out /read2
…

iCub ports
• YARP ports are the interface to the robot

• For example:
/icub/cam/left
/icub/cam/right
/icub/head/state:o/icub/head/state:o
/icub/head/command:i
/icub/head/rpc:i
/icub/right_arm/state:o
…

• see http://eris.liralab.it/wiki/ICub_joints for a more
complete list

Example of modularity:
The ODE Simulator

http://eris.liralab.it/wiki/Simulator_README

Replace a full robot: opens the same ports as the robot,
just replace icub -> icubSim in the port names

Read sensors from the robot

yarpview –name /view/rightyarpview –name /view/right
yarpview –name /view/left

$ yarp read /encs1
yarp: Receiving input from /icubSim/head/state:o
to /encs2 using tcp
-32.0 -0.0 -0.0 -10.0 0.0 -0.0
-32.0 0.0 0.0 -10.0 -0.0 -0.0
-32.0 0.0 0.0 -10.0 -0.0 -0.0
-32.0 0.0 0.0 -10.0 0.0 -0.0
-32.0 -0.0 -0.0 -10.0 0.0 -0.0
-32.0 -0.0 -0.0 -10.0 0.0 -0.0
…

$ yarp read /encs2
yarp: Receiving input from
/icubSim/right_arm/state:o to /encs2 using tcp
…
0.0 0.0 0.0 5.500092 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 -
0.0 -0.0 0.0 0.0 -0.0
0.0 0.0 0.0 5.500092 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 -
0.0 -0.0 0.0 0.0 -0.0
…

16

relay

/relay/in

/relay/out

how the network grows
It is easy to add, for example, another reader…
Processes can run on different machines, with different OS

yarp write

/write

yarp read

/read

/relay/out

yarp read

/read2

yarp read

/read3

yarp connect /relay/out /read
yarp connect /relay/out /read2
…

iCub ports
• YARP ports are the interface to the robot

• For example:
/icub/cam/left
/icub/cam/right
/icub/head/state:o/icub/head/state:o
/icub/head/command:i
/icub/head/rpc:i
/icub/right_arm/state:o
…

• see http://eris.liralab.it/wiki/ICub_joints for a more
complete list

Example of modularity:
The ODE Simulator

http://eris.liralab.it/wiki/Simulator_README

Replace a full robot: opens the same ports as the robot,
just replace icub -> icubSim in the port names

Read sensors from the robot

yarpview –name /view/rightyarpview –name /view/right
yarpview –name /view/left

$ yarp read /encs1
yarp: Receiving input from /icubSim/head/state:o
to /encs2 using tcp
-32.0 -0.0 -0.0 -10.0 0.0 -0.0
-32.0 0.0 0.0 -10.0 -0.0 -0.0
-32.0 0.0 0.0 -10.0 -0.0 -0.0
-32.0 0.0 0.0 -10.0 0.0 -0.0
-32.0 -0.0 -0.0 -10.0 0.0 -0.0
-32.0 -0.0 -0.0 -10.0 0.0 -0.0
…

$ yarp read /encs2
yarp: Receiving input from
/icubSim/right_arm/state:o to /encs2 using tcp
…
0.0 0.0 0.0 5.500092 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 -
0.0 -0.0 0.0 0.0 -0.0
0.0 0.0 0.0 5.500092 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 -
0.0 -0.0 0.0 0.0 -0.0
…

EU FP7 CogX 50

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

17

Controlling the motors
To control the motor it is enough to send messages to the robot
ports
However, this becomes easily tedious
We can use YARP’s support for devices to simplify this task
Each part of the robot (or sensory system) can be seen as a YARP
device implementing a given set of interfaces

YARP ports

IP
os

it
io

nC
on

tr
ol

IE
nc

od
er

s

Re
m

ot
e

Co
nt

ro
l B

oa
rd

User code
using function

calls

Device and interface creation

Property options;
options.put("device", "remote_controlboard");
options.put("local", “/test/right_arm”);
options.put("remote", “/icub/right_arm”);

// create a device
PolyDriver robotDevice(options);

The process will create the following
(local) ports:
/test/right_arm/state:i
/test/right_arm/command:o
/test/right_arm/rpc:o

A d ill t ti ll t th t IPositionControl *pos;
IEncoders *encs;

robotDevice.view(pos);
robotDevice.view(encs);

And will automatically connect them to
the server, on the following (remote):

/icubSim/right_arm/state:o
/icubSim/right_arm/command:i
/icubSim/right_arm/rpc:i

int nj=0;
pos->getAxes(&nj);
Vector tmp, speed, command;
tmp.resize(nj); //…

// set accelerations and speeds
pos->setRefAccelerations(accelerations.data());
pos->setRefSpeeds(speed.data())

int times=0;
while(true) {

an (almost) working example…

while(true) {
if (times%2)

//set command to a certain value
else

// set command to another value

pos->positionMove(command.data());

Time::delay(5); // wait some time
// read encoders.
encs->getEncoders(encoders.data());
printf("%.1lf %.1lf %.1lf %.1lf\n", encoders[0]...);

}

For a list of interfaces and
their methods

http://eris.liralab.it/yarpdoc/d1/dd6/namespaceyarp_1_1dev.h
tml

Details on IPositionControl: Details on IPositionControl:
http://eris.liralab.it/yarpdoc/d4/d03/classyarp_1_1dev_1_1IPi
dControl.html

or IEncoders:
http://eris.liralab.it/yarpdoc/d4/d57/classyarp_1_1dev_1_1IE
ncoders.html

17

Controlling the motors
To control the motor it is enough to send messages to the robot
ports
However, this becomes easily tedious
We can use YARP’s support for devices to simplify this task
Each part of the robot (or sensory system) can be seen as a YARP
device implementing a given set of interfaces

YARP ports

IP
os

it
io

nC
on

tr
ol

IE
nc

od
er

s

Re
m

ot
e

Co
nt

ro
l B

oa
rd

User code
using function

calls

Device and interface creation

Property options;
options.put("device", "remote_controlboard");
options.put("local", “/test/right_arm”);
options.put("remote", “/icub/right_arm”);

// create a device
PolyDriver robotDevice(options);

The process will create the following
(local) ports:
/test/right_arm/state:i
/test/right_arm/command:o
/test/right_arm/rpc:o

