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In previous years, WP6 investigated how situated dialogue could be used
in human-robot interaction to help the robot learn more about its environ-
ment. This involved grounding dialogue in multi-agent models of beliefs and
intentions, dealing with the uncertainty and incompleteness in these models,
and communicating about the content in these models at different levels of
granularity. These dialogues were typically tutor-driven. In Year 4, WP6 ex-
plored topics that have to do with robot-initiated dialogues. We investigated
issues in common ground and transparency that help a robot to make use of
its dialogue capabilities to explain its internal state and past actions to its
user as well as to learn about the world by asking for missing knowledge or
for clarifying uncertain knowledge. Furthermore, Year 4 was used to consol-
idate longer-term efforts originating in previous project periods, such as a
software toolkit for natural language dialogue processing for talking robots.
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Executive Summary

One of the objectives of CogX is self-extension. This requires the robot to
have an intrinsic motivation — “curiosity” — to gather information, in order
to acquire new and revise old knowledge. One of the sources of information
about the world is dialogue. For dialogue to work, the robot needs to be
able to establish with a human some form of mutually agreed-upon under-
standing, a common ground. This requires the robot to provide transparency
about its actions and goals, as well as interpreting the intentions of its in-
terlocutor. The overall goal of WP6 is to develop adaptive mechanisms for
situated dialogue processing, to enable a robot to establish such common
ground in situated dialogue.

In Year 1, WP6 investigated how a robot could carry out a situated
dialogue with a human, about items in the world it needed to learn more
about. The robot was able to formulate questions against a multi-agent
model of situated beliefs, indicating what it did and did not know — and
what it would like to know. The robot was able to represent and reason with
uncertainty in experience, but it was relatively fixed in the strategies it would
follow to communicate with the human about resolving the uncertainty.

In Year 2, WP6 investigated several issues in how to make dialogue
behavior more adaptive. This covered several aspects: (1) Making dialogue
strategies more adaptive, and (2) varying how much a robot needs to describe
to be optimally transparent.

Throughout Years 1 and 2 we assumed the robot to have a fixed set of
communicative competences, particularly where it concerned grammatical
resources. Practically this meant that, even though the robot was still learn-
ing more and more about the world, it already knew how to talk about it. In
Year 3, WP6 shifted its focus on taking the CogX objective of self-extension
to the realm of situated dialogue processing as well. Making use of large
ontologies and on-line resources for modeling common sense indoor knowl-
edge (OMICS, WordNet, Bing image search) provided a powerful means for
large-coverage resources for communicating about indoor environments. At
the same time, we broadened the scope of self-extension in situated dialogue
to the aspect of language acquisition per se.

In Year 4, WP6 investigated issues in common ground and transparency.
We focused on verbalizing a robot’s internal state and background knowl-
edge, and integrating that functionality into human-robot interaction. This
helps the robot to explain its internal state and past actions to its user, and
to learn about the world by asking for missing knowledge or for clarifying
uncertain knowledge. The result is a context-adaptive approach for clarifi-
cation and explanation (Task 6.7), based in a robot’s own understanding of
what it does (not) know, and what it can (or cannot) attribute to a human
it interacts with. The robot can initiate these kinds of dialogue itself, moti-
vated by its own curiosity (Milestone M6.5). Over and beyond these efforts,
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we consolidated our longer-term efforts originating in previous project peri-
ods, resulting in a software toolkit for natural language dialogue processing
for talking robots (TaRoT).

Overall, the work in WP6 has led to a comprehensive theoretical and
practical framework for situated dialogue, in which we have paid particular
attention to issues in self-extension and introspection in and through dia-
logue. Our story of the situated nature of spoken dialogue in human-robot
interaction is based in a situationally, socially, and epistemically perspec-
tivized (i.e. “asymmetric”) notion of common ground (Yr4) and acquisition
(Yr3), and a cross-modal view on the relation between linguistic and extra-
linguistic information. We consider situated dialogue in the larger context of
a collaborative activity, using common ground and cross-modal connections
between information to establish intention, intension and denotation for ut-
terances — both for comprehension, and production, and for entities it does
or does not know about. The robot can verbalize and clarify this knowledge,
in context-adaptive ways, to establish transparency in common ground with
the user (introspection), and to drive deliberated, self-motivated forms of
learning (self-extension).

Role of Situated Dialogue in CogX

CogX investigates cognitive systems that self-understand and self-extend.
In most of the scenarios explored within CogX such self-extension is done in
a mixed-initiative, interactive fashion (e.g. the George and Dora scenarios):
the robot interacts with a human, to learn more about the environment.
WP6 contributes situated dialogue-based mechanisms to facilitate such in-
teractive learning. Furthermore, WP6 explores several issues around the
problems of self-understanding and self-extension in the context of dialogue
processing. The dialogue capabilities provided by WP6 enable the robot to
conduct situated dialogues for interactive learning based on its own curios-
ity. The models for spatially situated dialogue are grounded in the spatial
models developed in WP3 (see also DR.3.3 and DR.3.4, especially [41]).
The approach to continual abductive dialogue interpretation has a strong
relation to WP4, in that it is inspired by the continual planning approach
taken in that WP. At the same time, verbalization of past, ongoing, and
past actions is grounded in the planning representations developed in WP4.

Contribution to the CogX Scenarios and Prototypes

The work of WP6 presented in this deliverable, DR.6.5, contributes directly
to the George and Dora scenarios, in relation to work performed in WP1
(generating motivation goals from dialogue), WP3 (Qualitative spatial cog-
nition), WP4 (Planning of action, sensing and learning), WP5 (Interactive
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continuous learning of cross-modal concepts), and WP7 (Scenario-based in-
tegration). In particular, DR.7.3 reflects the work from WP6 in the sys-
tematic use of dialogue as a means of knowledge gathering and clarification,
and for establishing transparency. DR.7.4 (especially [31]) describes a robot
that is capable of continuous learning of visual concepts in dialogue with a
tutor. These learning dialogues can be initiated by the human tutor or by
the system itself.
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1 Tasks, Objectives, Results

1.1 Planned work

The overall goal of CogX is to arrive at a theory of cognitive robots which are
capable of self-understanding and self-extension. During the last years, WP6
worked on adaptive mechanisms for situated dialogue processing that would
enable a robot to discuss with a human what it did and did not understand
about the world. And, thus, through such dialogue, it could gain information
to help it learn more. While in the previous years, such dialogues were
mainly tutor-driven, the focus in Year 4 is on robot-initiated dialogues. The
planned work for WP6 in Year 4 is to support curiosity-driven self-extension
through situated dialogue and to provide means for making the robot’s self-
understanding transparent by verbalizing explanations of its internal states,
its decision-making and actions.

Task 6.7 Adaptive strategies for clarification and explanation. To-
wards the end of the project, the robot’s learning is primarily curiosity-
driven. This is an advance in that it now actively needs to initiate
dialogues, if it wants to interact with other agents. We therefore want
to investigate (adaptive strategies for) clarification and explanation,
more from the engagement-level [30], to address the issue of how to
set the context for a clarification request (i.e. scaffolding it), to avoid
“out-of-the-blue” behavior.

Milestone M.6.5 Mixed initiative situated dialogue-guided curios-
ity. The system will be able to initiate and drive situated dialogues for
interactive learning based on its own curiosity.

Objective 2 Specific representations of beliefs about beliefs for the specific
cases of dialogue, manipulation, maps, mobility and some types of vi-
sion. [WPs 2,3,6]

Objective 3 Representations of how actions will alter the belief state of the
cognitive system, and those of other agents, as represented in the first
two objectives, i.e. models of the effects of actions on beliefs about
space, categorical knowledge, action effects, dialogue moves etc. [WPs
1,2,3,4,5,6]

Objective 9 Methods that enable a robot to represent and reason about its
beliefs and those of other agents to support natural dialogue and to
extend its own abilities and understanding. [WP 6]

Objective 11 A robotic implementation of our theory able to complete a
task involving mobility, interaction and manipulation, in the face of
novelty, uncertainty, partial task specification, and incomplete knowl-

edge. [WPs 2,3,6,7]
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1.2 Actual work performed

In Year 4 we developed new approaches for verbalizing a robot’s internal
belief state, reflecting what it does and does not know, and what it has
done so far. We have integrated this type of verbalization into our general
approach to situated dialogue processing. This involves tying it in with
our algorithms for situated referring expression generation and resolution,
and anchor progression. The primary function of this verbalization is to
make the robot’s understanding of, and reasoning about, the world more
transparent to the user (Task 6.5). This aids building up and maintaining
common ground in human-robot interaction, which is crucial if the robot
is to successfully use dialogue to obtain information from a human user
(Milestone M6.5).

We have achieved this task, and the corresponding milestone, as follows:

1. Building on earlier WP6 work we have further developed our abduction-
based approach to continual dialogue understanding (§1.2.1). This
makes it possible to reason explicitly with knowledge gaps, be they
attributable to the human or the robot itself, and their possible res-
olution through dialogue as a form of action within a collaborative
activity.

2. The very fact that we have knowledge gaps, and the obvious observa-
tion that robots and humans experience reality differently, have led us
to reconsider the notion of common ground (§1.2.2). Already in earlier
work on our abductive model we dropped the assumption on symmetry
between dialogue participants. We have now taken this to its logical
consequences, and built up a model of common ground which starts
from asymmetry in the social, situated, and epistemic factors which
play a role in common ground.

3. Finally, it is against this “asymmetric” background that we then con-
sider verbalization of internal state (§1.2.3). This state covers robot
beliefs, and past actions leading up those beliefs. The function of such
verbalization in dialogue is to explain what the robot believes, and
why it believes what it believes. This transparency, realized as a sub-
dialogue clarifying what the robot would like to know and why, then
provides the scaffolding for whatever question the robot is motivated
to ask (mixed-initiative dialogue).

A (partly stylized) example of such a sub-dialogue is as follows.

1. I moved from the lab to the kitchen,

2. to look for cornflakes
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3. I have searched for the cornflakes,
4. but I am unable to find them.
5. Could you tell me where the cornflakes are?

The example illustrates the verbalization of different plan/action steps
(1,3), reasons (2), and outcomes (4). This provides a background for for-
mulating the final question (5). Annex 1.2.3 describes in detail how the
sub-dialogue in (1)—(4) can be generated from a plan and its execution trace.

With this we also answer the reviewers comments, pertaining to WP6:

[T]he methods for interpreting and producing referring expres-
stons still need some work and are not yet a particularly con-
vincing showcase of the very interesting model of situated dia-
logue being developed in the project.

The work performed in Year 4 in WP6 (and through the integration
in WP7) brings back many of the different strands worked on over the
years. Using the integrated system functionality, we can now showcase our
approach in various complex settings in human-robot interaction for self-
extension.

The work performed in this WP meets several main objectives of CogX.
The approaches to abductive dialogue interpretation (§1.2.1) and modeling
common ground (§1.2.2) make contributions to Objectives 2, 3, 9 by provid-
ing methods for representing and reasoning about the beliefs of the robotic
agent and other (human) agents it interacts with. The work on situated
plan and execution verbalization (§1.2.3) makes further contributions to ob-
jectives 3 and 9 by allowing the robotic agent to verbalize its past actions
and intentions, thereby allowing a human agent to understand the robot’s
behavior and beliefs. Transparency of a robot’s intentions and actions has
been further investigated in the context of a special journal issue (§1.3.2).
Additionally, the work on dialogue interpretation and verbalization has been
implemented in a software toolkit for talking robots (§1.3.1), which has been
deployed in the WP7 integrated systems (cf. Objective 11).

1.2.1 Abductive dialogue interpretation

In task-oriented dialogues between two agents, such as between two humans
or a human and a robot, there is more to dialogue than just understanding
words. An agent needs to understand what is being talked about, and it
needs to understand why it was told something. In other words, what does
the speaker intends the hearer to do with the information, in the larger
context of their joint activity? Language understanding can thus be phrased
as an intention recognition problem: given an utterance from the human,
how do we find the intention behind it?
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Abductive Reasoning for Continual Dialogue Understanding
Janicek (Annex 2.1) presents an extended model of the abductive con-
tinual approach to situated dialogue understanding. This model draws
inspiration from the field of continual planning [6], by explicitly cap-
turing the possible knowledge gaps in such an interpretation. The idea
s based on the notion of assertion, an explicit test for the validity of a
certain fact, going beyond the current context. This makes it possible
to deal with both uncertainty and incompleteness in situated dialogue
processing.

Let us briefly discuss an example that uses this mechanism. A more
detailed example can be found in the article in Annex 2.1.

Suppose that a human user is dealing with a household robot capable
of manipulating objects (picking them up, putting them down). The robot
and the human are both looking at a table with a mug (“mug;”), and the
human wants the robot to pick up the mug. The human’s utterance, “Take
the mug” is first parsed and analyzed semantically, and its translation is
made part of the abduction context ¢, within which the robot tries to make
sense of the utterance. The inference establishes several alternative proofs,
and weighs them by the ”costs” (probabilities) for the individual facts and
assumptions appearing in a proof. The best proof is the one with the lowest
cost. Suppose that the best proof state returned by ABDUCE is the following;:

uttered (human, robot, event )

[ (1)
proposition(eventy, take) [ (2)

intends(eventy, human, I)  [assumed(p = 0.9)] (3)

relation(events, patient, thing,)  [proved] (4)
refers_to(thing,, X) | (5)

pre-condition(7, object(X)) | (6)

post-condition (7, state(is-holding(robot, X))) [ (7)

The proof is an explanation of the event in terms of a partially specified
intention [ related to the task specified above. An explanation is defined by
its pre- and post-condition. The precondition is the existence of an entity
X, and the postcondition is the state in which the robot is holding the entity
X.

Assumptions are made with an assumability probability according to
the beliefs the robot currently maintains, and inferences it can make from
more general background knowledge (i.e. a rule base). In our approach the
assumability function is manually designed, but it is conceivable to learn
or infer it automatically. Reference resolution (i.e., does “the mug” refer
to mug; or to some other referent?) is therefore essentially treated as an
abduction problem.

Note that the proof state contains two atoms marked as assertions. These
are the explicit gaps in the proof that make it a partial interpretation. They
are chosen by the domain engineer, and since they need to be verified (or

EU FP7 CogX 4



DR 6.5: Mixed Initiative Situated Dialogue-Guided Curiosity Zender, Janicek & Kruijff

falsified) by an external process, they form the interface to external knowl-
edge bases and decision-making, which will select some of the assertions,
and tries to verify them.

Suppose that the assertion (5) is tested first. This amounts to resolv-
ing the referring expression represented by thing,. Under the open-world
assumption, two interpretations are conceivable: the referent is mug; or the
human might be referring to an object that is not part of common ground,
and the reference thus cannot be resolved. The commitment to one of these
interpretations is made by taking into account the probabilities and uncer-
tainties about the world that are represented in the robot’s beliefs.

The next assertion (6) expressed the presupposition accommodation that
there exists an object to which the human is referring. This opens the
possibility for further clarification in case the reference in (5) could not be
resolved with a sufficient level of confidence.

In case the reference has been resolved to mug;, but with low confidence,
the robot might ask “Did you mean I should take this object?” (pointing
at the mug, testing the hypothesis pre(I, object, mugy)).

Likewise, in case the robot abductively concludes that the human is
referring to an unknown mug, it might ask “Which object did you mean?”,
prompting the human to give an answer that would ultimately become the
proof of the test action for pre(I, object(X)).

Alternatively, the robot might simply bring the most likely object. The
human’s acceptance of the choice would then verify the assertion. This is,
again, a matter for consideration in the external planning and goal manage-
ment.

1.2.2 Common ground

In order to interpret what it is that is being communicated, one needs to
construct a meaning representation. In the processes of constructing mean-
ing, one can appeal to different sources of information. In situated dialogue,
these sources at least encompass the situation being described (focus sit-
uation); any other physical or discursive contexts, or common knowledge
(resource situations); and the ways in which the communication partners
take part in the dialogue (social situation) [11]. Figure 1 provides an exam-
ple.

The social situation in situated dialogue makes it clear that communi-
cation partners look at the world from different perspectives. Some of the
effort in communicating therefore goes into establishing a common ground
between partners. The point is to establish a mutual understanding of what
is being talked about, what is appealed to notably in reference to the world
[8, 7]. This is a dynamic process, in which partners coordinate and align
their beliefs [39, 28].

