
EU FP7 CogX

ICT-215181

May 1 2008 (52months)

DR 9.4:

Proceedings of Spring School 2011

Michael Zillich, Torben Töniges and Marc Hanheide

Vienna University of Technology, University of Birmingham

〈zillich@acin.tuwien.ac.at〉
Due date of deliverable: July 31, 2011
Actual submission date: July 28, 2011
Lead partner: TUW
Revision: final
Dissemination level: PU

This document describes the CogX Spring School organised at TUW in
Vienna, April 28th to May 4th, 2011. This was the final of the three spring
schools planned for. The main parts of the school were, invited talks to
provide tutorials in areas related to the spring school topic and to the overall
CogX theme, technical tutorials covering the use of newly developed system
components, and a project to be solved in groups to get hands-on experience
and act as a team building activity.

1

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

1 Tasks, objectives, results 6
1.1 Preparations . 6
1.2 Project Work . 7
1.3 Lessons Learned . 8
1.4 Relation to the state-of-the-art 9

2 Proceedings 10
2.1 Overview . 12
2.2 Schedule . 13
2.3 Participants . 15
2.4 Teams . 17
2.5 Local Arrangements . 18
2.6 Invited Tutorials . 18

2.6.1 Learning to Grasp With Grasp Densities 18
2.6.2 Managing Ontologies: Matching and Repair 18
2.6.3 On-line learning for computer vision 19

EU FP7 CogX 2

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

Executive Summary

The third and last CogX Spring School was organised by TUW from April
28th to May 4th, 2011. As with previous CogX Spring Schools the emphasis
was on hands-on project work rather than invited talks. In the past this
concept has proved to be very successful in driving integration of hard- and
software and providing all CogX partners with a focused learning experience
in terms of newly developed system components. That was also true this
year, where the focus was on mobile manipulation. Spring school participants
were organised into four teams to solve the task of retrieving various pre-
trained objects and delivering them to a drop-off zone.

The school had four invited speakers giving three lectures. Justus Pia-
ter from the Intelligent and Interactive Systems Group at the Institute of
Computer Science, University of Innsbruck, Austria and Renaud Detry, from
the Computer Vision and Active Perception Lab (CVAP) at the Kungliga
Tekniska Högskolan (KTH), Stockholm, Sweden (a CogX team member)
presented a tutorial about “Learning to Grasp with Grasp Densities”. Horst
Bischof from the Institute for Computer Graphics and Vision at TU Graz,
Austria presented a tutorial on “On-line learning for computer vision”. Fi-
nally Fiona McNeill from the DReaM group at the Centre for Intelligent
Systems and their Applications, School of Informatics, University of Edin-
burgh, UK gave a tutorial about “Managing Ontologies: Matching and Re-
pair”. While two of the topics were directly related to the tasks of the spring
school, the third was of general interest for the approaches taken in CogX.

As in previous schools the members of the four competing teams worked
hard, partly late into the night, and at the end of the week had developed
impressive systems, with the winning team locating all 3 given objects and
successfully grasping and returning two of them to the drop-off zone in the
final competition. Results clearly showed the advantages of those teams that
put a strong emphasis on extensive integrated testing and intelligent search
strategies. This once again showed the importance of well coordinated inte-
gration, on software but also on a personal level. To this end the dinners and
social event provided opportunities to interact and meet new team members.
To conclude, the spring school was very successful.

Role of the Spring Schools in CogX

The CogX project aims not only to contribute new theories but also to
implement and create instantiations in robots to test these theories. In CogX
the spring schools provide an important vehicle towards this.

The objectives of the CogX Spring Schools include:

• train the researchers in the techniques and tools to be used in the
project, and in the methods employed in the state of the art in the

EU FP7 CogX 3

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

Abbildung 1: Simulated test environment and real robot carrying a cereal
box during the final competition.

community

• establish a common ground of theoretical knowledge

• efficiently communicate knowledge to the researchers, both from exter-
nal parties in the form of invited speakers and from researchers within
the consortium

• increase impact of the dissemination by including external parties (in-
vited speakers) in the spring school who get a close look at the project

• build strong connections between the researchers within the consorti-
um by getting together for an extended time, interacting in working
and as well as social contexts

Contribution to the CogX scenarios and prototypes

The first spring school introduced the common hardware platform (a Pioneer
3-DX base) and the CAST software framework using a simple search task,
thus laying the foundations for the CogX scenarios. The second spring school
introduced planning and binding, which are integral parts of the Dora and
George scenarios. This year’s spring school introduced manipulation, both
in terms of new hardware (a Neuronics Katana manipulator) to be mounted
on the platforms and in terms of new system functionality. The respecti-
ve functionality has been used previously within the the Dexter scenario,
albeit not integrated into CAST. Now fully integrated, mobile manipulati-
on extends Dora’s and George’s capabilities, allowing fetching of items or
interaction with objects in active learning scenarios. Moreover, a physics
based 3D full system simulation was developed as part of the spring school

EU FP7 CogX 4

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

to support extensive testing without needing access to the hardware. This
simulation provides a valuable testbed for the Dora and George scenarios,
where it is used extensively. It allows testing on a system level on precisely
identical systems across the consortium, which greatly simplifies debugging.

EU FP7 CogX 5

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

1 Tasks, objectives, results

One important ingredient of the well-known “Bring me the cereals” scenario
was still missing in the CogX integrated system: the capability to actually
grasp objects. This not only entails manipulator path planning as already
performed within the Dexter scenario, but also integration in terms of sy-
stem calibration, consistent coordinate frame representations and high level
access to grasping primitives. The main goal of the spring school was to add
mobile manipulation capability to the CogX system and familiarise partici-
pants with the hardware setup, full system calibration and newly developed
software components.

With ever more complex systems testing becomes crucial but also ti-
me consuming. Moreover a mobile manipulator requires significantly more
supervision, to ensure the arm is not damaged. To this end we also provi-
ded a full 3D simulation of the whole system, including stereo vision, laser
based navigation and manipulation. The simulation allows frequent testing
with no danger of damaging hardware, and proved to be a valuable tool for
development.

Two of the invited lectures were chosen to provide theoretical background
related to the spring school task: grasp planning and on-line learning in
computer vision. The third lecture about ontology matching and repair was
chosen for its general relevance to the CogX project.

1.1 Preparations

Hardware: Prior to the spring school all 6 CogX platforms were equipped
with identical (subject to minor version differences) Neuronics Katana ma-
nipulators as well as Microsoft Kinect RGB-D sensors. Detailed mechanical
and electrical mounting instructions were provided and the robots, disas-
sembled for shipping to Vienna, were quickly reassembled.
Software: New low level drivers and high level system components rela-
ted to manipulation were integrated into the CogX architecture prior to
the spring school. Moreover tools and procedures for full system calibrati-
on (robot base with laser ranger, manipulator, pan-tilt head, stereo camera
system, Kinect) as well as matching calibration patterns were also provided
and explained in technical tutorials.

Following the software release schema in CogX the spring school is linked
to one of two major annual milestones per year. Consequently, integration
efforts peak the weeks before the school and lead to a stable collection of
software that is then used by all the participants. The software employed
at the CSS 2011 was based on the integration system Dora and George. In
addition to the abilities documented in DR7.2 some components have been
added:

• an arm controller server, providing low level access to arm functionality

EU FP7 CogX 6

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

• a manipulation server, providing high level access to collision free ma-
nipulator path planning in terms of TCP goal poses, including an easy
to use test GUI

• a Player/Gazebo simulation environment including the CogX platform
modelled with all sensors and manipulator

• a bridge between manipulator path planning and player to ensure the
simulated arm precisely mirrors the movements of the real arm

• software tools for system calibration

To ease implementation and maximise the learning opportunity, a GAR
installer repository was set up prior to the school including all required
software and the simulation environment. Also prior to the start of the
school, participants were asked to install the system and have a few test
runs to get used to the general procedure.

1.2 Project Work

Participants, including PIs, were divided into four teams. This meant that
two of the 6 available robots were available as spare platforms, should one
of team robots break down. The two main factors when forming the groups
were i) diversity with regard to the institutions people work for and ii) to
distribute the knowledge and skills as evenly as possible among the groups.

The overall task for this spring school was to locate known objects (cereal
boxes) in a room, pick them up and deliver them to a drop-off zone. Objects
were placed on tables, which were low enough to ensure reachability by the
arm. This task was divided into three competitions:

1. “Sweet Stacks” The first competition was intended as an easy and fun
introduction to the simulation environment. Participants were asked
to take the role of the simulated robot, controlling base position and
individual arm joints, and to create stacks of box shaped “Manner”
wafers, where higher stacks would score more points. The score in the
first competition determined the starting order for the second compe-
tition. Besides familiarisation with the new software, this seemingly
simple task should make participants aware of the limitations faced
by the real robot in the actual task later on, such as a non-holonomic
drive system and an arm with only 5 degrees of freedom. These have
to be taken into account when planning strategies for search or pickup.

2. “Hand me the Cereals” The second task was to simply pick up a cereal
box placed in front of the robot and to hand it to the user. This task
was intended as a sort of milestone, to make sure participants could
i) get the arm to move to a given position ii) train and recognise an

EU FP7 CogX 7

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

object iii) calibrate the system to ensure all the various poses match up.
Scores were given for detecting, touching, lifting and finally handing
over of the object. Again, scoring in this competition determined the
starting order in the next competition.