A d ill t ti ll t th t IPositionControl *pos;
IEncoders *encs;

robotDevice.view(pos);
robotDevice.view(encs);

And will automatically connect them to
the server, on the following (remote):

/icubSim/right_arm/state:o
/icubSim/right_arm/command:i
/icubSim/right_arm/rpc:i

int nj=0;
pos->getAxes(&nj);
Vector tmp, speed, command;
tmp.resize(nj); //…

// set accelerations and speeds
pos->setRefAccelerations(accelerations.data());
pos->setRefSpeeds(speed.data())

int times=0;
while(true) {

an (almost) working example…

while(true) {
if (times%2)

//set command to a certain value
else

// set command to another value

pos->positionMove(command.data());

Time::delay(5); // wait some time
// read encoders.
encs->getEncoders(encoders.data());
printf("%.1lf %.1lf %.1lf %.1lf\n", encoders[0]...);

}

For a list of interfaces and
their methods

http://eris.liralab.it/yarpdoc/d1/dd6/namespaceyarp_1_1dev.h
tml

Details on IPositionControl: Details on IPositionControl:
http://eris.liralab.it/yarpdoc/d4/d03/classyarp_1_1dev_1_1IPi
dControl.html

or IEncoders:
http://eris.liralab.it/yarpdoc/d4/d57/classyarp_1_1dev_1_1IE
ncoders.html

18

Image Processing Example
BufferedPort<ImageOf<PixelRgb> > imagePort;

imagePort.open("/imageProc/image/in");

//read an image:
ImageOf<PixelRgb> *image = imagePort.read();

//do something with the image, for example cycle through all pixels
int ct=0
for (int x=0; x<image->width(); x++) {

for (int y=0; y<image->height(); y++) {
PixelRgb& pixel = image->pixel(x,y);
// very simple test for blueishness
// make sure blue level exceeds red and green by a certain factor
if (pixel.b>pixel.r*1.2+10 && pixel.b>pixel.g*1.2+10) {

xMean += x;
yMean += y;

ct++;
}

}
}

if (ct>0) {
xMean /= ct;
yMean /= ct;

}

printf("Best guess at blue target: %g %g\n", xMean, yMean);

Thanks for your attention!

More resources:
Online resources:
• Robotcub home page: http://www.robotcub.org
• YARP home page: http://eris.liralab.it/yarp/
• iCub software repository and wiki: http://eris.liralab.it/iCub
• RobotCub wiki: http://eris.liralab.it/wiki

Some papers:
• G.Metta, G.Sandini, D. Vernon, L.Natale and F.Nori. The iCub Humanoid Robot: an open platform for

research in embodied cognition, Workshop on Performance Metrics for Intelligent Systems, National
Institute of Standards and Technology, Washington DC, USA, August 19-21, 2008.

• P. Fitzpatrick, G. Metta, and L. Natale, “Towards Long-Lived Robot Genes”, Robotics and Autonomous
Systems, Volume 56(1), pp. 29-45, Elsevier (2007).

• S. Degallier, L. Righetti, L.Natale, F.Nori, G.Metta and A. Ijspeert. A modular, bio-inspired architecture for
movement generation for the infant-like robot iCub, IEEE RAS/EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob) 2008, October 19-22, Scottsdale, Arizona, USA.

• J. Hörnstein, M. Lopes, J. Santos-Victor, F. Lacerda, Sound localization for humanoid robots - building
audio-motor maps based on the HRTF, Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS, Beijing, China, Oct. 9-15, 2006.

• J. Ruesch, M. Lopes, A. Bernardino, J. Hörnstein, J. Santos-Victor, R. Pfeifer, Multimodal Saliency-Based
Bottom-Up Attention, A Framework for the Humanoid Robot iCub, 2008 IEEE International Conference on
Robotics and Automation (ICRA), May 19-23, 2008, Pasadena Conference Center, Pasadena, CA, USA.

• Metta, G., Sandini, G., Vernon, D., Caldwell, D., Tsagarakis, N., Beira, R., Santos-Victor, J., Ijspeert, A.,
Righetti, L., Cappiello, G., Stellin, G., and Becchi, F. 2005. The RobotCub project - an open framework for
research in embodied cognition, Humanoids Workshop, IEEE –RAS International Conference on Humanoid
Robots, December.

People
• Lorenzo Natale, Francesco Nori: Software, testing, calibration
• Marco Maggiali, Marco Randazzo: firmware, DSP libraries, tactile sensing
• Francesco Becchi, Paolo Pino, Giulio Maggiolo, Gabriele Careddu: design and

integration
• Gabriele Tabbita, Walter Fancellu: assembly
• Nikos Tsagarakis, William Hinojosa: legs and spine, force/torque sensors
• Bruno Bonino, Fabrizio Larosa, Claudio Lorini: electronics and wiring
• Luciano Pittera, Davide Dellepiane: wiring
• Mattia Salvi: CAD maintenancem
• Alberto Zolezzi: managing quotes, orders and spare parts
• Giovanni Stellin: hand
• Ricardo Beira, Luis Vargas, Miguel Praca: design of the head and face
• Paul Fitzpatrick & Alessandro Scalzo: software middleware
• Alberto Parmiggiani: joint level sensing
• Alexander Schmitz: fingertips
• Nestor Nava: small Harmonic Drive integration
• Ravinder Dahiya: FET-PVDF tactile senors
• Lorenzo Jamone: fingertips
• Daniel Roussy: construction
• Ludovic Righetti: simulation and initial torque specification

18

Image Processing Example
BufferedPort<ImageOf<PixelRgb> > imagePort;

imagePort.open("/imageProc/image/in");

//read an image:
ImageOf<PixelRgb> *image = imagePort.read();

//do something with the image, for example cycle through all pixels
int ct=0
for (int x=0; x<image->width(); x++) {

for (int y=0; y<image->height(); y++) {
PixelRgb& pixel = image->pixel(x,y);
// very simple test for blueishness
// make sure blue level exceeds red and green by a certain factor
if (pixel.b>pixel.r*1.2+10 && pixel.b>pixel.g*1.2+10) {

xMean += x;
yMean += y;

ct++;
}

}
}

if (ct>0) {
xMean /= ct;
yMean /= ct;

}

printf("Best guess at blue target: %g %g\n", xMean, yMean);

Thanks for your attention!