EU FP7 CogX 5



DR 6.5: Mixed Initiative Situated Dialogue-Guided Curiosity Zender, Janicek & Kruijff

Now it is to
my left

The apple is
to my right

Figure 1: Different situations in meaning: “Now it is to my right” appeals
in contrast to the previous situation (“now”), preceding dialogue (“it”), the

[ p)

current situation (“is”), and the current social situation (“to my right”).

This need for common ground is not restricted to communication be-
tween humans. It holds just as much for human-robot interaction, where
understanding and facilitating different perspectives on the world is crucial
to establishing an effective collaborative context.

There is no Common Ground in Human-Robot Interaction

There is an inherent asymmetry to situated communication, especially
in human-robot interaction. Robots literally see the world differently.
This raises an important issue for how to model common ground be-
tween a human and a robot. Traditional approaches to common ground
adopt a possible worlds-like model theory, on which a shared belief rep-
resents the fusion of two private beliefs within a single model. This
silently assumes a symmetry in categories against which both private
beliefs can be interpreted: A symmetry which cannot be assumed for
human-robot interaction. Hence, on such a model, there is no common
ground between humans and robots. Kruijff (Annex 2.2) presents an al-
ternative model theory, which captures the inherently subjective nature
of experience. It is based on a notion of propositions-as-proofs, turn-
ing subjective interpretation as well as the projection to intersubjective
verification into a notion of inference or argumentation. Beliefs are
arguments, whether private, attributed or shared. This results in a for-
mulation of common ground as a dynamic structure of always argued,
but possibly only partially confirmed, or partially assumed, beliefs.

Common ground is a complex notion. Generally speaking, it is about
something between communicative partners: Namely, “shared understand-
ing.” Minimally, this is a shared understanding of the entities which have
been talked about, grounded in the (possibly situated) domain of discourse
[8, 7, 39]. After entities have been introduced into common ground, they are
accessible for reference. Naturally, there can be more to common ground. In
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task-oriented domains, common ground provides an interface between the
task domain itself, and the communication which mediates and coordinates
collaboration in that domain. Typically, this then leads to considering in-
tentions, plans, and tasks to be part of common ground as well. On top
of which we can essentially consider all that is implied by the concept of
situated meaning [11], illustrated e.g. in Figure 1. (And that would include
“commonsense knowledge,” e.g. what if the robot was discussing not an
edible apple, but a Mac?) As said, common ground is a complex notion.

1.2.3 Verbalization of plans

Interactive intelligent robots need to possess two important features: au-
tonomy and communication skills. Situated communication can comprise
different modalities, like, e.g., spoken dialogue. Autonomy can range from
simple reactive control loops to sophisticated goal-directed action planning
and execution. If the robot and its user are supposed to engage in some
form of collaborative activity — no matter if it is a cognitive assistant whose
main purpose is to support its human user, or if it is a curious robot whose
main drive is to learn about the world — the human crucially needs to be
able to know and understand the robot’s actions (past, present, as well as
intended ones) in as far as they are relevant for achieving a task at hand;
the robot’s autonomous decision-making and acting need to be transparent
to the human.

We consider the verbalization of plans as one way of achieving such
a transparency in situated discourse. In the context of CogX, we want
to endow our robots with the ability to tell a human user about present
objectives, what actions were executed in the past and what further actions
are planned.

Situated Plan and Execution Verbalization
We present an approach to verbalizing reports of intentions and actions
of a planner-enabled agent. We consider the case of an interactive
intelligent robot that is endowed with a symbolic Al planner. The robot
uses the planner to determine and execute sequences of actions in order
to achieve a given goal. Since the robot is operating in a real, physical
environment, making use of possibly imperfect sensing and actuating, it
1s likely to encounter unforeseen events or failures, and therefore needs
to re-plan in order to come up with alternative plans for achieving its
goal. In order to tell a human about what was planned, what was and
was not successfully done, what happened — and why — we present a
method for generating natural language reports based on such intended
plans and the event structure of their execution. This verbalization
is inherently situated in nature. For one, external entities that are
used in the planning process refer to things, persons, or locations in
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the physical environment that the robot and the hearer are situated in.
Secondly, the robot’s intentions and actions are temporally related to
the discourse situation: the robot might report about its current plans
and attempts for executing an ongoing task; the robot might explain
what it did and what it couldn’t successfully do in order to establish
common ground for asking the human for help; or the the robot might
simply report about past events and give details about why it chose to
do what.

The approach has been implemented on the integrated robotic system
Dora [17]. Dora is programmed to exhibit a variety of intelligent behaviors,
among which other intelligent mechanisms might arbitrate. However, these
decisions might (initially) be intransparent to a human observer. We hence
want Dora to provide verbal reports of what it attempted to do and why
— thus establishing transparency about the complex spatio-temporal and
causal relationships of its actions and action attempts.

Dora is equipped with a switching symbolic-probabilistic AI planner [12],
able of continual planning and re-planning [6]. The approach is integrated
in the general natural language processing sub-system of Dora and shares
its linguistic resources with the other dialogue capabilities [19]. The ver-
balization module is connected to Dora’s spatial knowledge base in order to
refer to entities in Dora’s spatial environment [40, 41, 42].

1.3 Additional work performed
1.3.1 Software toolkit for situated dialogue processing

In CogX, we gathered substantial knowledge and experience in developing
functionality for situated dialogue processing. This extended the experience
we had already gained in the project preceding CogX, namely CoSy. In Year
4, we dedicated effort to consolidating this knowledge and experience in a
toolkit. This toolkit, called the Talking Robots Toolkit or TAROT provides
a set of reusable functionalities and resources to build dialogue systems for
human-robot interaction.

TAROT- The Talking Robots Toolkit

TAROT is an open-source software framework for building spoken dia-
logue functionality for human-robot interaction. TAROT does not im-
pose a specific (cognitive) architecture for building a dialogue system.
Its framework allows for multi-threaded (or asynchronous) processing.
Processes are defined as glass bozes [25] (not black-bozes) and interact
in an event-driven fashion. TAROT is written in the Scala program-
ming language and targets the Java platform. Annex 2.4 provides a
technical description.
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1.3.2 Outreach: state-of-the-art in expectations, intentions, and
actions in human-robot-interaction

Human-robot interaction as a scientific field has received much attention in
the past years. The research performed in the context of CogX, especially
concerning situated natural language processing and human-robot spoken
communication, draws from and directly contributes to this field.

One tangible and relevant outcome of this was that researchers from the
CogX consortium (Marc Hanheide, Geert-Jan M. Kruijff, Hendrik Zender)
organized the ICRA 2010 Workshop on Interactive Communication for Au-
tonomous Intelligent Robots (ICAIR). Its topics centered around making
robots articulate what they understand, intend, and do. Being a successor
to the ICRA 2008 Workshop on Social interaction with Intelligent Indoor
Robots (SI3R), it attracted researchers from different fields of robotics who
work on robots that communicate.

As a follow up to this workshop as well as to the HRI 2011 Workshop
on The Role of Expectations in Intuitive Human-Robot Interaction (Verena
Hafner, HU Berlin; Manja Lohse, Bielefeld U; Joachim Meyer, Ben-Gurion
University of the Negev, Israel; Yukie Nagai, Osaka U; Britta Wrede, Biele-
feld U), the editors of the International Journal of Social Robotics proposed
to organize a Special Issue on Expectations, Intentions and Actions, for
which Marc Hanheide, Manja Lohse, and Hendrik Zender served as guest
editors.

Journal of Social Robotics: “Expectations, Intentions & Actions”
This special issue (Annex 2.5) bundles recent advances in embodied
and situated social human-robot interaction. The key questions are
how meeting or failing to meet the user’s expectations influences the
efficiency and effectiveness of human-robot interaction; how more ef-
fective and efficient interaction with humans can be achieved using
modalities available to a robot; how robots can be equipped with models
enabling them to understand their users’ state of mind; and similarly,
how they can make their own expectations and states explicit through
eligible communication channels. Each of the seven contributed arti-
cles in this issue highlights different aspects around the central theme
of expectations, intentions, and actions in human-robot interaction.
The topics covered range from recognition of verbal and mon-verbal
cues of intentions and expectations, to verbalization and presentation
techniques that make internal processing of the robot accessible to the
human.

1.4 Relation to state-of-the-art

Below we briefly discuss how the obtained results relate to the current state-
of-the-art. We refer the reader to the annexes for more in-depth discussions.
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Abduction Our approach to situated dialogue processing is based on our
ongoing research in dialogue as part of continual (“contingency-based”) col-
laborative activity ([23], and [24]). Dialogue modeling is connected to multi-
agent models of situation awareness. These models capture beliefs and in-
tentions, and their inherent uncertainty and incompleteness with respect un-
derstanding the environment. It is a strongly intention-oriented approach,
in the sense of [2, 1, 14, 29, 9]. It accords a strong role to common ground
in interaction [21, 20]. Core to the approach is abductive inference. This is
inspired by [34, 35, 33|, but differs in that our approach does not assume
symmetry in understanding between the different dialogue partners. The
recent work reported in this deliverable illustrates how we take asymmetry
in understanding to dealing with partial information (Annex 2.1), and to
a reconsideration of the subjective and intersubjective nature of content in
common ground (Annex 2.2)

Common ground Understanding and facilitating common ground in human-
robot interaction has received substantial attention in recent years [21, 22,
20]. As put forward by several researchers [32, 38, 36, 27], common gound
is indeed crucial for establishing an effective collaborative context. Failure
to do so typically leads to a breakdown in communication, see e.g. [36, 29].
There is a large body of work on considering intentions, plans, and tasks to
be part of common ground [2, 14, 1, 29, 16, 3, 15, 9, 23]. The problem com-
mon to all these approaches is that they assume a symmetry between inter-
locutors: How the speaker sees and talks about the world is how the hearer
understands the world. This symmetry-assumption is explicitly stated in
e.g. [35]. We can also see it reflected in the formal aspects of the model
theories underlying these approaches. Common ground on a belief in propo-
sition p means that, in a single possible worlds model, we can reach a world
on which p holds from the worlds on which the private and attributed beliefs
about p hold. This is incorrect, as it assumes that the different interlocutors
have a single (symmetric) objective model for interpreting. This ignores the
fundamentally subjective nature of experience, and the inherent differences
between humans and robots. The algebraic model theory we propose here
overcomes these problems.

Plan and execution verbalization Brenner [4] describes the use of clas-
sical Al planning techniques for interpretation and execution of human com-
mands. He sketches how a robot can understand natural language (NL),
plan the realization and revise its plans based on new perceptions. Their
approach is similar to ours in that the goal is to couple planning symbols to
natural language semantics and surface forms. In contrast to the approach
presented in this paper, their approach focusses on understanding rather
than on generation.
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However, what we are interested in is the generation of natural language
from planned and executed goal-directed sequences of actions. One domain
where such an approach is chosen is story telling. Telling stories requires
methods from many subfields of artificial intelligence (AI), e.g. planning,
reasoning about beliefs, and dialogue systems. In [5] an approach to story
generation using a continual multi-agent planner is presented. The Virtual
Storyteller is another framework that generates simple story texts [37]. It is
based on simulation of virtual characters in a story world. An event sequence
is captured by a ‘Plot Agent’ in a formal representation. The representations
are similar to the plans in [5], i.e., STRIPS-like [10]. A ‘Narrator’ component
turns the representation into an actual story by selecting the content and
processing it with NLG techniques. Story telling and NLG are also brought
together in, e.g., [26].

Another system that verbalizes some kind of plans is PROVERB [18]. In
this work, mathematical natural deduction (ND) style proofs are verbalized.
As input there is a representation of a ND proof. It is processed by a
macro-planner to plan output that consists of primitive actions. The actions
can be defined as communicative goals they fulfill as well as their possible
verbalizations. Subsequently, more detailed linguistic decisions are made in
the micro-planning component. Syntactic realizations are done using Tree-
Adjoining Grammar (TAG). The final output then is the ND proof in natural
language.

When verbalizing plans and actions for autonomous robots, an additional
aspect comes into play: the agent’s observations are potentially incorrect
or incomplete, and execution (as well as execution failures) become a key
issue. In such a context it is desirable to have a formal way to determine
an explanation of why a plan went wrong and how the problem could be
solved. Gobelbecker et al. [13] provide a formalization regarding this issue.
The work presented here addresses the prerequisites for informing the user
about failures executing the plan and how the user could help to solve the
problems. In order to achieve this, we investigate appropriate strategies for
a suitable verbalization of the planned and performed actions in a way that
is understandable to a human user.
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2 Annexes

2.1 Janicek, “Abductive Reasoning for Continual Dialogue
Understanding”

Bibliography Miroslav Janicek. “Abductive Reasoning for Continual Di-
alogue Understanding.” In M. Slavkovik and D. Lassiter, editors, New Di-
rections in Logic, Language, and Computation. Springer, 2012 (to appear).

Abstract This paper presents a continual context-sensitive abductive frame-
work for understanding situated spoken natural dialogue. The framework
builds up and refines a set of partial defeasible explanations of the spoken
input, trying to infer the speaker’s intention. These partial explanations are
conditioned on the eventual verification of the knowledge gaps they contain.
This verification is done by executing test actions, thereby going beyond the
initial context. The approach is illustrated by an example set in the context
of human-robot interaction.

Relation to WP The paper presents an extended and improved version
of the approach presented in DR.6.3. It provides the basic inference mech-
anism for reasoning about beliefs and intentions in the context of dialogue
processing. In the context of DR.6.5 it is instrumental in determining the
appropriate epistemic context for scaffolding mixed-initiative dialogue for
curiosity-driven learning — i.e. which beliefs held by the robot (private or
attributed) need to be verbalized, to explain what the robot does or needs
to know.
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2.2  Kruijff, “There Is No Common Ground In Human-Robot
Interaction”

Bibliography Geert-Jan M. Kruijff. “There Is No Common Ground In
Human-Robot Interaction.” Manuscript, 2012.

Abstract There is an inherent asymmetry to situated communication.
Those communicating look at the world from different perspectives. This
holds particularly true for human-robot interaction. Robots literally see the
world differently: They experience reality in fundamentally different ways.
This raises an important issue for how to model common ground between
a human and a robot. Traditional approaches to common ground adopt a
possible worlds-like model theory, on which a shared belief represents the
fusion of two private beliefs within a single model. This silently assumes
a symmetry in categories against which both private beliefs can be inter-
preted: A symmetry which cannot be assumed for human-robot interaction.
Hence, on such a model, there is no common ground between humans and
robots. This paper presents an alternative model theory, which captures
the inherently subjective nature of experience. It is based on a notion of
propositions-as-proofs, turning subjective interpretation as well as the pro-
jection to intersubjective verification into a notion of inference or argumen-
tation. Beliefs are arguments, whether private, attributed or shared. This
results in a formulation of common ground as a dynamic structure of always
argued, but possibly only partially confirmed or partially assumed beliefs.

Relation to WP Common ground in dialogue indicates a level of mu-
tual understanding between interlocutors, of what is being talked about. In
CogX, “what is being talked about” primarily concerns beliefs about experi-
ence of an environment, or about inferred (possibly attributable) character-
istics of an environment. Common ground can thus be argued to be based
on to the ability to align experience and expectations. This is crucial for
an effective transfer of information in communication; without it, dialogue
is unlikely to yield insights which the robot can use to drive its learning.
The problem that now arises in human-robot interaction is that robots and
humans experience reality fundamentally differently. A robot cannot simply
assume that a human “symmetrically” understands what it is talking about.
The robot needs to reason, within its limited capabilities, how the human
may understand the environment, and to what extent that might correspond
to how it understands the environment itself. The manuscript describes an
approach to formulating an algebraic model theory on which we can define a
logic for reasoning about different epistemic and situated perspectives, and
how they could be aligned.
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2.3 Schoch & Zender, “Situated Plan and Execution Verbal-
isation”

Bibliography Gerald Schoch and Hendrik Zender. “Situated Plan and
Execution Verbalisation.” Technical Report (2012).

Abstract In this paper, we present an approach to verbalizing reports of
intentions and actions of a planner-enabled agent. We consider the case of
an interactive intelligent robot that is endowed with a symbolic Al planner.
The robot uses the planner to determine and execute sequences of actions in
order to achieve a given goal. Since the robot is operating in a real, physical
environment, making use of possibly imperfect sensing and actuating, it
is likely to encounter unforeseen events or failures, and therefore needs to
re-plan in order to come up with alternative plans for achieving its goal.
In order to tell a human about what was planned, what was and was not
successfully done, what happened — and why — we present a method for
generating natural language reports based on such intended plans and the
event structure of their execution. This verbalization is inherently situated
in nature. For one, external entities that are used in the planning process
refer to things, persons, or locations in the physical environment that the
robot and the hearer are situated in. Secondly, the robot’s intentions and
actions are temporally related to the discourse situation: the robot might
report about its current plans and attempts for executing an ongoing task;
the robot might explain what it did and what it couldn’t successfully do in
order to establish common ground for asking the human for help; or the the
robot might simply report about past events and give details about why it
chose to do what.