3. “Cleaning the Kitchen”: The final task was to detect 3 of 5 pre-trained
cereal boxes in the test arena and deliver them to a drop-off zone. The
objects were placed in a graspable position (upright or lying on the
side) on 3 low tables, which had unknown positions. The teams had
to devise strategies for search, for positioning the robot, for defining
good grasp positions and of course for recovering from failures. Each
team had a time slot of 30 minutes, including setup time and time
for possible restarts. Scores were again given for detecting, touching,
lifting and finally returning an object.

Three of the four teams participated in the final task, and two were finally
able to return objects. It was interesting to see the strategies employed by the
two best teams. One team placed a strong emphasis on relentlessly testing
the robot in the arena. again and again. This led to a remarkably robust
system, running for hours. The winning teams decisive advantage was their
use of the pan-tilt head, which drastically reduced search times. This allowed
the winning team to locate all 3 objects and pick up and return 2 of them
to the drop-off zone. The team not participating in the final competition
was plagued by a particularly difficult to diagnose hardware error combined
with an unforeseen shortage of team members. The team participating, but
failing to retrieve an object only integrated their whole system very late in
the development.

1.3 Lessons Learned

Starting the spring school with a few interesting lectures followed by 5 days of
intense team work in small, heterogeneous teams proved to work out well, as
it did in previous schools. Starting with the mature software base developed
in the previous years ensured that participants could concentrate on the
important issues for their task. The newly developed system components
were mercilessly stress-tested, and a few remaining bugs were identified and
quickly resolved. Following lessons from the previous spring school the given
sub-tasks were designed to incrementally lead development to the final task,
without too much sidetracking. Despite one team not taking part in the final
competition, it was promising to see how well the considerable complexity
of the complete system was handled by the participants. The considerable
effort put into the system prior to the spring school and the intense learning
experience for the participants were a major boost for system integration.

EU FP7 CogX 8

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

1.4 Relation to the state-of-the-art

Grasping of objects in real world environments, despite being pursued for
some time now, e.g. as part of the RoboCup@Home competitions, remains a
challenging topic. This includes practical hardware issues (power consump-
tion, weight and reach of the arm) as well as theoretical issues (path and
grasp planning, object recognition). The design of the CogX platform, with
its arm mounting and superstructure, turned out to be well suited to handle
a limited set of such tasks (namely limited by the reach of the arm, which
is mounted low). Also the path planning and object detection and tracking
methods developed within the CogX project provide a stable basis for future
research in that direction.

EU FP7 CogX 9

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

2 Proceedings

The proceedings are a modified version of the proceedings handed out to the
participants of the CogX Spring School. Most of the local information has
been removed and some of the information that was only provided online on
the CogX intranet has been included.

First, some general information about the spring school is given. Then
the competition tasks are presented. The course material provided for the
participants on the CogX Wiki, which served as main instructions for work,
is included, subject to the constraints in trying to put the interconnected
Wiki pages into a sequential order. The final part of the proceedings is
composed of three tutorials presented by the invited speakers.

EU FP7 CogX 10

CogX Spring School 2011
Vienna, 28. April – 4. May

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

2.1 Overview

Welcome to the 2011 CogX Spring School in Vienna! The following pages
will provide you with the basic information about the school, the schedule,
local arrangements and invited tutorials. Technical information about sy-
stem installation etc. as well as any updates to the schedule can be found
on the project wiki

https://codex.cs.bham.ac.uk/trac/cogx/wiki/meetings/css11

which you should be checking regularly in the coming days.
We hope you will all have an interesting learning experience and take home
more than just broken arms.

Following the successful format of previous spring schools, this school will
also focus on hands-on experience, accompanied by three very interesting
invited tutorials.

The topic will be mobile manipulation, i.e. actually fetching that cereal
box we have been talking about for some time now. To this end you will
mostly be learning about the new manipulation subarchitecture. You will
also learn about training and recognising objects in 3D. To safely develp and
debug without endangering the precious Katana arms, you will learn how
to use the 3D robot simulator. Finally you will encounter a lot of various
poses of something w.r.t. something other, which requires proper system
calibration.

There will be 2 competitions around the task of fetching cereal boxes,
details will be discussed in the respective session.

EU FP7 CogX 12

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

2.2 Schedule

Wednesday, 27.4.

• arrivals

• 19:00 Dinner (Wieden Bräu)

Thursday, 28.4.

• 9:00 - 9:30 Welcome and opening

• 9:30 - 10:45 Tutorial Justus Piater and Renaud Detry

• 10:45 - 11:00 Coffee

• 11:00 - 12:30 Tutorial Justus Piater and Renaud Detry

• 12:30 - 13:30 Catered lunch

• 13:30 - 14:45 Tutorial Fiona McNeill

• 14:45 - 15:00 Coffee

• 15:00 - 16:30 Tutorial Fiona McNeill

• 17:00 - 18:00 1st (fun) competition

• 19:00 Dinner (Wiener Rathauskeller)

Friday, 29.4.

• 9:30 - 10:45 Tutorial Horst Bischof

• 10:45 - 11:00 Coffee

• 11:00 - 12:30 Tutorial Horst Bischof

• 12:30 - 14:00 Lunch

• 14:00 - 14:30 Task Description

• 14:30 - 15:30 Technical tutorial Vision and Calibration (Michael)

• 15:30 - 15:45 Coffee

• 15:45 - 16:45 Technical tutorial Manipulation, Navigation (Tor-
ben)

• 17:00 - 18:30 Robot setup

• 19:00 - 20:30 Dinner

Saturday, 30.4.

• 9:30 - 10:00 Morning Q&A

• Hacking

• 12:30 - 13:30 Lunch

• Hacking

EU FP7 CogX 13

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

• 15:00 Social event and Dinner

Sunday, 1.5.

• 9:30 - 10:00 Morning Q&A

• Hacking

• 12:30 - 13:30 Lunch

• 16:00 - 16:30 Coffee and snacks

• 16:30 - 18:30 2nd competition

• 19:00 - 20:30 Dinner

Monday, 2.5.

• 9:30 - 10:00 Morning Q&A

• Hacking

• 12:30 - 13:30 Lunch

• Hacking

• 16:00 - 16:30 Coffee and snacks

• Hacking

• 19:00 - 20:30 Dinner

Tuesday, 3.5.

• 9:30 - 10:00 Morning Q&A

• Hacking

• 12:30 - 13:30 Lunch

• Hacking

• 16:00 - 16:30 Coffee and snacks

• Hacking

• 19:00 - 20:30 Dinner

Wednesday, 4.5.

• 9:00 - 9:30 Preparation

• 9:30 - 12:30 Final Competition

• 12:30 - 13:30 Lunch

• 14:30 - 15:00 Award ceremony and closing

• 15:00 End and safe trips home

EU FP7 CogX 14

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

2.3 Participants

ALU-FR

• Moritz Goebelbecker (27.4. - 4.5)

BHAM

• Jeremy Wyatt (27.4. - 4.5)

• Charles Gretton (27.4. - 4.5)

• Marc Hanheide (27.4. - 4.5)

• Rustam Stolkin (27.4. - 4.5)

• Marek Kopicki (27.4. - 4.5)

• Claudio Zito (27.4. - 4.5)

• Torben Töniges (27.4. - 4.5)

DFKI

• Geert-Jan Kruijff (27.4. - 4.5)

• Hendrik Zender (27.4. - 4.5)

• Miroslav Janicek (27.4. - 4.5)

KTH

• Alper Aydemir (27.4. - 4.5)

• Yasemin Bekiroglu (27.4. - 4.5)

• Renaud Detry (27.4. - 4.5)

• Kristoffer Sjöö (27.4. - 4.5)

TUW

• Thomas Mörwald (27.4. - 4.5)

• Andreas Richtsfeld (27.4. - 4.5)

• Kai Zhou (27.4. - 4.5)

• Markus Vincze (27.4. - 4.5)

• Michael Zillich (27.4. - 4.5)

UL

EU FP7 CogX 15

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

• Alen Vrecko (27.4. - 4.5)

• Peter Ursic (27.4. - 4.5)

• Barry Ridge (27.4. - 4.5)

• Danijel Skocaj (27.4. - 29.4)

• Ales Leonardis (27.4. - 29.4)

Invited Speakers

• Fiona McNeill (27.4. - 28.4)

• Justus Piater (27.4. - 30.4)

• Horst Bischof (29.4. - 29.4)

EU FP7 CogX 16

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

2.4 Teams

Team Red

• Barry Ridge

• Andreas Richtsfeld

• Alper Aydemir

• Rustam Stolkin

• Miroslav Janicek

Team Green

• Thomas Mörwald

• Moritz Göbelbecker

• Jeremy Wyatt

• Alen Vrecko

• Claudio Zito

Team Blue

• Renaud Detry

• Charles Gretton

• Kristoffer Sjöö

• Peter Ursic

• Geert-Jan Kruijff

Team Yellow

• Marek Kopicki

• Hendrik Zender

• Kai Zhou

• Yasemin Bekiroglu

EU FP7 CogX 17

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

2.5 Local Arrangements

Skipped.