More resources:
Online resources:
• Robotcub home page: http://www.robotcub.org
• YARP home page: http://eris.liralab.it/yarp/
• iCub software repository and wiki: http://eris.liralab.it/iCub
• RobotCub wiki: http://eris.liralab.it/wiki

Some papers:
• G.Metta, G.Sandini, D. Vernon, L.Natale and F.Nori. The iCub Humanoid Robot: an open platform for

research in embodied cognition, Workshop on Performance Metrics for Intelligent Systems, National
Institute of Standards and Technology, Washington DC, USA, August 19-21, 2008.

• P. Fitzpatrick, G. Metta, and L. Natale, “Towards Long-Lived Robot Genes”, Robotics and Autonomous
Systems, Volume 56(1), pp. 29-45, Elsevier (2007).

• S. Degallier, L. Righetti, L.Natale, F.Nori, G.Metta and A. Ijspeert. A modular, bio-inspired architecture for
movement generation for the infant-like robot iCub, IEEE RAS/EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob) 2008, October 19-22, Scottsdale, Arizona, USA.

• J. Hörnstein, M. Lopes, J. Santos-Victor, F. Lacerda, Sound localization for humanoid robots - building
audio-motor maps based on the HRTF, Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS, Beijing, China, Oct. 9-15, 2006.

• J. Ruesch, M. Lopes, A. Bernardino, J. Hörnstein, J. Santos-Victor, R. Pfeifer, Multimodal Saliency-Based
Bottom-Up Attention, A Framework for the Humanoid Robot iCub, 2008 IEEE International Conference on
Robotics and Automation (ICRA), May 19-23, 2008, Pasadena Conference Center, Pasadena, CA, USA.

• Metta, G., Sandini, G., Vernon, D., Caldwell, D., Tsagarakis, N., Beira, R., Santos-Victor, J., Ijspeert, A.,
Righetti, L., Cappiello, G., Stellin, G., and Becchi, F. 2005. The RobotCub project - an open framework for
research in embodied cognition, Humanoids Workshop, IEEE –RAS International Conference on Humanoid
Robots, December.

People
• Lorenzo Natale, Francesco Nori: Software, testing, calibration
• Marco Maggiali, Marco Randazzo: firmware, DSP libraries, tactile sensing
• Francesco Becchi, Paolo Pino, Giulio Maggiolo, Gabriele Careddu: design and

integration
• Gabriele Tabbita, Walter Fancellu: assembly
• Nikos Tsagarakis, William Hinojosa: legs and spine, force/torque sensors
• Bruno Bonino, Fabrizio Larosa, Claudio Lorini: electronics and wiring
• Luciano Pittera, Davide Dellepiane: wiring
• Mattia Salvi: CAD maintenancem
• Alberto Zolezzi: managing quotes, orders and spare parts
• Giovanni Stellin: hand
• Ricardo Beira, Luis Vargas, Miguel Praca: design of the head and face
• Paul Fitzpatrick & Alessandro Scalzo: software middleware
• Alberto Parmiggiani: joint level sensing
• Alexander Schmitz: fingertips
• Nestor Nava: small Harmonic Drive integration
• Ravinder Dahiya: FET-PVDF tactile senors
• Lorenzo Jamone: fingertips
• Daniel Roussy: construction
• Ludovic Righetti: simulation and initial torque specification

EU FP7 CogX 51

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

Invited talk: Marc Hanheide

1

Technical Faculty – Applied Informatics

Learning by Interacting

Marc HanheideMarc Hanheide

CogX Spring SchoolCogX Spring School

KTH Stockholm, March 2009KTH Stockholm, March 2009

2

Technical Faculty – Applied Informatics

Thanks for inviting me nevertheless!

The Bielefeld conspiracy [usenet, wikipedia]:

The story goes that the city of Bielefeld (population
330,000) in the German state of North Rhine-
Westphalia does not actually exist. Rather, its
existence is merely propagated by an entity known
only as THEM, which has conspired with authorities
to create the illusion of the city’s existence.

The theory posits three questions:

1.Do you know anybody from Bielefeld?

2.Have you ever been to Bielefeld?

3.Do you know anybody who has ever been to
Bielefeld?

3

Technical Faculty – Applied Informatics

Who am I?

4

Technical Faculty – Applied Informatics

Applied Informatics
http://aiweb.techfak.uni-bielefeld.de

Pattern Recognition

Human-Robot Interaction

Interaction & Dialog Management

Developmental Robotics

System Architectures Research

GerhardGerhard
SagererSagerer

5

Technical Faculty – Applied Informatics

Our Research in a Nutshell

Applied Informatics Group

Focus is “Cognitive Interaction Technology”

... in robotics

... in cognitive architectures

6

Technical Faculty – Applied Informatics

CoR-Lab
http://www.cor-lab.org

Cognition & Robotics

ASIMO

Fundamental research in

Cognitive Robotics and Learning
(Jochen Steil)

Cognitive Systems Engineering
(Sebastian Wrede)

Hybrid Society
(Britta Wrede)

7

Technical Faculty – Applied Informatics

CITEC
http://www.cit-ec.org

all/most converges into the Cluster of Excellence
“Cognitive Interaction Technology”

4 “columns”

Motor Intelligence

Attentive Systems

Situated Communication

Memory & Learning

Biology, Psychology, Sports,
Informatics, Linguistics,
Physics, Mechatronics

8

Technical Faculty – Applied Informatics

Cognitive Interaction Technology?

