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In this deliverable we present the curiosity driven self-extending robot sys-
tem George that is capable of interactive learning of visual concepts in a
dialogue with a human tutor. We present representations and mechanisms
that facilitate such continuous interactive learning. We present how beliefs
about the world are created by processing visual and linguistic information
and show how they are used for planning the system behaviour with the aim
at satisfying its internal drives - to respond to the human and to extend its
knowledge. We describe different mechanisms that implement different be-
haviours leading to a coherent compound behaviour that facilitates different
kinds of learning initiated by the human tutor or by the system itself. We
demonstrate these principles in the case of learning conceptual models of
objects and their visual properties.
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Executive Summary

In this report we present the final CogX reincarnation of George, the curious
robot. It is based on the systems we presented in the previous years; it is,
however, more robust and is able of a wider range of behaviours. These
behaviours are also better integrated and enable more coherent operation
of the system. We increased the robustness of the system by improving
the two-layered attention-driven visual subsystem, which is based on more
robust RGBD sensor. We fully integrated object learning and recognition
into the system, so the robot can now also recognise and talk about object
types. In addition, we also reformulated the belief system and introduced
merged beliefs as the final result of the information fusion and abstraction;
they contain as reliable information about the perceived objects as possible
and as much information about them as available. We also better structured
the goals the robot is aiming at and introduced three priority levels for drives
that generate goals. We assigned the highest priority to the interaction
drive as the robot should always try to respond to the human as promptly
as possible. On the second level we placed the extrospection drive that
generates goals to understand and explore the scene and to learn as much
as possible from this information. We assigned the lowest priority to the
introspection drive, which tries to improve its models by introspection. This
prioritisation together with the planning mechanism is supposed to lead to
smooth transitions and appropriate switching between different behaviours
leading to an efficient and natural mixed-initiative learning dialogue.

Role of a curiosity driven self-extending robot sys-
tem in CogX

George tries to understand what it is certain about and what it is not, what
it knows and what it does not know. Based on this, it tries to get the
missing information (also by interacting with the human tutor) to fill the
detected knowledge gaps. Therefore, through curiosity-driven extrospection
and introspection the robot tries to extend its current knowledge, which is
the major research topic in CogX.

Contribution to the CogX scenarios and prototypes

George is one of three scenarios that we have been addressing in CogX. We
have designed this scenario to monitor and show progress on the develop-
ment and integration of various competencies needed for interactive contin-
uous learning. This scenario has been designed as a use case for guiding
and testing system-wide research and for demonstrating methods developed
in WP 5, WP 2, WP 1, WP 4, and WP 6 in a working system. Moreover,
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George also shares a great part of the code with Dora; the main functionali-
ties in both scenarios are based on the same principles and implementation.
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1 Tasks, objectives, results

1.1 Planned work

This deliverable mainly tackles the problems addressed in Task 7.7 of Work-
package 7:

Task 7.7: Integration for full curiosity driven extension system.

As such, it is addressing the following objectives as specified in the Tech-
nical annex:

11. A robotic implementation of our theory able to complete a task involv-
ing mobility, interaction and manipulation, in the face of novelty, un-
certainty, partial task specification, and incomplete knowledge. [WPs
2,3,6,7]

12. Within the same implementation the demonstration of the ability to
plan and carry out both task driven and curiosity driven learning goals.
[WP 1,7]

The main goal for the final year of the project was to increase the robust-
ness of the system, as well as to wider the range of different behaviours and
to better integrate these behaviours into a coherent compound behaviour.
Our objective was to demonstrate that a cognitive system can efficiently ac-
quire conceptual models in an interactive learning process that is not overly
taxing with respect to tutor supervision and is performed in an intuitive,
user-friendly way.

1.2 Actual work performed

In the last year of the project we substantially extended the George sys-
tem that was developed in the previous years [6]. We reformulated and
re-implemented some of the functionalities (such as the belief system and
the prioritisation of the main motivation drives), we added several new func-
tionalities (such as object learning and recognition), and we robustified some
of the functionalities (such as attention-driven visual processing), as well as
the operation of the system as a whole.

In Annex 2.1 we attach the technical report describing the George robot
from the component and from the system point of view; all the individ-
ual competencies are briefly described, and also the entire system is shown,
focusing on mechanisms that implement different behaviours. It presents
how George learns and refines conceptual models of visual objects and their
properties, either by attending to information deliberately provided by a
human tutor (Tutor-initiated interaction: e.g., H: ‘This is a Coke can.’) or
by taking initiative itself. In the latter case, the robot can learn by extro-
spection, i.e., by analysing the objects in the scene and using the acquired
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information for updating the knowledge, either automatically, or after ask-
ing the tutor for additional information about the objects when necessary,
e.g., R: ‘Is the elongated object yellow?’. George can also initiate learning
by introspection, i.e., by analysing its internal models of visual concepts and
asking questions that are not related to the current scene, e.g., R: ‘Can
you show me something red?’. Our approach unifies these cases into an
integrated approach including attention-driven visual processing, incremen-
tal visual learning, selection of learning goals, continual planning, and a
dialogue subsystem. By processing visual information and communicating
with the human, the system forms beliefs about the world, which are ex-
ploited by the behaviour generation mechanism that selects the actions for
optimal learning behaviour. George is therefore a curiosity-driven system
that aims at understanding where its own knowledge is incomplete and that
takes actions to extend its knowledge subsequently.

The attached technical report will be, when completed, submitted for
a journal publication. The journal submission will also include a thorough
evaluation of the robot system that is currently being performed and will
be completed by the end of the project.

1.3 Relation to the state-of-the-art

In this section we discuss how our work is related to, and goes beyond the
current state-of-the-art.

Interactive continuous learning using information obtained from vision
and language is a desirable property of any cognitive system, therefore sev-
eral systems have been developed that address this issue (e.g., [5, 7, 1, 2, 8,
4, 3]). Different systems focus on different aspects of this problem, such as
the system architecture and integration [1, 2, 4], learning [5, 7, 4, 3], or so-
cial interaction [8]. Our work focuses on the integration of visual perception
and processing of linguistic information by forming beliefs about the state
of the world; these beliefs are then used in the learning process for updating
the current representations. The system behaviour is driven by a motiva-
tion framework which facilitates different kinds of learning in a dialogue
with a human teacher, including self-motivated learning, triggered by au-
tonomous knowledge gap detection. Also, George is based on a distributed
asynchronous architecture, which facilitates inclusion of other components
that could bring additional functionalities into the system in a coherent and
systematic way (such as navigation and manipulation).
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2 Annexes

2.1 Skočaj et al. “An integrated system for interactive learn-
ing in dialogue with a tutor”

Bibliography D. Skočaj, M. Kristan, A. Vrečko, M. Mahnič, M. Jańıček,
GJ M. Kruijff, M. Hanheide, N. Hawes, T. Keller, M. Zillich and K. Zhou:
“An integrated system for interactive learning in dialogue with a tutor”. To
be submitted for journal publication, 2012.