2.6 Invited Tutorials

2.6.1 Learning to Grasp With Grasp Densities

Justus Piater: Intelligent and Interactive Systems Institute of Computer
Science University of Innsbruck, Austria
Renaud Detry: Computer Vision and Active Perception lab (CVAP) Kung-
liga Tekniska Högskolan (KTH), Stockholm, Sweden

Thu, 28.4., 9:30 - 12:30, with 15 min coffee break 10:45

Abstract: We begin with an overview of a selection of important approa-
ches to robotic grasping, including traditional hard-wired approaches, and
more recent adaptive methods. We will then present our own work that aims
to provide a complete, continuous characterization of the grasp affordances
associated with a given object with respect to a specific type of gripper. The
idea is to construct, by means of trial grasps, a distribution of object-relative
gripper poses, which we call a “grasp density”. We discuss generative and
discriminative ways of constructing grasp densities, and give introductions
to kernel density estimation and regression as they arise in these methods.
Finally, we discuss an implementation of these techniques, enabling the par-
ticipants to employ them in their own work.

2.6.2 Managing Ontologies: Matching and Repair

Fiona McNeill: DReaM group, Centre for Intelligent Systems and their
Applications School of Informatics, University of Edinburgh, UK

Thu, 28.4., 13:30 - 16:30, with 15 min coffee break 14:45

Abstract: Using ontologies to represent knowledge is an essential part of
interacting with a virtual or real world. But developing usable ontologies is
a difficult affair, and inaccuracies and incompatibilities between them and
the world are inevitable and can lead to failure and confusion. In this tuto-
rial, I will introduce different kinds of ontologies, explain how the problem
of mismatch - between ontologies, and between ontologies and the world -
arises, and discuss why it is neither possible nor desirable to remove the pos-
sibility of mismatch. I will discuss how such mismatches can be identified,
and introduce different approaches to dealing with them, so that successful
behaviour becomes possible despite the failure of an ontology to accurately
reflect the world.

EU FP7 CogX 18

DR 9.4: Proceedings of Spring School 2011 Zillich et.al.

2.6.3 On-line learning for computer vision

Horst Bischof : Institute for Computer Graphics and Vision TU Graz,
Austria

Fr, 29.4., 9:30 - 12:30, with 15 min coffee break 10:45

Abstract: The marriage between computer vision research and machine
learning has been very successful and enabled considerable progress in the
last few years. In this tutorial I will argue that methods that can learn from
data as it arrives (on-line learning) are required to face the next computer
vision challenges. Especially robotics is such a domain. I will show the ad-
vantages of on-line learning but discuss also the challenges that we have to
face. This will lead to semi-supervised learning and multiple-instance lear-
ning. Throughout the talk object tracking and object detection will be used
as illustrative examples.

EU FP7 CogX 19

Task 1: Sweet Stacks

Stack Manner Wafers in Gazebo simulator
The more you stack, the more you score
there has to be a stack, a single object is not a stack
Ranking in 1st competition defines starting order for 2nd competition

Scoring

"flat" stack: 1 point for each wafer on top of another, a single stack of n flat wafers will give n points
"high" stack: 5 points for each upright wafer being part of a stack, a single stack of n upright wafers
will give 5*n points
wafers in "unstable" positions: 20 points for each wafer in a position, which on its own would be
unstable, e.g. one wafer leaning against another
stacked Wafers must not touch anything besides their supporting Wafer
minus 5 if you don't get it running on one of your team's laptops ;-)

Prerequisites

You need running versions of player 3.0.2 and gazebo 0.9.

Running

Either check out the spring school system or get the tar ball attached to this page and unpack it e.g. in
/tmp, which is the option we are going to explain now.

Open a couple of consoles. First you have to let gazebo know where to find models and textures. Edit the
file ~/.gazeborc (assuming you installed the files under /tmp)

<?xml version="1.0"?>
<gazeborc>
 <gazeboPath>/usr/local/share/gazebo</gazeboPath>
 <gazeboPath>/tmp/task1-files/gazebo</gazeboPath>
 <ogrePath>/usr/local/lib/OGRE</ogrePath>
</gazeborc>

Then build a little helper program to open/close the gripper:

cd task1-files/gripper
mkdir BUILD
cd BUILD
cmake ..
make

Start gazebo

cd task1-files/gazebo
gazebo task1.world

Start player

cd task1-files/player
player cogx-platform-task1.cfg

Start playerv, you can add command line options to immediatly subscribe to interfaces upon startup (saves

meetings/css11/material/task1 – CogX project 1 of 2

some clicking)

playerv --actarray:0

Playerv allows you to subscribe and control all interfaces offered by the robots (position2d, camera, ptz,
actarray, ..). Sliding the various knobs that appear after selecting to control an interface will move joints etc.
Start gripper, the command line option choses which actarray interface (players notion of a robot arm) to
chose. Pressing 'o' and 'c' will open and close the gripper.

cd task1-files/gripper
BUILD/gripper 0

You will now see a gazebo world with several tables and Manner wafers on them. You can control 2 robots,
one possibly acting as a "helping hand" to the other. You will need one playerv for each robot.

If you have already checked out the spring school system, the respective files can be found under
instantiations/css2011, and tools/gripper.

No Cheating

Of course you can do anything in a simulated world, by editing the world files, disabling gravity etc. The point
of this exercise is not however to learn about the intricate details of gazebo world files (and believe me, you
don't want to know ...), but to learn controlling the simulation environment as well a getting some insights into
the difficulties of approaching and grasping boxy objects with a 5 DOF arm and two finger gripper.

Known Problems

Clicking on an object will select it (a white bounding box is drawn). Moving the mouse will now control the
object instead of the view, probably sending the object arcing off in some direction. Pressing the object again
will deselect it, giving control back to the view.

Attachments

task1-files.tgz (1.7 MB) - added by michaelz 3 months ago.

meetings/css11/material/task1 – CogX project 2 of 2

Task 2: Hand me the cereals

Time: Monday 16:30 – 18:30

Given:

1 High table
2 different (chosen by team) cereal boxes placed on the table by judges (both upright, one in direct
graspable position (without need to relocate the robot, one turned approx. 90 degrees)

Task:

Pick up the two cereal boxes and hand it to the user

scores

achievement score definition

object detected (each) 100
the team has to prove the object has been detected, either by showing the
memory content or the visualisation of the detector

object touched (each)
by the gripper

200
the arm has been manipulated and some part of the gripper touches the
object

object lifted off the table
(each)

400 there is clear space between the object and the table for at least 5 seconds

object handed to the
user (each)

300
the object needs to be moved away from the table, the gripper has to be
opened, and a team member has to hold the object in her hand

style 0-400
extra scores possible for neat ways of handing the object, artistic
manipulation, and others more

Maximum score (without style points): 2x1000=2000

Rules

the boxes are clearly separated on the same table, however, the exact position is not known
the team members provide the two objects, they are placed by the judges
the table and the robot are positioned by the judges
the object needs to be grasped autonomously
handing the object can involve interaction, but can also be done based on a defined time interval or
similar
one object will be easy to grasp without the need to move the robot (approx 0.5m away in front of the
robot), the second one will require the robot to move around the table
the teams can repeat the task as often as the want in their assigned time slot of 20 minutes. They
can restart any time. The maximum score achieved in all runs is the final score. The teams have to
leave the arena at the end of their slot sharp!

schedule

Slot Team score position

16:30-16:50 blue 0 4

17:00-17:20 green 900 1 (alea iacta est)

17:30-17:50 yellow 900 2 (alea iacta est)

18:00-18:20 red 500 3

meetings/css11/material/task2 – CogX project 1 of 1

Task 3: Cleaning the Kitchen

Time: Wednesday, 9:30 – 12:30

Given:

High and low tables (boxes upright or sideways)
5 cereal boxes: bircher, chocos, fruchtemusli, toppas, weetabix (NOTE: not the long thin box of platic
bags)
Known room (the computer lab on 4th floor)
3 of the 5 cereal boxes
Several high tables
1 low table
Position of tables unknown

Task:

find the 3 cereal boxes, located on high tables

scores

achievement score definition

each object found 200 teams have to somehow prove they found the object

each object touched by the gripper 200 any black part of the gripper to touch the object

each object lifted off the table 400
the object has to be clearly lifted off the table for at
least 5 seconds

each object dropped at the home position
(coordinates 0,0; or place with id 0)

300
the robot has to be at the home positions and the
gripper released the objects

each object arrived at the low table 400
the object has to be above or max. 50cm away from
the drop-off table

each object dropped on the low table 300
the points are only scored if the object is on the table
without making any contact with the robot

each collision of the robot with a table or wall -50
should any part of the robot touch the table (be it arm,
base, gripper, whatever)

emergency stop -50 should an emergency stop be necessary

style 0-500
extra scores possible for neat ways of handing the
object, artistic manipulation, and others more