Cognitive:

cognitive foundations

biological/neural principles

linguistic cognitive models

Interaction:

studies

interactive learning and tutoring

multi-modal and multi-cue interaction

Technology:

architecture (software & systems)

interaction behaviors and abilities

EU FP7 CogX 52

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

9

Technical Faculty – Applied Informatics

Scenario: “cocktail assistant”
© barmeister.com

object manipulation

objects

action

task oriented

assistance

step-wise instructions

guidance to object positions

supervision and correction

„ego-vision“ system

10

Technical Faculty – Applied Informatics

Scenario: The curious bi-manual robot

Mixed-initiative Interaction

Grasping of learned objects

Platform: PA-10 Bi-manual

11

Technical Faculty – Applied Informatics

Applications with BIRON

mobile home tour robot

actively controlled sensors

focus on interaction

embodiment

EU FP7 CogX 53

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

1

Technical Faculty – Applied Informatics

Learning by Interacting

Marc HanheideMarc Hanheide

CogX Spring SchoolCogX Spring School

KTH Stockholm, March 2009KTH Stockholm, March 2009

2

Technical Faculty – Applied Informatics

Beyond Machine Learning

“socially guided machine learning“
[Breazeal]
Learning is not only

collect data sets

learn a model (classifier)

test the model (classifier)

but can also
start from very generic abilities

exploit attention/curiosity/interaction

testing, application, and learning are highly intertwined

The particular learning algorithms are not discussed today!

Leonardo (MIT Media Labs)

3

Technical Faculty – Applied Informatics

Teaching by Interaction

When a tutor communicates the
learning stuff, he relates things to the
human behavior
A tutor communicates by

speech, gesture,

context, history of actions

Aligned teaching
perception and storage of information
is guided by communication

4

Technical Faculty – Applied Informatics

Exemplary Videos - Child-directed

5

Technical Faculty – Applied Informatics

Exemplary Videos - Adult-directed

6

Technical Faculty – Applied Informatics

Attention, Teacher’s Gesture and Actions

[Nagai, Y., Rohlfing, K.J. , "Computational Analysis of Motionese toward Scaffolding Robot Action Learning", IEEE
Transactions on Autonomous Mental Development, 2009]

7

Technical Faculty – Applied Informatics

Analyze measurable features
average velocity

average acceleration

smoothness (path/dist)

relation of lengths between

action and preceding pause

Characteristics of child-directed actions:
More and longer pauses

Lower velocity

Trajectories (2D) more straight, less smooth

Motionese to Emphasize Actions

8

Technical Faculty – Applied Informatics

Speed
Accelaration
Pace: Motion Time / Pauses
Roundness: Trajectory / Distance
Accustic Events

 Contrast: Child - Adult

EU FP7 CogX 54

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

9

Technical Faculty – Applied Informatics

 Results: Teaching Children and Adults

10

Technical Faculty – Applied Informatics

Preparing an Action:
 Objects are Salient
 (initial state)

During an Action:
 Faces are Salient
 (social information,
 feedback)

After an Action:
 Objects are Salient
 (goal state)

A first computational attention model of attention

11

Technical Faculty – Applied Informatics

Acoustic Packaging – Origin

Proposed and termed acoustic packaging
by Hirsh-Pasek and Golinkoff (1996)

Language helps to divide a sequence of events into units

Prerequisite: synchrony between language and events

Study by Brand and Tapscott (2007)

Co-occurring infant-directed-speech and motion can help infants to
segment the action into smaller units

12

Technical Faculty – Applied Informatics

Motivation – Adult vs. Infant Directed Speech

A1

in A123 su

A2 A3 su

Audio

Video

Audio

Video

A1in A2 A3 su

A1In A2 A3 su

t

t

Adult directed speech
No apparent correlation
between A/V segments

High verbal specification

Infant directed speech
Highly correlated A/V
segments

[Schillingmann et a., ICDL 2009]

13

Technical Faculty – Applied Informatics

Acoustic Packaging – Aiding Feedback and
Learning in Human Robot Interaction

Scenario
Task demonstration in tutoring
situations

Human robot interaction

Goals

Generate feedback during tutoring

Acoustic packages form early units
for further learning processes

Finding a common and extensible
representation

14

Technical Faculty – Applied Informatics

Requirements

Vision and speech cues

Segmentation for speech and vision

A timestamp concept

Accuracy to a certain degree

Online / offline usage

An architecture with the ability to integrate

different processing modules

operating with varying time steps

15

Technical Faculty – Applied Informatics

Speech Segmentation – Phoneme Recognizer

ESMERALDA
Toolkit for tasks needed to build a speech recognizer

Incremental Speech Recogniser (isr)

Acoustic Model

Monophonemes from existing acoustic model

Training Data: Verbmobil Corpus (lexicon size: ca. 6800)

n-gram Language Model

Training data: Verbmobil corpus phonetically transcribed

models phonotactics

16

Technical Faculty – Applied Informatics

Visualisation

Amount of Motion
per Frame

Approach – Current State

Speech Recognizer

/a:/ /p/ /h/ /2:/
[noise1] /d/ /a/ /n/

Motion History Image

t

∑

Local Minima-Based
Segmentation

t
[t

1
.. t

2
]

Acoustic Packaging
● Time interval
based clustering

● Smallest distance /
largest overlap
wins

EU FP7 CogX 55

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

17

Technical Faculty – Applied Informatics

Screenshot

18

Technical Faculty – Applied Informatics

Architecture

Uses XCF / ActiveMemory
Decoupling

Persistence

Modules communicate high
level hypotheses

XML + binary attachment

Interval timestamps

Vision
Processing
(icewing)

Visualisation
and

Inspection

Active
Memory

Acoustic
Packaging

Speech
Recognition

(ESMERALDA)

Prosodic
Analysis

(planned)

19

Technical Faculty – Applied Informatics

Learning by interacting

Pros of learning by interacting
“what to learn“ is explicit

implicit task-dependency

iterative refinement (aligned representations)

intuitive (situated)

not necessarily the developmental way

Challenge: architectural
pick up IDI concepts:
let information generation drive
system behavior

concurrent behaviors

mixed-initiative

facilitate learning

Challenge: HR-interaction
interaction patterns

no longer a pure machine-
learning issue

appropriate interactive
behaviors

feedback perception 20

Technical Faculty – Applied Informatics

A robot learning by interacting

mobile robot BIRON
 flexible & customized
platform and scenario
since 2001

21

Technical Faculty – Applied Informatics

Knowledge about environments for mobile robots

Where is the living room?
Where can I cook?
Where are the mugs?
How to get to the bath room?
How does the dining room look alike?
What is a living room?