Relation to WP The approach is integrated in the general natural lan-
guage processing system developed in this WP and shares its linguistic re-
sources with the other dialogue capabilities, cf. Section 2.4. The verbaliza-
tion module is connected to the spatial representations developed in WP3
in order to refer to entities in Dora’s spatial environment. By this it builds
upon previous work in this WP on spatially situated generation of referring
expressions.

The approach has been implemented on the integrated robotic system
Dora (WP7), which is equipped with a switching symbolic-probabilistic Al
planner, able of continual planning and re-planning. Thereby, the work pre-
sented here has also a close connection to the research on planning performed
in WP4.
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2.4 Janicek, “Robust situated language processing with TAROT:
The Talking Robots Toolkit”

Bibliography Miroslav Janitek. “Robust situated language processing
with TAROT: The Talking Robots Toolkit.” Manuscript. (2012).

Abstract This document describes TAROT the Talking Robots Toolkit.
TAROT is an open-source software framework for building spoken dialogue
functionality for human-robot interaction. TAROT does not impose a specific
(cognitive) architecture for building a dialogue system. Its framework allows
for multi-threaded (or asynchronous) processing. Processes are defined as
open “glass” boxes, and can interact in an event-driven fashion. TAROT is
written in the Scala programming language and targets the Java platform.

Relation to WP The manuscript describes a toolkit which consolidates
the knowledge and experience gained in CogX in developing systems for
situated dialogue processing in HRI.
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2.5 Hanheide et al., “Expectations, Intentions, and Actions
in Human-Robot Interaction”

Bibliography Marc Hanheide, Manja Lohse and Hendrik Zender. “Ex-
pectations, Intentions, and Actions in Human-Robot Interaction.” Inter-
national Journal of Social Robotics, 4(2):107-108, Springer Verlag, April
2012.

Abstract Human-robot interaction is becoming increasingly complex through
the growing number of abilities, both cognitive and physical, available to to-
day’s robots. At the same time, interaction is still often difficult because
the users do not understand the robots’ internal states, expectations, in-
tentions, and actions. Vice versa, robots lack understanding of the users’
expectations, intentions, actions, and social signals.

This article constitutes the editorial of a special issue on “Expectations,
Intentions & Actions” of the International Journal of Social Robotics. The
special issue bundles recent advances in addressing these challenges. The
key questions are how meeting or failing the user’s expectations influences
the efficiency and effectiveness of human-robot interaction; how more effec-
tive and efficient interaction with humans can be achieved using modalities
available to a robot; how robots can be equipped with models enabling them
to understand their users’ state of mind; and similarly, how they can make
their own expectations and states explicit through eligible communication
channels.

Each of the seven articles in the special issue highlights different aspects
around the central theme of expectations, intentions, and actions in human-
robot interaction. The topics covered range from recognition of verbal and
non-verbal cues of intentions and expectations, to verbalization and presen-
tation techniques that make internal processing of the robot accessible to
the human.

Relation to WP Meeting or failing to meet the users expectations in-
fluences the efficiency and effectiveness of human-robot interaction. The
article’s discussion complements the more fundamental issues of common
ground in HRI presented in Annex 2.2.
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Abstract. In this paper we present a continual context-sensitive ab-
ductive framework for understanding situated spoken natural dialogue.
The framework builds up and refines a set of partial defeasible explana-
tions of the spoken input, trying to infer the speaker’s intention. These
partial explanations are conditioned on the eventual verification of the
knowledge gaps they contain. This verification is done by executing test
actions, thereby going beyond the initial context. The approach is illus-
trated by an example set in the context of human-robot interaction.

Keywords: Intention recognition, natural language understanding, ab-
duction, context-sensitivity.

1 Introduction

In task-oriented dialogues between two agents, such as between two humans or
a human and a robot, there is more to dialogue than just understanding words.
The robot needs to understand what is being talked about, but it also needs to
understand why it was told something. In other words, what the human intends
the robot to do with the information in the larger context of their joint activity.

Therefore, understanding language can be phrased as an intention recognition
problem: given an utterance from the human, how do we find the intention behind
it?

In this paper, we explore an idea inspired by the field of continual planning
[8], by explicitly capturing the possible knowledge gaps in such an interpretation.
The idea is based on the notion of assertion, an explicit test for the validity of
a certain fact, going beyond the current context.

The structure of the paper is as follows. After briefly introducing the notion
of intention recognition, abduction and situatedness in the next section, we in-
troduce the continual abductive reasoning mechanism in §3, and discuss it on
an example in §4, before concluding with a short summary.

2 Background

The idea of expressing understanding in terms of intention recognition has been
introduced by H. P. Grice [12,20]. In this paper, we build on Stone and Thoma-
son’s approach to the problem [23] who in turn extend the work done by Hobbs



and others [13], and base their approach to intention recognition on abductive
reasoning.

2.1 Abduction

Abduction is a method of explanatory logical reasoning introduced into modern
logic by Charles Sanders Peirce [11]. Given a theory T, a rule T - A — B
and a fact B, abduction allows inferring A as an explanation of B. B can be
deductively inferred from AUT. If T't/ A, then we say that A is an assumption.

There may be many possible causes of B besides A. Abduction amounts to
guessing; assuming that the premise is true, the conclusion holds too. To give a
well-known example:

Suppose we are given two rules saying “if the sprinkler is on, then the
lawn is wet” and “if it rained, then the lawn is wet”. Abductively infer-
ring the causes for the fact that the lawn is wet then yields two possible
explanations: the sprinkler is on, or it rained.

Obviously, as there may be many possible explanations for a fact, in practical
applications there needs to be a mechanism for selecting the best one. This may
be done by purely syntactic means (e.g. lengths of proofs), or semantically by
assigning weights to abductive proofs and selecting either the least or most
costly proof [22], or by assigning probabilities to proofs [18]. In that case, the
most probable proof is also assumed to be the best explanation. Our approach
combines both aspects.

2.2 Intention Recognition

Abduction is a suitable mechanism to perform inferences on the pragmatic (dis-
course) level. For understanding, abduction can be used to infer the explanation
why an agent said something, in other words the intention behind the utterance.

An intention is usually modelled as a goal-oriented cognitive state distinct
from desires in that there is an explicit commitment to acting towards the goal
and refraining from actions that may render it impossible to achieve [7,10].

For the purposes of this paper, we shall treat intentions as intended actions
that have pre- and post-conditions, similar to planning operators in automated
planning. Pre-conditions express the necessary conditions before the action is
executed (and sufficient for its execution), and post-conditions express the nec-
essary conditions after the action is executed.

Note that reasoning with intentions allows us to reverse the task, and search
for appropriate (surface) presentation of a given intention [24]. Intentions can
therefore serve as a middle representational layer and abduction as the inference
mechanism by using which we either turn a realisation into an intention, or the
other way around.



2.3 Situated Understanding

Suppose that a human user is dealing with a household robot capable of ma-
nipulating objects (finding them, picking them up, putting them down). The
human wants the robot to bring him the mug from the kitchen, so he instructs
the robot by saying:

“Bring me the mug from the kitchen.”

Now, what should the robot do? In the beginning, the utterance is just a
stream of audio. The robot has to detect voice in the audio data, and if the
speech recognition works well enough, it will be able to obtain the surface form
of the utterance, i.e. the words that were spoken by the human.

Once the word sequence is recognised, the robot needs to assign linguistic
structure to it so that it can reason about its logical structure. The logical
structure of the utterance is typically not in any way related to the actual situated
experience of the robot. The noun phrases “the mug* and “the kitchen” are just
referring expressions standing for some entities in the real world, and can be
manipulated as expressions using logical rules without the need to be concerned
about value of the standing-for relation.

However, this relation is absolutely crucial to understanding what the human
said and why. Without being able to reduce the referring expressions to the
corresponding real-world entities there is no true understanding, and — more
importantly — there can be no appropriate reaction, which presumably is one of
the reasons why the human uttered the sentence in the first place (i.e. to elicit
such a reaction).

Grounding the relation in reality is therefore a crucial task that any cognitive
agent has to tackle. However, since all sensory perception is necessarily partial
and subject to uncertainty, there is no guarantee that the “knowledge base”, a
formalisation of the current snapshot of the knowledge about the world, contains
the information necessary for such a grounding. In other words, a situated agent
cannot afford the luxury of reasoning under closed-world assumption, and has
to venture beyond that.

This means that the robot must be able identify its knowledge gaps, and
verify or falsify them while trying to understand the human’s utterance. This
implies that the processes of understanding an input and acting on it are inter-
leaved and that there is a bi-directional interface between them.

3 Approach

This paper extends the work of Stone and Thomason on context-sensitive lan-
guage understanding by explicitly modelling the knowledge gaps that inevitably
arise in such an effort due to uncertainty and partial observability. The approach
is based on generating partial hypotheses for the explanation of the observed be-
haviour of other agents, under the assumption that the observed behaviour is



intentional. These partial hypotheses are defeasible and conditioned on the va-
lidity (and eventual verification) of their assumptions.

In this section, we examine the abductive reasoning system capable of repre-
senting knowledge gaps in the form of partial proofs, how such partial proofs can
be generated and verified or falsified, and the semantic framework used in our
system to capture linguistic meaning that the system then grounds in reality.

3.1 Partial Abductive Proofs

Our abductive inference mechanism is essentially Hobbs and Stickel’s logic pro-
gramming approach to weighted abduction [13,22] enhanced by a contextual
aspect [3] with the weights in the system being assigned a probabilistic interpre-
tation following Charniak and Shimony [9].

Abduction Context. Inference in our system makes use of four ingredients:
facts (denoted F), rules (R), disjoint declarations (D) and assumability func-
tions (S), collectively called the abduction context. The proof procedure uses
these iteratively in order to derive proofs of an initial goal.

— Facts are modalised formulas of the form
WA

where p is a (possibly empty) sequence of modal contexts, and A is an atomic
formula, possibly containing variables.
— Rules are modalised Horn clauses, i.e. formulas of the form

(12 A/t Ao A (pon 2 A ftn) = (ug - H)

where each of the u; : A; and puy : H are modalised formulas. Each an-
tecedent is annotated by t;, which determines the way the antecedent is
manipulated and is one of the following:

e assumable(f ) — the antecedent is assumable under function f;

e assertion — the antecedent is asserted, i.e. identifies a knowledge gap,
conditioning the validity of the proof on it being proved in a subsequent
reinterpretation (see below).

— Assumability functions are partial functions f, f : P(F) — R{, where P(F)
is the set of modalised formulas, with the additional monotonicity property
that if F' € dom(f), then for all more specific (in terms of variable substi-
tution) facts F’, F’ € dom(f) and f(F) < f(F'). We also define an empty
(“truth”) assumability function L such that dom(L) = 0.

Since they are partial functions, assumability functions determine both whether
a modalised formula may be assumed and the cost of such an assumption.
As a special case, the empty assumability function | can be used to prevent
the formula from being assumed altogether.



— A disjoint declaration is a statement of the form
disjoint(p : Ay, ..., pu: Ayp)

which specifies that at most one of the modalised formulas p : A; may be
used in the proof. A; and A; cannot be unified for all ¢ # j.

Proof Procedure. The proof procedure is an iterative rewriting process start-
ing from some initial goal state. A proof state is a sequence of marked modalised
formulas (called queries in this context)

Ql[n1]7 ey Qm[nm]
The markings n; are one of the following:

— unsolved(f) — the query is yet to be proved and can be assumed if it is in
the domain of the assumability function f;

— proved — the query is proved in the proof state;

— assumed(f) — the query is assumed under assumability function f;

— asserted — the query is asserted — its validity is not to be determined in the
current context.

Algorithm 1 defines the proof procedure in detail. The top-level function
ABDUCE takes an abduction context ¢ and a proof state IT, and returns a set of
proof states that

(1) are transformations of I7,
(2) are consistent with ¢, and
(3) do not contain any unsolved queries.

First, the input proof state is checked for validity with respect to the disjoint
declarations D in the function 1S-DISJOINT-VALID. If the check turns out to be
negative, the proof state is discarded, and ABDUCE returns an empty set.

If IT satisfies the disjointness constraints, the function TF-DUP turns it into
a set of proof states where unsolved queries that have already been proved,
assumed or asserted are removed. The transformation returns a non-empty set
of proof states. This step ensures that no query is examined more than once.

Next, each proof state resulting from TF-DUP is again checked whether it
contains an unsolved query. If it does not, then the conditions (1)—(3) above are
already fulfilled, and the proof state ends up in the result.

If it does, the proof procedure resolves the proof state against the facts,
rules and assumability functions, collecting the results, and recursively calling
ABDUCE on them so as to satisfy the above conditions.

Formally, given a proof state

H = Ql[nl], ey Qvn[n’m]

where @; is the leftmost query marked (guaranteed to exist at this point) as
unsolved(f) where f is an assumability function, the transformation rules TF-
FACT, TF-RULE and TF-ASSUME each return a (possibly empty) set of trans-
formed proof states, and are defined as follows:



— TF-FACT (resolution with a fact): For all @ € F such that the @ and Q; are
unifiable with a most general unifier o (denoted o = unify(Q, Q;)), add a
new state II’ to the result of the transformation:

II' = Qiolni),. .., Qiolproved), ... Qma[nm,]
— TF-RULE (resolution with a rule): For each rule » € R of the form
Gl/tl,...,Gk/tk — H

(with variables renamed so that it has no variables in common with IT) such
that there is a o = unify(H, Q;), i.e. the rule head is unifiable with the
unsolved query, add a new state II’ to the transformation result:

= Q10[n1], ceey Qifla[nifl]v
Gio[pi],-..,Grolpk], Qic[proved],

Qit10[Mit1], .., Qmonm]
The query markings p; are derived from ¢; for all i € {1,...,k} as follows:
if t; = assumable(f), then p; = unsolved(f)
if t; = assertion, then p; = asserted

— TF-ASSUME (assumption): If @ € dom(f) such that there is a most general
unifier o = unify(Q, Q;), add a new state II’ to result of the transformation:

II' = Qiolni), ..., Qiclassumed(f)], ..., Qno[nm]

Note that the proof procedure along with the definition of assumability func-
tions ensures that the cost of the proofs are monotonic with respect to unification
and rule application, allowing for the use of efficient search strategies.

Knowledge Gaps and Assertions. Our extension of the “classical” logic-
programming-based weighted abduction as proposed by Stickel and Hobbs lies
in the extension of the proof procedure with the notion of assertion based on the
work in continual automated planning [8], allowing the system to reason about
information not present in the knowledge base, thereby addressing the need for
reasoning under the open-world assumption.

In continual automated planning, assertions allow a planner to reason about
information that is not known at the time of planning (for instance, planning
for information gathering), an assertion is a construct specifying a “promise”
that the information in question will be resolved eventually. Such a statement
requires planning to be a step in a continual loop of interleaved planning and
acting.

By using a logic programming approach, we can use unbound variables in the
asserted facts in order to reason not only about the fact that the given assertion
will be a fact, but also under-specify its eventual arguments.



Algorithm 1 Weighted abduction

ABDUCE(c = (F,R,D,S8),II = Q1[n1], ..., Qm[nm]):
if 15-DISJOINT-VALID(D, IT) then
R+ 0
for all II' € Tr-pUP(IT) do
if II’ contains a query marked as unsolved then
H « TF-FACT(F, IT") U TF-RULE(R, IT") U TF-ASSUME(S, IT")
R <+ RUJpcy ABDUCE(c, P)
else
R+ RU{Il'}
end if
end for
return R
else
return ()
end if

IS-DISJOINT-VALID(D, IT = Q1[n1], ..., Qm[nm]):
for all d = disjoint(D1,...,Dq) € D do
if 3£ j#k#1st Jo,0": 0 = unify(D;, Q) and ¢’ = unify(D;, Q;) then
return false
end if
end for
return true

TF-DUP(II = Q1[n1], ..., Qm[nm]):
if II contains a query marked as unsolved then
i< argminjeqi, .. .m—13 (3f s.t. n; = unsolved(f))

H<+ 0
for all s € {i +1,...,m} s.t. unify(Q;,Qs) = o do
H<+ HU TF—DUP(Q10’{TL1}, ey Qi_10[’ni_1], Qi+1a[ni+1} . de[nm})
end for
if H # () then return H else return {I/} end if
else
return {I//}

end if




The proposed notion of assertion for our abductive system is based on test
actions (F') [4]. Baldoni et al. specify a test as a proof rule. In this rule, a goal
F follows from a state a1, ..., a, after steps (F), p1, ..., pm if we can establish F
on ai, ..., a, with answer o and this (also) holds in the final state resulting from
executing pi, ..., Pm.