Maximum score (without style points): 3x1500=4500

Rules

the arena will be enclosed by artificial walls, the arena is approx. 5x5m in size
there will be between three and six high tables
boxes are clearly visible and never hidden
there will be one or no object on each high table
an object that drops to the ground is removed from the scene by a judge and put back to its original
location immediately.
the judges will pick three out of the six objects and place them
there will be one low table (drop-off table) the objects have to be delivered to
alternatively, objects can be delivered to the home position (coordinates 0,0; or place with id 0) instead
of the low table
the starting position can be chosen by the team (only limitation is, that it has to be more than 1,5
meter away to each object)
the objects needs to be grasped autonomously
the teams can repeat the task as often as the want in their assigned time slot (30 minutes). They can

meetings/css11/material/task3 – CogX project 1 of 2

restart any time. The maximum score achieved in all runs is the final score. The teams have to leave
the arena at the end of their slot sharp!
cereals are in any pose, not necessarily upright, but ensured to be graspable,
the cereals have to be delivered to the low drop-off table using the gripper of the robot
team members must not touch any computers, robot parts, objects, or tables during the performance
(exception: the safety person) . If a team members touches anything like this, the current run will be
canceled and a restart will be necessary
nobody besides the safety person and a judge must be inside the arena
an example setup is arranged in the arena now, the actual setup for the competition will qualitatively
(orientations, relations, etc.) similar, but will differ in exact positions and selected objects.
teams are allowed to practice in the arena any time until 4/5/2011 9:30am

schedule

Slot Team

09:45-10:15 blue more sleep and setup time instead

10:30-11:00 red (red unfortunately resigned) blue

11:15-11:45 yellow

12:00-12:30 green

points

Position Team
Found
Objects

Touched
Objects

Lifted
Objects

Dropped
Objects

Collision Emergency-stop style all

1 green
3 ->
600
points

2 -> 400
points

2 ->
800
points

2 -> 600
points

200 points
(pan-tilt
object search
+ smart
strategy)

2600
points

2 blue
2 ->
400
points

1 -> 200
points

1 ->
400
points

1 -> 300
points

200 points
(robustness
+ smart
strategy)

1500
points

3 yellow
1 ->
200
points

100 points
(speech
usage)

300
points

4 red
0
points

meetings/css11/material/task3 – CogX project 2 of 2

 CogX Spring School 2011, Vienna

CogX Spring School Vienna 2011

Task Description
Technical Tutorial

 CogX Spring School 2011, Vienna

Overall

Cleaning up after breakfastCleaning up after breakfast

The whole family had a healthy breakfast and
everybody left her/his cereal box somewhere in
the kitchen.

Mani, the robot should find all the cereal boxes
standing on various tables and deliver them to a
drop off place.

 CogX Spring School 2011, Vienna

Coordinate Systems

 CogX Spring School 2011, Vienna

Calibration
● Left camera, intrinsic (camcalib)

● Right camera, intrinsic (camcalib)

● Stereo system, intrinsic (SVS)

● Kinect, intrinsic (camcalib)

● Left camera, pose in robot ego (ptucalib_simple)

● Right camera, pose in robot ego (ptucalib_simple)

● Kinect camera, pose in robot ego (ptucalib_simple)

● Arm, pose in robot ego (manual)

 CogX Spring School 2011, Vienna

Calibration: Camera Poses

 CogX Spring School 2011, Vienna

Math Tools

tools/math/src/c++/math

● Box3.h

● cogxmath_base.h

● cogxmath.h

● Matrix33.h

● Plane3.h

● Pose3.h

● Sphere3.h

● Vector2.h

● Vector3.h

 CogX Spring School 2011, Vienna

Examples (see header)

/** Transform 3D point from local to world coordinates, pose T = [R, p].
 * b = R * a + p; */
inline Vector3 transform(const Pose3 &T, const Vector3& a)

/** Transform 3D point from world to local coordinates, pose T = [R, p].
 * b = R^T * (a - p) */
inline Vector3 transformInverse(const Pose3 &T, const Vector3& a)

/** Transform 3D direction vector from local to world coordinates, pose T =
[R, p].
* b = R * a; */
inline Vector3 transformDirection(const Pose3 &T, const Vector3& a)

/** Transform pose from local to world coordinates, poses T = [R, p], T1 =
[R1, p1], T2 = [R2, p2].

 * T2 = [R * R1, R * p1 + p] */

inline void transform(const Pose3 &T, const Pose3& T1, Pose3& T2)

 CogX Spring School 2011, Vienna

Handy Stuff

● Notation:
Transformation from Camera to World: WT

C

● Thus GT
C
 = GT

W

WT
C

● Row vectors of rotation matrix are axis vectors
of camera system in world coords:
| * * * |
| * * * |
| * * * |

x

y

z

 CogX Spring School 2011, Vienna

Katana First Aid

Jörn Kusel

mechatronic

Burghalde 10

9100 Herisau

Switzerland

Phone: 0041 (0)79 450 9486

 CogX Spring School 2011, Vienna

Learning Objects
● learn-object.cast

<space> to learn view
<s> to save model
NOTE: present models
are extended

<l> lock/unlock tracking
<t> to learn texture
<s> to save model
<m> to change view mode

 CogX Spring School 2011, Vienna

Important command line params

● CPP MG CameraMount CameraMount --camids "0" --cam_poses_xml
instantiations/css2011/calibration/ptu-pose-cam-left-sim.xml --pt_base_xml
instantiations/css2011/calibration/ptu-pose-base-sim.xml --pt_pan_xml
instantiations/css2011/calibration/ptu-pose-pan-sim.xml --pt_tilt_xml
instantiations/css2011/calibration/ptu-pose-tilt-sim.xml
--fixed_cam_poses_xml "instantiations/css2011/calibration/example-
cam-left-pose.xml" --fixed_pan_tilt "0 -0.785398175"

● CPP MG Recognizer3D ObjectRecognizer3D --videoname VideoServer
--camid "0" --display --plyfiles "instantiations/css2011/object-
models/example-cereals-weetabix.ply" --siftfiles
"instantiations/css2011/object-models/example-cereals-weetabix.sift"
--labels "example-cereals-weetabix" --initpose "[0.56 0.0 0.85][0.0 0.0
1.57]" --log

 CogX Spring School 2011, Vienna

Learning Objects in Simulation

● gazebo learn.world
● learn-object-sim.cast

Materials for the Spring School 2011

Most important notes

stick to your team's svn, don't mess around, don't commit changes to any externals
(tools/*): The teams' svns are located under systems/css-2011-teams, the svn URLs are:

https://codex.cs.bham.ac.uk/svn/nah/cogx/code/systems/css-2011-
teams/red
https://codex.cs.bham.ac.uk/svn/nah/cogx/code/systems/css-2011-
teams/green
https://codex.cs.bham.ac.uk/svn/nah/cogx/code/systems/css-2011-
teams/blue
https://codex.cs.bham.ac.uk/svn/nah/cogx/code/systems/css-2011-
teams/yellow

Make sure there is always one person ready to cut the power to the arm when operating the
real robot. Be aware that the arm just drops down and needs support as soon as power is cut off.

Preparations

dependencies setup with the GAR installer
cogx system installation
system setup and preparation
There are further tutorials that could be useful for specific components:

Install OpenCV
Install Kinect

Tasks

Task 1: Sweet Stacks
Task 2: Hand me the Cereals
Task 3: Cleaning the Kitchen

Relevant Tutorials

How to calibrate the various parts of the system: System Calibration
How to calibrate the cameras: Camera Calibration?
How to communicate with the arm: manipulation.sa Tutorial; also very useful: the source code of the
GUI tool to understand how commands are submitted to working memories.
How to detect objects: Object Recognizer 3D
How to access the local maps: LocalMapManager Tutorial
How to move the robot:

these tutorials are horribly outdated; don't follow them, but only use them as a reference: Nav
Tutorial from first spring school, also see the accompanying slides
it's to better to check systems/spring-school-2011/subarchitectures/spatial.sa/src/java/spatial
/manual/ManualNavGUI.java to understand how to send the robot around.
look at the bottom of basicManipulationSim.cast where you can see visualisation component
registered on all the relevant types you need for moving the robot and reading the position:

SpatialData.NavCommand to send the robot around (also see GUI source)
NavData.RobotPos2d is continuously updated with the current pose of the robot in
the global (map) coordinate system
SpatialData.Place is the data type for places and place holders as the are also
displayed in peekabot
be aware that you have to submit the NavCommand commands to the spatial
working memory!!!