MIRo apartmentMIRo apartment

Where should a robot get this knowledge from?
22

Technical Faculty – Applied Informatics

Learning by Interacting

home robots learn
one system

multi tasks

flexibility
(everyday environment)

how do they do it?
from demonstration

experience &
(self-) exploration

by interaction

23

Technical Faculty – Applied Informatics

The Home Tour

task-oriented use case
home tour:
naive user showing a yet uninstructed
robot her/his own living environment

spatial representation

• rooms

• functional areas (cooking area, private area)

• objects (cups, coffee machine)

“fluent” interaction without exhaustive training

autonomous, “non-tweaked” system

➔flexible and generic learning-enabling behaviorsflexible and generic learning-enabling behaviors
24

Technical Faculty – Applied Informatics

“Hello”

speech recognition
voice direction
detection of

face

leg

person tracking
(reviewed later on)

EU FP7 CogX 56

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

25

Technical Faculty – Applied Informatics

Excursion: Looking into people's faces

Faces are in particular relevant for interaction
identity

emotion

feedback cues

Perception is difficult
changing light

active camera

26

Technical Faculty – Applied Informatics

Analyzing Faces using AAM Techniques

Detection
[Castrillon et al, 2007]

Initialization
[Rabie et al, 2008]

Active Camera
[Fritsch et al, 2003]

AAM
[Cootes et al, 2001]

Multiclass
SVM

& nearest
neighbor
rejection 1st

Rejection

27

Technical Faculty – Applied Informatics

Active Appearance Model (AAM)

 image processing approach
(Cootes, Edwards and Taylor 1998)

object description via parameter vector

interpretation by synthesis with a generative

model:
shape model

texture model / grey level model

search method

28

Technical Faculty – Applied Informatics

Shape Model

set of training images with
landmarks
feature point
correspondence in all
images
image + shape =
appearance

29

Technical Faculty – Applied Informatics

Texture Model

 texture: pixel intensities of an object
 create „shape-free“ object textures:

 Delaunay Triangulation
 image warping to the mean shape

30

Technical Faculty – Applied Informatics

Appearance Model

 use PCAs to build shape and texture model
 combination of shape and texture model yields

appearance model
 third PCA on all combined parameter

vectors

➔ description of an appearance
 via appearance parameter

 several normalizations are necessary

a

31

Technical Faculty – Applied Informatics

Search Method

 find for a new image by minimization of the grey level
difference (reconstruction error):

 difficult optimization problem!
 idea: pre-compute linear relation:
➔ displace model parameters for training examples: vary

and size, position and rotation
➔ find using Multivariate Linear Regression

d g=g image−gmodel

a

d a=R⋅d g

R
a

32

Technical Faculty – Applied Informatics

Fitting to new Images

1. initial estimation of the parameters
2. use to generate shape and texture
3. calculate texture error:
4. predict parameter modifications:
5. test new parameters: where
6. select best
7. iterate, until the texture error does not
 improve any more

d g=g image−gmodel
d a=R⋅d g

d g

a
a

a :=a−k⋅d a
k∈{1.5,0.5,0.25, ...}a

EU FP7 CogX 57

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

33

Technical Faculty – Applied Informatics

Example

 left: fitting successful
 right: convergence into local minimum

34

Technical Faculty – Applied Informatics

So much for Faces

Faces are just one feedback channel...
Gestures with head, limbs, posture,...

Prosodic information also conveys e.g. emotional states

explicit verbal statements

let's continue teaching the robot something about the
apartment

35

Technical Faculty – Applied Informatics

“This is the living room”

Topological mapping
(Human augmented
mapping)
real world

changing furniture

features mixed initiative
learning by interacting

robot's curiosity

novelty detection on geometric
features

36

Technical Faculty – Applied Informatics

“Biron, follow me”

intelligent following
obstacle avoidance
using person tracking
real world

narrow door passages
(path planning and obstacles
avoidance)

interactive error recovery

37

Technical Faculty – Applied Informatics

“This is a mug”

object attention
real world

based on skin-color tracking

skin-color based tracking has its
limits

Alternatives: 3D body tracking

Color
attention

GrabCut
mask

Relevant
scene

Input image
38

Technical Faculty – Applied Informatics

“This is a chair”

Camera orientation as
implicit feedback

39

Technical Faculty – Applied Informatics

 3D Body Tracking

One Camera:
Model based on Cylinders

Matching 3D Model und
2D Features

Generic Motion Model
(no pre-defined motion classes)

Particle Filtering Approach:
Adaptable to Processor Power

Enables Tracking of 3D Body
Motion by a Mobile Robot

[Schmidt, J.; Kwolek, B. & Fritsch, J. Kernel Particle Filter
for Real-Time 3D Body Tracking in Monocular Color
Images Proc. of Automatic Face and Gesture
Recognition, 2006, 567-572] 40

Technical Faculty – Applied Informatics

Initialization and Recovery

robust face detection and tracking
learn and update human’s appearance model:

skin color
(mixture of gaussians in RG color space)

shirt color (color histogram)

 constrained pose estimation (only 5
DOF)

allow less body movements

head and hands position

torso color segmentation

use pose for initializing tracking

use pose for error recovery

EU FP7 CogX 58

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

41

Technical Faculty – Applied Informatics

Not only humans are of interest...

3-D scene Perception
Scene description by planar
surfaces

Sensor: Swissranger ToF
Camera

Modeling of human-made
environment independent from:

•Colors, textures, view point,
specific furniture, objects, …

[Beuter, N., Swadzba, A., Schmidt, J. , "Simultaneous Tracking And Scene
Reconstruction For Robot Perception", Workshop for Cognitive
Humanoid Vision: IEEE-RAS, 2008] 42

Technical Faculty – Applied Informatics

3D scene perception

integrate with SLAM

43

Technical Faculty – Applied Informatics

Wrap-Up

Enable technology to learn by interaction
Equip robots with perceptual capabilities to facilitate
interaction and learning
Target at closed-loop, “social machine learning”

Find/investigate an architectural paradigm focusing on
multimodal fusion

learning & memorization

flexible w.r.t. system and platforms

EU FP7 CogX 59

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

1

Technical Faculty – Applied Informatics

Memory & Memory Processes
„brains in machines and developers“

Marc HanheideMarc Hanheide

CogX Spring SchoolCogX Spring School

KTH Stockholm, March 2009KTH Stockholm, March 2009

2

Technical Faculty – Applied Informatics

Memory and Cognitive Systems

Cognitive systems without memory?
Memory is a common feature of most cognitive systems

Our ambition
design systems around memory architectures to support

life-long learning and adaptation

Objectives
be informed by cognitive foundations in nature/humans

Allows easier binding of distributed information and knowledge

Allows shared consolidation of compact representations

Gives additional hints for functional decomposition

 Memory is not passive, but an active process...