An assertion is the transformation of a test into a partial proof which assumes
the verification of the test, while at the same time conditioning the obtainability
of the proof goal on the tested statements. p : (D) within a proof II[(D)] to
a goal C turns into II[D] — C A p : D. Should p : D not be verifiable, IT is
invalidated.

Probabilistic Interpretation. In weighted abduction, weights assigned to
assumed queries are used to calculate the overall proof cost. The proof with the
lowest cost is the best explanation. However, weights are usually not assigned any
semantics, and often a significant effort by the writer of the rule set is required
to achieve expected results [13].

However, Charniak and Shimony [9] showed that by setting weights to — log
of the prior probability of the query, the resulting proofs can be given proba-
bilistic semantics.

Suppose that query @, can be assumed true with some probability P(Q is true).
Then if @ is assumable under assumability function f such that f(Q) =
—log(P(Qy is true)), and under the independence assumption, we can repre-
sent the overall probability of the proof IT = Q1[n1], ..., @n[nm] as

P(II) = k=1 cost(Qx)

where £(Q) if d(f)
&) if ni = assume
cost(Qr) = {0 otherwise

The best explanation ITj.s; of a the goal state G is then

IIyest = argmin  P(IT)
II proof of G

Exact inference in such a system is NP-complete, and so is approximate
inference given a threshold [9]. However, it is straightforward to give an anytime
version of the algorithm — simply by performing iterative deepening depth-first
search [19] and memorising a list of most probable proofs found so far.

Comparison with Other Approaches. Our system is similar to Poole’s Prob-
abilistic Horn abduction [18]. The main difference, apart from the proof proce-
dure which is cost-based in our case, is that we do not include probabilities in
our formulation of disjoint declarations. Since we avoid duplicate assumptions,
we are able to model the semantics of disjoint declarations with probabilities.

On the other hand, having a general disjoint declaration allows us to define
exclusivity rules such as



Algorithm 2 (Nondeterministic) continual abduction
CONTINUAL-ABDUCTION(c, IT):
¢ = context
1l = proof

while IT contains assertion A do
¢’ + TEST-ACTION(c, A)
H <« ABDUCE(C, A)
for all IT" € H do

CONTINUAL-ABDUCTION(c, IT")

end for

end while

return I1

disjoint([p(X, yes), p(X,no)])

without having to specify the prior probabilities of the disjuncts.

Moreover, in our rule sets for natural language understanding and generation,
we need to be able to manipulate logical structure (e.g. logical forms of utter-
ances) efficiently. We have found that the logic-programming-based approach
is quite satisfactory in this aspect, since it permits the use of standard Prolog
programming techniques. In approaches to probabilistic abduction that are not
based on logic programming, such as Kate and Mooney’s abduction in Markov
Logic Networks [15], these techniques are not applicable, which crucially limits
their applicability to our domain.

3.2 Generating Partial Hypotheses

For each goal G, a the function ABDUCE returns a set of proofs H, with a total
ordering on this set. Due to the use of assertions, some of these proofs may
be partial, and their validity has to be verified. The presence of assertions in
the proofs means that there is a knowledge gap, namely the truth value of the
assertion. Each assertion thus specifies the need for performing a (test) action.
This action might require the access to other knowledge bases than the abductive
context, as in the case of resolving referring expressions, or an execution of a
physical action.

Formally, given an initial goal G and context ¢, the abduction procedure
produces a set H of hypotheses ¢ : IT — C' A¢; : A;, where ¢; is a sub-context in
which where an assertion A; € II may be evaluated. Such proofs are thus both
partial and defeasible — they may be both extended and discarded, depending
on the evaluation of the assertions.

The set of possible hypotheses is continuously expanded until the best full
proof is found. This process is defined in Algorithm 2.

The algorithm defines the search space in which it is possible to find the
most probable proof of the initial goal G. The important point is, however, that



it is just that — a definition. The actual implementation may keep track of
the partial hypotheses it defines, and take the appropriate test actions when
necessary, or postpone them indefinitely. The cost of performing an action is not
factored into the overall proof cost.

The partial hypotheses therefore serve as an interface layer between the lan-
guage understanding and external decision-making processes (such as planning
in a robotic architecture).

3.3 Representing Linguistic Meaning

For representing linguistic meaning in our system we use the Hybrid Logic De-
pendency Semantics (HLDS), a hybrid logic framework that provides the means
for encoding a wide range of semantic information, including dependency rela-
tions between heads and dependents [21], tense and aspect [17], spatio-temporal
structure, contextual reference, and information structure [16].

Hybrid Logic. Classical modal logic suffers from a surprising “asymmetry”.
Although the concept of states (“worlds”) is at the heart of model theory, there
is no way to directly reference specific states in the object language. This asym-
metry is at the root of several theoretical and practical problems facing modal
logic [6,1].

Hybrid logic provides an elegant solution to many of these problems. It ex-
tends standard modal logic with nominals, another sort of basic formulas that
explicitly name worlds in the object language. Next to propositions, nominals—
and, by extension, possible worlds—therefore become first-class citizens in the
object language. The resulting logical framework retains decidability and favourable
complexity [2].

Each nominal names a unique state. To get to that state, a new operator
is added, the satisfaction operator. The satisfaction operator that enables us to
“‘jump” to the state named by a nominal. The satisfaction operator is written
@;, where 7 is a nominal.

Formally, let PROP = {p,q, ...} be a set of propositional symbols, MoD =
{m, 7', ...} aset of modality labels, and Nom = {i, j, ...} a non-empty set disjoint
from PrROP and MoD. We define the well-formed formulas of the basic hybrid
multimodal language Lo over PROP, MOD and NOM as such:

pu=ilpl-¢lo—e|(me]|r]o]|Qip

A formula @Q;¢ states that the formula ¢ holds at the unique state named by i.
In more operational terms, the formula @Q;¢ could be translated in the following
way: “go to the (unique!) state named by i, and check whether ¢ is true at that
state”.

Hybrid Logic Dependency Semantics. HLDS uses hybrid logic to capture
dependency complexity in a model-theoretic relational structure, using ontolog-
ical sorting to capture categorial aspects of linguistic meaning, and naturally



capture (co-)reference by explicitly using nominals in the representation. The
dependency structures can be derived from CCG [5], which is the setup used in
our system, but other approaches are possible.

Generally speaking, HLDS represents an expression’s linguistic meaning as
a conjunction of modalised terms, anchored by the nominal that identifies the
head’s proposition:

Qpsorty, (Prop, A (R;) (d; : sorty, A dep;))

Here, the head proposition nominal is h. prop;, represents the elementary pred-
ication of the nominal h. The dependency relations (such as Agent, Patient,
Subject, etc.) are modelled as modal relations (R;), with the dependent be-
ing identified by a nominal d;. Features attached to a nominal (e.g. (Num)
(Quantification), etc.) are specified in the same way.

Figure 1 gives an example of HLDS representation (logical form) of the sen-
tence “Bring me the mug from the kitchen”. The logical form has six nominals,
eventy, agent,, persony, things, from, and thing,, that form a dependency struc-
ture: event; is the the head of dependency relations Actor (the dependent being
agent,), Patient (thing, ), Recipient (person,), Modifier (from,), and Subject (the
sentence subject, agent,).

Each nominal has an ontological sort (illustrated on event;, the sort is
action-non-motion) a proposition (bring), and may have features (Mood).

@ eventy :action-non-motion (bl‘ing A
(Mood) imp A
(Actor) (agent, : entity A addressee)
(Patient) (thing, : thing A mug A
(Delimitation) unique A
(Num) sg A
(Quantification) specific) A
(Recipient) (person, : person A I A
(Num) sg) A
(Modifier) (from, : m-wherefrom A from A
(Anchor) (place; : e-place A kitchen A
(Delimitation) unique A
(Num) sg A
(Quantification) specific)) A
(Subject) agent, : entity)

Fig. 1. HLDS semantics for the utterance “Bring me the mug from the kitchen”

Every logical form in HLDS, being a formula in hybrid logic, can be decom-
posed into a set of facts in the abductive context corresponding to its minimal
Kripke model. The resulting set of abduction facts obtained by decomposing the
logical form in Figure 1 is shown by Figure 3.
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Fig. 2. Minimal model for the hybrid logic formula in Figure 1

HLDS only represents the meaning as derived from the linguistic realisation
of the utterance and does not evaluate the state of affairs denoted by it. This sets
the framework apart from semantic formalisms such as DRT [14]. The grounding
in reality is partly provided by the continual abductive framework by generating
and validating (or ruling out) partial abductive hypotheses as more information
is added to the system.

4 Example

Let us examine the mechanism in an example introduced in §2.3.

The human’s utterance,

“Bring me the mug from the kitchen.”

is analysed in terms of HLDS (see Figure 1), and its translation (see Figure 3)
is made part of the abduction context c.

The robot tries to make sense of the utterance by proving the goal
uttered (human, robot, eventy )

in the abduction context c. Suppose that the best proof state returned by AB-
DUCE is the following:



sort(event1, action-non-motion),
prop(eventy, bring),

feat(event;, mood, imp),
rel(eventy, actor, agent, ),
sort(agent, , entity),

prop(agent,, addressee),
rel(eventy, patient, thing; ),
sort(thing, thing),

prop(thing,, mug),

feat(thing, , delimitation, unique),
feat(thing, , num, sg),

feat(thing, , quantification, specific),
rel(eventy, recipient, person, ),
sort(person, , person),
prop(person,, i),

feat(person,, num, sg),

rel(events, modifier, from, ),
sort(from;, m-wherefrom),
prop(fromy, from),

rel(fromy , anchor, place, ),
sort(place,, e-place),

prop(place,, kitchen),

feat(place,, delimitation, unique),
feat(place,, num, sg),

feat(place,, quantification, specific),
rel(eventy, subject, agent, )

Fig. 3. The translation of the hybrid logic formula in Figure 1 into abduction facts

uttered (human, robot, event, ) [proved]
prop(eventy, bring) [proved]
intends(eventy, human, I) [assumed(engagement)]
rel(eventy, patient, thing, ) [proved]
refers-to(thing,, X) [asserted]
refers-to(place,, P) [asserted]
pre(I, object(X) [asserted]
]

pre(I,is-in(X, P)) [asserted 8
refers-to(persony, human) [proved| (9
prop(persony , i) [proved| (10)
rel(eventy, recipient, person, ) [proved] (11)
post(I, has(human, X)) [proved] (12)

The proof is an explanation of the event (1) in terms of a partially specified
intention I (3), defined by its pre- and post-conditions. The pre-conditions are
the existence of an entity X (7) and that X is located in another entity P (8).
The post-condition (12) is the resulting state in which the human has X (12).



The proof appeals to the logical form of the utterance in atoms (2), (4),
(10), (11). Also, atom (9) is proved from (1) and (10) (whoever uses “I” refers
to themselves), and (12) is a consequence of (2), (9) and (11) (bringing z to a
person p means ending up in a state in which p has x).

Atom (3) is assumed under the assumability function engagement, which is
supplied in the abduction context before calling ABDUCE and specifies the robot’s
subjective probability of being engaged in a conversation with the particular
human at the time the utterance was observed.

Note that the proof state contains four atoms marked as assertions: (5), (6),
(7) and (8). These are the explicit gaps in the proof that make it a partial
interpretation. They are chosen by the domain engineer, and since they need
to be verified (or falsified) by an external process, they form the interface to
external knowledge bases and decision-making. Since for now those atoms are
marked as asserted, there is nothing more that ABDUCE can do.

The initiative then shifts to an external decision-making process. It selects
some of the assertions, and tries to verify them.

A sensible strategy! might be to first establish the referent of place;. This
could be resolved against the internal knowledge base (in case the robot has been
given a tour of the household), or it could trigger the exploration behaviour — in
order to resolve place,, the robot could try finding it first. Again, choosing which
behaviour is more appropriate depends on the application, and on the planning
method that is invoked by the decision-maker in order to verify the assertion.

Once the assertion is verified, the proof is updated accordingly, in our case
by replacing all occurrences by replacing the unbound variable P by a unique
symbol, for instance by the identifier idg;ichen of the topological region in the
robot’s topological map:

refers-to(placey, idgitchen ) [proved] (67)
resolves-to-toporegion(placey , idkitchen) [assumed(topo)] (67)

The atom (6) in the original proof state is expanded by a proof state consist-
ing of queries (6’) and (6”), thereby replacing P in the entire proof by idgitchen,
and adding the cost of assuming (6”) to the overall proof cost. This atom is
assumed under an assumability function topo, supplied as part of the abduction
context in which the proof is expanded — i.e. by the external knowledge source.
An assumption is added instead of a fact so that the external knowledge base
performing this operation can express uncertainty about the resolution result.

The proof is therefore expanded into the following:

! Note that the problem of what determing good verification strategies and choosing
them is beyond the scope of this paper.



uttered(human, robot, event, ) [proved] (1)
prop(eventy, bring) [proved] (2)
intends(eventy, human, I') [assumed (engagement)] (3)
rel(eventy, patient, thing, ) [proved] (4)
refers-to(thing,, X) [asserted] (5)
refers-to(place;, idkitchen ) [proved] (6”)
resolves-to-toporegion(placey , iditchen) [assumed(topo)) (67)
pre(I, object(X) [asserted) (7)
pre(I,is-in( X, idgitcnen)) [asserted) (8)
refers-to(person;, human) [proved| 9)
prop(persony, i) [proved] (10)
rel(eventy, recipient, person, ) [proved] (11)
[ ]

post(I, has(human, X)) [proved

Now there are just three assertions left: (5), (7) and (8). These express the
knowledge gaps about the referent of “the mug”, the existence of the object, and
its location, respectively.

There are, as before, several possible ways of verifying these. The most sen-
sible one would probably be going to the kitchen (i.e. the topological region
id kitchen) and searching for objects there, which would verify both (8) and (7)
and expand them with all objects it finds. There would be many parallel proof
states resulting from such an expansion, and the robot would have to prune them
down by verifying the remaining assertion (5).

One way of doing that would be to bring all objects one by one to the human,
asking “did you mean this one?” Alternatively, the robot might simply bring the
most likely object. The human’s acceptance of the choice would then verify the
assertion. This is, again, a matter for consideration in the higher level of planning
and goal management.

5 Conclusion

This paper presents an abductive framework for natural language understanding
that is based on abductive reasoning over partial hypotheses. The framework is
set within the process of intention recognition.

The abductive framework is contextually-enhanced version of a logic pro-
gramming approach to weighted abduction with a probabilistic semantics as-
signed to the weights. Our extension of this framework is in the introduction of
the notion of assertion, which is essentially a requirement for a future test to
verify or falsify the proposition, i.e. to fill a knowledge gap about the validity
of the proposition. The hypotheses are therefore defeasible in the sense that the
falsification of their assertions leads to a retraction and adoption of an initially
less likely alternative.

By explicitly reasoning about these knowledge gaps, the system is able to go
beyond the current context and knowledge base, addressing the need for reason-
ing under the open-world assumption. The responsibility for filling those knowl-
edge gaps then falls to external decision-making processes. These processes can



then use probabilities to express their confidence in the solutions they provide,
thereby addressing the need for capturing the ubiquitous uncertainty stemming
from unreliable sensory perception and partial observability of the world.
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Abstract—There is an inherent asymmetry to situated commu-
nication. Those communicating look at the world from different
perspectives. This holds particularly true for human-robot inter-
action. Robots literally see the world differently: They experience
reality in fundamentally different ways. This raises an important
issue for how to model common ground between a human and
a robot. Traditional approaches to common ground adopt a
possible worlds-like model theory, on which a shared belief
represents the fusion of two private beliefs within a single model.
This silently assumes a symmetry in categories against which both
private beliefs can be interpreted: A symmetry which cannot be
assumed for human-robot interaction. Hence, on such a model,
there is no common ground between humans and robots. This
paper presents an alternative model theory, which captures the
inherently subjective nature of experience. It is based on a notion
of propositions-as-proofs, turning subjective interpretation as
well as the projection to intersubjective verification into a notion
of inference or argumentation. Beliefs are arguments, whether
private, attributed or shared. This results in a formulation of
common ground as a dynamic structure of always argued, but
possibly only partially confirmed or partially assumed beliefs.