Abstract In this paper we present representations and mechanisms that
facilitate continuous learning of visual concepts in dialogue with a tutor and
show the implemented robot system. We present how beliefs about the world
are created by processing visual and linguistic information and show how
they are used for planning the system behaviour with the aim at satisfying its
internal drives - to respond to the human and to extend its knowledge. We
describe different mechanisms that implement different behaviours leading
to a coherent compound behaviour that facilitates different kinds of learning
initiated by the human tutor or by the system itself. We demonstrate these
principles in the case of learning conceptual models of objects and their
visual properties.

Relation to WP The paper describes the final version of the George sys-
tem, so it is directly related to WP 7. It also briefly describes the individual
functionalities of the system that have been developed in other workpack-
ages, namely in WP 5, WP 2, WP 1, WP 4, and WP 6.
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An integrated system for interactive learning in dialogue

with a tutor

Danijel Skočaj, Matej Kristan, Alen Vrečko, Marko Mahnič, Miroslav
Jańıček, Geert-Jan M. Kruijff, Marc Hanheide, Nick Hawes, Thomas Keller,

Michael Zillich and Kai Zhou

Abstract

In this paper we present representations and mechanisms that facilitate con-
tinuous learning of visual concepts in dialogue with a tutor and show the
implemented robot system. We present how beliefs about the world are cre-
ated by processing visual and linguistic information and show how they are
used for planning system behaviour with the aim at satisfying its internal
drives - to respond to the human and to extend its knowledge. We describe
different mechanisms that implement different behaviours leading to a coher-
ent compound behaviour that facilitates different kinds of learning initiated
by the human tutor or by the system itself. We demonstrate these prin-
ciples in the case of learning conceptual models of objects and their visual
properties.

1. Introduction

Cognitive systems are often characterised by their ability to learn, com-
municate and act autonomously. By combining these competencies, the sys-
tem can incrementally learn by engaging in mixed initiative dialogues with
a human tutor. In this paper we focus on representations and mechanisms
that enable such interactive learning and present a system designed to acquire
visual concepts through interaction with a human.

Such continuous and interactive learning is important from several per-
spectives. A system operating in a real life environment is continuously
exposed to new observations (scenes, objects, actions etc.) that cannot be
envisioned in advance. Therefore, it has to be able to update its knowledge
continuously based on the newly obtained visual information and informa-
tion provided by a human teacher. Assuming that the information provided
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by the human is correct, such interactive learning can significantly facilitate,
and increase the robustness of, the learning process, which is prone to errors
due to unreliable robot perception capabilities. By assessing the system’s
knowledge, the human can adapt their way of teaching and drive the learn-
ing process more efficiently. Similarly, the robot can take the initiative, and
ask the human for the information that would increase its knowledge most,
which should in turn lead to more efficient learning.

In this paper we describe how our robot George, depicted in Fig. 1, learns
and refines conceptual models of visual objects and their properties, either
by attending to information deliberately provided by a human tutor (Tutor-
initiated interaction: e.g., H: ‘This is a Coke can.’) or by taking initiative it-
self. In the latter case, the robot can learn by extrospection, i.e., by analysing
the objects in the scene and using the acquired information for updating the
knowledge, either automatically, or after asking the tutor for additional in-
formation about the objects when necessary, e.g., R: ‘Is the elongated object
yellow?’. George can also initiate learning by introspection, i.e., by analysing
its internal models of visual concepts and asking questions that are not re-
lated to the current scene, e.g., R: ‘Can you show me something red?’. Our
approach unifies these cases into an integrated approach including attention-
driven visual processing, incremental visual learning, selection of learning
goals, continual planning, and a dialogue subsystem. By processing visual
information and communicating with the human, the system forms beliefs
about the world, which are exploited by the behaviour generation mechanism
that selects the actions for optimal learning behaviour. George is one system
in a family of integrated systems that aim to understand where their own
knowledge is incomplete and that take actions to extend their knowledge
subsequently. Our objective is to demonstrate that a cognitive system can
efficiently acquire conceptual models in an interactive learning process that
is not overly taxing with respect to tutor supervision and is performed in an
intuitive, user-friendly way.

Interactive continuous learning using information obtained from vision
and language is a desirable property of any cognitive system, therefore several
systems have been developed that address this issue (e.g., [1, 2, 3, 4, 5, 6, 7]).
Different systems focus on different aspects of this problem, such as the
system architecture and integration [3, 4, 6], learning [1, 2, 6, 7], or social
interaction [5]. Our work focuses on the integration of visual perception
and processing of linguistic information by forming beliefs about the state
of the world; these beliefs are then used in the learning process for updating
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Figure 1: Interactive learning scenario.

the current representations. The system behaviour is driven by a motiva-
tion framework which facilitates different kinds of learning in a dialogue
with a human teacher, including self-motivated learning, triggered by au-
tonomous knowledge gap detection. Also, George is based on a distributed
asynchronous architecture, which facilitates inclusion of other components
that could bring additional functionalities into the system in a coherent and
systematic way (such as navigation and manipulation).

The paper is organised as follows. In §2 we present the competencies and
representations that allow integrated continuous learning. In §3 we describe
the system that we have developed and focus on mechanisms that implement
different behaviours leading to a coherent compound learning behaviour. An
example dialogue is then presented in §4. We conclude the paper with a
discussion and some concluding remarks in §5.

2. System competencies and representations

A robotic system capable of interactive learning in dialogue with a human
needs to have several competencies (the ones that enable it to demonstrate
such behaviour) and has to be able to process the different types of repre-
sentations stemming from different modalities. Fig. 2 concisely depicts the
main competencies of our system and the relationships between them. By
processing visual information and communicating with the human, the sys-
tem forms beliefs about the world. They are exploited by the behaviour
generation mechanism that selects the actions to be performed in order to
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extend the system’s knowledge about visual concepts. In the following we
first describe the individual competencies and representations, then show
how they are integrated into a unified robot system.

Visual 

processing

Situated 

dialogue

Behaviour 

generation

Beliefs

Figure 2: System competencies and relationships between them.