3

Technical Faculty – Applied Informatics

Cognitive Foundations:
Memory Processes

Perception

Encoding

Consoli-
dation

Retrieval

Environment

Re-Consolidation

A very simplified view
but quite accepted in cognitive
psychology

Sina KühneSina Kühnell

4

Technical Faculty – Applied Informatics

Environment

Ultra-short-term
(sensoric register)

Hear
See
Feel

Smell
taste

Short-term Memory

long term memory

working memory Answer,
Information presentation

gone lost,
modified over
time, original
unavailable

Forgetting

Forgetting

Decay

Discarded,
non-

available

Temporal Processes

5

Technical Faculty – Applied Informatics

Temporal Processes – Working Memory

Central
Executive

Visuo-spatial
Sketch Pad

Phonological
Loop

Episodic Buffer

(Visual) Semantics Associative Access
to episodic long-

term memory
Language

(Baddeley, 2003)

6

(Tulving & Markowitsch)

7

Technical Faculty – Applied Informatics

A principle processing model – SPI model

model according to Tulving
(e.g. 2001)

Encoding in serial

Storage in parallel

Retrieval is independent

➔SPI-model

8

Technical Faculty – Applied Informatics

SPI model (technically) revisited:
Object recognition

Encoding in serial
object's appearance (perceptual)

object's class (semantic)

object's role in an action (episodic)

Storage in parallel
we store all this, not to compute it again

representation (data types) are
different

reference between represenations is
crucial

Independent retrieval
other processes shall have access

EU FP7 CogX 60

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

9

Technical Faculty – Applied Informatics

A Memory for Constructing Intelligent Systems

Two-fold view on “Memories”:Two-fold view on “Memories”:
a cognitive foundation

facilitate learning by interacting

close coupling of perception and action based on
acquired knowledge

a constructive paradigm for software
development

flexible and evolving processing strategies

decomposition strategy into memory processes

provide a loosely coupled component model of
processing for collaborative development

how to support the cognitive model? 10

Technical Faculty – Applied Informatics

History of Memory Architectures

Working Memory in the focus of “traditional” cognitive
architectures

ACT

SOAR

in Bielefeld (in European projects)
VAMPIRE: “Visual Active Memories and Interactive REtrieval”

COGNIRON: “COGNItive RObot companioN”

iTalk:
“Integration and Transfer of Action and Language Knowledge in robots”

➔historically termed “Active Memories”

related
CoSy, CogX

11

Technical Faculty – Applied Informatics

Active Memory Approach
A Cognitive Systems Viewpoint

 Memory is generally useful in
 cognitive interaction systems

 Store and recall shared
 multi-modal information

 Cope with unreliable,
 outdated information

 Support learning based on
 memory content / dynamics

 Support transparent
 data fusion processes

 However, there may be different, specialized types
 of memory in cognitive interaction systems

Sebastian Wrede

taken mainly from VAMPIRE view
12

Technical Faculty – Applied Informatics

Active Memory Approach
A Software Engineering Viewpoint

 But, memory can be useful for
 software integration, too

 Implicit collaboration

 Shared representations

 Implicit representation of
 system state

 Introduces temporal dimension in
 otherwise transient EDA

 Allows bootstrapping of event-driven components

 The active memory is a generic service in an IDI architecture

Sebastian Wrede

taken mainly from VAMPIRE view

13

Technical Faculty – Applied Informatics

Focus on the Focus on the information generated information generated in a system in a system
to facilitate efficient software integration in to facilitate efficient software integration in
cognitive systems and the construction of cognitive systems and the construction of
loosely coupledloosely coupled, ,
modular architectures modular architectures with particular support with particular support
for for memory and learningmemory and learning..

Information-Driven Integration in a Nutshell
Manifesto

14

Technical Faculty – Applied Informatics

Information-Driven Integration (IDI) in a Nutshell
Methodology

 Event-driven architecture (EDA)

 Service-oriented principles (SOA)

 Tuplespace concepts (TS)

Combined in
information-driven
integration approach!

15

Technical Faculty – Applied Informatics

IDI Architecture
Information-oriented Representation

 XML Documents

Encode information and knowledge

XML is a hierarchical data type

instead of pre-defined stubs and skeletons
(IDL or slide definitions)

binary attachments

 IDI Approach

Self-contained and coarse grained

Reuse of common XML locations

 Benefits

Unifies variety of message structures

Facilitates generic components and algorithms

XML Schema support for validation
16

Technical Faculty – Applied Informatics

IDI Architecture
Uniform Access and Extensibility

 XPath for tree navigation

 IDI Guidelines

 Ignore additional content
 (must-ignore policy)

 Be location independent
 (partial specialization)

 Benefits

 Declarative

 Extensibility

 Facilitates reuse / loose coupling

XPath Explanation

/*/CENTER Associative access to nodes

//RECT[@w] Conditional lookup with
predicate

… …

EU FP7 CogX 61

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

17

Technical Faculty – Applied Informatics

IDI Architecture
Events as Atoms of Communication

 Events

 Created by informers (objects)

 Represent state change

 Polymorphic event hierarchies

 Event notifications

 Eventually received by interested listeners

 Extend DM by metadata and binary attachments

 Benefits

 Map well to domain events

 Loose coupling

Informer

Listener

Event

Notificatio
n

18

Technical Faculty – Applied Informatics

IDI Architecture
Reactive Programming with Subscriptions

 Subscription

 Allows listeners to express interest
 (subscribe) to specific events

 Subscription contains filters that evaluate
 event notification against conditions

 If a subscriptions matches, its callback
 (domain object) is notified

 Client-side matching
 Benefits

 Dynamic registration

 Expressiveness

/OBJECT/[REGION[CENTER[@x>160 and @x<480 and @y>120 and
@y<360]]]

Subscription

XPathFilter
Condition:
Type: Object
Center position:
(160<x<480) and (120<y<360)
Reliability: >=0.9