I. INTRODUCTION

Communication is about meaning. You build up meaning for
what you hear, you construct meaning for what you intend to
convey. And in those processes of constructing meaning, you
appeal to different sources of information. In situated dialogue,
these sources at least encompass the situation being described
(focus situation); any other physical or discursive contexts,
or common knowledge (resource situations); and the ways in
which the communication partners take part in the dialogue
(social situation) [14]. Figure 1 provides an example.

végj

Fig. 1. Different situations in meaning: “Now it is to my right” appeals
in contrast to the previous situation (“now”), preceding dialogue (“it”), the
current situation (“is”), and the current social situation (“to my right”).

Now it is to
my left

The apple is
to my right

The social situation in situated dialogue makes it clear:
Communication partners look at the world from different
perspectives. They see the world differently. Some of the effort
in communicating therefore goes into establishing a common
ground between partners. The point is to establish a mutual

understanding of what is being talked about, what is appealed
to notably in reference to the world [11], [10]. This is a
dynamic process, in which partners coordinate and align their
beliefs [43], [35].

This need for common ground is not restricted to communi-
cation between humans. It holds just as much for human-robot
interaction [24], [25], [23]. Understanding and facilitating
different perspectives on the world is crucial to establishing an
effective collaborative context [38], [40], [39], [32]. Failure to
do so typically leads to a breakdown in communication, see
e.g. [39], [36].

Yet for all its importance, common ground is typically mod-
eled on a possible worlds-like model theory. And if perspective
is modeled explicitly at all as part of common ground, this
remains limited to transformations on reference frames. This
is inadequate, for a fundamental reason. It disregards the fact
that there is an inherent asymmetry between how humans and
robots experience reality. This is more than just perspective, or
a matter of experience being subjective. Humans and robots
categorize experience differently, given sensory input. They
individuate that experience differently, to structure it and
identify individual referents. And as a result, they construct
propositions differently. We all know that. But a possible
worlds-like model theory does not represent that. On such a
theory, a shared belief (proposition) represents the fusion of
two private beliefs (propositions) within a single model. This
silently assumes a symmetry in categories against which both
private beliefs (propositions) can be interpreted: A symmetry
which cannot be assumed for humans and robots. Hence, on
such a model, there is no common ground between humans
and robots.

The issue here is not possible worlds, or whether we use
static or dynamic models. The point is that we lack a model
theory to guide inference for human-robot communication,
to direct strategies for a robot to facilitate and adapt to
humans, starting from the viewpoint that a human and a robot
not only need to coordinate beliefs, they need to coordinate
“down to” the propositions they state for their experience (or
attribute to others, for their experience). We lack a model
theory which is proper in the sense of taking into account the
inherent asymmetry in subjective experience, in categorizing
experience, and the dynamics of how humans and robots could
(even) establish and maintain some form of common ground.
All of that means going back to the question of what class
of propositions such a model helps describe, and how we can
construct a notion of individual on that.

It is such a model theory that this paper provides. The



paper considers the construction of a class of propositions
about properties of subjective experience. It follows out the
intuitionistic idea of propositions as sets of proofs for the
proposition [28], [33], and makes the connection between
such a constructivist view on propositions, and the rela-
tion between (intentional) phenomenology and logic (Husserl,
Peirce, Godel). It provides an algebraic model theory on which
we can consider incompleteness and uncertainty in (models
of) experience (i.e. “gaps,” [44]). The theory enables non-
trivial extensions to propositional models of experience to
overcome incompleteness, using a combination of informative
approximation [12], axiomatic extension [15], and universe
construction [21].

The paper reconstrues both common ground and alignment
of perspectives as projections between universes. This intu-
itively to the idea that an agent can set up an argument
for how another might experience a situation, to the extent
that this agent can “imagine” this given his own (categorical)
knowledge. Some or all of that argumentation might of course
be wrong, incomplete, based on assumptions which turn out
not to be warranted. But that is precisely the point. The
paper starts from subjectivity, assumes there is an asymme-
try which almost inevitably gives rise to misunderstanding.
The question then becomes how intersubjective understanding
(non-misunderstanding) can dynamically arise, for example
by filling in the gaps (literally). And with that, the paper
hits on perhaps one of the most principal issues in Artificial
Intelligence: How an embodied, artificially intelligent agent
like a robot can be truly self-aware of its experience, reason
with it with respect to itself and to others, and increase its
understanding of the world around it.

II. OVERVIEW

Common ground is a complex notion. Generally speak-
ing, it is about something between communicative partners:
Namely, “shared understanding.” Minimally, this is a shared
understanding of the entities which have been talked about,
grounded in the (possibly situated) domain of discourse [11],
[10], [43]. After entities have been introduced into common
ground, they are accessible for reference. Naturally, there
can be more to common ground. In task-oriented domains,
common ground provides an interface between the task domain
itself, and the communication which mediates and coordinates
collaboration in that domain. Typically, this then leads to
considering intentions, plans, and tasks to be part of common
ground as well; See e.g. [1], [16], [2], [36], [18], [6], [17],
[13], [27]. And. On top of which we can essentially consider
all that is implied by the concept of situated meaning [14],
illustrated e.g. in Figure 1. (And that would include “common
sense knowledge,” e.g. what if the robot was discussing not
an edible apple, but a Mac?) As said, common ground is a
complex notion.

Yet, what is in some sense surprising is that the formal
underpinnings of practically all computational approaches can
be traced back to a system in which one relies on a classical-
logical interpretation of the notion of proposition. There are
different notions of what a proposition is. It all depends on

what domain is to be modeled. This can range from mathemat-
ical structure (e.g. the intuitionistic notion of proposition-as-
sets-of-proofs), to classical logical reasoning (the proposition
as truth-statement about structures in reality) and dynamic
logical reasoning (the proposition as context-update potential
[41], [36]), to experiential observations (e.g. the quantum
logic-notion of proposition as experimental statement [3]).

What we are trying to model here is this: How does a robot
get from its sensory experience to a proposition? And how
would a robot be able to reason about subjective experience
of its own, and that of others, to infer how to align these?
As a problem statement this goes back to phenomenology,
notably to F. Brentano, and later his student, E. Husserl [7].
They argued for a directedness behind experience: There is
an intentionality driving the construction of a “symbol” from
experience. C.S. Peirce considered this as a sign-process,
in which an (intentionally constructed) interpretant mediates
between an experiential sign, and the objective aspects of
reality this sign is taken to refer to [34]. This sign process
combines an interpretation-in-context (the intentional interpre-
tation of a sign under its given appearance), with interpretation
against a categorical system (categories, rules, which guide the
mediation). Put slightly differently, it combines ventral (cat-
egorical) and dorsal (spatiotemporal) forms of interpretation
into the formation of an interpretation [9], [20], [19], or more
abstractly, a symbol [4], [5].

There are only a few approaches to linking robot sensory
experience and symbols which come even close to this idea
of symbol formation. The most detailed account is provided
by M. Shanahan; See e.g. [29], [30], [31]. The account is
based on using abductive reasoning to infer an explanation
for a given set of sensory inputs. This is a process of symbol
formation. The explanation itself indicates how different low-
level sensor data I' can be drawn together, provided as a logical
statement A against a theory X, such that ¥ A A =T In this
Shanahan addresses a problem with logic-based approaches
to cognitive robotics [37]. There, this link is not made, and
propositions are just considered to be grounded somehow.
In Shanahan’s abductive approach this is explicitly modeled,
through successive layers of (abductive) abstraction; See also
n-layered abduction in [22].

This paper presents an approach to providing a model
theory on which an abductive approach like Shanahan’s can
be formulated; See also [27]. However. First of all, the paper
focuses on the model theory. We deal with the structure on
which logical inference is interpreted, and which thus defines
what types of connections can be logically inferred in the first
place. Secondly, we adopt the intuitionistic (or constructive)
notion of proposition-as-set, and combine it with a notion of
strong negation. The constructive notion has a close connection
to the phenomenological idea of intentionality in experience.
We model a proposition explicitly as the set of possible
constructions, the proofs, which bring it about. It is against this
constructive idea that we see the notion of negation. Negation
itself is a construction, namely the construction that something
is not justified or possible [42]. This is a strong notion, going
back (in the intuitionistic framework) at least to Kolmogorov
[26]. It differs from classical negation, which would stand for



not attempting the construction (which is not a construction by
itself). Strong(er) notions of negation have also been deployed
more recently in non-monotonic reasoning (e.g. default logic),
stable model semantics, and extensions of intuitionistic logic
which explicitly model the role of negation in inference by
dealing with proofs, disproofs, and dual proofs [?].

Those are the essential ingredients. We cast the symbol
formation process first of all as a process involving individ-
uation, i.e. the construction of a “symbol” as standing for
an individually identifiable aspect of reality (Peirce’s Object)
from sensor data. This symbol formation happens along the
lines of categorical reference, and situated frame of reference,
with the latter understood in terms of the different forms of
situation in the ontology of situated meaning [14]. Particularly
the inclusion of a situated frame of reference, in alignment
with which the symbol formation process can appeal to
specific categorical interpretations, makes symbol formation
inherently perspectivized — and thus subjective. Individuation
yields a set of constructions against the experiential data.
Over these constructions, we can form a completion (under
positive proofs and negative disproofs) over the individual,
given a category system. Following Peirce (and Shanahan)
one could phrase this as symbol formation involving the
abduction of an individuation, and the deduction of a universe
of all possible positive and negative consequences of that
individuation. Algebraically, we formulate this as universe
construction. We do this such that we create the possibility
for non-monotonicity, i.e. retracting or changing consequences.
From a constructive view, this implies altering proofs or
disproofs on the basis of new evidence. Interestingly, coupled
to a notion of universe construction this leads to a constructive
notion of incompleteness, a “hierarchy” or expansion of gaps
in an agents knowledge of an individual. It reveals what is
known and can be known (knowability) without falling prey
to Fitch’s knowability paradox [8]. The construction of a
universe (in fact, a stable model) based on individuation under
perspective can be extended from one individual, to a structure
over multiple individuals. Ultimately, this then provides the
basis for the algebraic underpinnings of our notion of com-
mon ground. Common ground becomes the projection under
“bi-simulation” of universes constructed for the individuated
experiences of an individual agent, to universes for another’s
experiences (under possibly different perspectives). The bi-
simulation here is weak, as it is conditional on incompleteness,
and assertions. What it basically states is that, following
from the agent’s subjective experience, and its understanding
of someone else’s perspectives, it can project an alignment
between its own universes (on which it can logically interpret
beliefs), and those it can attempt to construct for the other.
As the universes on both sides allow for explicit positive and
negative constructions, this means we build in the sources for
misunderstanding from the very beginning. But it also means
that, given external information that is contrary to a positive
or negative construction, an explicit trace can be established
for how to revise one or more universes to re-align.
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1

Interactive intelligent robots need to possess two important features: auton-
omy and communication skills. Situated communication can comprise different
modalities, like, e.g., spoken dialogue. Autonomy can range from simple reac-
tive control loops to sophisticated goal-directed action planning and execution.
If the robot and its user are supposed to engage in some form of collaborative
activity. No matter if it is a cognitive assistant whose main purpose is to sup-
port its human user, or if it is a curious robot whose main drive is to learn
about the world, the human crucially needs to be able to know and understand
the robot’s actions past, present, as well as intended ones in as far as they are
relevant for achieving a task at hand; the robot’s autonomous decision-making

Situated Plan and Execution Verbalisation
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Abstract

In this paper, we present an approach to verbalising reports of inten-
tions and actions of a planner-enabled agent. We consider the case of an
interactive intelligent robot that is endowed with a symbolic Al planner.
The robot uses the planner to determine and execute sequences of actions
in order to achieve a given goal. Since the robot is operating in a real,
physical environment, making use of possibly imperfect sensing and actu-
ating, it is likely to encounter unforeseen events or failures, and therefore
needs to re-plan in order to come up with alternative plans for achieving
its goal. In order to tell a human about what was planned, what was
and was not successfully done, what happened — and why — we present a
method for generating natural language reports based on such intended
plans and the event structure of their execution. This verbalisation is
inherently situated in nature. For one, external entities that are used in
the planning process refer to things, persons, or locations in the physi-
cal environment that the robot and the hearer are situated in. Secondly,
the robot’s intentions and actions are temporally related to the discourse
situation: the robot might report about its current plans and attempts
for executing an ongoing task; the robot might explain what it did and
what it couldn’t successfully do in order to establish common ground for
asking the human for help; or the the robot might simply report about
past events and give details about why it chose to do what.

Introduction

and acting need to be transparent to the human.



In this paper we focus on the verbalisation of plans as one way of achieving
such a transparency in situated discourse. We consider the case of an interactive
intelligent robot that is endowed with a symbolic Al planner. The robot uses
the planner to determine and execute sequences of actions in order to achieve
a given goal. Since the robot is operating in a real, physical environment,
making use of possibly imperfect sensing and actuating, it is likely to encounter
unforeseen events or failures, and therefore needs to re-plan in order to come up
with alternative plans for achieving its goal.

The approach has been implemented on the integrated robotic system Dora
[7]. Dora is programmed to exhibit a variety of intelligent behaviours, among
which other intelligent mechanisms might arbitrate. However, these decisions
might (initially) be intransparent to a human observer. We hence want Dora to
provide verbal reports of what it attempted to do and why — thus establishing
transparency about the complex spatio-temporal and causal relationships of its
actions and action attempts.

Dora is equipped with a switching symbolic-probabilistic AI planner [5], able
of continual planning and re-planning [3]. The approach is integrated in the
general natural language processing sub-system of Dora and shares its linguistic
resources with the other dialogue capabilities [10]. The verbalisation module is
connected to Dora’s spatial knowledge base in order to refer to entities in Dora’s
spatial environment [16, 17, 20].

The challenges we address here concern the appropriate verbalisation of plans
of autonomous mobile robots. The robot can talk about past events (what
was done), current events (what is being done), and intended events (what is
expected to be done). Furthermore, this work addresses the prerequisites for
informing the user about failures executing the plan and how the user could
help to solve the problems, e.g. by changing the state of some objects (for
instance, to unlock a door) or to give a modified goal. In order to achieve this,
we investigate appropriate strategies for a suitable verbalisation of the planned
and performed actions in a way that is understandable to a human user.

The rest of the paper is structured as follows: In Section 2 we provide
some relevant scientific background regarding the topic and examine related
work. After sketching our general design for the verbalisation of plans and plan
executions in Section 3, we then present a system that instantiates this approach
in Section 4. Section 5 contains an extensive discussion of an example report
generated from realistic data. We conclude in Section 6.

2 Background and Related Work

Brenner [1] describes the use of classical AI planning techniques for interpreta-
tion and execution of human commands. He sketches how a robot can under-
stand natural language (NL), plan the realisation and revise its plans based on
new perceptions. His approach is similar to ours in that the goal is to couple
planning symbols to natural language semantics and surface forms. In contrast
to the approach presented in this paper, his approach focusses on understand-



ing rather than on gemeration. As a consequence, the approach makes use of a
simple grammar that is generated out of the planning domain definitions. The
planning domain is parsed and automatically translated into grammar rules and
lexical entries. While this can be done in a straightforward way because the com-
ponents of the planning language are rather similar to grammatical functions —
e.g., types correspond to nouns, actions to verbs — the resulting grammar suf-
fers from over-generalisation. It is thus not easily applicable to the verbalisation
task.

In contrast, what we are interested in is the generation of natural language
from planned and executed goal-directed sequences of actions. One domain
where such an approach is chosen is story telling. Telling stories requires meth-
ods from many subfields of artificial intelligence (AI), e.g. planning, reasoning
about beliefs, and dialogue systems. In [2] an approach to story generation us-
ing a continual multi-agent planner is presented. Here a plan is generated that
is subsequently instantiated and executed. Then the plan is verbalised, but in
a very simple way. The story is told without aggregation or co-references. A
typical natural language generation (NLG) treatment would arguably make the
text more fluent [13].