2.1. Attention driven visual processing

To autonomously learn visual object concepts the system needs to iden-
tify the moment when new objects are presented as a learning opportunity.
Since initially there are no models for these yet, it cannot rely on model-
based recognition, but requires a more general mechanism. To this end the
system uses a generic bottom-up 3D attention mechanism suited for indoor
environments that are typical for many robotic tasks.

To make the problem of generic segmentation of unknown objects tractable
we introduce the assumption that objects are presented on a table, or any
other supporting surface (which is always the case in the scenario we are
addressing). Based on 3D point clouds obtained with an RGBD sensor, the
system detects (possibly multiple) supporting planes using a variant of par-
ticle swarm optimization [8, 9]. Any parts sticking out from the supporting
plane form spaces of interest (SOIs), i.e. anything that is potentially interest-
ing, without regard to its properties. These SOIs are subsequently validated
by tracking them over time, based on colour histogram, size and position.

As segmentation based on the RGBD data alone can be imperfect and
due to shadowing effects at object boundaries can include points with er-
roneously assigned background colour, stable SOIs are augmented with a
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Figure 3: A typical scene after placing 5 objects, with segmented point cloud and resulting
proto-objects in working memory, and finally the close-up view of a foveated object.

precise segmentation mask using graph cut [10]. This segmentation happens
in a close-up view of the potential object, using a higher resolution RGB im-
age from a camera with a longer focal length than the RGBD sensor. Object
properties to be learned, such as colour and shape, are then extracted based
on the segmentation mask. Figure 3 shows an example scene with wide angle
image, segmented point cloud, extracted proto-objects in working memory
and the close-up view after foveating on an object.

2.2. Learning and recognition of object properties

To efficiently store and generalise the extracted visual information, the
visual concepts of objet properties, such as colour and basic shapes, are repre-
sented as generative models. These generative models take the form of prob-
ability density functions (pdf) over the feature space, and are constructed
in an online fashion from new observations. The continuous learning pro-
ceeds by extracting the visual data in the form of multidimensional features
(e.g., multiple 1D features relating to shape, texture, colour and intensity of
the observed object) and the online discriminative Kernel Density Estimator
(odKDE) [11] is used to estimate the pdf in this multi-dimensional feature
space. The odKDE estimates the probability density functions by a mixture
of Gaussians, is able to adapt using only a single data-point at a time, does
not assume specific requirements on the target distribution, and automat-
ically adjusts its complexity by compressing the models. The odKDE pe-
nalizes discrimination loss during compression of the generative models that
it builds from the data stream, thus introducing a discriminative criterion
function in the construction of generative models. A particularly important
feature of the odKDE is that it allows adaptation from the positive examples
(learning) as well as negative examples (unlearning) [12].

Therefore, during online operation, a multivariate generative model is
continually maintained for each of the visual concepts and for mutually ex-
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clusive sets of concepts (e.g., all colours) the optimal feature subspace is
continually being determined by feature selection. This feature subspace is
then used to construct a Bayesian classifier, which can be used for recognition
of individual object properties. However, since the system is operating in an
online manner, the system could at any moment encounter a concept that
has not been observed before. We model the probability of this occurring
with an “unknown model”, which should account for poor classification when
none of the learnt models supports the current observation strongly enough.
Having built such a knowledge model and Bayesian classifier, recognition is
done by inspecting a posteriori probability (AP) of individual concepts and
the unknown model.

Such a knowledge model is also appropriate for detecting gaps and un-
certainty in knowledge. By analysing the AP for an object, the system
determines the information gain for every concept. The information gain
estimates how much the system would increase its knowledge, if it were to
receive information from the tutor about the particular concept related to a
particular object in the scene (e.g., the colour of the object). This serves as
a basis for triggering situated extrospective learning mechanisms. Further-
more, the system can also inspect its models and determine which model is
the weakest or the most ambiguous. Based on this estimate, the information
gain for every concept is again calculated; this time, it does not relate to a
particular object and serves as a basis for initiating introspective learning.

2.3. Learning and recognition of object models

Besides generic object properties George also learns individual objects [13].
We use view based 3D object models, learned incrementally and consisting of
a series of registered object views, each containing a set of SIFT features to-
gether with their 3D position on the object surface. These views are acquired
incrementally from RGBD images, and are aligned using sparse bundle ad-
justment. Recognition then uses RANSAC to find a matching view given
SIFT features extracted from a given RGB image. Relying only on RGB
images for recognition allows to use a camera with a small field of view for
detecting objects further away, where objects would already be too small in
the rather large field of view of the RGBD sensor.

Similar to the above object properties the robot maintains not only the
models themselves but also measures of their completeness. To this end we
define learned probabilistic measures for observed detection success, predicted
detection success and model completeness, allowing George to quantify its
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current knowledge about an object and the predicted increase in knowledge
for a given action (i.e. add a new view after a change of view point). Observed
detection success p(o | c) is the probability of having successfully detected the
object o given the detector’s confidence value c. Note that while confidence
values are often expressed in the range 0 . . . 1 they do not constitute actual
probabilities. So we have to learn the meaning of that confidence value in
terms of actual probability, where we use a series of virtually rendered views
of the model acquired so far to generate training examples (see Fig. ??).
Predicted detection success p(oj | θ) is defined as the probability of successfully
detecting object view oj given an out of plane rotation θ, and is again learned
using virtual training examples. To arrive at a measure of model completeness
we take the expected detection probability over all learned views p̂(o) =∑

θ,j p(oj | θ)p(θ) where prior p(θ) can take into account that certain views
are less likely than others and thus possibly not even learned (such as the
underside of an object). We then define the knowledge gain g when learning
a new view n + 1 as the expected increase in p̂(o) after learning the new
(n + 1)-th view: g = p̂n+1(o)− p̂n+1(o). I.e. we tentatively add the (empty)
future view to our model together with its predicted detection success and
calculate the increase in detection probability.

We therefore represent the completeness of an object model as the ex-
pected detection probability over all object views learned so far, where the
detection probability of individual views are learned from virtual training
examples. As the model aligns its learned views it can be directly inferred
which parts of the view sphere are currently not covered by views and thus
represent knowledge gaps, where the knowledge gain measure introduced
above quantifies the gain in closing that gap.

2.4. Situated dialogue

In addition to vision, the other source of information for George is dia-
logue with a human tutor. In task-oriented dialogues between a human and
a robot, there is more to dialogue than just understanding words. The robot
needs to understand what is being talked about, but it also needs to under-
stand why it was told something. In other words, what the human intends
the robot to do with the information in the larger context of their joint ac-
tivity. To do so, we employ continual abduction [14] to generate and verify
hypotheses about the human tutor’s behaviour in terms of communicative
intentions and explicitly represent it in the system.