19

Technical Faculty – Applied Informatics

 Subscriptions composed of filter and transformation functions

 Message Transforming Functions (MTF)

 Extension to filtering

• May be stateful

• May modify content

 Benefits

 More powerful conditions

 Modeling of pre- and post-conditions

 Pre-processing

 Bound to local state

IDI Architecture
Matching and Transformation

[Lütkebohle, I., Schaefer, J., Wrede, S. , "Facilitating Re-Use by
Design: A Filtering, Transformation, and Selection Architecture
for Robotic Software Systems ", Software Development and
Integration in Robotics, 2009]

20

Technical Faculty – Applied Informatics

Memory Approach:
Memory as a Tuplespace

SPI: Independent (associative) retrieval
 Informed by Tuplespaces [Gelernter]

 Virtual shared memory

 Tuples (atomic datatypes)

 High-level actions (in, out, read, …)

 Benefits

 Abstract level of component interaction

 Allows modeling of concurrent access

 Active Memory

 No tuples but memory elements

<OBJECT>
 <GENERATOR
 name="BOOST_DETECTOR"
 timestamp=“0123456789"/>
 <CLASS>Cup</CLASS>
 <REGION image="office_122">
 <COORDS x="335“ y="245"
 w="65" h="80"/>
 </REGION>
</OBJECT>

21

Technical Faculty – Applied Informatics

 Shared repository

 Concurrent access

 Reliable storage

 Transaction support

 High-level actions

 Insert, replace, remove, query, …

 XPath for selection

 Memory events

 Inform about modifications

Memory Service:
Functions

22

Technical Faculty – Applied Informatics

Perceptual Consolidation and Tracking:
Hypothesis Anchoring (Binding Perception)

SPI: Serial Encoding, parallel storage
inherently asynchronous processing flow
person anchoring is one concurrent behavior

23

Technical Faculty – Applied Informatics

Hypotheses Anchoring in Memories

map percepts to episodes
perception is uncertain

miss-classifications, ...

but...
existence in memory is a binary feature

uncertainty needs to be expressed
explicitly

➔ hypotheses concept

24

Technical Faculty – Applied Informatics

Hypotheses Anchoring

generic fusion process based on distance measures
specialized function

match

insert

update

EU FP7 CogX 62

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

25

Technical Faculty – Applied Informatics

Memory Processes: Our Objectives revisited

identify the consensus of generic memory processes
anchoring (binding)

forgetting

consolidation and reliability treatment

provide a framework to support memory architecture
specifically on different cognitive layers

reactive perception-action loops

long-term consolidation (exploiting interaction as well)

associative look-up of knowledge (e.g. information-oriented selection)

26

Technical Faculty – Applied Informatics

Learning by Interaction:
space-based collaboration

Beyond perception consolidation
interactive learning is supported by the concepts of memories

exchange of information between components drives the system

exploit space-based interaction strategies on system level
facilitate interactive negotiations of representation

picking up concepts of dialogic grounding [Clark] and alignment
[Pickering & Garrod]

introduce a state in memory elements

An examples:
interactive human-augmented mapping

27

Technical Faculty – Applied Informatics

Mixed-initiative Learning of Room

28

Technical Faculty – Applied Informatics

“negotiation” about
aligning representations
hypothesis generation

independent of event
source (informer)

user (via dialog)

system
(via novelty detection)

insertion of “memory element” drives the robot's learning
it's basically hypothesis validation/clarification

Mixed initiative using the IDI approach

29

Technical Faculty – Applied Informatics

Room learning - Robot's Initiative

30

Technical Faculty – Applied Informatics

Room learning - Human's Initiative

error treatment by
forgetting processes

different forgetting
schemes based on
states

31

Technical Faculty – Applied Informatics

How to illustrate a system's architecture?

Coupling before Memory Architecture

32

Technical Faculty – Applied Informatics

The problem of architecture drawings

Decoupling achieved by Memory Architecture

EU FP7 CogX 63

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

33

Technical Faculty – Applied Informatics

A more Functional View

Final Software Architecture
of the COGNIRON project of
BIRON
“Active Memory” being
introduced in existing
architecture

34

Technical Faculty – Applied Informatics

A revised system architecture

memory and non-memory
interaction patterns
Memory layers

Long-Term (LT)

Scene(=episodic) (SC)

Short-Term (ST)

Arbitration based on
memory contents

ACMI: rule-production system

HWA: grant access through HAL

35

Technical Faculty – Applied Informatics

Technological Background

IDI: Information-driven Integration Framework (historically XCF)

http://xcf.sf.net

Basic features:

Event-driven middleware for distributed processing

facilitates generic memories and processes

Unified information encoding (XML+Attachments)

Unified access and modification (XPath, XQuery)

Persistence (Oracle (Sleepycat) DBXML)

Drawback: No explicit real-time support

Bindings: C++, Java, Matlab, Python (partially)

Environment: Primarily Linux, Win32 (partially)

Main dependencies: Xerces, XQilla, Spread, Ice (partially)
36

Technical Faculty – Applied Informatics

Comparison with CAST, let's discuss

Active Memory CAST

several working memories

explicit architectural binding support

defined data types (slice definitions)

… …

conceptually one memory space
(with content-based filtering)

binding by dedicated generic
memory spaces

very generic representation and
access (XML + attachments)

only few managed components
with specific interface
→ easy legacy integration

sub-architecture interfaces with clearly
defined processing strategies

37

Technical Faculty – Applied Informatics

Wrap-Up

Memory-centered architectures
are picking up cognitive foundation

can serve as a generic principle to the construction of cognitive (robotic)
systems

Open challenges
balance between

• close coupling for learning

• loose coupling for software engineering

EU FP7 CogX 64

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

1

Technical Faculty – Applied Informatics

Memory & Memory Processes
„brains in machines and developers“

Marc HanheideMarc Hanheide

CogX Spring SchoolCogX Spring School

KTH Stockholm, March 2009KTH Stockholm, March 2009

2

Technical Faculty – Applied Informatics

Why System Interaction Analysis (SInA)?
Manja LohseManja Lohse

3

Technical Faculty – Applied Informatics

Why SInA?

complex systems
evaluation of single components does not take into
account interaction conditions
evaluation profits from real interaction situations
evaluation has to take into account system level and
interaction level at the same time
evaluation has to be interdisciplinary

4

Technical Faculty – Applied Informatics

What is SInA?