The Virtual Storyteller is another framework that generates simple story
texts [15]. It is based on simulation of virtual characters in a story world. An
event sequence is captured by a ‘Plot Agent’ in a formal representation. The
representations are similar to the plans in [2], i.e., STRIPS-like [4]. A ‘Narrator’
component turns the representation into an actual story by selecting the content
and processing it with NLG techniques. Story telling and NLG are also brought
together in, e.g., [11].

Another system that verbalises some kind of plans is PROVERB [9]. In this
work, mathematical natural deduction (ND) style proofs are verbalised. As in-
put there is a representation of a ND proof. It is processed by a macro-planner
to plan output that consists of primitive actions. The actions can be defined as
communicative goals they fulfil as well as their possible verbalisations. Subse-
quently, more detailed linguistic decisions are made in the micro-planning com-
ponent. Syntactic realisations are done using Tree-Adjoining Grammar (TAG).
The final output then is the ND proof in natural language.

When verbalising plans and actions for autonomous robots, an additional
aspect comes into play. In the previously mentioned approaches the planning
domain and the planning operators available to the planner faithfully repre-
sent the “world” — i.e., the problem of plan execution is not taken into account.
Rather, the computed sequence of actions is assumed to lead to the goal without
fail. Autonomous mobile robots, like the one we are investigating, however act
in the real world. There, the planning domain and the modelling of actions and
operations can merely be seen as an approximation of reality. Such robots act
in dynamic and only partially observable environments, in which their actions
might not inevitably lead to the desired effect. Failures (such as the physical
failure of an attempt to perform a particular action, a mismatch between the
assumed state of the world with the perceived state of the world, or the possi-
bility that an action did not yield the intended effect in terms of changing the



world state) hence need to be accounted for as part of the design of the planning
system. The Continual Planning approach by Brenner et al., e.g., [3] models the
ambiguity in assumptions about future states of the world and explicitly allows
for re-planning as part of the design. Before and after each action, the planner
updates its state representation based on the robot’s perception, and evaluates
if the planned course of action is still valid and still satisfies the initial goal. If
there is a mismatch, re-planning is triggered in order to determine an updated
course of action to achieve the goal. The Switching Planning approach, see
e.g., [5], combines Continual Planning with Decision-Theoretic Planning, which
probabilistically quantifies the uncertainty in the outcome of particular robot
actions and in the relation between the perceived world state and the actual
state of the world.

In order to achieve intelligent behaviour even if the agent’s observations
are potentially incorrect or incomplete, it is desirable to have a formal way to
determine an explanation of why a plan went wrong and how the problem could
be solved. Gobelbecker et al. [6] provide a formalisation regarding this issue.
Changing the goal description — i.e., changing the initial state, or the set of
planning operators — or re-planning — i.e., to find a new plan to achieve the
goal — leads to a solvable goal. It is then a matter of other planning operators
and actions to verify if these hypotheses hold. Besides trying to verify these
assumptions through the robot’s perception, one other possibility is to make
use of natural language to engage a human in a dialogue and ask. This is
particularly reasonable because the sources of such errors most often lie in the
robot’s imperfect perceptual capabilities.

3 Design

In this section we sketch a design for a situated verbalisation of plans and plan
executions in order to generate a report of what went on.

A plan is a sequence of operations that each manipulate the state of the
world. Together, these operations contribute to the achievement of a given goal
(i.e., state of the world). Typically, such operations are actions that an agent
needs to execute in order to alter the world state. Since in our work we focus
particularly on autonomous mobile robots, the kinds of agents we are interested
in are such robots that operate in a realistic physical environment. For instance,
imagine a robot who is given the task of finding a cereal box (more precisely,
knowing where an instance of a cereal box is located in the environment and
subsequently telling its user where the box is). The robot can then use a planner
to determine a sequence of actions that make the goal state true. After this
initial plan has been formed (e.g., to go to the kitchen, search the tables in the
kitchen, return to the user and report back), the robot can start executing the
actions. Since we are dealing with a robot that acts under uncertain sensing and
with uncertain information about the world (in other words, its knowledge can
be both incomplete as well as incorrect), it might need to find a new sequence
of actions in the light of new knowledge. This process is called re-planning.



When the robot eventually achieves its goal, a rich structure of planned, in-
tended, assumed, attempted, failed and succeeded actions has led to this state.
We therefore do not only consider individual plans, but rather plan and execu-
tion histories describing intended and executed actions along with their causal
dependencies. In addition, these histories contain failed actions with potentially
partial explanations of their causes (e.g., the state of the world has changed com-
paring to the assumptions in the original plan; the execution of an action did
not yield the intended effect; or the execution of an action simply went wrong).

Generating a report in natural language (NL) on the base of such a his-
tory structure is not straightforward. A plan is merely an ordered sequence of
(logical) symbols that somehow describe several steps how a certain goal can
be fulfilled. So we need to define an approach how a plan can be mapped to
linguistically meaningful symbols. These are used then in the pipeline to gener-
ate a report in NL. Concerning this we follow the standard NLG pipeline with
content determination, document structuring, lexicalisation, referring expression
generation (GRE), aggregation and realisation [13].

Besides the actual plans there are some external resources. First of all we
require there to be a domain definition. In the domain definition the operators
—i.e. actions — that can be used in a plan are defined in terms of some logical
statement. This includes:

e the predicate-argument structure of an operator,
e the preconditions in the world so that an action can be executed,
e and the effect to the world by executing the action.

Furthermore predicates and functions are defined for expressing states in the
world. Also the parameters — i.e., objects — of the operators are defined in the
domain — c.f. [12].

A second resource needs to take the role of a dictionary. This dictionary
is called the lexical domain. Here all the operators in the domain definition
are linked to a linguistic expression, a logical form (LF). It is referred to as
a raw logical form as it includes variables that are going to be instantiated
at a later point. Furthermore there is no more information in the raw LFs
than the semantic roles objects can adopt in an related expression. Basically
raw LFs are the “link” between a plan and its logical expressions to the domain
definition in order to map a plan to linguistically meaningful expressions. When
the variables of a raw LF are instantiated later we call the new LF a proto-LF.
A proto-LF is an underspecified LF, there is no more information about syntax,
tense, or aspect as in a raw LF, as well as the parameters are instantiated with
placeholders. Later, when a proto-LF is further processed in the NLG pipeline
and all necessary information is added, we refer to the LF as a full LF.

We distinguish off-line and on-line processing in our approach. The next two
subsections point out what is done in the off-line and on-line steps.



3.1 Off-line processing

As off-line processing we understand work that is done in advance before the
actual report generation takes place. These steps are necessary to get a mapping
between the logical symbols of a plan to linguistic counterparts.

The first thing to do is to build up the lezical domain, i.e., the dictionary
with the raw LFs for the operators of the domain. Defining raw LF's is done
manually by a human annotator. They are collected in an external resource.

Considering the following fragment of the definition of the operator “move”
— leaving out precondition and effect — the annotator of the dictionary needs to
decide what syntactic functions the parameters have to take in a NL expression.

(1) Example definition of “move” (fragment)?

(: action move

: parameters (Ta — robot 7to — place ?from — place) [...])

The annotator may interpret the definition of the action “move” that ?a is
the agent, ?to the goal of the motion, and ?from the motion’s source. So the
annotator may decide that the agent takes the role of the subject. A resulting
raw LF will reflect these deliberations, cf. Example 6 in Section 5.

This is needed in the on-line processing step then: For every operator —
i.e., action, predicate, function — a raw LF should be provided. Though a full
coverage is not always possible or desired — i.e., in domain specific cases that
are not useful for the verbalisation.

In the domain definition all operators are looked up and extracted automat-
ically. They are stored together with its corresponding annotations, i.e. the raw
LFs.

3.2 On-line processing

As on-line processing of a plan we understand plan processing steps that happen
at run-time of the system. Using the off-line built resources (domain definition
and lexical domain dictionary), the on-line processing part gets a plan or a
planning history as input. It then processes the input and, along the NLG
pipeline, generates a natural language text that appropriately describes the
relevant aspects of what is expressed in the input structure.

First, the plan has to be processed. This can be, e.g., extracting all the
planning steps that are going to be verbalised. In the NLG pipeline this is
called content determination — what is to be said [13]. For each planning step
then a suitable raw LF has to be looked up in the lexical domain dictionary.
Next, the raw LF is mapped to a proto-LF by instantiating the free variables
with the parameters of the planning steps.

It is necessary that the annotator interprets correctly what the writer of the domain
wants to express semantically with the definition of a certain operator. If the meaning of an
operator is interpreted differently from what was intended by the domain writer, the generated
expression of a planning step will of course not properly reflect the intended meaning.

2for the full definition refer to Example 4 in Section 5



Steps cannot be expressed in NL randomly as they are just symbols without
any linguistic meaning, so we need to find some structure in which order the
expressions can be realised — this is called document structuring [13]. The
following example illustrates this issue:

(2) Example step in a partially ordered plan

4: SUCCEEDED move 0 : D@spatial.sa 5: CQspatial.sa 6 : CQspatial.sa

Considering this example there are various terms not possible to map to NL
directly. We have a number with colon (4:), an expression that says something
about the execution status (SUCCEEDED) — only now follows the operator
(move). Then the parameters are listed, in a form that cannot be straightfor-
wardly transformed into NL.3

A plan is typically already partially ordered concerning its temporal struc-
ture, i.e., the linear order of the steps in the plan correspond to their temporal
sequence of execution. This temporal structure in the plan can also be used in
NLG. On the other hand, the causal structure — why is something executed —
often is not obvious for the system. For this concern causal links between the
steps can be considered, as well as preconditions and effects of actions. Also the
difference between an ongoing and a past activity is to be taken into account.
If it is a current plan, the report has to be generated in present tense. Other-
wise, if the plan already has been executed, the report has to be generated in
past tense. This situatedness can be derived from the plan and the discourse
situation.

Once the content to convey is determined and the document is structured,
lexicalisation and GRE can take place. An important step for “good” NL in the
report is aggregation. For this aspect, the temporal and causal structure plays
an important role, indicating why something happened. One can express states
after executing an action. Also the messages that are going to be used can be
mixed, e.g., they have the same agent and/or objects: I move from the corridor
to the kitchen and I search for the cereal box in the kitchen can be aggregated
to I move from the corridor to the kitchen and search for the cereal box [13].

After aggregating the messages they can be sent to the realiser. The con-
structed proto-LFs can be realised to NL with a suitable surface form. Depend-
ing on the application scenario, the resulting text can be turned into an audio
signal by a text-to-speech engine [14].

4 Implementation

In this section we propose a system that instantiates the approach described
above. We show how the system is implemented to generate a NL report from

3The overall system that this approach is integrated in is implemented using the CAST
framework [8]. Since the generated plans refer to the robot’s internal representations of
external entities in the world, the parameters reference CAST WorkingMemoryAddresses (like
0 : D@spatial.sa as their objects).



a plan. For this task we use the domain definition and a hand-crafted lexical
domain dictionary as defined in the previous section.

4.1 PDDL — The Planning Domain Definition Language

The domain definition and the plans itself we use for demonstrating our system
are written in PDDL [12]. Because of this we use a PDDL parser to get all rel-
evant information of the domain. The parser we we use is the PDDL4J parser?,
an open source library. With this parser we get all the definitions of actions,
predicates, and functions of the domain definition, including parameters, pre-
conditions, and effects. This is essential for mapping planning steps with raw
LFs to proto-LFs.

The PDDL4J parser is one of the main components to construct the PDDL
domain model of our system. The domain definition file is parsed with it. While
constructing the model in which all relevant information is stored the various
methods of PDDL4J can be used efficiently — i.e., extracting all the definitions
of each operator for later look ups.

Another crucial point where PDDL4J is involved is mapping a raw LF to an
instantiated proto-LF. The parameters of a certain operator are extracted out
of the domain definition with PDDL4J. As the parameters of a planning step
are always in the same order as in the definition, the variables of the raw LF
can now be instantiated in a safe way. The result is a proto-LF without any
free variables.

4.2 Switching planner

As pointed out above, we have two external resources besides the actual plan
— the domain definition and the lexical domain dictionary. This comes mainly
from the construction of the planner we use in the Dora system. It uses two
domains: a static domain and a dynamic domain. The static domain is built
up in advance and never changes. For this reason we use it as the domain
dictionary. We annotate operators with their respective raw LFs. The dynamic
domain on the other hand is built dynamically for every run of the planner. It
has more operator definitions than the static one. Because the dynamic domain
is written in “real” PDDL style we need to use it to apply the PDDL4J parser for
getting operator definitions, parameters, preconditions, and effects more easily.

4.3 The lexical domain dictionary

As mentioned in the previous subsection we use the static domain of Dora as the
lexical domain dictionary. Here we determine the raw LF's for the operators in
a well defined way. Considering the domain definition for the operator “move”
we introduced in the previous section, a corresponding raw LF would look like
this:

4http://math-info.univ-paris5.fr/pellier /research /software



(3) Example raw LF for the operator “move”

Q. action—motion; (IMOVE A
(Actor)(?actor; : castreferent A Tactor) A
(Modifier)(from; : m — wherefrom A from A
(Anchor)(?from; : castreferent A ?from)) A
(Modifier)(to; : m — whereto A to A
(Anchor)(?to; : castreferent A 7to)))

This raw LF could state a sentence like I mowve from the corridor to the
kitchen when it is getting instantiated and threatened with the proposed NLG
methods. We have the variables in there that are indicated with the symbol
“?”. They need to be instantiated at a later point. The index ¢ is needed
to get unique names for the proto-LFs. Otherwise they cannot be realised as
they are seen as the same by the system. These indices are instantiated later
with the number for a history block and the corresponding step in this block.
The expression “castreferent” indicates that this is parameter corresponds to
an internal representation stored at the given CAST WorkingMemoryAddress
(WMA) which has to be handled with GRE when it comes to realisation in the
NLG pipeline.

4.4 Planning history

The plans themselves we use in our system come from a planning history. Such
a history consists of all history blocks that the planner has generated while
trying to fulfil a goal. Each time, re-planning is necessary (cf. [3]), the previous
episode is added as a block to the history. A history block defines the initial
state of the world in the beginning of the episode, the current goal, the planning
steps for achieving this goal, and a partially ordered planning graph (POPlan).
The POPlan in addition shows the actions, i.e., the planning steps®, with step
number and WMA as parameters, needed for GRE later. Also links between
the planning steps are listed as a graph structure in the POPlan®. Here the
planning steps are the nodes and the links are labelled with predicates and
functions. The planning graph can be used for determining the causal structure
of a plan. The steps indicate what was planned and qualify the execution status
(i.e., executed, failed, aborted, pending)”.

4.5 Content determination

The content determinator of our system is used to derive messages to be realized
from a planning episode. For each relevant step, a raw LF can be extracted from
the dictionary. The raw LF is then instantiated with the actual parameters
occurring in the planning step. The generated message is dependent on the

5cf. Example 8 in Section 5
S¢f. Example 11 in Section 5
7cf. Example 10 in Section 5



execution status of the step. If it is executed, the POPlan graph can be used
to get useful causal links. On the basis of these causal links new messages can
be generated (e.g., a message expressing a relevant fact about the world state,
or a message expressing a causality that links two or more planning steps). If
the execution status of a step is failed, the message needs to be qualified with
the information that the action expressed in the step was merely attempted
but not successfully achieved (“I tried to go to the kitchen but did not reach
it.”). Additionally, the causal links can be inspected in order to determine a
message that expresses a reason for the failure. The messages are expressed by
instantiating the raw LFs with the actual parameter referents. Still, some other
features of the thus generated proto-LFs are missing. In the subsequent steps
the proto-LFs are refined until a fully-specified and well-formed LF is obtained
that can be sent to the natural language realiser.

4.6 Refining proto-LF's

In order to turn the proto-LFs in the determined messages into meaningful
text, a few more operations need to be performed: the referents need to be
expanded to full referring expressions; contextual information (e.g., temporal
aspects that depend on the discourse situation) needs to be specified; and finally
additional syntactic information that is necessary for a well-formed LF (i.e., the
identification of the semantic agent as the syntactic subject of a sentence in
active voice) needs to be supplemented.

The approach to referring expression generation makes use of the spatially
situated GRE algorithm by Zender et al. [19, 20, 18, 16]. Since the referents
are given in the form of a CAST WMAs they can be resolved to internal sym-
bols of the system’s spatial representation (cf., e.g., [17]), which is constitues
the knowledge base for the GRE module. Other necessary refinement steps
of the proto-LF are handled by the TAROT libraries [10]. We will not go into
further details of these processes, but instead refer the interested reader to the
referenced work.