How to access the pan-tilt-unit: Pan-Tilt hardware access; again, the source code is probably the best
example: tools/hardware/ptz/branches/spring-school-2011/src/java/ptz/ptzServer

meetings/css11/material – CogX project 1 of 3

/PanTiltZoomServer.java
How to work with gazebo worlds and models: Gazebo worlds and models
How to work with plane pop-out to detect tables: Plane Pop-Out
Further tutorials are available here. some other components we use are documented here:

Video Servers?
Video Clients?
Point Cloud Servers?
Point Cloud Client?
Camera Mount
Point Cloud Viewer
TomGine
Gazebo Vision
Visualization SA
CAST Control

best practices

use logging:
you can configure logging in castctrl, enable logging to a file as well
use the nice log browser logmx, installed in tools/logtools/LogMX/logmx.sh

start from the example cast file systems/spring-school-2011/instantiations/css2011
/basicManipulationSim.cast to create your own system
use the Working Memory viewer components to inspect the working memory contents in the viewer
(see end of example cast file).
use CAST Control to start everything, see video for the settings.

start it using ./castcontrol.py
check the tutorial video to understand the basic system
ask your group fellows first, and ask Torben, Michi, or Marc should you have problems second ;-)

Tips & Tricks

there is a new set of static methods available in java to transform poses. check it out at tools/math
/src/java/mathlib/Functions.java.
Player sometimes causes problems when started in castctrl; it is useful to start it separately via
player instantiations/css2011/player/cogx-platform-sim.cfg
Alternatively: use a cleanup-script in castcontrol which contains the following line:

rm /tmp/gazebo-$USER-0 -rf

if you have strange crashes (with nothing showing in peekabot) make sure ~/.peekabot/data is a
symbolic link to your instance of instantiations/peekabot-models/data; if not, you have
to create it with ln -s
if you have problems with the installation look also at this page
gazebo patches 1, gazebo patches 2, gearbox patch, player-3.0.2 patch (Hint: you have to click on
the bottom of the page at the link "Plain text" to get the file)
in Virtualbox:

it seems there is a problem with Golem when guest additions are installed. A work-around for
this is described here: http://forums.virtualbox.org/viewtopic.php?f=3&t=30964; alternatively,
you of course can just not install the guest additions

SiftGPU and CUDA problems: If you have problems with SiftGPU (needed for ObjectRecognizer3D)
complaining about missing CUDA stuff, set the following cmake option (also set in the init installation
script described here)

LIBBUILD_SIFTGPU ON
LIBBUILD_SIFTGPU_WITH_CUDA OFF
LIBBUILD_CUDASIFT OFF
LIBBUILD_PYTHON_VISION OFF
LIBBUILD_LEVMAR_HOMEST ON

meetings/css11/material – CogX project 2 of 3

LIBBUILD_LEVMAR_HOMEST_DEMO OFF
Note that the PTZ GUI outputs and takes degrees while component command line parameters are all
in radians. That is a likely source of errors (and we should have avoided the different units of course).

Attachments

setup.ogv (0.6 MB) - added by hanheidm 3 months ago. “setting for CASTCtrl”
testrun.ogv (3.5 MB) - added by hanheidm 3 months ago. “a test run to see how to control the system”
css2011-techtutorial.pdf (0.6 MB) - added by michaelz 3 months ago.

meetings/css11/material – CogX project 3 of 3

Using the GAR installer

The basis for this is here: Setting up DORA year2 system

It is assumed, that a java jdk is already installed and
configured and that the partner repositories of synaptic are
enabled.

Create a local folder for the Cogx code -- my local
folder for all stuff will be ~/cogx; e.g., mkdir cogx;
cd cogx

Get the gar-installer: svn co
https://codex.cs.bham.ac.uk/svn/nah/cogx/code/tools/gar-installer
/trunk gar-installer: We provide a so-called GAR-installer to ease installation.

1.

choose the configuration which represents the setup of your robot and change to that folder
cd gar-installer/cogx/summerSchool_katana300_x32: x32 system in
combination with a katana 300 manipulator
cd gar-installer/cogx/summerSchool_katana300_x64: x64 system in
combination with a katana 300 manipulator
cd gar-installer/cogx/summerSchool_katana450_x32: x32 system in
combination with a katana 450 manipulator
cd gar-installer/cogx/summerSchool_katana450_x64: x64 system in
combination with a katana 450 manipulator

2.

Let the installer fetch and compile all external dependencies: sudo make install
GAR has a management of dependencies. So we can now simply change into the relevant
directory and tell GAR to install this. It will automatically also fetch, configure, build, and install
all require packages. So, let's do it (here a 'sudo' is required to gain administrative permissions,
enter your password when being asked for it.

3.

If you need Mercury or Google Protocol Buffers you have to install it manually according to the
instructions listed here.

4.

1.

Known problems

player

On 64-bit systems it can happen that pkg-config does not find player after installation, e.g.
pkg-config --cflags playerc++ does not work. The reason is that the pkg-config .pc files are
normally installed under

/usr/local/lib/pkgconfig/playerc++.pc
etc.

which is OK on a 32 bit system. On a 64 bit system however they end up in

/usr/local/lib64/pkgconfig/playerc++.pc

There should be a symlink from lib to lib64 (as is the case in /usr/lib), but that might not be the
case. Just copy

cp -a /usr/local/lib64/pkgconfig /usr/local/lib/pkgconfig

gazebo (Ogre Path)

Note: after installation you have to modify ~/.gazeborc. Otherwise you will get the following error

Using the GAR installer
Known problems

player
gazebo (Ogre Path)
gazebo (no textures and models)
peekabot installation under ubuntu 10.10
java jdk not found
OpenCV under ubuntu 11.04

meetings/css11/material/setupEasy – CogX project 1 of 3

[/usr/local/src/gazebo-0.9.0/server/GazeboConfig.cc:115]
Ogre Path[OGRE]
Error Loading Gazebo
/usr/local/src/gazebo-0.9.0/server/rendering/OgreAdaptor.cc:428 : Exception: unable to fi

For some reason ~/.gazeborc is owned by root. So first make it owned by you

chown myself.mygroup ~/.gazeborc

then change

<ogrePath>OGRE</ogrePath>

to

<ogrePath>/usr/lib/OGRE</ogrePath>

gazebo (no textures and models)

To see all used textures and models, you have to adapt the ~/.gazeborc again.

Therefore you have to add

<gazeboPath>/vol/cogx/spring-school-2011/instantiations/css2011/gazebo</gazeboPath>

as a further gazebo path in the gazeborc.

peekabot installation under ubuntu 10.10

If you get an error like this:

libtool: link: cannot find the library `/usr/lib/libgdk_pixbuf-2.0.la' or unhandled argum
make[4]: *** [peekabot] Error 1
make[4]: Leaving directory `/home/ursicp/cogx/systems/springSchool11/gar-installer/contri
make[3]: *** [all] Error 2
make[3]: Leaving directory `/home/ursicp/cogx/systems/springSchool11/gar-installer/contri
make[2]: *** [all-recursive] Error 1
make[2]: Leaving directory `/home/ursicp/cogx/systems/springSchool11/gar-installer/contri
make[1]: *** [build-work/main.d/peekabot-0.8.4/Makefile] Error 2
make[1]: Leaving directory `/home/ursicp/cogx/systems/springSchool11/gar-installer/contri
make: *** [../../contrib/peekabot/cookies/main.d/install] Error 2

A solution which worked before is the following:

search for all libgdk_pixbuf-2.0.la (e.g. by grep /usr/lib/libgdk_pixbuf-2.0.la
/usr/lib/*.la)

1.

change in every founded file the entry /usr/lib/libgdk_pixbuf-2.0.la to
-lgdk_pixbuf-2.0

2.

the same principle has to be done for your gtk_pixbuf as well3.

java jdk not found

If something like this occur:

meetings/css11/material/setupEasy – CogX project 2 of 3

BUILD FAILED
/home/mz/Downloads/cogx/gar-installer/cogx/cast-java/work/main.d/cast-svn/build.xml:98: U
com.sun.tools.javac.Main is not on the classpath.
Perhaps JAVA_HOME does not point to the JDK.
It is currently set to "/usr/lib/jvm/java-6-openjdk/jre"

You have to install the JDK to build the java parts: An easy way is:

sudo apt-get install openjdk-6-jdk

OpenCV under ubuntu 11.04

you might get the error:

/home/user/OpenCV-2.2.0/modules/highgui/src/cap_v4l.cpp:217:28: fatal error: linux/vid
compilation terminated.
make[2]: *** [modules/highgui/CMakeFiles/opencv_highgui.dir/src/cap_v4l.o] Error 1
make[1]: *** [modules/highgui/CMakeFiles/opencv_highgui.dir/all] Error 2
make: *** [all] Error 2

or

"/lib/libopencv_highgui.so.2.2.0: undefined reference to `cvCreateCameraCapture_V4L(int)'

you should download this patch: https://code.ros.org/trac/opencv/attachment/ticket/862/OpenCV-
2.2-nov4l1.patch

meetings/css11/material/setupEasy – CogX project 3 of 3

Installation of the cogx system itself

For the installation of the cogx system itself, I adapted Marko's installation for the george year 3 system:

Go to your 'local folder', e.g., cd ~/cogx1.
Get the spring school sources from svn: svn co https://codex.cs.bham.ac.uk/svn/nah
/cogx/code/systems/spring-school-2011

2.

Change to the downloaded folder: cd spring-school-20113.
Run "bash sysconfig/prepare_build.sh" to create an initial BUILD/CMakeCache.txt
with my current compile settings

If you want to restore the set of components that are built in the summer school system, use
the following command: tools/scripts/cmake-apply BUILD
sysconfig/cmakecache/summerSchool2011.txt
To save the current set of components: tools/scripts/cmake-freeze >
my-components.txt

4.

Build the system (you can use CAST control or build it manually as describes in the following):
Change to your BUILD folder: cd BUILD1.
Run ccmake: ccmake ..2.
Edit the compile options to adapt your system configuration3.
Edit the OUTPUT option so that it corresponds to a directory that exists, and for which you
have write access.

4.

Compile everything: make -j4 install. Sometimes you have to repeat this step a couple
of times because of the "-j 4" (i.e., threaded compilation) option tripping over itself.

5.