7



Abduction is a method of explanatory logical reasoning introduced into
modern logic by Charles Sanders Peirce [15]. Given a theory T , a rule T `
A → B and a fact B, abduction allows inferring A as an explanation of B.
B can be deductively inferred from A∪T . If T 6` A, then we say that A is an
assumption. There may be many possible causes of B besides A. Abduction
amounts to guessing ; assuming that the premise is true, the conclusion holds
too.

Obviously, as there may be many possible explanations for a fact, in
practical applications there needs to be a mechanism for selecting the best
one. This may be done by purely syntactic means (e.g. lengths of proofs),
or semantically by assigning weights to abductive proofs and selecting either
the least or most costly proof [16], or by assigning probabilities to proofs
[17]. In that case, the most probable proof is also assumed to be the best
explanation. Our approach combines both aspects.

Intentions are goal-oriented cognitive states usually modelled as distinct
from desires in that there is an explicit commitment to acting towards the
goal and refraining from actions that may render it impossible to achieve [18,
19]. The communication system explicitly models communicative intentions,
i.e. intentions that are related to the communication1, and use them as a
pragmatic representation of the human-robot interaction, abstracting away
from the actual surface form.

Abductive reasoning over intentions set within a (situated) context is a
bi-directional process [20], and is used in our system in two roles:

• recognition of the tutor’s communicative intentions (given the context
and a surface form of the tutor’s input, infer his intention),

• realisation of the robot’s communicative intentions – (given the context
and the robot’s intention, infer an appropriate surface form).

We employ abduction in a continual manner, explicitly modelling the
knowledge gaps that inevitably arise in such an effort due to uncertainty and
partial observability. The approach is based on generating partial hypotheses
for the explanation of the observed behaviour of other agents, under the as-
sumption that the observed behaviour is intentional. These partial hypothe-

1as opposed to, for instance, the robot’s purely internal intentions that have nothing
to do with communication. See also §2.7.
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ses are defeasible and conditioned on the validity (and eventual verification)
of their assumptions.

The abductive reasoning system represents knowledge gaps as partial ab-
ductive proofs. In order to turn partial proofs into “full” proofs, the knowl-
edge gaps in them need to be verified or falsified.

Our extension of the “classical” logic-programming-based weighted ab-
duction as proposed by Stickel and Hobbs [21, 16] lies in the extension of the
proof procedure with the notion of assertion based on the work in continual
automated planning [22], allowing the system to reason about information
not present in the knowledge base, thereby addressing the need for reasoning
under the open-world assumption.

In continual automated planning, assertions allow a planner to reason
about information that is not known at the time of planning (for instance,
planning for information gathering), an assertion is a construct specifying a
“promise” that the information in question will be resolved eventually. Such
a statement requires planning to be a step in a continual loop of interleaved
planning and acting.

By using a logic programming approach, we can use unbound variables
in the asserted facts in order to reason not only about the fact that the
given assertion will become a proven fact, but also under-specify its eventual
arguments.

2.5. Modeling beliefs

By processing visual information and communicating with the human, the
system forms beliefs about the world. Beliefs are data structures that contain
indexical information about the perceived entities in the scene. They form a
cognitive layer where multi-modal and multi-agent information is associated
and merged to a-modal representations. In general a belief can be regarded
a high-level representation of an element of the physical reality, grounded in
one or more sensory inputs, attributed to a specific agent or a combination
of both. Typically, a single belief contains information about one entity, but
there can be many beliefs about a single entity. The information inside beliefs
is expressed in multivariate probability distributions over feature-value pairs.

An important aspect of the beliefs is their multi-agent aspect: a belief
can be private to the robot, attributed to an external agent (e. g. human),
or common ground among the robot and one or more other agents. In this
sense we distinguish five distinct belief categories:
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• Private beliefs reflect the robot perceptions of the environment based
on its sensory input. Private beliefs are expressed in modal symbols
and can form various associations with private beliefs stemming from
other modalities or beliefs with other epistemic statuses (e. g. reference
resolution).

• Assumed beliefs are used to establish cross-agent or cross-modal com-
mon ground. They are created from private beliefs by translating the
modal symbols to the a-modal ones. Depending on complexity of the
modal learners and their ability for autonomous unsupervised learn-
ing, this process can be as simple as one-to-one symbol mapping or
much more complex (e. g. translating between two sets of symbols
with overlapping meaning that consequently also modifies the original
probability distribution). In cross-agent case the robot uses assumed
beliefs to establish a common ground with another agent to facilitate
communication. Thus the beliefs reflect the robot assumptions about
the meaning of its perceived information for a particular agent (e. g.
human). In cross-modal case the assumed beliefs establish a common
ground between modalities. In both cases this process facilitates cross-
belief information fusion in later stages.

• Attributed beliefs contain information that robot attributes to another
agent (e. g. human). This kind of beliefs are the direct consequence
of some kind of communication with another agent. The robot is in
principle able to analyze and understand the information in such beliefs,
but does not necessarily agree with it (especially, if it doesn’t match
the robot’s own perception of the same reality).

• Verified beliefs are created from attributed beliefs. They basically con-
tain the acknowledged information from the attributed beliefs. Ac-
knowledgment (verification) does not necessarily mean that the agent’s
information in the belief is consistent with the robot’s perception; it just
means that that information was adequately processed by the robot and
is now ready to be used in higher level cognition (e. g. in communication
with the agent that issued it). After a successful reference resolution
the restrictive information is stored in verified shared beliefs, while the
asserted information is in attributed belief.

• Merged beliefs combine information from verified and assumed beliefs
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and represent the final a-modal situated knowledge, ready to be used by
the higher level cognitive processes (e.g. motivation, planning). They
contain as reliable information as possible and as much information
as available. Information can be merged in different ways. E. g. the
system can completely trust a certain agent (typically a tutor) so that
the merged belief contains all information from the verified belief and
only uses the assumed belief to fill the information gaps left by the
verified belief. A more complex solution for information fusion involves
merging probability distributions over feature values.

The private beliefs are created using the information from the modal
subsystems. The attributed and verified beliefs are created as results of suc-
cessful resolution of another agent’s reference. The changes in perception are
propagated in real-time through the belief structure from private beliefs to
the merged ones. In similar manner the progress in dialogue and dialogue
processing (certain events in other subsystems can be treated as acknowledg-
ments for the attributed information) are reflected in changes in attributed
and verified beliefs. This means that the process of belief merging is re-
peated each time new information is propagated to the assumed belief or
new attributed information is verified.