What is SInA?
method to analyze the data acquired in user studies in an
integrated manner

data-driven

based on traditional interaction analysis

applies task analysis methods

applicable different scenarios and robots

allows to answer the questions:
What do users do?

What does the robot do?

What happens within the system?

5

Technical Faculty – Applied Informatics

The evaluation story

script
1. first contact

2. teaching a room

3. teaching an object

4. guiding the robot

5. teaching a second room

6. teaching a second object

7. good bye

home tour

location learning object learning followingtasks greeting farewell
6

Technical Faculty – Applied Informatics

Evaluation-implementation-cycle

Improve-
ments

Loop

Evaluation
Phases

Integration

Systemic Evaluation
does our (implementation of the) interaction model suffice?

• early involvement of users in task-oriented testing

• evaluation-driven (re-)implementation: iterative process

important: “debugging” on interaction level (not on segfault level)

7

Technical Faculty – Applied Informatics

Interdisciplanary Systemic Interaction Analysis

it's not only about robots... but humans as well!
motivation:

bringing together conversational analysis,
technical evaluation, and task analysis

interdisciplinary analysis with one corpus

structured analysis of human and robot behavior

major questions:
what does the human do? (task analysis)

• and why? (conversation analysis)

what does the robot do? (task analysis)

• and why? (system analysis based on IDI introspection)

SociologistSociologist

DeveloperDeveloper

ConversationConversation
AnalystAnalyst

AnnotatorAnnotator

8

Technical Faculty – Applied Informatics

Interdisciplanary Systemic Interaction Analysis

open source tool ELAN
unified view on system and interaction process

Interception

+ generic IDI events+ generic IDI events

Annotation

Task and
Conversation
Analysts

EU FP7 CogX 65

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

9

Technical Faculty – Applied Informatics

Technological Background

exploit event bus to intercept whole system dynamics
event content is XML with binary attachements

XSLT or proprietary transformation of messages into ELAN format

record all/selected events to persistent storage (file/memory server)

exploit log4cxx/log4j
towards richer and specific event (customizable)

logging integrated in EDI framework → logging events on bus

10

Technical Faculty – Applied Informatics

Exemplary ELAN session

manual annotations:
speech, gestures

interception logs:
speech phrases

gestures

speech output

arbitration commands

screen character

self localization

tracked persons

dialog states

...

11

Technical Faculty – Applied Informatics

feedback
changes

define prototypical
script of task

estimate impact of deviation
patterns

identify causes for deviation
patterns

(system and interaction level)

identify deviation
patternscomponent

changes
architecture

changes

SInA Cycle

12

Technical Faculty – Applied Informatics

feedback
changes

define prototypical
script of task

estimate impact of deviation
patterns

identify causes for deviation
patterns

(system and interaction
level)

identify deviation
patternscomponent

changes
architecture

changes

How does SInA work?

Step 1: Prototypical interaction script

based on interdisciplinary video analysis (data driven)

includes real-world restrictions

includes subtasks, appropriate verbal commands and other behaviors

13

Technical Faculty – Applied Informatics

feedback
changes

define prototypical
script of task

estimate impact of deviation
patterns

identify causes for deviation
patterns

(system and interaction
level)

identify deviation
patternscomponent

changes
architectur
e changes

How does SInA work?

Step 2: Deviation patterns
cases that deviate from the prototypical script are grouped

patterns not coincidences

patterns are similar in what the users do, what happens within the robot,
and what the robot does

patterns are sorted by robot function (e.g., speech recognition, person
perception, navigation)

14

Technical Faculty – Applied Informatics

feedback
changes

define prototypical
script of task

estimate impact of deviation
patterns

identify causes for deviation
patterns

(system and interaction level)

identify deviation
patternscomponent

changes
architecture

changes

How does SInA work?

Step 3: System changes

scheduled based on the estimated impact

kind of change depends on the source of the deviation

short- and long-term

15

Technical Faculty – Applied Informatics

SInA cycle 1 SInA cycle 2 SInA cycle 3 SInA cycle n

interaction model generation / adaptation

How does SInA work?

Iterative process

16

Technical Faculty – Applied Informatics

What are the advantages of SInA?

closed loop design (evaluation and implementation)
learning from real-world problems
scenario-, task-, and robot-independent
comparability between systems and tasks
allows for integration of other methods (e.g., Conversation
Analysis)
enables integrated and structured interdisciplinary
analysis

EU FP7 CogX 66

DR 9.2: Proc. of CogX Summer School 2009 Jensfelt, Hawes & Zillich

17

Technical Faculty – Applied Informatics

Let's look at some insights and examples

Do studies with “representative” samples of humankind

18

Technical Faculty – Applied Informatics

Many more videos

19

Technical Faculty – Applied Informatics

Complete Wrap-up

20

Technical Faculty – Applied Informatics

The obligatory last slide
The Graduate School Cognitive Interaction Technology at Bielefeld University,

Germany offers
Research Grants for PhD Students and Postdoc Researchers

The Center of Excellence Cognitive Interaction Technology (CITEC) at Bielefeld University
has been established in the framework of the Excellence Initiative as a research center for
intelligent systems and cognitive interaction between humans and technical systems.
CITEC's focus is directed towards motion intelligence, attentive systems, situated
communication, and memory and learning. Research and development are directed towards
understanding the processes and functional constituents of cognitive interaction, and
establishing cognitive interfaces that facilitate the use of complex technical systems.

The Graduate School Cognitive Interaction Technology invites applications from outstanding
young scientists, in the fields of robotics, computer science, biology, physics, sports
sciences, linguistics or psychology, that are willing to contribute to the cross-disciplinary
research agenda of CITEC. The international profile of CITEC fosters the exchange of
researchers and students with related scientific institutions. For PhD students, a structured
program including taught courses and time for individual research is offered. The integration
and active participation in interdisciplinary research projects, which includes access to first
class lab facilities, is facilitated by CITEC. For more information, please see: www.cit-ec.de .

visit http://www.cit-ec.org
deadline: 22 March 2009

EU FP7 CogX 67