5.

meetings/css11/material/systemInstall – CogX pr... 1 of 1

Required external software

If you do not use the gar-installer, you have to install the following software manually. Also have a look at the
Known Problems section on http://codex.cs.bham.ac.uk/trac/cogx/wiki/meetings/css11/material/setupEasy.

peekabot-0.8.4

http://sourceforge.net/projects/peekabot/files/peekabot/0.8.x/peekabot-0.8.4.tar.bz2/download

PhysX

https://codex.cs.bham.ac.uk/svn/nah/cogx/code/tools/gar-installer/trunk/contrib/physx_x32/files
/PhysX_x32-2.8.3.3.tar.gz

or

https://codex.cs.bham.ac.uk/svn/nah/cogx/code/tools/gar-installer/trunk/contrib/physx_x64/files
/PhysX_x64-2.8.3.3.tar.gz

(contains deb files to install)

Golem

https://codex.cs.bham.ac.uk/svn/nah/cogx/code/tools/gar-installer/trunk/cogx/golem_katana300_x32/files
/golem-trunk.tar.gz

(The tar.gz file contains all relevant files for both arms, x32 and x64 systems. It can be configured with
cmake)

You can configure whether you want to build 32 or 64 bit:

BUILD_32_BIT ON/OFF

You can configure whether you build Katana 450, which includes the AXNI interface:

BUILD_DEVICE_KATANA450 ON
BUILD_AXNI ON

The Katana 450 AXNI interface requires the pcan CAN bus driver:

https://codex.cs.bham.ac.uk/svn/nah/cogx/code/tools/gar-installer/trunk/contrib/peak-linux/files/peak-linux-
driver.6.20.tar.gz

player 3.0.2

http://sourceforge.net/projects/playerstage/files/Player/3.0.2/player-3.0.2.tar.gz/download

gazebo 0.9

0.9 http://sourceforge.net/projects/playerstage/files/Gazebo/0.9.0/gazebo-0.9.0.tar.bz2/download

Note: after manual installation (without the gar installer) you have to provide the following symlink:

cd /usr/local/include/player-3.0:
sudo ln -s libplayerinterface libplayerxdr

Note: after installation you have to modify ~/.gazeborc. Otherwise you will get the following error

meetings/css11/material/setup – CogX project 1 of 2

[/usr/local/src/gazebo-0.9.0/server/GazeboConfig.cc:115]
 Ogre Path[OGRE]
Error Loading Gazebo
/usr/local/src/gazebo-0.9.0/server/rendering/OgreAdaptor.cc:428 : Exception: unable to fi

For some reason ~/.gazeborc is owned by root. So first make it owned by you

chown myself.mygroup ~/.gazeborc

then change

<ogrePath>OGRE</ogrePath>

to

<ogrePath>/usr/lib/OGRE</ogrePath>

openCV 2.2

http://downloads.sourceforge.net/project/opencvlibrary/opencv-unix/2.2/

meetings/css11/material/setup – CogX project 2 of 2

System Calibration

Various parts of the system need to be calibrated, so that everything can be treated as relative to the same
robot ego pose.

Left camera, intrinsic parameters, using camcalib?
Right camera, intrinsic parameters, using camcalib?
Kinect, intrinsic parameters, using camcalib?
Stereo system, intrinsic parameters, using SVS smallvcal? (Small Vision System by Videre design)
NOTE: the calibration pattern we use at the spring school has a square side length of 28 mm, which
has to be entered as a custom setting in smallvcal.
Left camera, pose in robot ego, using ptucalib_simple?
Right camera, pose in robot ego, using ptucalib_simple?
Kinect camera, pose in robot ego using ptucalib_simple?
Arm pose in robot ego, manually measured

These are used by components

video server
camera mount
manipulation server

Video Server

The left, right and kinect intrinsic parameters, named e.g. camcalib-left.xml, camcalib-
right.xml and camcalib-kinect.xml or cam-left-cal.xml etc. are entered as command
line parameters of the video server, e.g. from instantiations/css2011
/basicManipulationSim.cast

CPP MG VideoServer PlayerVideoServer --camids 0 --devnums 0 --imgsize "640 480" --framera

Camera Mount

The left, right and kinect poses in robot ego, named e.g. campose-left.xml, campose-right.xml,
campose-kinect.xml or example-cam-left-pose.xml, etc. are entered as command line
parameters for the camera mount component, e.g. in instantiations/css2011/check-system-
calibration

CPP MG CameraMount CameraMount --camids "0" --fixed_cam_poses_xml "instantiations/css2011
 --fixed_pan_tilt "0 -0.785398175" --cam_poses_xml instantiations/css2011/calibration/ptu
 --pt_base_xml instantiations/css2011/calibration/ptu-pose-base-sim.xml
 --pt_pan_xml instantiations/css2011/calibration/ptu-pose-pan-sim.xml
 --pt_tilt_xml instantiations/css2011/calibration/ptu-pose-tilt-sim.xml

I.e. they are entered as the --fixed_cam_poses_xml, which were calibrated with the pan/tilt angles at
--fixed_pan_tilt. The other poses provided to CameraMount are kinematic parameters of the PTZ,
and were measured by hand.

Manipulation Server

The arm pose has to be measured by hand for the time being (a proper calibration procedure is being
developed), by manually measuring the position of the center of the arm base to the robot origin, which lies
precisely between the wheels, with x pointing forward, and y pointing to the left. This pose is added as
command line parameter to the manipulation server

JAVA MG manipulationServer manipulation.runner.cogx.CogXRunner --configPath "instantiatio

meetings/css11/material/system_calibration – Co... 1 of 2

And an example can be found in instantiations/css2011/calibration/example-
arm-pose.xml

Checking System Calibration

You can check that system calibration is correct, i.e. all poses were correctly specified as various command
line parameters, by running the CheckSystemCalibration component, e.g.
instantiations/css2011/check-system-calibration.cast

CPP MG checksystemcalibration CheckSystemCalibration --videoname VideoServer --cam_ids 0

It offers a check button in to CAST viewer GUI to start/stop streaming images. While it streams images, it
will display the projected calibration pattern of the calibration poster. If you put the robot on the calibration
poster and move the pan/tilt down, you should see the projected calibration pattern overlaid over the actual
calibration pattern. The images are not undistorted, so a few pixels off (depending on lens distortion) are ok.
Moving the pan/tilt sideways and up/down the projected calibration pattern should stay on top of the actual
calibration pattern. If that is the case, then all camera and pan/tilt related poses are correct. See attached
images at the end of this page, for e.g. the left camera and kinect.

Attachments

check-sys-calib-L.jpg (36.1 KB) - added by michaelz 3 months ago.
check-sys-calib-K.jpg (45.4 KB) - added by michaelz 3 months ago.

meetings/css11/material/system_calibration – Co... 2 of 2

The manipulation subarchitecture

Definiton of Arm
Coordinate Systems

Note that the definition of
the arm coordinate
system follows a
different scheme than
that of the robot base.

The arm coordinate
system is defined as
indicated below. I.e. if
the arm is fully
outstretched the tool
center point (TCP) pose
will be such that its x
axis points to the right (in
-y direction of the robot
ego coordinate system),
its y axis points forward
(in +x direction of the
robot ego coordinate
system) and z points
upward (in +z direction of the robot ego coordinate system).

The rotation of the arm base w.r.t. robot ego is taken into account in the arm pose, e.g.
instantiations/css2011/calibration/example-arm-pose.xml.

 t1 t2 t3 t4
 ^ ^ ^ ^ Z ^
 | / / | /
 | / / | /
 | / / | /
 |/ l1 / l2 |/ Y
 O*****************O****************O=========> t5
 /* / /
 / * / / T
 / * / /
 / * l0 / V X
 *
 *^ Z
 *|
 *|
 *| S Y
 O========>
 /
 /
 / X
 v

If in doubt about coordinate axes use the get postition command of the manipulation GUI and look at the
column vectors of the rotation matrix, which denote the x, y, and z axes of the TCP coordinate system.

The manipulation subarchitecture
Definiton of Arm Coordinate Systems
Prerequisites
Known Problems
Manipulation Server

used enumerations
ManipulationCompletion
ManipulationCommandStatus
GraspingStatus

available commands
ManipulationCommand
ManipulationExternalCommand (ManipulationCommand)
ManipulationInternalCommand (ManipulationCommand)
PutDownCommand (ManipulationExternalCommand)
FarArmMovementCommand (ManipulationExternalCommand)
FineArmMovementCommand (ManipulationExternalCommand)
SimulateFarArmMovementCommand (ManipulationExternalCommand)
StopCommand (ManipulationExternalCommand)
MoveArmToHomePositionCommand (ManipulationExternalCommand)
OpenGripperCommand (ManipulationExternalCommand)
CloseGripperCommand (ManipulationExternalCommand)
MoveArmToPose (ManipulationExternalCommand)
SimulateMoveToPose (ManipulationExternalCommand)
GetCurrentArmPose (ManipulationExternalCommand)

PlayerArmBridge
GazeboTurntable

cast/manipulation.sa_tutorial – CogX project 1 of 5

Prerequisites

The TinyIce-Interface of GOLEM is needed to communicate with the attached manipulator.

To quickly test whether Golem and the arm work, you can use one of the many demo programs provided
with Golem. The following will move a simulated Katana to its outstretched (zero) position:

cd GOLEM_INSTALLATION_DIRECTORY
cd resources/Device
../../bin/linux/PhysJoint ../Demo/PhysJoint.xml

(Note that pathnames and locations do matter!)