2.6. Binding and reference resolution

In [23] we presented a model of cross-modal binding and learning system
formulated in Markov logic networks (MLN). We call cross-modal binding
the process of combining two or more modal representations (grounded in
different sensory inputs) of the same physical entity into a single multi-modal
representation. MLN [24, 25, 26] combine first-order logic and probabilistic
graphical models in a single representation. An MLN knowledge base consists
of a set of first-order logic formulae (rules) with a weight attached:

weight first-order logic formula.

The weight is a real number, which determines how strong a constraint each
rule is: the higher the weight — the less likely that rule is violated. MLN is
used to encode the cross-modal knowledge, which is the base for the binding
inference.

In George the MLN binding is applied to the belief cognitive layer, where
the various beliefs represent perceived and assumed facts that are used to
instantiate the rules from the cross-modal knowledge base to the Markov
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network graphical model. If MLN knowledge represents the general rules en-
coding relations between concepts (e.g. object properties as color, shape,...),
the graphical model encodes the relations between concrete instances (ob-
jects) that are currently perceived by the system. A successful inference re-
sults in a shared multi-modal representation of a physical entity, also called
binding union. Successful binding unions can be used as learning samples to
improve cross-modal knowledge, i. e. cross-modal learning.

In George scenario the binding principles are used for reference resolution.
Reference resolution is a process akin to binding that tries to associate multi-
agent information. In our case the robot uses reference resolution to relate
information attributed to a human tutor to its own perceptions, hence it is
critical for its ability to make situated dialogue with the human.

MLN are implemented as a special component that process information
primarily stored in beliefs. A MLN engine component maintains a Markov
network graphical model, which makes continuous online inference (MCMC
sampling) and can continuously adapt to the changes in the beliefs. MLN
engines can also combine the information encoded in the current graphical
model with the external information about the correct inference outcome to
perform on-line weight learning.

In reference resolution the MLN engine processes information from two
distinct sources. Information about perceived entities, which is stored in
beliefs, is continuously filtered and fed to the engine. The other source of
information is the dialogue subsystem. When the dialogue subsystem recog-
nises a referring expression in the tutor’s utterance, it forwards the referring
information to the engine. The inference result, which is a probability dis-
tribution over perceived entities, is used by the dialogue subsystem to fill
in the local knowledge gap in determining the interpretation of the tutor’s
utterance.

2.7. Motivation and planning

Our system is designed to perform multiple, possibly interleaved, goal-
directed activities. For a system that must fill gaps in its own knowledge,
it is important that is able to generate and manage its own goals, as the
opportunities available to it at runtime may be unknown or unpredictable at
design-time. To address this we build on our previous design for a motivation
framework [27, 28]. This framework encodes the drives of the system (the
general types of things it wants to achieve) as a collection of goal generators,
each of which generates particular types of goals for the system based on the
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output of the dialogue system plus the current belief state. Each individual
goal is a (partial) description of a desired future state for the robot (e.g. one
in which it knows the colour of a newly visible object). Before these goals can
be activated, i.e. made the target of planning and plan execution, they must
pass through a management system that selects which of the many possible
goals should be pursued by the system. The management step is necessary
to allow the robot to prioritise those goals that are more important to it out
of all the goals it could possibly achieve.

The goal generators in George create the goals necessary to engage in
situated dialogue with a human tutor and to learn about its surroundings.
The intention structures produced by the dialogue system to describe ut-
terances made by the human (see §2.4) are monitored by a goal generator.
Depending on intention content, this generator creates goals to answer polar
or open questions about objects, or to perform tutor-driven learning. Each
of these goals contains the address of the single merged belief for the object
referenced by the intention, plus additional intention-specific information.
An additional generator handles the situation where a collection of related
intentions have been generated in response to an ambiguous reference. In
this case the goal not only includes the content describing the future state,
but an existentially qualified reference to a belief that represents the possible
referents of the intention. Part of the planning task is then to resolve this
reference. Further goal generators inspect the beliefs created from entries
in the visual subsystem, including proto-objects, visual objects and concept
models. These create goals to generate visual objects, learn features and
improve the model status respectively.

The activation of goals in our system is based on a priority hierarchy of
drives. Each level represents a general type of behaviour we have identified
that our system should perform. The highest priority drive is to respond
to the human. This is followed by the drive to fill gaps in knowledge via
extrospection (i.e. inspecting the world external to the agent). At the lowest
level is the drive to fill knowledge gaps by introspection. Goals of a particular
priority suppress the activation of all goals with lower priorities and are
suppressed by all goals with higher priorities. This is accomplished using a
simple attention filter in our framework. Goals that pass this through this
filter enter into the management system. Here they can be ranked according
to heuristic information provided by their goal generators and the top ranked
goals are activated.

Planning is performed for activated goals on a problem description gen-
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erated from the system’s belief state. Plan execution, execution monitoring
and replanning is managed via a collection of action interfaces which trig-
ger individual components in the modality-specific subsystems. We use the
Fast Downward [29] planner, a state of the art planning system based on
heuristic forward search. We extended it by a preprocessing routine which
enables the support of object fluents and numerical constants by compiling
them away, and deal with the uncertainty of the real-world environment by
using a continual planning approach [22].

In all three kinds of tasks (answering questions and filling gaps by extro-
spection or introspection), dialogue with the tutor plays an important role,
either in the form of answering or asking questions. Therefore, the plan-
ner must find a way to establish common ground with the tutor about the
object they discuss. George has two ways to do so: Describing the object
verbally, or pointing to it with its arm. As we regard a verbal description
as the cheaper one, George will always try to describe the object in question
if it has some property that is unique among all objects and where human
and robot have already established common ground, and it will choose to
use the arm otherwise. Once George and its tutor know which object their
discussion is about, the planner determines the correct answer or question,
and triggers some learning component if necessary.

3. Integrated system and behaviour mechanisms

3.1. Integrated system

We integrated the competencies described above in a robotic system.
The implementation of the robot is based on CAS, the CoSy Architecture
Schema [30]. The schema is essentially a distributed working-memory model
composed of several subarchitectures (SAs) implementing different function-
alities. George is composed of six such SAs, as depicted in Fig. 4 (here, the
components are depicted as rounded boxes and exchanged data structures as
rectangles, with arrows indicating a conceptual information flow).

The Visual SA processes the scene as a whole using the Kinect RGBD
sensor and narrow field-of view Point Grey Flea 2 cameras and identifies
spaces of interest, where the potential objects are detected and subjected
to individual processing, as described in §2.1. The attention driven visual
processing make use also of the Direct Perception pan/tilt unit from the
Spatial SA for bringing the object of interest into the center of attention.
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The beliefs can also be altered by the Dialogue SA through dialogue
processing. The system uses off the shelf software for speech recognition and
production and the developed techniques presented in §2.4 for recognition of
human’s intentions and realisation of the robot’s intentions in the situated
context. The robot also uses the Neuronics Katana 6M 5DOF robot arm
from the Manipulation SA for pointing at the object in the scene to establish
a common ground with the tutor.