5 Examples

In this section we show how the system works in a nutshell. We describe all
processing steps which have to be conducted to generate a NL report from a
plan in PDDL style.

5.1 The domain definition

Assuming we have the resources as indicated in the previous sections. Then the
first step is to define raw logical forms for the operators in the domain dictio-
nary. E.g., assuming we have the following definition of the operator “move”,
defined in the domain definition:
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(4) Example definition of the operator “move”

(: action move
: parameters (?a — robot 7to — place ? from — place)
: precondition (and (or (connected ? from ?to) (connected to 7 from))
(not(done))
(is — in?a? from))
cef fect (and (not (is —in ?a ?from))
(is — in?a?to)
(placestatus?totrueplace)
(kd — itn — room?a?to)
(increase(total — cost)2.0000)
(started))

)

First there is the kind of operator — action — followed by the operators’s

name move. Next the parameters are defined, the variables — in our example
they are ?a of the type robot, ?to of the type place, and ?from of the type place,
too. These variables are going to be instantiated later in processing the plan.

The next point defined is the precondition — one or more states that are

necessary that a certain action can be executed. In our example the two places
— source and goal of the movement — need to be “connected”, slovenly speaking
they need to be next to each other. Furthermore the agent needs to be at the
place where the source of the movement is. These predicates are defined in the
same domain definition and look like this:

(5) Example definition of the predicate “is-in”

(: predicate |[...]
(is —in 70 — robot ?value — place)

)

All predicates are defined in one block — indicated with “[...]” in the example.

The predicate itself is defined in one block of brackets inside the predicates
definition block. It starts with the predicate’s name — is-in — followed by the
parameters — ?o of the type robot and ?value of the type place.

Finally, in an action’s definition the effect of the particular action, i.e., the

resulting state, is defined. As in the precondition this is defined in terms of one
or more predicates.

5.2 The lexical domain dictionary

After all relevant decisions are taken by the annotator, a resulting raw LF for
the introduced action “move” may look like this, including the syntax we have
chosen to extract the raw LF's easily:
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(6) Example for a raw LF annotation for the action “move”

;3 LE move =>
Q(step; : action — motion)(move A
< Actor > (?a : castreferent A ?a) A
< Modifier > (from; : m — wherefrom A
from A < Anchor > (?from : castreferent A 7from)) A
< Modifier > (to; : m — whereto A to A
< Anchor > (?to : castreferent A 7to)))

An example annotation for the predicate “is-in” looks like the following in
our system:

(7) Example for a raw LF annototation for the predicate “is-in”

53 LE is —in =>
Q(state; : ascription)(be A
< Cop — Restr > (= var : castreferent A =wvar) A
< Cop — Scope > (in; : m — location A in A
< Anchor > (= val : castreferent N = val)))

The main difference between an action and a predicate annotation is that
the raw LFs of the predicates use “=var” indicating the variable. The reason
for this is that in the domain definition predicates have more parameters as this
is the design used by the writer of the domain.

This way all predicates and actions are annotated that are wanted to be
used in the NLG pipeline. It is up to the writer of the domain dictionary.

5.3 The planning history and NLG

A history contains most often several different blocks of plans. These are sepa-
rated by keywords so we can extract each plan to handle it for NLG. A single
plan may look like this:

(8) Example for a short plan (extract)

actions :

8: SUCCEEDED move 0 : CQspatial.sa F : B@spatial.sa D : BQspatial.sa

9: SUCCEEDED move 0 : CQspatial.sa H: BQspatial.sa F : BQspatial.sa

10: SUCCEEDED createconesinroom 0 : CQspatial.sa magazine
2:71Qcoma H: B@spatial.sa

11: PENDING searchforobjectinroom 0 : CQspatial.sa magazine
2:71Qcoma H : B@spatial.sa visualobjectl

12: PENDING goal
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Each planning step starts with the step number — here we show five steps.
The number is followed by a flag that indicates the status of the planning step.
We use three execution flags: SUCCEEDED means that the particular step
has been executed successfully; PENDING means that a step is planned but
not executed (yet). FAILED — not shown in the example — indicates that it
has been tried, i.e., by a certain agent, to execute the step but the execution
was not successful for some reason — e.g., because the world state has changed
or there were wrong assumptions. This can be because a door is unexpectedly
locked so that the room behind it cannot be reached.

After the flag comes the operator — here actions. In our example the LF for
“move” is extracted. Once the system has found an annotation for the operator
the variables in the raw LF are getting instantiated with the parameters in the
planning step. For the planning step 8 in our example there are three parameters
in the form of WMAs. The order of the variables in the raw LFs for actions
does not matter.

When the variables are instantiated we have a proto-LF. For “move” it will
look this — for the index number we simply use “1” here:

(9) Example proto-LF with “move”

Q(step1 :action — motion)(move A
< Actor > (0 : CQspatial.sa: castreferent A 0:CQspatial.sa) A
< Modifier > (fromy : m — wherefrom A
from A < Anchor > (F : BQspatial.sa : castreferent A
F : B@spatial.sa)) A
< Modifier > (to1 : m — whereto A to A
< Anchor > (D : BQspatial.sa: castreferent A D:B@spatial.sa))

Then the state of the step is imported to the proto-LF. This is done by
adding (ExecutionStatus) followed by the current step flag — SUCCESSFUL,
PENDING, or FAILED. The reason for this is that we can still apply aggrega-
tion to the messages at a later point. Executions states are added like this:

(10) Example proto-LF with “move” and executions status

Q(step01 :action — motion)(move A < EzecutionStatus > SUCCESSFUL A
1)

The states SUCCESSFUL and FAILED are analysed promptly while deter-
mining the message. The reason for this is that besides the partially ordered
plan as we have in our system we also can use the graph for the plan. The graph
shows dependencies between the planning steps so that we, e.g., can determine
why something was or is going to be done, or can be done, or failed while
executing.

Getting back to the example 10 with execution status SUCCESSFUL, the
content determinator of our system now looks up the dependencies of this step
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to steps that where performed before. For this the plan graph is used. Here is
an excerpt of the graph for the plan in our example:

(11) Example for a plan graph (excerpt)

links :
89 DEPENDS is —in 0: CQspatial.sa VALUE : F:B@spatial.sa
911 DEPENDS is —in 0 : C@spatial.sa VALUE : H:B@spatial.sa
911 DEPENDS in — room H: BQspatial.sa

MODALITY : kval 0: CQspatial.sa VALUE : true
910 DEPENDS is —in 0 : CQspatial.sa VALUE : H:B@spatial.sa
910 DEPENDS in — room H: BQspatial.sa

MODALITY : kval 0: CQspatial.sa VALUE : true
10 11 DEPENDS conescreated magazine in 2 : T1Qcoma VALUE : true

The first two numbers indicate that the planning steps with this number —
the nodes of the plan graph — are connected, meaning the second step causally
depends on the first. Then the label of the link is specified. In our example
the labels are always DEPENDS — also they can be THREATENED, i.e., indi-
cating that the precondition of an operation is violated. After the dependency
label the predicate is given, specifying what the dependency is actual. The
WMAs and parameters following the predicate are the variables of the predi-
cate as defined in the domain definition. They can have different keywords —
i.e., VALUE, MODALITY - indicating what the WMAs and parameters actu-
ally stand for. This has to be considered when annotating the predicates in the
domain dictionary.

The first link in our example states that step 9 is a child node of step 8. The
execution of step 9 depends of that the WMA 0 : CQspatial.sa (the agent) is
located at F : BQspatial.sa. This is the precondition to move to another place
from there in the following step. This affords, e.g., verbalising a sentence like:
“Because I was at place X I could move to place Y.”

The same is done for all steps in the plan. Considering the plan graph for
step 11 a possible verbalisation can be “After I created view cones in the kitchen
I could search for the magazine at place X.” These collected messages are ex-
panded to full LFs and given to the surface realisation component of the NLG
pipeline in our system.

5.4 Realising the determined messages

Realisation then is executed after lexicalisation and the generation of referring
expressions. Grammar rules determine how the sentences are formed [13]. For
the extract of our example plan and plan graph, a resulting natural language
report in our system is the following;:

14



(12) Verbalisation of the example plan excerpt

I moved from place0 to placel.

Because that was successful and I was at placel then,
I could move to place2.

Next I created viewcones there

to be able to search for the magazine in this room.
After that I can fulfil the intended goal.

Analysing the verbalisation of the plan we see that it says what was done,
why was it done, when was it done, and why the agent was able to do it. Also
there is a certain degree of aggregation.

Line 1 and line 3 show what was done. For the statement in line 3 also a ex-
planation is given why the movement could be executed — line 2. Line 4 provides
aggregation with the temporal expression “next” and indicates when the step
was executed. This comes from the temporal structure of the partially ordered
plan. Line 5 provides an explanation why the agent executed the creation of
view cones in line 4. This comes from analysing the plan graph — as well as line
2. Line 6 provides an outlook to the future, indicated with the execution status
PENDING — meaning that when step 11 (line 5) can be executed successfully,
also PENDING, the agent is able to achieve the intended goal.

6 Conclusion

In the present paper we have proposed an approach for generating reports of
plans. We have embedded the proposed approach in the general area of inter-
active and autonomous robots.

We motivated our approach with a general introduction (Section 1) to the
specific challenges involved in the generation of situated natural language for
such robots, especially concerning the robots’ autonomously determined actions
and assumptions. In Section 2 we have given an overview of related work in
NLG and planning techniques in artificial intelligence and robotics. We have
also discussed other approaches to generating natural language from various
structured and unstructured resources for situated and cooperative dialogue
systems.

Section 3 describes the general design principles of a system for NLG in the
planning environment of the robotics domain. One of the most important points
are the resources that are needed for such a task: (1) the domain definition, (2)
the lexical domain dictionary, and (3) resources that encode the event structure
of what happened (i.e., the plan history). We have shown how these resources
have to be processed to get all relevant information for verbalising a plan. Fur-
thermore we have indicated what can be done to get “good” natural language
reports. This includes aggregation in terms of sentences mixtures, temporal and
causal ordering, and explanations why something was done or why it failed. The
overall design can be extended for various styles of planning and verbalisation.
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Then, in Section 4, we have explained how our approach is implemented in
an integrated robotic system. We have shown how the annotation task is done
and what considerations have to be made by the human annotator. Also we
have indicated how our system processes all given information of the resources
automatically. We presented how this information is used in the NLG pipeline
and how we finally get to a natural language a report.

Section 5 has provided a detailed example how our system works with real
world data — beginning with the annotation and considerations, how the infor-
mation is processed automatically, and what the results are for a certain plan.

Concluding, our implemented system shows how we can get from some raw
data resources constituting a plan to a full report in natural language in good
quality.
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Tarot: The Talking Robots Toolkit

Technical description, version 0.1

Miroslav Janicek

TAROT is an open-source software framework for building spoken dialogue
functionality for human-robot interaction. TAROT does not impose a specific
(cognitive) architecture for building a dialogue system. Its framework allows
for multi-threaded (or asynchronous) processing. Processes are defined as
glass boxes (rather than black-boxes) and interact in an event-driven fashion.
TAROT is written in the Scala programming language and targets the Java
platform.

1 Introduction

This document is a technical description of the current version of TAROT, the Talking
Robots Toolkit. TAROT is an open-source software project licensed under the Lesser
General Public License.

1.1 What is Tarot?

TAROT is an open-source software framework for building natural language interfaces
for human-robot interaction. It is asynchronous, event-driven framework, written in the
Scala programming language [7] and targets the Java platform.

All software described here can be downloaded from

http://tarot.opendfki.de

1.2 About this document

This document is a technical description of Tarot’s core concepts, design approach, and
an overview of the software packages that together make up the Tarot public distribution.

The structure of this document is as follows: in the next section, we will examine the
basic concepts, in §3 address the main implementation design choices, and in §4 describe
the distribution that forms the overall TAROT “solution stack”.



2 Core concepts

TAROT is a toolkit providing the basic functionality for building natural language in-
terfaces for human-robot interaction. As such, TAROT does not impose any particular
processing strategy — this is left to be dealt with by the integrator of the natural lan-
guage module to a wider system. TAROT is therefore agnostic with regard to the actual
cognitive architecture of the robot.

In order to support as wide a range of systems to be integrated with, TAROT has to
be

e multi-threaded — a TAROT system must be able to perform multiple actions in
parallel;

e event-driven — the system must be able to react to events emitted in the cognitive
architecture;

e transparent — the architecture should be a glass rather than black box whenever
possible.

Programming multi-threaded systems is fundamentally different from assuming that
there is a single execution thread. Since we need TAROT to work with systems capable
of performing multiple interleaved tasks, we cannot afford to dodge concurrency issues.
However, by imposing a set of good practices, we can limit the dangers to a minimum.
These practices in turn guide the design of the fundamental concepts and constraint the
properties of the state, and its change and observability.

2.1 State

Defining the notion of state is central to any concurrent application. Typically, concur-
rency is done by using one the following two models:

e Shared memory model — state is explicitly shared between the threads. There
has to be access control if the threads are allowed to modify the state. This is
usually done using locking.

e Message passing model — state is implicit in the system configuration, and is
changed by components sending messages to each other.

TAROT utilises both approaches. Conceptually, we use the shared memory model (and
this is what is exposed to the programmer). However, the values that are available
to the threads are immutable, which means that they can be shared without the need
for access control. Under the hood, however, is a distributed, actor model-based (i.e.
message passing, [1]) architecture. State change in TAROT is then done by sending a
message to the corresponding state maintainer actor. Note that the API provides an
abstraction so that the user does not see that messages are being passed around.



The notion of state as something that can change is embodied in the concept of a
variable. A variable is an object holding the state, emitting events whenever the state
changes, and providing an interface for changing the state. The actual value of the
variable is always a pair consisting of the value and its version. Versions define a
partial ordering over the values of a variable. This allows an application to determine
whether one value precedes another, and makes variables and their values referentially
transparent.

2.1.1 Variables
TAROT defines three broad classes of variables:

e Continuous variables — variables that can only be sampled, but their change
can not be directly observed;

e Discrete variables — variables that emit events for each value change. We dis-
tinguish two sub-classes of discrete variables:

— Stateful discrete variables — discrete variables that hold the value, which
can be queried;

— Stateless discrete variables — discrete variables that do not hold the value.
Note that since they are discrete variables, the value change can be observed.

Continuous variables are used for “volatile” values such as time where it is impossible
(or impractical) to observe every change. However, since the value can be queried, every
continuous variable can be turned into a discrete variable by querying the value at some
sampling rate. For instance, this is — conceptually speaking — what a (digital) audio
signal is: sampling of the acoustic pressure as detected by the microphone.

2.1.2 State change observation

Every discrete variable emits events whenever there is a change. Those events are of two
kinds:

e Value change — emitted whenever the variable value is changed. Depending on
the sub-class of the discrete variable, this is one of the following:

— New value (stateful variables) — the new value of the variable.

— Value transformation (stateless variables) — the transformation f, applied
to the previous value of the variable, that yields the new value. The trans-
formation f is therefore a partial function f : A — A where A is the domain
of the variable.

e Constantness — emitted when a variable is guaranteed not to change any more.
This effectively turns a variable into a constant (from this moment on), hence the
name.

These events can be listened to using the Observer pattern [3], and listeners are notified
asynchronously.



2.2 Performing actions

Actions are an abstraction of an (asynchronously) executed task that changes the state
of the system. The action state is exposed in the following variables:

e Action state — the state of an FSM describing the current processing state of the
action. Valid values are the following:
— Pending — the action has not started yet;
— Active — the action is executing;

— Error — error state;

Finished — the action finished successfully.

Transitions of the FSM are depicted in Figure 1.

e Action-dependent result — this can be either a discrete (stateless or discrete vari-
able), or a Future for a set-once result.

Recalled

Figure 1: Action state transitions

For an action to be executed, it has to be scheduled by an actuator first.

2.2.1 Actuators

An actuator is an abstraction of the entity executing the action. Actuators are respon-
sible for access control to the underlying resource. The application sends action requests



to an actuator, and depending on the nature of the resource, the request is either re-
jected (in case the actuator is not ready to receive actions), or the action is scheduled
for execution. TAROT currently defines three classes of actuators:

e Serial — actuator operating off a task queue, executing one action at a time;
e Parallel — actuator executing all actions in parallel;

e Single-action — actuator executing at most one action at a time, with no queue.