Now change in file ../Demo/Joint.xml GolemDeviceKatana300Sim to
GolemDeviceKatana450. Plug in the arm, KEEP YOUR HAND ON THE EMERGENCY
SHUTDOWN, and run

../../bin/linux/Joint ../Demo/Joint.xml

The real arm will calibrate, and then move to the same outstretched position WITHOUT CHECKING FOR
COLLISIONS! So depending on how and where you mounted your arm, that movment might or MIGHT
NOT BE COLLISION FREE. Cut power immediately if you think the arm is going to collide. Especially
watch for cables, dangling from the robot superstructure if the arm is mounted on the robot.

If this worked, your arm is ready to be used with Golem inside the CAST system.

Known Problems

The Katana300 uses a serial port. Golem's Katana300 driver assumes that to be /dev/ttySX with X =
0, 1, ... The port number is configured via file GolemDeviceKatana300.xml, first line:

<arm name="Katana 300 (6M180)" custom_kinematics="0" cfg_path="katana300_6M180.cfg" com_p

When using a USB to serial adapter you are likely to get COM ports such as /dev/ttyUSB0. You will
have to create a symbolic link

sudo ln -sf /dev/ttyUSB0 /dev/ttyS1

to make Golem use that port.

Manipulation Server

The component manipulationServer is needed to control the arm via the CAST working memory.

The command line parameter are listed below:

--configPath <string> ... defines the path to the calibration file

--armName <string> ... specifies the attached arm. Possible values are: "simulation" to use the
simulation environment, "katana300" to use the katana 300 manipulator and "katana450" to use the
katana 450 manipulator

--testGUI ... enables a simple GUI to test the commands

An example of the whole sequence:

JAVA MG manipulationServer manipulation.runner.cogx.CogXRunner --configPath "path/to/cali

cast/manipulation.sa_tutorial – CogX project 2 of 5

used enumerations

ManipulationCompletion

FAILED ... execution of the command failed (is set by the system)
SUCCEEDED ... command was successful (is set by the system)
ONTHEWAY ... manipulator is moving (is set by the system)
COMPINIT ... initial value (can be set by the user)

ManipulationCommandStatus

NEW ... the command is new (can be set by the user)
CHANGED ... the command was already in the memory and changed (can be set by the user)
PENDING ... the system is currently executing the command (is set by the system)
FINISHED ... the command is finished (is set by the system)
COMMANDFAILED ... the command failed (is set by the system)

GraspingStatus

GRASPINGSTATUSINIT ... initial value (can be set by the user)
GRASPING ... the gripper is currently grasping an object / gripper is not fully closed (is set by the
system)
NOTGRASPING ... the gripper is not grasping an object / gripper is fully closed (is set by the system)

available commands

If one of the following commands is added to the working memory, the PTZ-Unit will execute the
corresponding action.

ManipulationCommand

This class represents an overall class of all manipulation commands.

Fields:

ManipulationCommandStatus status ... current status of the command
ManipulationCompletion comp ... current completion of the command

It has to be noticed, that while GOLEM calculates a solution, there is no way to interrupt the calculation
itself. Only if the comp field changes to ONTHEWAY an interuption is possible.

ManipulationExternalCommand (ManipulationCommand)

This class represents an overall class of all external commands. These commands can be used by the user.

ManipulationInternalCommand (ManipulationCommand)

This class represents an overall class of all internal commands. The system itself is using these commands
to communicate. The user should not use internal command.

PutDownCommand (ManipulationExternalCommand)

This command implements a simple put down action. It tries to put a given object on a visual object which
WM address is known. It has to be noticed, that the arm movement planning software return a valid solution
for every visual object most of the time. Furthermore no rotation of the based object are taken into account.

cast/manipulation.sa_tutorial – CogX project 3 of 5

The command itself will not check, if the visual object is in the range of the manipulator. It will move to the
nearest possible position to the visual object and open its gripper 5 cm over the midpoint of the object.

Field:

cast::cdl::WorkingMemoryAddress basedObjectAddr ... address of the visual object the
current grasped object should be placed on

FarArmMovementCommand (ManipulationExternalCommand)

This command represents a simple far arm movement. It tries to reach the midpoint of the object with a fixed
gripper orientation (parallel to the floor)

Fields:

cast::cdl::WorkingMemoryAddress targetObjectAddr ... address of the visual object
to approach
cogx::Math::Pose3 reachedPose position, the manipulator has reached (set by the system)

FineArmMovementCommand (ManipulationExternalCommand)

This command represents a simple grasp approach arm movement. The manipulator will move from the
current position to the midpoint of the object and the gripper will be closed. The orientation will be the same
orientation like the orientation of the movement starting point of this command.

Fields:

cast::cdl::WorkingMemoryAddress targetObjectAddr ...address of the visual object to
approach
GraspingStatus graspStatus ... grasped an object or not (set by the system)

SimulateFarArmMovementCommand (ManipulationExternalCommand)

This command simulates the movement described in the FarArmMovmentCommand.

Fields:

cast::cdl::WorkingMemoryAddress targetObjectAddr ... address of the visual object
to approach
cogx::Math::Pose3 simulatedReachablePose ... represents the pose of the manipulator
which would be reached (set by the system)

StopCommand (ManipulationExternalCommand)

This command stops the arm movement

MoveArmToHomePositionCommand (ManipulationExternalCommand)

This command moves the arm to its home position (initial position of the arm after the calibration).

OpenGripperCommand (ManipulationExternalCommand)

This command opens the gripper of the manipulator.

CloseGripperCommand (ManipulationExternalCommand)

This command closes the gripper of the manipulator.

cast/manipulation.sa_tutorial – CogX project 4 of 5

MoveArmToPose (ManipulationExternalCommand)

This command moves the manipulator to a pose (position and rotation) defined by the field targetPose.

SimulateMoveToPose (ManipulationExternalCommand)

This command simulates the MoveArmToPose command.

Fields:

cogx::Math::Pose3 targetPose ... target pose to simulate to
cogx::Math::Pose3 simulatedReachablePose ... represents the pose of the manipulator
which would be reached (set by the system)

GetCurrentArmPose (ManipulationExternalCommand)

This command returns the current pose of the manipulator.

Field:

cogx::Math::Pose3 currentPose ... current pose of the manipulator (set by the system)

PlayerArmBridge

Provides a bridge between Golem path planning and a player actarray interface. This is needed to have
Golem control an arm simulated in gazebo.

Command line parameters are:

--playerhost <string> ... hostname of player server, default localhost

--playerport <int> ... player port, default 6665

GazeboTurntable

Uses the player/gazebo simulation interface to continuously rotate a given object. Useful for learning virtual
objects.

Command line parameters are:

--playerhost <string> ... hostname of player server, default localhost

--playerport <int> ... player port, default 6665

--label <string> ... the label of the object that should be rotated

cast/manipulation.sa_tutorial – CogX project 5 of 5

Object Recognizer 3D

This component can recognize 3D object instances defined as surface geometry plus SIFT features attached
to these surface.

It will output VisualObjects defined in Vision.ice in the vision.sa. The most relevant fields are:

 class VisualObject {
 // 3D position and orientation, in the robot ego coordinate system.
 cogx::Math::Pose3 pose;

 // The time when the object was last observed, in any view
 cast::cdl::CASTTime time;

 // Geometric representation in 3D space
 GeometryModel model;

 // Distribution of identity labels (from object recognizer)
 StringSeq identLabels;
 DoubleSeq identDistrib;
 double identGain;
 double identAmbiguity;
 ...
 };

As cou can see the object label is given as a probability distribution over labels, e.g. ("cereals-weetabix",
"unknown") with probabilities (0.3, 0.7). The probabilites are given by the detection confidence of the
recognizer and are thus not true probabilites. Note that confidences (probabilities) around 0.3 are considered
good recognition results. There is always an "unknown" label which makes probabilities sum to 1.

ObjectRecognizer listens to the following commands from VisionData.ice

 class DetectionCommand {
 StringSeq labels;
 };

 enum Recognizer3DCommandType{ RECSTOP, RECLEARN, RECOGNIZE };
 class Recognizer3DCommand{
 Recognizer3DCommandType cmd;
 string label;
 string visualObjectID;
 double confidence;
 };

The DetectionCommand is the one you want to use. Simply provide the labels of the objects you want to
recognize and the recognizer will try to find them and put VisualObjects on the working memory (WM).
Of course the recognizer must have SIFT models for these labels and be configured to load them in its
CAST file command line. The Recognizer3DCommand command is used internally between the
ObjectTracker and ObjectRecognizer3D during learning.

(When asked to recognize an object via a Recognizer3DCommand (containing object label and command
type RECOGNIZE) it will place a VisualObject with label, 6D pose and detection confidence in visual
WM. If command type is RECLEARN, the recognizer will learn the given model. To this end it will require a
geometry model file (in PLY format, e.g. created using blender). It will issue commands to the tracker to

cast/ObjectRecognizer3D – CogX project 1 of 3

track this model and add SIFT features to the surfaces while the user presents new views of the object. The
model will be "frozen" in the tracker window at first, at an arbitrary but reasonable pose. Align the physical
object with its frozen model (roughly) and press 'l' in the tracker window to unlock the model, it will now be
tracked as you move it around. Go to the recognizer window and press ' ' (space) whenever you want to
learn a new set of SIFT feature for the current view. Learn a new view roughly every 30 degrees. Press 's' in
the recognizer window to save the learned SIFT model or 'q' to cancel learning.)