All of the beliefs are collected in the Binder SA, which represents a central
hub for gathering information from different modalities (subarchitectures)
about entities currently perceived in the environment. They are monitored
by the Planning SA, which generates the robot behavior as described in §2.7.
The beliefs are first used to trigger the motivation mechanism to produce the
learning goals and then for generating the planning state. Finally, during
execution action requests are sent to the Visual, Spatial, Manipulation, and
Dialogue SAs to perform actions that generate the desired behaviour. The
actual mechanisms that drive these behaviours are described in the following
subsection.

3.2. Basic behaviours

The system is very complex, very heterogeneous, and very integrated.
This means that also the basic behaviours require the functionalities im-
plemented in several subarchitectures. And they also require that different
functionalities are executed in parallel, but are still kept synchronised. In
the following we will briefly describe the mechanisms that implement these
different behaviours. These mechanisms are depicted in Fig. 5. Here, the
main processing flows are sketched, and only the major components or data
structures are emphasised (encircled). Every behaviour is triggered by a par-
ticular event in a particular component or data structure; they are marked
with a thicker circle.

3.2.1. Mechanisms for visual perception

We will first describe the mechanisms for visual perception, i.e., how
George observes the scene. There are two main behaviours that provide
the robot with the visual information. The first one is bottom-up driven
and is triggered by changes in the scene, assuring that the objects that are
brought in the view of the robot are analysed as well as possible. The second
one is top-down driven and is triggered by the motivation subsystem and
should assure that the robot looks around and analyses the entire scene.
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Figure 4: Schematic system architecture.

Both mechanisms are govern by the extrospection drive as they relate to
understanding the external world.

Attention mechanism. As outlined in §2.1, the most basic behaviour of
the system is the bottom-up visual processing based on the plane pop-out
attention. Attention leading to generation and tracking of SOIs is always on.
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SOIs are transient. So while they are tracked (using colour histogram, size
and position) to lead to stable percepts during changes of lighting or small
object movements, SOIs are not maintained when George looks away from
the scene and back again, and are essentially just the starters for further
processing, and not enduring percepts in their own right. Whenever a SOI
is found and tracked, the next higher level generates a proto-object (PO), as
depicted in Fig. 5(a). A so called view cone is added to the PO, indicating
what would be a good close-up look at the PO. The planner detects this goal
to get a closer look and prepares a plan for further object analysis. Execution
of this plan results in a pan/tilt move to foveate at the new PO, bringing
it into the centre of the higher resolution camera, where it will be analysed,
i.e. its precise outline will be segmented as an image region of interest (ROI)
and object properties (colour, shape) extracted. Furthermore learned object
recognisers are run on the ROI in the high-res image, resulting in a label in
case the object is already known. All these properties are finally stored in
a so called visual object (VO), represented as a private belief in the binder.
When a newly detected SOI matches an already existing PO (e.g. when the
camera moves back to an already analysed scene part) the visible attribute of
the VO associated with the PO is set from false to true. Proto-objects thus
serve as place-holders for possibly interesting parts of the scene that could
become proper visual objects upon further analysis.

Exploring the scene. George has a limited view of the world. There may
be objects in front of it but just out of range of its visual system. To make
sure George does not miss such objects it has a goal generator which moti-
vates it to move its pan-tilt unit, allowing it to perceive previously unviewed
parts of the scene. This generator is triggered after a fixed window of system
inactivity, and causes the generation of a small number of view points pro-
viding randomly positioned views of the scene. This mechanism is depicted
with dashed lines in Fig. 5(a). Clearly, after the robot rotates the cameras
to a new orientation, and if in the new view there is a new object, the atten-
tion mechanisms described above is triggered and a new object is precessed
correspondingly.

3.2.2. Tutor initiated interaction

One of the main capabilities of the system is interaction with a human
tutor. The interaction can be triggered by the tutor or by the robot. We first
present the mechanisms that govern the interaction initiated by the tutor;
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either by asking the robot to execute an instruction or to answer a question,
or by giving the robot a useful information that can be used for learning.
These mechanisms are triggered by the system’s interaction goals.

Answering tutor’s requests. The communication subsystem is monitor-
ing for the tutor’s input at all times. Whenever an input is recognised, its
surface form is analysed in terms of the underlying communicative intention.
As depicted in Fig. 5(b), after input is detected (either by speech recognition
or text input), the word sequence is parsed, assigning a semantic structure to
it. This structure is then passed on to the context-sensitive intention recog-
nition module which resolves all references and connects the speech act to the
previous discourse. The resulting intention then contains a reference to the
object in question, and to previous intentions already present in the working
memory. The resulting intention is then written to the working memory, and
turned into a motive by the motivation subsystem. The motivation subsys-
tem then decides whether (and when) to make the motive active, in effect
reacting to the tutor’s input.

From the learning perspective, George can recognise both assertions about
the environment (e.g. “The red object is a coke can.”) and questions (“What
colour is the coke can?”, “Is the coke can blue?”). Reacting to the tutor’s
prompt, on the other hand, is a planned behaviour. This holds both for
George’s answers to the tutor’s questions (“It is blue.”) and for George’s
own initiative (“Could you show me something red?”).

The communication subsystem therefore extracts the information about
the current scene obtained by the human, and relates this information to
the beliefs produced by the robot visual perception. Different beliefs are
related and merged in the processes of reference resolution (see §2.6) and
information fusion (see §2.5). In Fig. 5(c) we can see how the reference
resolution relates information from the dialogue subsystem (verified beliefs)
to perceptual information in private beliefs. Information from both source is
then merged by the process of information fusion. The final result of these
processes are merged beliefs that are used for further higher-level processing.

Situated tutor-driven learning. The tutor can also ask the robot to
learn, or provide the information to the robot that can be used for learning.
In such situated tutor-driven learning, the learning mechanism is therefore
triggered by the tutor. The learning act occurs, when (i) the visual subsystem
detects an object and processes its visual features and (ii) the information
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provided by the tutor is successfully attributed to the same object. As de-
picted in Fig. 5(d), this results in the tutor’s intention, containing both the
reference to the object in question, and encoding the desired effect of the
tutor’s utterance (i.e., the corresponding change of the private belief about
the object). The intention structure is the prerequisite for the motivation
subsystem to create a planning goal for visual learning. The goal will be
committed to planning and execution only if the expected information gain
for the learning action (provided by the visual subsystem) is high enough.
Since both prerequisites for the learning are present (visual information from
the private belief and a label from the intention), the planner generates a
trivial plan – a sequence of learning actions, one for each property provided
by the tutor. The execution subsystem delegates the visual learner in the vi-
sual subsystem to carry out the actions to update the internal visual models,
finally resulting in an updated model status belief containing key information
about the visual models.