Serial actuators can be likened to serialisers for thread-unsafe resources, whereas par-
allel actuators operate on thread-safe resources. Single-action actuators are useful in
situations where a task queue makes no sense (such as recording audio), and therefore
provide a fail-fast feedback to the caller.

The actuator state is exposed in the following variables:

e Actuator state — the state of an FSM describing the current state of the actuator.
The values can be the following:

— NotStarted — the actuator has not been started yet;

— Starting — initialising;

— Ready — ready to receive action requests;

— Busy — the actuator is working and cannot receive action requests at this
time;

— Error - error state;

— ShutDown — successfully shut down.

For the transition of the FSM, see Figure 2.

e Currently active actions — a collection of currently executing actions.

Since they publish the currently-active actions, actuators are introspectible — given an
actuator, an application can get all the way to the actions it is executing, listen for their
state changes etc. This is a crucial element of the system’s scalability and flexibility.

2.3 Instantiating systems

Variables, actions and actuators are the basic building blocks of a TAROT system. A
system is a concrete instantiation of a particular functionality. We use dependency
injection (DI) to build systems together in a loosely-coupled manner. Using DI to
compose functionality makes it possible to program against an interface (rather than
against a behaviour), with benefits for code reuse and testability.
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Figure 2: Actuator state transitions

2.3.1 Devices

In order to group actuators belonging conceptually together, TAROT uses the notion of

a device.

Devices do not have any particular functionality of their own, but merely

serve as “namespaces’ for separating unrelated actuators. The dependency injection for
composing functionality into a system is done on the level of devices.

2.3.2 Building systems

To illustrate the principle of combining systems using DI, consider the following example:

class Instantiation
extends AbstractSystemConfiguration

with
with
with
with
with
with
with

HasClockDevice

HasAudioCaptureDevice
HasSpeechRecogniserDevice
HasBasicPhonologicalStringParserDevice
HasBasicSurfaceRealiserDevice
HasSpeechSynthesiserDevice
HasAudioProductionDevice {

// define functionality of the system here



Here, we define a class Instantiation that has a clock, can capture audio, has a
speech recogniser, phonological parser, surface realiser, speech synthesiser and audio
production support. The concrete implementation of these is not specified — these are
all interfaces. This means that the functionality defined in Instantiation will work
with any concrete subclass that implements it.

For an example instantiation, we can consider the following source code:

val sys = new Instantiation
with HasSystemClockDevice
with HasLocalMicrophoneDevice
with HasSphinx4SpeechRecogniserDevice
with HasCCGPhonologicalStringParserDevice
with HasCCGSurfaceRealiserDevice
with HasMarySynthesiserDevice
with HasLocalLoudspeakerDevice {

lazy val sphinxConfig = /* Sphinx4 configuration */

lazy val ccgParserGrammar = new Grammar(/* URL to the grammar */)
lazy val ccgRealiserGrammar = ccgParserGrammar

val maryServerAddress = /* address to the Mary server */

Now the variable sys is holding a concrete instantiation of Instantiation, fulfilling
its contracts for all the functionality with the local microphone, Sphinx4 ASR engine,
OpenCCG parser and surface realiser, Mary TTS speech synthesiser and a local loud-
speaker for audio production.

Changing this functionality, for instance transmitting audio data over a network in-
stead of capturing and producing it locally, is would then merely mean changing the
corresponding mix-in traits that specify which classes implement the required interfaces.
The functionality per se would not change.

TAROT supports Scala’s native “cake pattern” for dependency injection, which is a
statically typed method of composing dependencies at compile time using mix-in traits.
Since it is statically typed, the correctness of this construction is checked by the Scala
compiler, and therefore can detect many errors before the code is run, greatly improving
the reliability of the system [8].

3 Implementation notes

TAROT targets the Java platform, and is written in the Scala programming language.
Thanks to this design choice, the functionality can incorporate existing Java libraries,
and can be interfaced to from Java.



Why targeting only the JVM, and why choosing Scala instead of pure Java? What
about integration with functionality written in other programming languages and/or
running in a distributed manner? Let us briefly examine each of these questions in turn.

Why the Java platform? The Java platform is a well-established multi-platform
technology, and the Java programming language is among the most popular program-
ming language as of today. The platform offers an excellent tooling support which greatly
increases the programmer productivity. The availability of high-performance virtual ma-
chine (VM, or JVM for Java Virtual Machine) implementations, including the standard
HotSpot virtual machine, allow programs written for the Java platform to even outpace
their counterparts written in C++ for many tasks, and the performance is definitely
sufficient for event-driven systems supported by TAROT.

Why Scala? Scala [7] is a general purpose programming language that combines
the paradigms of object-oriented and functional programming for the JVM platform.
It is a strongly statically typed language with a higher-order type system and type
inference (features most commonly seen in functional programming languages such as
ML or Haskell).

Its standard distribution features a strong generic data collections library that stresses
the need for data structure immutability, reflecting the functional background and mak-
ing the writing of concurrent applications easier.

What about other programming languages? Not every programming language
is strong at everything — some allow you to write a very performant code (C, C++),
some offer you a convenient programming environment (Java), some shine at performing
certain tasks but it’s very hard to apply them outside their typical domain (Prolog),
some are statically typed (Java), some are dynamic (Python), and so forth. The idea to
use a specialised language for some tasks, and a general purpose language for others, is
a tempting one.

Moreover, there may be situations in which an application has to interface with func-
tionality written in a different programming language, or even running on a different
platform or machine.

How does TAROT fare in this aspect? There are, broadly speaking, three ways to
achieve this:

e Use explicit inter-process communication. In this setting, the code written
in another language is interfaced to using some protocol. This completely abstracts
away from the runtime environment of the other side, and in general can lead to
a well-testable software code. However, the protocol has to be fully specified and
conformed to, and offers very little abstraction, which is essential for writing truly
complex applications.

This is certainly supported by TAROT, since it runs on the Java platform.

e Use a middleware. Middlewares are an abstraction over inter-process commu-
nication protocols, exposing a “native” interface that proxies remote execution
environments. This interface is called the remote procedure call interface (RPC).
Typical representatives of middlewares are CORBA or ZeroC ICE.



Writing complex and reliable distributed applications using RPC is a very hard
task to do correctly. On the one hand, middlewares such as CORBA scale out
easily; on the other hand, the data structures passed around in RPC break en-
capsulation, and ultimately may lead to the adoption of the procedural style of
programming. This of course means that the software quality suffers, and mainte-
nance and development cost soar.

In our opinion, this is too high a price to be paid straight away, and therefore we
opted for not using any middleware as part of the core TAROT design. However,
TAROT’s users are free to integrate with the middleware of their choice, making the
compromises where they need, rather than trying to work around the limitations
of the middleware imposed on them from the start.

e Use a foreign language interface. A foreign language interface is a way of
calling code written in a “foreign” language from the “primary” language. This is
usually a one-way relation — the functionality written in the foreign language must
conform to constraints imposed by the primary language, but not the other way
around.

This is the common approach interpreted languages (such as Java) take to access
the underlying native platform. To this end, the majority of foreign function in-
terfaces specify an intermediate C layer. This approach is supported by TAROT’S
choice of the JVM platform (and thus, transitively, by Java foreign language in-
terface solutions such as JNI).

4 The Tarot stack

TAROT exposes its functionality in a layered manner, providing a solution stack — a
collection of software tools stacked on top of that offers a solution to a particular problem,
in our case building systems for processing situated natural language. The stack is
illustrated by Figure 3.

TAROT is built on top of the Java platform, Scala standard library and the Akkal
middleware (depicted in the figure by the light red colour). Akka is a toolkit for building
massively concurrent systems based on the actor model of concurrency.

In the following, we use the term modules to describe software packages that either
define some interface or an implementation of an interface, or both. In this sense,
modules denote units of software composition and distribution, rather than of run-time
functionality.

Let us now examine the stack in more detail.

4.1 Common interfaces

The common interfaces (dark grey in Figure 3) provide the basic functionality without
committing to a particular implementation. These modules are structured as follows.

'see http://akka.io



TAROT implementation
modules tarot-nlp-common

the TAROT stack

tarot-io-common

tarot-core
module-specific Akka middleware
third-party
dependencies Scala Standard Library dependencies
Java SE

Figure 3: The TAROT software stack

The core functionality as outlined in §2 is implemented in the module tarot-core.
This module uses the Akka library to implement the built-in concurrency support.

The module tarot-io-common implements the basic functionality related to I/O (i.e.
interaction with the real world). Currently, these are the following:

e Audio interfaces — a definition of immutable audio data, and basic conversion
methods;

e Audio capture and production —i.e. obtaining audio data from the world, and
turning it into sound. The module also contains a default implementation using
the Java Sound APL.

e Clock — a device for measuring time and emitting events when a given time passes
(“alarm clock”). Again, a default implementation as provided by Java SE is bun-
dled, but the interface can scale to simulated clocks as well.

The module tarot-nlp-common then defines basic interfaces related to processing
natural language. These are currently:

e Speech recognition — using the audio interfaces defined in tarot-io-common, a
speech recognition device provides an interpretation of an audio signal in the form
of a best recognised phonological string or word lattice;

e Parsing — devices for parsing phonological strings and word lattices into logical
forms (see below);

e Logical forms — logical forms are directed graphs for representing linguistic mean-
ing [4]. The module also contains a variety of convenience transformation opera-
tions.
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e Surface realisation — devices for turning logical forms into phonological strings;

e Speech synthesis — conversion of a phonological string in terms of an audio signal.

4.2 Implementation modules

Apart from the interfaces described in the previous section, TAROT also contains default
implementations for each of them, using open-source software. These modules are to-
gether illustrated by the light grey colour in Figure 3, along with their dependencies in
light green.

Currently, the modules in question are the following:

e tarot-sphinx4 — Sphinx4 speech recognition support. Sphinx4 is an open-source
recogniser written in the Java programming language, and its distribution also
contains basic acoustic models [6];

e tarot-openccg — an implementation of the parsing and surface realisation devices
using the OpenCCG library [2];

e tarot-marytts — Mary TTS (text-to-speech) [9] support for speech synthesis.

4.3 Resources

We consider linguistic resources to be an auxiliary part of the TAROT stack, in the sense
that whenever possible, they should be independent of TAROT but can be well integrated
with a TAROT system.

Currently, the only linguistic resource included in the public distribution is the Moloko
CCG grammar [5].

5 Conclusion

We have presented TAROT, an open-source software framework for building spoken dia-
logue functionality for human-robot interaction. The framework supports asynchronous,
event-driven processing, but does not impose specific constraints on the part of the wider
integrated system’s architecture. TAROT is written in the Scala programming language
and targets the Java platform.

We have outlined the main concepts of the design approach, and described the contents
of the publicly-available distribution of the TAROT solution stack.
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Human-robot interaction is becoming increasingly
complex through the growing number of abilities, both
cognitive and physical, available to today’s robots. At
the same time, interaction is still often difficult because
the users do not understand the robots’ internal states,
expectations, intentions, and actions. Vice versa, robots
lack understanding of the users’ expectations, inten-
tions, actions, and social signals.

Many studies have been conducted unveiling the im-
portance of properly designed adaptive human-robot
interaction strategies in general and appropriate feed-
back in particular. Robotic systems have been built that
reflect the progress in the different fields in robotics
with regard to learning, autonomous behaviours, safe
navigation, and manipulation. However, integrated ap-
proaches to

— understanding the user and her expectations, inten-
tions, and actions,

— transparently communicating to the user what the
robot understood or expected,

— and designing appropriate robot behaviours based
on its understanding of the world
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are still in their infancy.

This special issue bundles recent advances in ad-
dressing these challenges. The key questions are how
meeting or failing the user’s expectations influences the
efficiency and effectiveness of human-robot interaction;
how more effective and efficient interaction with hu-
mans can be achieved using modalities available to a
robot; how robots can be equipped with models en-
abling them to understand their users’ state of mind;
and similarly, how they can make their own expecta-
tions and states explicit through eligible communica-
tion channels.

Each of the seven articles in this issue highlights
different aspects around the central theme of expecta-
tions, intentions, and actions in human-robot interac-
tion. The topics covered range from recognition of ver-
bal and non-verbal cues of intentions and expectations,
to verbalisation and presentation techniques that make
internal processing of the robot accessible to the hu-
man. In the following we give a brief overview of the
contents of the articles.

Komatsu, Kurosowa, and Yamada ask “How does
the Difference between Users’ Expectations and Percep-
tions about a Robotic Agent Affect Their Behavior?”
They call this difference the adaption gap and research
how it affects the decisions of the users in a game. Their
findings show that the participants with positive adap-
tation gap signs (i.e., the robot performed better than
they expected) accepted the robot’s suggestions more
often than users with a negative adaptation gap sign
(i.e., the robot performed worse than they expected).
This work shows that expectations indeed play a major
role in human-robot interaction.

The paper by Rosenthal, Veloso, and Dey deals with
the problem of “Acquiring Accurate Human Responses
to Robots’ Questions.” They identify and evaluate four
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different types of state information that a robot can use
to ground non-supervisors in its state when requesting
help. The authors describe what they believe to be the
most appropriate combination of information to com-
municate the robot’s intentions and to trigger the right
actions by the users.

Two papers in this issue focus on the analysis of
human behaviour to facilitate contingency in interac-
tion with a robot. Contingency is inherently related to
expectations in interaction, as contingency can only be
achieved if the mutual expectations of the interactants
are met. However, the objectives of this analysis of con-
tingency in the two articles differ: While Lohan et al.
propose a model to detect tutoring turns in an interac-
tive learning setting informed by adult-infant interac-
tion, Lee et al. investigate the potential of multimodal
cues to help turn-taking in natural interaction.

Focusing on the perception of intention and emo-
tions, Yohanan and MacLean define different categories
of intent in the interaction with an affective artificial
creature. Those intents are related to emotional states
that are haptically conveyed to a robot. The contri-
bution proposes patterns of gesture use for emotional
expression as well as a touch dictionary used to convey
those different intents.

The paper by Lemaignan et al. entitled “Grounding
the Interaction: Anchoring Situated Discourse in Ev-
eryday Human-Robot Interaction” presents a robotic
system that can engage in situated dialogues with a hu-
man about shared tabletop environments. The system
comprises perceptual modalities that allow it to build
symbolic representations of the environment. One of the
key aspects of the approach is that the system is capa-
ble of perspective taking — effectively allowing the robot
to take into account the human’s perspective as well as
its own when interpreting and generating utterances.

Finally, Salem et al. present work on the generation
of behaviour by the robot to facilitate the understand-
ing of robot’s intentions and expectations. They pro-
pose a novel gesture generation mechanism evaluated
on a humanoid platform to produce co-verbal hand and
arm gestures.

Some of these papers are extended versions of work
presented in two preceding workshops, others have been
submitted to an open call for papers. This special is-
sue appears as a follow-up to the workshops on Interac-
tive Communication for Autonomous Intelligent Robots
(ICAIR), held at the ICRA 2010 conference in Anchor-
age, AK, USA, and on the Role of Expectations in In-
tuitive Human-Robot Interaction, held at the HRI 2011
conference in Lausanne, Switzerland.

Therefore, we wish to express our gratitude to our
colleagues who helped us organise these workshops as

well as this special issue. Many thanks go to the co-
organisers of our workshops: Verena Hafner (Humboldt
University Berlin), Geert-Jan M. Kruijff (DFKI Saar-
briicken), Joachim Meyer (Ben-Gurion University of the
Negev), Yukie Nagai (Osaka University), and Britta
Wrede (Bielefeld University). Special thanks go to Pro-
fessor Shuzhi Sam Ge, who encouraged us to prepare
this special issue based on the workshop outcomes, and
to the reviewers for their support in maintaining the
high standard of this issue: Kai Oliver Arras, Cindy L.
Bethel, Laura Boccanfuso, Heriberto Cuayéhuitl, Frank
Hegel, Thomas Holz, David O. Johnson, Takayuki Kanda,
Alexandra Kirsch, Nate Koenig, Min Kyung Lee, Ross
Mead, Yukie Nagai, Hirotaka Osawa, Julia Peltason,
Annika Peters, Karola Pitsch, Astrid Marieke von der
Piitten, Bogdan Raducanu, Subramanian Ramamoor-
thy, Laurel Riek, Pericle Salvini, Sven R. Schmidt-Rohr,
Elin Anna Topp, Alan Richard Wagner, Yueh-Hsuan
Weng, and Britta Wrede.