Note that ObjectRecognizer3D will always put a visual object in WM, with a 3D pose and a label
distribution.

If an object could be found: probability of its label is between (0, 1]
If an object could not be found: probability of its label is 0, pose is identity
Upon first calling the recognizer, it will add an object
Calling it again with the same object will overwrite the object already in WM.
The recognizer will not delete or duplicate objects. It is an object instance recognizer, i.e. objects are
considered unique (hence no duplication). Furthermore it does not keep track of detected objects, so
can not tell when they are no longer visible (hence no deletion).

So as a caller of ObjectRecognizer3D you issue a DetectionCommand and wait for ADD or
OVERWRITE of VisualObjects.

The label probability value is essentially derived from the percentage of SIFT features that could be matched.
From experience values below 0.08 can be considered to be false positives, values above 0.2 can be
considered quite good results. But note that this value depends on a several factors and behaves differently
for different objects, depending on the amount and type of texture, object size etc.

There is an example cast file in subarchitectures/vision.sa/config/test-recognizer3D
/single-recognizer3D.cast For the spring school, instantiations/css2011/learn-
object.cast and instantiations/css2011/find-object.cast.

Keyboard mapping

to press inside the recognizer window

[] (space) .. add current view to model (note: make sure the tracker has currently a good track of the
object)
[s] .. save the current model with its SIFT features and quit learning
[q] .. cancel learning

CAST GUI

ObjectRecognizer3D also uses the CAST GUI to display recognized objects, so in recognition mode, where
you don't need the above keyboard commands, you can (and should) disable the OpenCV window (i.e. not
use --display). The CAST GUI offers a button per learned object. Pressing that button will recognize the
respective object in the current image.

CAST command line parameters

--videoname <string> .. component ID of the video server component to connect to

--camid <int> .. ID of the camera to use

--labels <string list> .. labels under which the objects shall be addressed e.g. "GuteLaune?
jasmin". Note that of course all the following lists must be of same length.

--plyfiles <string list> .. files specifying geometry in PLY (Polygon File Format), e.g.
"instantiations/ply-models/GuteLaune.ply instantiations/ply-models/jasmin.ply"

--siftfiles <string list> .. files specifying the SIFT features on the object surface. These are

cast/ObjectRecognizer3D – CogX project 2 of 3

created with the recognizer in learn mode. e.g. "instantiations/sift-models/GuteLaune.sift instantiations/sift-
models/jasmin.sift"

--display .. activate/deactive OpenCV display, note that this does not get updated, once the window was
hidden by another window

Object Recognizer 3D Driver

The driver component is used to learn new models or to test recognition.

There is an example cast file in subarchitectures/vision.sa/config/test-recognizer3D
/single-recognizer3D.cast

CAST command line parameters

--labels <string list> .. list of objects to learn/recognize (note: you can only learn one object at
once), e.g. "GuteLaune? jasmin"

--mode <mode> .. mode can be either LEARN or RECOGNIZE (the default)

--Loops <int> .. don't know what that parameter means ...

cast/ObjectRecognizer3D – CogX project 3 of 3

Pan-Tilt-Zoom Server

The component PanTiltZoomServer can be used to communicate with the PTZ unit via the CAST
working memory.

JAVA MG ptzServer ptz.ptzServer.PanTiltZoomServer

Command line parameter:

--testGUI ... starts a simple GUI to test the commands.

available enumerations / types

PTZPose

The PTZPose defines a pose of the PTZ Unit.

Fields:

pan ... the cam pan value [rads]
tilt ... the cam tilt value [rads]
zoom ... the cam zoom value (does not matter for the used hardware)

PTZCompletion

FAILED ... the command failed
SUCCEEDED ... the command was successful
COMPINIT ... initial value

available commands

If one of the following commands is added to the working memory, the PTZ-Unit will execute the
corresponding action.

SetPTZPoseCommand

This command sets a pose of the PTZ unit.

Fields:

PTZPose pose ... this field has to be set by the user to the target pose and it is updated after the
completion of the movement with the reached pose
PTZCompletion comp ... shows the completion of the command and will change by the system to
SUCCEEDED if no errors occur

GetPTZPoseCommand

This command gets the pose of the PTZ unit.

Fields:

PTZPose pose ... represents the current pose (set by the system)
PTZCompletion comp ... represents the completion of the command and will change by the
system to SUCCEEDED if no errors occur

cast/PanTilt – CogX project 1 of 1

Gazebe world files

The part of gazebo world files relevant for you is about adding and positioning models, typically located at the
end of the files we provide. Let's take simple.world as an example.

You can mostly forget about the parts regarding physics and rendering settings. Except maybe lighting,
which you might want to adjust to modify how challenging the world is for simulated object recognition.

Lighting

This provides nice and realistic shadows (on most machines anyway, there seem to be issues with some
graphics cards)

 <rendering:ogre>
 <ambient>0.8 0.8 0.8 1.0</ambient>
 <sky>
 <material>Gazebo/Grey</material>
 </sky>
 </rendering:ogre>

 <!-- White Directional light -->
 <model:renderable name="directional_white">
 <light>
 <type>directional</type>
 <direction>0.1 -0.6 -0.4</direction>
 <diffuseColor>0.9 0.9 0.9</diffuseColor>
 <specularColor>0.7 0.7 0.7</specularColor>

<!-- Constant(0-1) Linear(0-1) Quadratic -->
 <attenuation>1.0 0.0 0.0</attenuation>
 <range>.8</range>
 </light>
 </model:renderable>

This provides dull, but easier ambient only lighting

 <rendering:ogre>
 <ambient>1.0 1.0 1.0 1.0</ambient>
 <sky>
 <material>Gazebo/Grey</material>
 </sky>
 </rendering:ogre>

Object coordinate frames

Coordinate frames for objects, notably boxes, are defined in the following way:

origin is in the object center
axes are aligned with box sides. For cereal boxes this means: z points up, x points along the longer
base side, y points along the shorter base side.

So a box of height h resting on the ground will have a z coordinate of h/2. An object of height h resting on a
table of height H will have a z coordinate of H + h/2.

NOTE: Only the robot has its origin at z = 0, between the wheels, with x pointing forward and y pointing left.

meetings/css11/material/gazebo_worlds – CogX p... 1 of 3

Positioning objects in the gazebo world

To set the pose of an object, change xyz and rpy a the start of the model, e.g.

...
 <!-- robot model -->
 <model:physical name="robot">
 <xyz>0.0 0.0 0.01</xyz>
 <rpy>0.0 0.0 0.0</rpy>
...
 <model:physical name="cereals1_model">
 <static>false</static>
 <xyz>1 0 0.447</xyz>
 <rpy>0 0 90</rpy>
...

NOTE: Due to the way gazebo calculates contact forces and positions etc., you should position your objects
a bit (say 0.01 m) in the air. Otherwise, if you put an object precisely on the ground, the objects might
forcefully jump into the air at gazebo startup, as the physics engine tries to resolve a contact violation.

NOTE: Due to the way gazebo calculates contact forces and positions etc., objects will slightly penetrate
each other (depending on how "stiff" the simulation is configured). So don't be surprised if objects are
reported (by GazeboVision as slightly lower then they should be.

== Static and non-static objects ===

Objects with static set to true, will not obey gravity, but just float in mid air, but still take part in collision
checks etc., e.g.

 <!-- some walls -->
 <model:physical name="walls_model">
 <static>true</static>
 <body:box name="walls_body">
 <geom:box name="wall_front_geom">
 <xyz>5 0 1.4</xyz>
 <size>0.1 10 2.8</size>
...

Adding models

Each model needs its own model name, e.g.

 <model:physical name="robot">
...
 <model:physical name="walls_model">
..
 <model:physical name="table1_model">
...
 <model:physical name="cereals1_model">
...

The actual model is typically provided via an include statement

meetings/css11/material/gazebo_worlds – CogX p... 2 of 3

 <model:physical name="table1_model">
 <static>false</static>
 <xyz>1 0 0.176</xyz>
 <include embedded="true">
 <xi:include href="models/table.model" />
 </include>
 </model:physical>

Adding several instances of models

UPDATE: The nasty bug described below was fixed. The patch for 0.9.0 is in the GAR installer.

NOTE: Due to a nasty bug (one of several ...) of gazebo it is not possible, to add the same instance of a
model file several times (as the abouve include statement was intended to be used). You will have to copy
and rename model files, as in

 <model:physical name="table1_model">
 <static>false</static>
 <xyz>1 0 0.176</xyz>
 <include embedded="true">
 <xi:include href="models/table1.model" />
 </include>
 </model:physical>

 <model:physical name="table2_model">
 <static>false</static>
 <xyz>1 0 0.176</xyz>
 <include embedded="true">
 <xi:include href="models/table2.model" />
 </include>
 </model:physical>

This is required essentially only for the table objects, as cereal boxes are unique anyway.

meetings/css11/material/gazebo_worlds – CogX p... 3 of 3