3.2.3. Extrospective learning mechanisms

To maximize the learning efficiency a cognitive system has to be able to
exploit different kinds of learning opportunities and not only to passively
wait for the tutor’s learning instructions. It should actively look for, ask for,
and use the information that would help to extend its knowledge.

The robot aims at extending its knowledge about visual concepts by min-
imising the uncertainty about its perceptions of the objects that are currently
presented in the scene. In this case, the learning opportunity is represented
by a perceived object and by the information available about that object;
this information can be obtained by the robot itself or it can be provided by
the tutor.

These mechanisms are triggered by the system’s extrospective goals. The
motivation component monitors the merged beliefs in the binder; if they
contain information that can be exploited for learning, it triggers the learning
process.

Situated autonomous learning. If a merged belief contains only the in-
formation provided by the visual subsystem and this information is reliable
enough (therefore the visual concept has been recognised with a high confi-
dence), the motivation triggers the learning cycle. The representations of the
corresponding visual concepts are therefore automatically updated, resulting
in an updated model status belief (as depicted in Fig. 5(e)). In the case of
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very confident recognition (with a probability very close to 1), such an up-
date of the knowledge is not necessary, because the current representation
can describe the object perfectly well. However, in the case of slightly less
reliable recognition, it makes sense to update the knowledge, since it will
adapt to the perceived object, and will increase the confidence of the recog-
nition of the same (or similar) objects in the future. However, there is always
a danger of incorporating erroneously recognised information into the rep-
resentations in such an automated way; the system should therefore behave
very conservatively and only update the knowledge when the recognition is
reliable enough, otherwise it should verify its decision by the tutor.

Situated tutor-assisted learning. The robot can therefore, depending
on its current ability to recognise that specific object, ask a question about
the object’s properties. In this case, the motivation subsystem reacts to the
private information in belief only. The robot asks about the object property
with the highest information gain, since it expects that the model of the cor-
responding object property will profit most if it gets the information it asks
for. In the absence of attributed information the planner generates a more
complex plan to ask questions about missing information. The execution sub-
system generates a corresponding robot intention, which is further managed
by the Dialogue SA, resulting in the synthesis of the corresponding generated
utterance (the dashed branch in Fig. 5(e)). Depending on the confidence in
the recognition results the planner can select between polar questions (e. g.
“Is the color of this object red?”) and open questions when the recognition
confidence is very low (e. g. “What is the color of this object?”). In the case
when the robot can not unambiguously refer to the particular object verbally,
it points at it to establish a common ground with the tutor. After the tutor
provides the answer, the workflow is similar to the tutor-driven learning.

3.2.4. Introspective learning mechanisms

Even in the absence of situated learning opportunities, the robot can
still actively pursue its curiosity motivated goals. E. g. the robot can self-
initiatively search for new objects or even ask another agent to show him one
(specifying the properties he is currently most interested in). This behavior is
based exclusively on the introspection of the existing property models. From
a pool of currently maintained property models the robot selects the one that
he considers the least adequate (typically inadequately sampled) and based
on that initiates an action that tries to obtain new samples to improve it.
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Non-situated tutor-assisted learning. The robot tries to obtain new
learning samples by making a request to the human tutor (e. g. “Could
you show me something red?”). We can see that, as a result of the model
instrospection, the robot even tries to influence the quality of the potential
new object. The model introspection is performed in the visual subsystem
and carried on to the belief layer in the epistemic structure model status. The
model status has a key role in deciding if and what kind of request to make.
It contains key information about the visual models maintained by the visual
learner.The most important information is again the information gain that
in this case estimates the reliability of a model in general, not relating this
utility to a particular object in the scene (in contrast, the information gains
stored in beliefs denote the utility of new information carried by a particular
object).

3.3. Compound behaviour

Very often, different behaviours could be triggered simultaneously, so
there is a need for a mechanism that selects among them to assure a coherent
compound behaviour. We model this compound behaviour by assigning dif-
ferent priorities to the main drives that raise different goals. The motivation
component opts for the goals with higher priorities. Among the goals from
the same priority level than the planner selects which one to pursue based on
the gains (how much the system is expected to benefit if the goal is fulfilled)
and the costs of the actions. The information about the gains is stored in
the beliefs and is based on an analysis of the models of the visual concepts
and objects that are currently present in the scene.

Table 1 lists three main drives that trigger the behaviours described
above. The interaction drive has the highest priority, since we want that
the robot reacts to tutor’s assertions or requests promptly; this is a basic
requirement for a natural robot-tutor dialogue.

Goals to explore the scene and to learn as much as possible about the
objects currently presented in the scene are part of the extrospection drive
as they relate to understanding the external world. They will be suppressed
by interaction goals but at the same time they are prioritised above model
introspection. The robot first tries to learn as much as possible about the
objects in the current view by attending them and updating the knowledge
based on the obtained information. When these goals are not active any
more, the exploration behaviour is triggered to explore the wider scene as it
can yield new objects which can be learnt about.
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Table 1: Priority levels

.

Interaction drive
Answering tutor’s requests
Situated tutor-driven learning

Extrospection drive

Attention mechanism
Situated autonomous learning
Situated tutor-assisted learning
Exploring the scene

Introspection drive Non-situated tutor-assisted learning

Non-situated tutor-assisted learning is triggered by goals from the intro-
spection drive at the lowest priority level. As such it is only carried out
when no other goals are active (i.e. when all visible objects have had their
properties learnt and no scene exploration is necessary). Therefore, when the
robot doesn’t have anything else to do, it asks the tutor to show it an object
with particular visual properties that would potentially increase the robot’s
models of these properties most.

We chose this particular drive prioritisation to reflect the desired be-
haviour of the robot: it should always try to respond to the human, then try
to understand the scene in front of it (as this will be the subject of future
interactions), then try to understand the world in more general terms (e.g.
through improving its models).

4. Example dialogue

A good way of describing the behaviour of the developed system is to
present a sample dialogue between the robot and the human tutor during
learning of visual concepts, such as colour, shape and object models. The
robot is asked to recognize and describe the objects in a table top scene, of
which there are up to five. The human can move or remove objects from the
table during the dialogue, and teach the robot about the objects by describing
them. Initially the tutor drives the learning, but after a while, the robot
takes the initiative, and is able to learn either without verbal feedback, or by
asking the tutor for clarification when necessary. To achieve this the robot
must establish a common understanding with the human about what is in the
scene, and verbalize both its knowledge and knowledge gaps. In a dialogue
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with the tutor, the robot keeps extending and improving the knowledge. To
test what the robot has learned the tutor asks questions about the scene.
The goal of learning is for the robot’s representations to be rich enough to
correctly describe the scene.

Consider an empty scene. The tutor puts an object and the robot looks
at it by applying the attention mechanism.

H: Do you know what this is?
R: No.

At the beginning the robot knows nothing about the objects. Situated tutor-
driven learning is therefore suitable during these initial stages, since the robot
has to be given information to reliably initiate its visual concepts.

H: This is a red object.
R: Let me see. OK.

After George gets this information, it can initiate its visual representation
of redness. After several such learning steps, the acquired models become
reliable enough that they can be used by George to refer to individual objects,
and to understand references by the human. From this point on there can be
several objects in the scene at the same time, and by applying the mechanism
for answering tutor’s requests George can understand and answer questions
about some of them:

H: What colour is the coke can?
R: It is red.

When enough of the models are reliable, George can take the initiative and
drive the learning by asking questions of the tutor. It will typically do this
when it is able to detect an object in the scene, but is not certain about some
or all of its properties. In such situated tutor-assisted learning there are two
types of uncertainty and gaps. If the object does not fit any previously
learned models, the robot considers there to be a gap in its knowledge and
asks the tutor to provide information about its novel property:

R: Which colour is this object?
H: It is yellow.
R. OK.

The robot is now able to initialize the model for yellow and, after the robot
observes a few additional yellow objects, which make the model of yellow
reliable enough, it will be able to recognize the yellow colour.

In the second case, the robot is able to associate the object with a par-
ticular model, however the recognition is not very reliable. Therefore, the
robot asks the tutor for clarification:
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R: Is this red?
H: No. This is yellow.
R. OK.

After the robot receives the answer from the tutor, it corrects (unlearns) the
representation of the concept of red and updates the representation of yellow.

In a similar case as above, but if the recognition of an object is more
reliable, George updates the models without asking a question utilising the
mechanism for situated autonomous learning. Since there is no verification
from the tutor, George would be very conservative when using this learning
mechanism; it would update the knowledge only when it is well certain about
the recognition result.

In this way George attends and processes all the objects it detected in the
scene. It therefore knows everything about these objects. It then explores
the scene by looking around to see if there is any new object. Let us assume
that there is no one.

Since there is no new object it could learn about, it tries to detect a gap
in its knowledge by introspection. By using the mechanism for non-situated
tutor-assisted learning it asks the tutor to show it an object, which would
help it to improve its knowledge.

R: ”Please, show me something blue.”
H: ”This is a blue object.”
R: ”Thank you.”

The robot can refer to objects verbally or by pointing. Let’s say that the
tutor empties the table and then puts two objects in the scene. George de-
tects and attends both. If it can recognise one object attribute, which is not
equal for both the objects in the scene, it can refer to that object verbally.

R: ”Is the Pepsi can blue?”
H: ”Yes, it is.”
R: ”Thank you.”

However, if it can not distinguish between the two objects using verbal de-
scription, it refers at an object by pointing at it.

R points at one object. R: ”What colour is this object?”
H: ”It is yellow.”
R: ”Thank you.”

In the same way, George can also choose between using verbal descrip-
tion or pointing for clarification. The tutor removes the objects and puts
two other objects in the scene. George recognizes two yellow objects (with a
similar probability) and does not reliably recognize the type, therefore it has
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to point at an object to clarify the situation.
H: ”What shape is the yellow object?”
R points at one object and asks: R: ”Do you mean this one?”
H: ”Yes.”
R: ”It is elongated.”

Then the tutor removes the objects and puts another two objects in the
scene. The robot recognizes two yellow objects and also recognizes the type
(a tennis ball and a banana). Now, the robot can clarify the situation ver-
bally by using visual attributes.

H: ”What shape is the yellow object?”
R: ”Do you mean the tennis ball?”
H: ”No.”
R: ”Banana is elongated.”

In such mixed-initiative dialogue George continuously improves its rep-
resentations of basic visual concepts. After a while George can successfully
recognize the acquired concepts to provide reliable answers to a variety of
questions.

H: Do you know what this is?
R: It is a blue object.
H: What is the green object?
R: It is an ice tea bottle.
H: What shape it is?
R: It is elongated.

5. Conclusion

In this paper we presented representations and mechanisms that facilitate
continuous learning of visual concepts in dialogue with a tutor and showed
the implemented robot system. We briefly presented how the beliefs about
the world are created by processing visual and linguistic information and how
they are used for planning the system behaviour with the aim of satisfying
its internal drives – to respond to the human and to extend its knowledge.
We focused on different mechanisms that implement different behaviours
leading to a coherent compound learning behaviour. We demonstrated these
principles in the case of learning conceptual models of objects and their visual
properties.
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During our research, we have made several contributions at the level of in-
dividual components, as well as at the system level. In this paper we wanted
to show how an integrated approach comprising attention-driven visual pro-
cessing, incremental visual learning, selection of learning goals, continual
planning to select actions for learning behaviour, and a dialogue subsystem,
can lead to a coherent and efficient system capable of mixed-initiative learn-
ing. Such an integrated robotic implementation enables system-wide research
and development and testing on the system and sub-system level.

The robotic implementation is based on a distributed asynchronous ar-
chitecture, which facilitates inclusion of other components that will bring
additional functionalities into the system in a coherent and systematic way,
such as navigation and manipulation. This will increase the possibilities of
interaction with the environment and enable the robot to acquire novel in-
formation in an even more active and autonomous way. Here, the detection
of knowledge gaps and planning for actions that would help to fill these gaps
will play an even more important role and will enable more autonomous and
efficient robot behaviour. The presented behaviour generation mechanism is
general enough to accommodate also such new types of behaviours.

Building on this system, our final goal is to produce an autonomous robot
that will be able to efficiently learn and adapt to an ever-changing world by
capturing and processing cross-modal information in an interaction with the
environment and other cognitive agents.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Behaviour mechanisms. (a) Attention and exploration mechanisms. (b) An-
swering tutor’s requests. (c) Merging multi-modal information. (d) Situated tutor-driven
learning. (e) Situated autonomous and tutor-assisted learning. (f) Non-situated tutor-
assisted learning.
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